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NATTONAL ADVISORY COMMITTEE FOR AFRONAUTICS

TECHNICAL NOTE 2977

TECHNIQUES FOR CALCULATING PARAMETERS OF NONLINEAR
DYNAMIC SYSTEMS FROM RESPONSE DATA

By BenJamin R. Briggs and Arthur L. Jones
SUMMARY

A study has been made of the problem of determining nonlinear par—
ameters of dynamlc systems, such as aircraft or servamechanisms, whose
measured responses are nonlinear, This problem cannot be solved in gen—
eral but, for certain types of systems, adequate answers can be obtained.
In the differential equations representing the motion of the latter
systems, one or more coefficients will be functions of the nonlinear par—
ameters., For the systems studied herein, the nonlinear parameters are
functions of either the amplitude of the dependent variables or their
time derivatives., The techmniques developed for coefficlent evaluation
are, for the most part, extensions of two well-known methods of stabil-—
ity derivative evaluation for linear systems, namely, the derivative
method and the method of inspection of tramnsients for pericd and damping
characteristics, Phase—plane methods such as those utilized in nonlinear
mechanics are also included. ’

It was found that the nonconstant coefficients could be determined
satisfactorily for first— or second—order systems, using one or a combi-—
nation of the techniques developed. For higher—order systems the only
practical means of obtaeining resulits was found to be the derivative
method, For some of the examples tried, however, this latter method
gave poor results due to the occurrence of ill-conditioned algebraic
equations. The number of unknown coefficients, constant or nonconstant,
to be determined also affected the accuracy of the resulis, the smaller
the number, of course, the better the chances for a satisfactory evalu—
ation,

INTRODUCTION

Much attention has been given recently to the problem of determining
stability derivatives of airplanes by means of flight and wind—tunnel
dynamic testing. This problem of reducing response data to obtain stabil—

ity parameters is the inverse problem in dynemics, the direct problem
being to find the response to an arbitrary forcing function when the
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equations of motion and the system parameters are known. For linear
systems, methods for solving the inverse problem are summarized and
evaluated in reference 1. More detailed descriptions of the individual
methods can be found in references 2 through 6.

In the investligation reported herein, the problem of determining
nonlinear stability parameters from dynamic responses of nonlinear sys—
tems was studied. Previous to performing the actual analytical opers—
tions involved in this inverse type of analysis, it 1s desirable to
determine the magnitude of the nonlinearities involved in order to class—
ify the problem as either approximately linear or sufficlently nonlinear
to necessitate the more complicated nonlinear approach. It is also nec—
essary to make an assumption about the order and form of the differential
equation of the system being investigated. The response of a system to
slnusoidal inputs can be analyzed to find the magnitude of the nonline—
arity involved, but there is no criterion for the identification of the
order and form of a differential equation to represent the system. The
latter must be determined more or less intuitively.

There is & variety of effects which may cause nonlinear behavior
in a dynamic system. These effects appear in several different ways in
the equations of motion of the system. The cause of one common non—
linear term is an element in the system whose response is dependent on
the amplitude of a dependent varisble., For example, it is possible for
an airplane to have a nonlinear variation of pitching moment with angle
of attack which would require a nonlinear term Cm(a) to appear in the
equations of motion in place of the usual linear term Cp,a. The tech-—
niques presented in this report are concerned essentially with systems
having this type of nonlinearity.

This investigation was mainly concerned with aircraft responses,
The techniques presented, however, are shown to be applicable to responses
of other mechanisms such as an autopilot .servo system. The degree of non—
linearity in the responses for high-speed alrcraft of unorthodox configu—
ration, such as a guided missile, is already a matter of concern to design
engineers. (See ref. T7.) Furthermore, the autometic control systems
employed in aircraft usually contain, within the servo system itself,
nonlinearities due to factors such as amplifier saturation and velocity
limitation.

For the most part, the methods developed herein are extensions of
certain linear techniques. In reference 1 the several methods for ana—
lyzing linear responses are placed in two categories. The first cate—
gory includes methods wherein the response data are substituted directly
into the differential equations, the general forms of which are assumed.
Such methods are called "equations—of-motion methods." Examples of
techniques in this category are the "derivative method" given in refer—
ences 2 and 3, and the "matrix method" of reference 4, The second
category involves methods wherein analytical curves are fitted to the
dynamic responses. These techniques are known as "response curve—fitting
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methods" and the methods described in references 5 and 6 are examples of
this type. The same categorical divisions seem sulitable for the nonlinear
techniques derived from these linear ones, In addition, a technique of
analysis based on phase—plane methods, which does not fit precisely into
either of the above two categories, is presented for use in determining

nonlinear demping functions associated with certain classes of self—
sustained oscillations.

Bxperience has shown that the results of the analysls of flrst— and
second—order linear systems are more accurate than those of systems of
higher order. It i1s not at all surprising, therefore, that this condi-—
tion also exists in the nonlinear situation. TFortunately, in many cases
the dynamic behavior of systems can be adequately described by second—
order differential equations whether linear or nonlinear. Emphasis has
therefore been placed on techniques suitable for second—order systems.
The derivative method, however, is appliceble in principle in cases where
the differential equations involved are of any order whatever, the pri-—
mery limltation being the accuracy in determining the higher—order deriv—
atives of the response either by measurement or computation. In order to
show that this limitation is not always serious, & successful demonstra—
tlon of the technique of analysis for a nonlinear system of fourth order
with unknown parameter is presented in the illustrative examples.

NOTATION
Crmg, rate of change of pitching-moment coefficient with angle
of attack, égg
doa
Czq rate of change of normal-force coefