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NATIONAL ADVISORY CO}'1MITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2908 

DE'TERMII'JATION OF MEAN CAMBER SURFACES FOR WINGS HAVING 

UNIFORM CHORDWISE LOADING MID ARBITRARY SPANWISE 

LOADING IN SUBSONIC FLOW 

By S. Katzoff, M. Frances Faison, and Hugh C. DuBos.e 

SUIIMARY 

The field of a uniformly loaded wing in subsonic flow is discussed 
in terms of the acceleration potential. It is shown that, for the 
design of such wings, the slope of the mean camber surface at any point 
can be determined by a line integration around the wing boundary. By an 
additional line integration around the wing boundary, this method is 
extended to include the case where the local section lift varies with 
spanwise location (the chordwise loading at every section still remaining 
uniform). 

For the uniformly loaded wing of polygonal plan form, the integra-
tions necessary to determine the local slope of the surface and the 
further integration of the slopes to determine the ordinate can be done 
analytically. An outline of these integrations and the resulting 
formulas are included. 

Calculated results are given for a sweptback wing with uniform 
chordwise loading and a highly tapered spanwise loading, a uniformly 
loaded delta wing, a uniformly loaded sweptback wing, and the same swept-
back wing with uniform chordwise loading but elliptical span load 
distribution.

•1• 

INTRODUCTION: 

The desgn of mean camber surfaces to sustain a specified area 
distributio of lift at subsonic spédinvolves basically a relatively 
straightforward process: a system of bound and trailing vortices is set 
up in the plane of the wing according to the spec ified distribution of 
lift, and the corresponding vertical velocity isacu1ated, by the 
Biot-Savart law, at points on the surface whereThe local slopes are 
desired. Reasonably practical: .numericl' dIpIica1 procedures have
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been developed for performing this integration of the velocity due to 
this distribution of vortices (see, for example, ref. 1). If the chord-
wise loading is specified to be uniform, as in a number of recent wing-
design studies, the problem is basically simplified; as will be shown, 
the solution can then be reduced from a double integral over the wing 
area (or over the wing area plus wake area) to a line integral around 
the boundary of the wing and, in the simplest cases, it can even be 
reduced to a purely analytical procedure. 

The purposes of the present paper are to outline the basic theory 
behind the solution of problems involving uniform chordwise loading, to 
summarize the mathematical application of the theory and the development 
of the reciuired formulas, and to describe the actual use of these derived 
results in the design of mean camber surfaces for this ty-pe of loading. 

The,basic theory of the uniformly loaded lifting surface is reviewed 
first. The particular case of the infinitesimally wide, uniformly loaded 
longitudinal strip is next discussed, together with the integration of 
such strips to form the wing of arbitrary contour and arbitrary spanwise 
loading. For the uniformly loaded polygonal wing, closed expressions 
will be derived for both the local slope of the mean camber surface and 
the local height of the surface (relative to the leading edge). Sec-
tions of the mean camber surfaces of four wings calculated by these 
methods are also presented.

SYMBOLS 

x, y, z	 streamwise, lateral, and vertical coordinates, respec-
tively (see fig. i) 

x', yt	 coordinates of vortex element on wing boundary 

U	 stream velocity 

w	 vertical velocity induced by unit vortex (positive 
upwards) 

p	 pressure 

p	 density 

CL	 wing lift coefficient 

c 1	 wing section lift coefficient 

c	 chord 

average chord



NACA TN 2908
	

'3 

vortex element (vector) 

vector from vortex element to point 

M	 Mach number 

A	 aspect ratio 

A	 sweep angle 

Vortex-segment symbols: 

( X1 ,Y1 ), (x2 ,y2 )	 (end. points of vortex segment, y1 > 2) 

11fy, - y 
a, = tani

- x2 

L = y1 csc a. 

M = -y2 csc a 

1 = .Jx2 - 2xL cos a + L2 

m = \Jx2 + 2xM cos a + M2 

S =	 - x) 2 + y12 

t = \JX + 

Subscripts: 

LB	 leading edge 

TB	 trailing edge 

BASIC THEORY FOR UNIFORMLY LOADED WINGS 

Application of acceleration potential.- In flow fields consisting 
of a small perturbation flow superimposed on a uniform flow, the pres-
sure is a potential (multiplied by -l/p, it is frequently termed accel-
eration potential) that satisfies Laplace's equation (see, for example,
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ref. 2, PP . 225 -227) . In the field of a uniformly loaded lifting sur-
face, then, the pressure (relative to free-stream pressure) is a harmonic 
potential that must satisfy the following boundary conditions: 

(a) It has a uniform negative value over the upper face of the 
lifting surface. 

(b) It has a numerically equal, uniform positive value over the 
lower face of the lifting surface. (That the upper and lower surface 
pressures are equal and opposite is not, perhaps, obvious merely from 
the fact that a pressure difference exists across the surface. If, how-
ever, the lifting surface is represented by a distribution of bound and 
trailing vortices, as in ref. 1, this fact is iinmediate1yapparent.) 

(c) It vanishes at infinity. 

These boundary conditions, which uniquely define the pressure throughout 
the field, are recognized as identical with the conditions on the velocity 
potential in the field of a closed vortex that coincides with the edge, 
or boundary, of the lifting surface. Accordingly, the pressure at any 
point in the field of a uniformly loaded lifting surface Is equal in 
value to the velocity potential of such a vortex, the strength of which 
is the pressure difference between the upper and the lower faces, or the 
lift per unit area. Correspondingly, the pressure gradient at any point 
in the field is equal in both magnitude and direction to the potential 
gradient (that is, the velocity) associated with this vortex at that 
point; and it can accordingly be determined by the Biot-Savart law. For 
present purposes, only the vertical component of this gradient is of 
interest. The vortex should not, of course, be confused with the lifting 
vortices of the usual airfoil theory; these latter vortices are not used 
in the present paper. 

The vertical acceleration of a fluid particle is - 	 (see 
p 

fig. 1 for coordinate system), so that the vertical velocity acquired by 
a particle which has come into the neighborhood of the wing from a large 
distance upstream is the integral of this expression with respect to 

time, or r - 1 E , where the factor dx/U is the element of time. 
J	 PzU 

(In order to simplify the notation, the same symbol x is used for both 
the running variable and the upper limit.) All perturbation velocities 
are assumed to be small so that the path of integration, or the path of 
the fluid particle, is the line y = constant, z = constant. 

Dividing this vertical velocity by U gives the vertical slope dz/dx 
of the strea.i1ine. In particular, if the integral is evaluated for a 
point on the lifting surface itself, the local slope of the surface is
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given by — _i_f E. dx, where the integration is along the line 
pU2 _ 

y = constant, z = 0. Here again the small-perturbation theory assumes 
that all displacements from the straight undisturbed streamlines are so 
small that the path of integration may, with sufficient accuracy, be 
taken in the plane z = 0, and, in particular, that the vertical displace-
ment of the trailing edge relative to the leading edge is so small that 
the boundary vortex may also be taken in the plane z = 0. The local 
height of the surface z, relative to the leading edge, is the integral 
of this slope, or

J	 dx 
pu2Jx 

For any lift coefficient CL the pressure difference across the 

lifting surface is — pU 2 , which, as previously noted, is numerically 

equal to the strength of the vortex that is assumed around the edge of 
the projected plan form of the lifting surface. Thus, finally, the 
local slope of the surface is

(1) 

where w is the vertical velocity (positive upward) in the plane of the 
lifting surface induced by a unit vortex along the edge of the surface. 
The local height of the surface, relative to the leading edge, is then 

1 
z= -_ CLJ	 dxJ wdx 

—Co 

The direction of rotation of the unit vortex is such that its flow is 
upward through the surface of the wing; that is, the potential increases 
by unity along a path from the upper to the lower wing surface around 
the edge of the wing.

(2)



NACA TN 2908 

Line integral for local slopes of uniformly loaded wing with arbi-
trary plan form.- By equation (1), the local slope dz/dx may be deter-
mined by evaluating the vertical velocity w induced by the entire 
boundary vortex and then integrating w from -co to x. A more con-
venient method, however, is to evaluate the contribution to w induced 
by an infinitesimal element of the bounding vortex, to integrate this 
contribution from -co to x (which is readily done analytically), and 
then to integrate this result over all the elements of the bounding 
vortex. 

The differential form of the Biot-Savart equation (see ref. 2, 
p. 167) for the induced velocity d due to an element d of a unit 
vortex is

= 1 d x 
144t	

ii 

where	 is the vector from the vortex element to the point in question, 
and the direction of d is taken as the direction of advance of a 
right-hand screw rotating in the direction of the circulation about d 
(see fig. 1). For the present problem, where the point lies in the plane 
of the wing, this induced velocity is in the z direction and is given by 

dw	 i (y - y)dx' - (x - x')dy' 
1r-

	

	 3/2 
- x') 2 + ( - y )j 

where (x,y) is the point at which the induced velocity is desired, and 
(x ' ,y ' ) is the location of the vortex element (dx',dy') on the wing 
boundary. 

Accordingly, by equation (i), the contribution of a boundary ele-
ment (dxl,dyv) of a uniformly loaded wing to the slope of the wing 
surface at point (x,y) is 

1 CL fl X (y - y' ) ' - (x - x' )dy r d(slope)1,	
2IJCo	

x - x') 2 + (y - y?)2]3/2 

CL r	 (x - Xt)	
+ dx' + 

[(y_y?)(x_x!)2+(y_yt)2	 YY' 

dy' 

- x') 2 + (y - yi)2j
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The signs of dx' and. dy' are determined from the previously mentioned 

	

convention for the direction of the vector d 	 (or (dx',dy')); for 
example, both dx' and dy' are negative for the leading-edge element 
showi in figure 1. 

The net slope of the mean camber surface at the point (x,y) is the 
integral of the preceding expression around the wing boundary, or 

dz - CL _______________________________ (x - x' )dx' 
________________________ + - 

y yi 

dx' +	 dy' 

- '	
(x - xI)2 + (y - 	

(3) 

where the counterclockwise direction of the integration automatically 
takes care of the signs. The problem of determining the local slope of 
the mean camber surface at the point (x,y) is thus reduced to the evalua-
tion of this line integral. 

WINGS WITH ARBITRARY PLAN FORM AND ARBITRARY 

SPANWISE LOADING 

Wing considered as sum of uniformly loaded chordwise striDs.- For 
the wing having uniform chordwise loading and arbitrary spanwise loading, 
it is convenient to consider the wing to be made of a series of uniformly 
loaded chordwise strips of infinitesimal span. For each such strip 
(span dy', see fig. 2) the pressure field can be represented by the 
velocity potential of a closed vortex superimposed on.the boundary of 
the strip. Each of these bounding vortices has strength equal to the 
local pressure difference ip between the upper and lower surfaces of 
the strip. 

If, as in the preceding analysis, the spanwise loading is uniform, 
all these closed vortices will be of the same strength, so that the 
chordwise senents common to any two adjacent strips cancel and only 
those vortex elements lying on the boundary of the wing remain. The 
result is thus the same as that previously discussed for the uniformly 
loaded wing (eq. (3)). -
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If, however, the spanwise loading is not uniform, the closed vor-
tices surrounding adjacent strips will be of unequal strength; vortex 
segnents common to adjacent strips will no longer cancel, and vortex 
elements lying on the wing boundary will vary in strength along the 
boundary. The contribution of these boundary vortex elements to the 
induced velocity w can still be summed by a line integration around 
the wing boundary of the expression given in equation (3), except that 
CL must be replaced by the local section lift coefficient c 1 (y') and 

placed under the integral sign. The contribution of the chordwise seg-
ments is derived in the following paragraph: 

Streamwise vortex segments.- The Biot-Savart formula for the induced 
velocity due to the straight-line chordwise vortex segment of unit 
strength is

w = _L_(cos e2 + cos	 (1i) 

	

where r, e1 , and	 are defined in figure 3 . With r and the 

cosines expressed in Cartesian coordinates, this expression becomes 

	

1	 x- (x' +c)	 -	 x-x' 
I#it(y-y')	 1	 2	 2	 1	 2	 2 

v [x - (x' + c	 + (y - y')	 V(x - x') + (y - 

where c is the local chord. The integral of this expression from - 

1dc 
to x, multiplied by - dc 1/2 or - - -- dy' (see eq. (i)), gives the 

2 dy 

contribution to the slope from the streainwise vortex senent of strength 
corresponding to dc 2 and length equal to the local chord 

	

d(slope)	
8(y- yt)	 JdY!([(x - x') 2 + ( - y') 2 + (x - xt)] - 

[_ (x

' + c 2 + (y - y') 2 + x - (x ' + c)
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Finally, integrating this last equation with respect to y' across 
the span of the wing (from left to right) gives the contribution of all 
these chordwise segments to the slope at the point (x,y). It will be 
observed, however, that the term within the second bracket in this equation 
is the same as that within the first bracket except that x T is replaced 
by x' + c, the corresponding trailing-edge coordinate. Accordingly, the 
integral of this expression across the span can, for convenience, be con-
sidered as the line integral 

L	 dyt	 1	 [x - x') 2 + (y - y') 2 + (x - x	 (5a) 
8t	 dy	 I 

or

dc1

	

	 (x - Xt)2 + (y - y') 2 ^ (x -	 (Sb) 
y - y'. [ 

around the boundary of the wing. 

The problem of determining the local slope of the mean camber sur-
face at point (x,y) is thus reduced to the evaluation of the line inte-
grals (3) and (5), where the integral (5) is omitted if there is no 
spanwise variation in the area loading (or in the local lift coeff 1-

cient c 1 ) and where the local lift coefficient c 1 replaces CL 

equation (3) and must be brought under the integral sign if there is a 
spanwise variation of c1.

COMPUTATION 

Although computing the integrand.s of expressions (3) and (5) and 
then performing the integrations should be a fairly straightforward 
process, a short outline of suggested procedures may be helpful. It may 

be noted at the beginning that, since the slopes (and the integrals for 
the slopes) are nondimensional, the results will be independent of the 
dimensional scale chosen for the wprk; taking the root chord or the 
seinispan as unity will probably be most convenient. It may also be 
remarked that a carefully drawn plan form of the wing will be helpful in 
setting up the computations. 

Rsum of procedure for computing slopes of uniformly loaded mean 
camber surface . - Given the plan form of a wing that is to have uniform 
area loading and a specified lift coefficient, a possible procedure is 
as follows:



10	 NACA TN 2908 

(i) Select points (x,y) on the surface where the slopes are to be 
obtained. In general, these points should lie along several selected 
chord lines, with perhaps four along each line. 

(2) Select points (xt,yt) along the leading and trailing edges 
where the integrands of equation (3) are to be determined. In general, 
trailing-edge points should be at the same spanwise positions as the 
leading-edge points. 

(3) Consider the integral in equation (3) to be broken up into two 
parts - one with respect to x and one with respect to y': 

I

£ 1 _____ 
YYt [ ()2 +() ____	

x-xt	 +l],	 (6a) 

and

dy' 

- x') 2 + ( -	
2

(6b) 

y y) 

For each point (x,y), compute the values of the integrands in expres-
sions (6a) and (6b) for all the (x',y') points. 

(14.) For each point (x,y), plot the integrands of (6a) against x', 
plot the integrands of (6b) against y', and. determine the area of each 
(for example, by running the planinieter around. the curve in the direc-
tion corresponding to a counterclockwise movement of the variable 
point (x',y') around the wing boundary). 

(5) For each point (x,y), sum these two areas and multiply by 
- CL/8t in order to determine the local slope dz/dx. 

(6) The actual heights of the mean camber surface along the chosen 
chords are now determined by integrating the slopes found in the pre-
ceding steps. The Integration cannot exlend quite to the leading and 
trailing edges, however, because the slopes cannot be readily determined 
very close to the ends of the chord lines, where the slopes become inf i-
nite. Near the ends, however, the mean camber lines of the sections may 
be considered as NACA a = 1.0 mean lines (ref. 3), and they may accord-
ingly be filled in, with generally adequate accuracy, by fitting 
NACA a = 1.0 mean lines between the front and rear limits of the calcu-
lated segments of the mean camber lines and the leading and trailing 
edges.



NACA TN 2908	 11 

The integral (6a) is actually improper, since the integrand becomes 
infinite where yt = y. The Cauchy principal value exists, however, and 
is evaluated by first adding the integrands at equal distances but on 
opposite sides from the singular point and then integrating the sum. 
This method will be further described in a later section. 

Rsum of procedure for computing slopes of a mean camber surface 
with uniform chordwise loading and arbitrary spanwise loading. - For an 
arbitrary spanwise loading, an additional integration is required, 
together with a modification of the preceding integrations. 

(1) Determine the integrals 

rcl [	 -	 +	 (Ta) yyt	
xt)2+(	 2 

J	 y-y') 
and

c1dy' 
____________________	 (7b) 

(x-x	 +(y-y')2 

by the same process as before for (6a) and (6b), except that cZ, being 

now a variable, must be brought inside the integral. 

(2) Determine the spanwise rate of change of local lift coeff i-
cient dc 1 /d3rt at points y'. Compute values of the integrand in 

- - -

	 £	 1	 (x - x") 2 + (y -	 )2 +(x - x'dy'	 (8) 

J dy' - L 

Plot against y T and integrate. This integral is also improper and is 
treated as previously mentioned. 

(3) For each point (x,y), the local slope dz/dx is 

. [Integral (8) - Integral (Ta ) - Integral (7b]. 

Example. - In figure ii is shown the plan form of a swept wing and. 
the desired spanwise lift distribution. As an example of the computation,
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integrals (7a), (Tb), and (8) will be obtained for the point designated P 
on the figure. Points designated a, b, C, ... x, y, z, at , bt, ... are 
the points on the boundary where the integrands were evaluated; the 
primed symbols are used merely because more than 26 symbols were needed. 
The origin was taken at the wing apex and the wing semispan was assumed 
equal to unity. 

The computation of the integrands at the points around the boundary 
is given in table I. Most of the points were evenly spaced, but near 
the singularity (y' = y), the intervals were reduced to one-tenth as 
much as most of the other Intervals. 

Figure ' 5 shows the plots of the integrands (multiplied by l/8it 
or - l/8t) against x' or y', and also shows the method of determining 
the Cauchy principal value at the singularity. For example, in fig-
ure 5(c) it will be seen that the integrand goes to 	 at the right of 
the singularity and to —co at the left of the singularity. Algebrai-
cally adding the integrands at equal distances from the singularity (for 
example, the value at point b plus the value at point v, the value at 
point c plus the value at point u, and so on) and plotting the sum results 
in the section Bi of the curve, where the portion nearest the singularity 
is obtained by extrapolation from point k. The desired integral (8) is 
finally determined by running the planimeter along the path abBlLVva tbt 
j t].t5t 

As a further example of the Intermediate steps in the calculation 
of a mean camber surface, figure 6(a) Is shown, which Is a plot of the 
slope dz/dx along the streainwise chord through point P. The example 
calculation described in the preceding paragraphs, it will be noted, 
gives the three integrals the sum of which provides one point on this 
dz/d.x curve of figure 6(a). In figure 6(b) is shown the corresponding 
curve for the NACA a = 1.0 mean line, for 	 = 1.0, from reference 3. 
The curve may be found useful in extrapolating to the leading and 
trailing edges, as previously mentioned. 

As implied by the preceding remark, the total effort required to 
accurately compute a mean camber surface by the method described is very 
large, although, according to the authors t experience, it is not at all 
prohibitive. Nevertheless, the work is Ideally suited to modern high-
speed computing machinery - for example, of the punched-card type - so 
that consideration should be given to the use of such equipment where it 
is available. 

It may also be mentioned that two contour charts of the integrands 
in (6a), (6b), and (8), with the factor c Z or d.c 1 /dy omitted, have 

been prepared in the form of film and, if desired, may be obtained on 
request from the National Advisory Committee for Aeronautics. Their 
form is such that, if the transparency is superimposed on a correctly
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scaled drawing of the wing plan form, with a boundary point (x',y') at the 
origin of the chart, the contour value read at point (x,y) is the desired 
value of the integrand. The charts are satisfactorily accurate except 
in the neighborhood of the singularities. 

POLYGONAL WINGS WITH UNIFORM AREA LOADING 

For a uniformly loaded wing (uniform chordwise loading and uniform 
c 1 across the span) the boundary of which consists of a number of 

straight-line segments, the integrations to determine the local slope of 
the surface and the local height of the surface may both be done analy-ti-
cally. The previously derived equations can be integrated with respect 
to x' and y', where the point (x',y') moves from one end of the 
straight-line segment to the other. In the present development, however, 
the straight-line segment will 'be treated as a whole. The vertical 
induced velocity w due to the unit bounding vortex is expressed as the 
sum of WA WB ..., the velocities due to the separate straight seg-

ments A,' B, ... (see fig. 7) which are given by the Biot-Savart law 
(eq. (1+)). The contribution of segment A to the slope of the surface 

at point (x,y) is, therefore, -
	

wA	 and the contribution to 

the height of the surface at the point (x 1 ,y) is 

CL xl	
rx 

-	 E dx J WA dx 

Suniniing these expressions for all the segments A, B, ... gives 
the total slope or height of the mean camber surface at the desired 
point. 

As already noted, these integrals for the separate straight seg-
ments can be evaluated analytically. Because the mathematical manipula-
tion and the resulting formulas are somewhat lengthy, they are given in 
the appendix. Three different cases, distinguished by the relative 
geometry of the vortex segment (that is, the segment of the wing boundary) 
and the point (x,y) where the slope or height of the surface is to be 
found, are discussed in the appendix. In case I (fig. 8), the path of 
integration from -c to x crosses the segment; in case II (fig. 9), 
the path of integration does not cross the segment; and in case III 
(fig. 10), which is a special case of II, the path of integration is 
parallel to the segment.
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It should be noted that this same problem has bee.n treated from a 
somewhat different viewpoint in reference 1i. 

COMPRESSIBILITY CORRECTION 

If the mean camber surface is desired for a compressible subsonic 
flow at Mach number M, the Prandtl-Glauert method, as described in 
reference 5, may be used. That is, all the longitudinal (streamwise) 

dimensions of the wing are stretched by the factor i/'Ji - M2 , so that 

the aspect ratio is reduced by the factor \Jl - M2 and the tangent of 

the sweep angle is increased by the factor l/\jl - M 2 , and the mean 
camber surface is calculated for this fictitious wing in incompressible 
flow at a lift coefficient equal to the desired lift coefficient multi-

plied by 1 - M2 . The ordinates (values of z) so obtained will be pre-
cisely the ordinates of the mean camber surface for the desired wing at 
the desired lift coefficient in the compressible flow at Mach number M. 

EXAMPLES OF CALCULATED MEAN CANBER SURFACES 

Sweptback wing, A = l. 71i- . - Figure 11 shows (by the curved solid 
lines) mean camber lines calculated for the wing already described in 
the example and in figure li. The points where the slopes were computed 
are indicated by small circles. It should be noted that figure 11 and 
subsequent similar figures do not represent oblique projections of the 
wings. Rather, they show the true plan forms of the wings (in the 
xy plane) and the true mean camber lines (parallel to the xz plane); 
accordingly, the y and z axes coincide on the figures. 

In figure 11 and the subsequent similar figures, all the leading-
edge points have beenassumed to lie along a horizontal line. This 
choice is, of course, arbitrary; that is, the extent to which the present 
linear theory is applicable would be essentially unaltered if, for 
example, the wing had a reasonable amount of dihedral. 

In figure 11 may also be seen a series of dotted mean camber lines 
lying somewhat above the solid lines. These dotted camber lines were 
calculated by the following approximate method, which is much simpler 
than the method of this report: 

(a) From the given spanwise lift distribution, the slopes along the 
3/1.chord line were determined by the 7-point Weissinger method (see 
ref. 6).
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local c 
(b) From these slopes were subtracted the values of 

2tcosA 
where A is the sweep of the 1/2-chord line. This step results in an 
imaginary "local-flow direction" into which the "local airfoil section" 
is placed in order to develop the local c 1 . It is hereby assumed that 

the lift-curve slope of the swept airfoil section is 2t cos A. 

(c) In this local flow is placed an NACA a = 1.0 mean line, cambered 
local c, 

f or a design lift coefficient equal to 	 , and with its chord line 
cos A 

parallel to the local flow. 

These NACA a = 1.0 mean lines, superimposed on chord lines inclined 
as determined in step (b), are the dotted camber lines of figure 11. 
The main difference between the two camber surfaces appears to be a dif-
ference in angle of attack. There is also, however, about 15 percent 
difference in twist (as measured between the calculated camber line 
nearest the root and the calculated camber line nearest the tip). The 
rigorously calculated camber lines (the solid lines of fig. U) have, at 
each spanwise station, almost identicafly the same amount of camber as 
the corresponding dotted lines. Furthermore, their shapes are, on the 
whole, very nearly those of NACA a = 1.0 mean lines; the line nearest 
the tip, however, is considerably flatter toward the front than toward 
the rear, and the line nearest the root is considerably flatter toward 
the rear than toward the front. On the whole, the general agreement 
between the two camber surfaces is considered remarkably close; and it 
is probable that the agreement would be even closer for wings of higher 
aspect ratio. The general applicability of the approximate method thus 
seems to deserve further study. 

Uniformly loaded triangular wing.- The formulas derived in the 
appendix for cases I and II were used to calculate the mean camber sur-
faceof a triangular wing hav.ing an angle of sweep of 68.)-i-0 of the 
leading edge (aspect ratio, 1.57) such that the wing should be uniformly 
loaded at unit lift coefficient .in incompressible flow. Figure 12 pre-
sents chordwise camber lines for several spanwise stations. It may be 
noted that the z-scale has been somewhat exaggerated. 

Uniformly loaded swept wing.- The formulas derived for cases I, II, 
and III were used to calculate the mean camber surface of a swept wing 
of aspect ratio 8, taper ratio O. 1.5, and 1j50 sweepback of the quarter-
chord line such that the wing should be uniformly loaded at unit lift 
coefficient at a Mach number of 0.9. The stretched wing and the corre-
sponding chordwise mean camber lines are presented in figure 13(a). In 
accordance with the proposed method of taking into account compressi-
bility, the calculations were made for the stretched wing in incompressible
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flow. The stretching factor is

	

	 = 2.29, so that the aspect 

1 -(o. 

ratio of the stretched wing is 3.5 and the sweep of the quarter-chord 
line is 66.Ii-6°. Figure 13(a) shows this stretched wing and the mean 
camber lines calculated for this stretched wing in incompressible flow 
at unit lift coefficient. The corresponding mean camber lines for the 
physical wing (A = 8; design CL = 1.0 at M = 0.9) should have 0.1i Ii as 
much percent camber as the mean camber lines shown in the figure. 

Swept wing with elliptical span load distribution.- For the wing of 
the preceding example another mean camber surface was calculated such 
that, at unit lift coefficient and Mach number of 0.9, it should have 
uniform chordwise loading but an elliptical span load distribution for 
the wing as a whole. Mean camber lines for this case are presented in 
figure 13(b). 

This example was also calculated, under the direction of Mr. Robert 
R. Graham of the Langley Laboratory, by the method of reference 1. The 
two results were in very good agreement. No definite information was 
obtained, however, with regard to the relative expediency of the two 
methods (that of ref. 1 and that of the present paper). One might sup-
pose that, for wings with uniform chordwise loading, the present method 
would be preferable since it is designed to take advantage of this par-
ticular characteristic. The work represented by table I and figure 5 
(outlining the computations for the slope at one point), however, is by 
no means small, so that such a presumption is not definitely substan-
tiated by present experience. Perhaps the fact that the computations 
and integrations are of such form that they can be readily performed by 
modern high-speed computing machinery constitutes the most significant 
characteristic of the present method. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., January 13, 1973.
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APPENDIX 

DEVELOPMENT OF FORMULAS FOR UUFORMLY LOADED 

POLYGONAL WINGS 

Case I - Path of integration crosses vortex segment.- If the vortex 
segment is the leading edge of the wing, the path of integration may 
cross it. The' vortex segment and the path of integration for this case 
are shown by the heavy lines in the small sketch on figure 8. The inte-

x 
gral j
	

dx is improper because the integrand becomes infinite 

where the path ,of integiation crosses the vortex. The Cauchy principal 
value, howeve can be determined. Before the integration is performed 
the Biot-Savart formula (eq. ( Ii-)) is expressed in terms of the variable x 
and the fixe'd. dimensions of the vortex segment, where the origin is 
defined as the point of intersection of the path of integration and the 
vortex segment. Accordingly, the end points of the vortex segment are 
(x1,y1) and (x2 ,y2 ), where y1 > y2 (see fig. 8). Let' 

L = y1csc a 

M = -y2csc a 

_1fy1 . - 
a = tan I

- x2 

r = x .sin a 

Then it can be seen that

_______	 L-xcosa 

\Jx2_2xLcosa+L2 

cos 2= M+xc05a =	 M+xcosa 
m	

\Jx2+ExMcosa+M2



wI	 2 

Px 
I	 1 
I	 1l-rxsinct 

I.) - 
()I =:
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The contribution to the slope of the mean camber surface due to 

will be

L-xcosa,	 +
	 M+xcosa 

- 2xL cos ci + L2 \Jx2 + 2x1 cos ci + M2) 

- _CL	 L2 x+Mcosci+m loge 
- 8 sin	 L\Mi x - L cos ci +	 + 

iog[
2 sin2 

(i + L - x cos ci)(m + M + x cos 

It is of interest to note that, along the wing tip or the wing root, 
where L or M goes to zero while x is positive, this slope becomes 
infinite.

(Al) 
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The contribution to the height of the mean camber surface will be 
the integral of this last expression. That is, 

nx 
ZI =	 fdz\ 

J0	 dx 

_CL	
2 cos wc loge + cos a(x + M cos a)1og(x + N cos + m) - 8csin	 M 

M cos2a, loge[M(1 + cos a5j - cos cL(x - L cos cL)1og(x - L cos	 + 1) - 

L cos 2a log[L(l - cos	 + 2x 1og(x sin ct) - 

+ cos a' x log(Z + L - x cos a) - (L - M)1oe( - cos 
a) - 

L1oge( )_x1oge(m+M+xcoscL)_M1ogfX+m_M\ 
ex - in ^ N) - 

cos a(rn - N) + cos	 - L)	 (A2) 

Case II -Path of integration does nOt cross vortex seent.- The 
three small sketches in figure 9 show three cases in which the path of 
integration does not cross the vortex segment. In two of these cases, 
the segment lies along the trailing edge; in the third case, the segment 
lies along the leading edge but lies wholly to one side of the path of 
integration.
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For the derivation of case II formulas, the origin of coordinates 
is specified as the intersection of the path of integration with the 
vortex, or the line of the vortex extended. The end points of the vor-
tex segment are again designated (x 1,y1 ) and (x2 ,y2 ) where y1 > y2, 

and L, M, and a are defined as before. (See fig. 9.) 

Then, again

r = x sin a, 

cos	 = L - x cos a, 

(where L is now a negative quantity) 

cos e2 = M + x cos a 
m 

= Jx2 - 2x1 cos a + L2 

in Jx2 ExM cos a 

and

fdz\	 CL '
	

CL I'x	
1	 'L - x cos = -

	

(IX -

	
i4x sin 4 

M + XCO5 

Performing the indicated integration and substituting the limits 

yields the same expression for 	 as was derived for (\ (see 
\Iii	 dxJ1 

eq. (Al)). That. is, the singular point in the integration for the slope 
in case I did not affect the final result.
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The formula for the ordinate z 11 , however, is different from that 

for the ordinate z1: 

Z11 = 8sin a [2x cos a io() + 

cos a(x + M cos a)log (x + M cos a + m) - 

cos a(x - L cos a)1og(x - L cos a + Z) + 

2x log(x sin a) - x log(i + L - x cos a) - L log (x + 1 - L\ 
e I\X - z + L) - 

x + in - M1 xlog(m+M+xcosa) _M1oe(	
M)j - 

a( E + M cos a)1og(	 + M cos a +
	 + 

2 cos aXLE log	 - cos a (xLE - L cos a)log(x - 
eM) 

L cos a + LE) + 2XLE 1o(x sin , a) - 

XLE log(Z + L -
	 COS a) - L 

log (XLE_+ 	 - L\ 

-	 XLE l+L - 

XLE log
	 + M 

+ XLE cos a) - M log () +
	 - M ii 

	

-	
+ M)jJ	

(A3)
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where

1LE 
= \J)(2 - 2xL cos a + L2 

'OLE = \JXLE + 2XLEM cos a + M2 

When x = 0 the point lies on the vortex or the line of the vortex 
extended

In =M 

1 =L 

and, accordingly, several terms in equation (A3) become indeterminate. 
After the evaluation of the indeterminate forms, the ordinate at x = 0 
becomes 

(z11)	
-	 CL	

cos2a loge M(l ^ cos a) + - 8it sin a 

L cos 2a log L(l - cos a ) + (L - M)log (1 + cos a. - 
e\] - cos a, 

M cos a. + L cos a.] + [cos a.(x - L cos a)loge (xLE - 

L cos a + LE) - 2 cos a. x ioge() - 

cos a(xLE + M cos a)ioge (x ^ M cos a +	 - 

2XLE lOge (XLE sin a) + XLE iog(Z + L - x cos a) + 

L log (x 
+	 - L\ 

- 1LE + L) 
+	 ioge(inj + M + x12 cos 

a) + 

M loge 
XLE + m - 
(X_+M)+c05a_1c08aJ}	 (Au)
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Equations (A3) and. (Au -) apply when the vortex segment is along the 
leading edge. When the vortex segment is along the trailing edge, its 
direction of rotation will be the reverse of that for the leading-edge 
segments, and the signs of equations (A3) and (Au. ) should, accordingly, 
be reversed. 

Case III - Vortex segment parallel to free strewn and hence to path 
of integration. (See fig. 10.).- Coordinates are chosen such that the 
path of integration lies along y = 0. The end points of the vortex 
segment are (0,y1 ) and. (x1,y1) where x1 >0. 

Then, from figure 10,

5 = ( X1 - x)2 + y12 
t = Jx2 + 

xl - x 
cose,=	 = S 

cose == 2

x1 - x 

/ (x
1 - x) 2 + y12 

x 

/2	 2 
x +y1 

Then

= -	 dx = - 
8y1 

J:[Xl x)2 + yl2 

x	 clx 
12	 21 
v x +yj 

CLE
+ y12 - x1 - x 2 + y12 + xi]	 (A5)
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and

- CL
LIII = l6y1 ((xl - x)(x1 - x)2 + y12 +	 +	 + 

y2log[x - x +	 - x)2 + y1 + Yi2loge(x + 2 + 12)} - 

- E)	 l - E) + Yl2 +	 + y12 + 

yi2log [xi -	
+(X1 - E) + Yl + y12log	 + 

. yi2 + 2x1 (x - XLE})

	

(A6) 

For equations (A5) and (A6), the direction of rotation of the vor-
tex segment was assumed to be that corresponding to the right wing tip. 
For the left wing tip, the signs should be reversed. Stated differently, 
the equations will be correct in either case if y1 in the factor out-

side the braces is replaced by jy.
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TABLE I 

CO}YTPTION OF INTEGRANDS FOR INTEGRALS (Ta), (7b), ABD (8)

FOR POINT P (x = 0.7707, y = 0.2500) 

Boundary 

(x ,y

(i) 

-

(2) 

-

(3) 

+ (2)

(4) 

c

(5) 

dc1/dy

(6)* 

f l_f +	 J

(7)** 

(4)/(3)

(8)*** 

f3) + 

a 0.7707 0.2500 0.8102 0.5880 0 4.5900 0.7259 0 
b .4660 .1250 .4825 .5725 - .214 9.0097 1.1874 -1.6238 

. 4355 .1125 .4498 .5700 -.228 9.9722 1.2672 -1.7942 
d .4051 .1000 .4173 .5669 -.244 11.1725 1.3585 -2.0067 

. 3746 . 0875 .3847 .5637 - .259 12.7151 1.4653 -2.2475 
f •344j . 0750 .3522 .5604 -.273 14.7721 1.5911 -2.534.5 
g .3137 .0625 .3199 .5569 -.289 17.6479 1.7409 -2.9298 
h .2832 .0500 .2876 .5536 -.300 21.9746 1.9249 -3.4248 
1 .2527 .0375 .2555 .5501 -.316 29.1773 2.1530 -4.2824. 
j .2223 .0250 .2237 .5459 -.331 43.53144 2.41403 -5.9050 
k .1918 .0125 .1922 .5419 -.344. 86.6130 2.8195 -10.5677 
1 .1613 0 .1613 .5373 -.360 3.3329 

.1309 -.0125 .1315 .5329 -.373 -85.0679 4.0525 7.8300 

.10014 -.0250 .1035 .5279 - . 387 -41.5985 5.1005 3.1564 

.0699 - . 0375 .0793 .5225 -.401 -26.2156 6.5889 1.5954 
p .0394 - .0500 .0637 .5168 - .415 -16.7288 8.1130 .8557 
q .0090 - .0625 .0631 .5115 - .429 -9.3510 8.1062 .49149 

-.0215 - . 0750 .0780 .5059 -.41.4 -4.8863 6.14859 .3345 
a -.0520 -.0875 .1018 .5009 -.458 -2.8005 4.9204 .2607 
t -.0824 -.1000 .1296 .4947 -.4.70 -1.8017 3.8171 .2218 

-.1129 -.1125 .1594 .4885 -.484 -1.2666 3.0646 .2001 
-.14.34 -.1250 .1902 .4831 -.498 -.9497 2.5363 .1865 

w - .4481 - .2500 .5131 .4123 - .634. - .2091 .8039 .1648 
x - . 7527 - . 3750 .84.09 .3261 - . 770 - . 0912 .3879 .1811 
y -1.0574 -.5000 1.1697 .2206 -.902 -.04.25 .1890 .2026 
z -1.3621 -.6250 1.4986 .ioo6 -1.005 -.0146 .0668 .2195 
a -1.6668 -.7500 1.8278 0 -.380 0 o .0816 
b -2.5271 -.7500 2.6360 0 -.380 0 0 .0552 
c -2.294.1 -.6250 2.3777 .1006 -1.005 -.0056 .04.21 .134.4 
d' -2.0611 -.5000 2.1209 .2206 -.902 -.0125 .104.2 .1079 
e' -1.8281 -.3750 1.8662 .3261 -.770 -.0177 .1748 .0782 
f' -1.5951 -.2500 1.6146 .4.123 -.634 -.0200 .2555 .04.95 
g' -1.3621 -.1250 1.3678 .4831 -.498 -.0162 .3527 .0227 
h -1.1291 0 1.1291 .5373 -.360 o .4761 0 
1' - . 8961 .1250 .904.8 .5725 - .214 .0L39 .6322 -.014.9 

-.6631 .2500 .7078 .5880 0 .1512 .8297 0 
- . 8961 . 3750 .9714 .5725 .214 .1182 .5888 .04.32 

2' -1.1291 .5000 1.2349 .5373 .360 .0920 .4.348 .0760 
rn -1.3621 .6250 1.4986 .4831 .498 .0705 .3228 .1088 
n -1.5951 .7500 1.7626 .4123 .634 .0522 .2337 .1414 
o -1.8281 . 8750 2.0267 .3261 .770 .0365 .1608 .1748 
p -2.0611 1.0000 2.2909 .2206 .902 .0221 .0960 .2070 
q -2.294.1 1.1250 2.5551 .i006 1.005 .0092 .0395 .2329 
r' -2.5271 1.2500 2.8193 0 .380 o 0 .0888 
s' -1.6668 1.2500 2.0834 0 .380 0 0 .1266 
t' -1.3621 1.1250 1.7666 .1006 1.005

. 
.0206 .0572 .3610 

u' -1.0574 1.0000 1.4554 .2206 .902 .0602 .1512 .3586 
- .7527 . 8750 1.1542 .3261 .770 .1296 .2824 .3533 
- .4.481 . 7500 .8737 .14123 .634 . .2676 .4716 .3600 
- .i4.4. .6250 .6412 .4831 4.98 .	 .6010 .7545 .3966 
.1613 .5000 .5254. .5373 .360 1.4.035 1.0219 .4931 

z' .4.660 . 37 50 .5981 .5725 .214 2.7137 .9564 .6101

* Integrand for (7a)	 J2 
** Integrand for (Tb) 

Integrand for (8) 
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(xY0)

x 

Figure 1.- Element of vortex on wing boundary showing coordinate and 
vector systems used. in the application of the Biot-Savart law.
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FIgure 2.- Wing composed of uniformly loaded chordwise strips of span 
dy' with a closed vortex superimposed on the boundary of each strip.
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Figure 3.- Geometrical relationships for straight-line chord.wise vortex 
segments that occur with spanwise-varying area loading.
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(a) Determination of integral (7a). 

Figure 5.- Determination of the mean surface slope dz/dx at point P
of the example wing of figure 1i-. 
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(b) Determination of integral (Tb). 

Figure 5.- Continued.
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(c) Determination of integral (8). 

Figure 5.- Concluded.
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(a) Calculated slopes, example wing. 

Figure 6.- Calculated slope of the streainwise mean camber line through 
point P (see fig. ii), and the slope for the NACA a = 1.0 mean 
line at c 1 = 1.0.
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(b) Slopes along NACA a = 1.0 mean line, for c 1 = 1.0, from. 
reference 3. 

Figure 6.- Concluded.
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y 

Figure 7. - Unit bounding vortex composed of separate straight segments A, 
B, C, B, E, and F superimposed on wing plan form boundary.
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Figure 8.- Geometrical relationships for case I. Heavy lines in small 
sketch show relative positions of vortex segment and path of integra-
tion for this case.
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Figure 9.- Geometrical relationships for case II. Heavy lines in small 
sketches show relative positions of vortex and path of integration 
for three different conditions for which this case applies.
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x 

Figure 10.- Geometrical relationships for case III. Heavy lines in 
small sketch show relative positions of vortex segment and path of 
integration for this case.
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Figure 12.- Chordise mean camber lines at several spanwise stations for 
a triangular wing with uniform area loading. Leading-edge sweep angle, 
68.)-°; CL = 1.0; aspect ratio, 1.57.



I.2	 NACA TN 2908 

10 
I:j-	 —"d 

Or-I 
Q)ObpL0 
O zJO	 0 
C)	 r4 ,r-I 

O 'U)r-1 
+"- 1)	 CI) 

Ho) 
d	 C5 tO	 ) U) 
HO

0 
+) -iU) 

r1r1 
H	 •P 

• DP4 U.) 
p4, ci.)	 -4	 -I	 ci) 

cc3	 p. 

-P
ci)	 Q)	 )1)4 

-P	 0)U) C) 
cii • . c•r1 

10-P 'dO	 'd 
bD -i	 O1 

c	 li 0 
r1	 O(U) 

.x0Q CD 
O tEcDci) 

bO 'dH -i	 cuH 
Q4) 

.'- 1dO+,c1H 
'd O	 •-PHr4 

+	 Hc3 
O cli-Pi 0) 
H O"oO\ 

-PU) •+' 
a3 CDp4O.O U) 

U) U) I))	 m 
.szlIICdO 

ciS ,	 0 • 
+ 

O OO\D O+'H 

r1 Cci +	 0-P 
SI U) .f)	 U) 

) 0)0)0) SI-P-d 
SI-1H (USIrd 
-Dir40) 
r-r-SI cDOO'd'd 

U) p•H U) 
S.4C1) C-0)O+ 

(1)	 (1)	 P +' 4- PH 
,-iQ) ci)

SI PQ) ••sO,SI 
co 00	 0 

C)OC') 
0

U) 
.— •H	 r-	 (I) 

ci)	 O-PHcO 

C) w 
I	 I r1-zt	 t) 
• -PS+SI •C') 

SI U) 0	 i 0 ci) 
HU)4-)cl) 

r-4	 -i P.SI U)	 C) 
0)0	 D5 
-i .H

bD.r4 0)-p	 > 
r1	 D3	 r4 ,c1 

,SI



NACA TN 2908 

NACA_LangleY - 5-29-53 -1000

0 

•H 

-p 

r-1 

0 H 

(0 

C) 
•r-4 
-p 

•r-I 
H H 
a, 

0 H 

(I) 

rd 
0 
C) 

0 

is 
S

a) 

H 
C-) 

0 
C-) 

(-r 
H 
a,


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45



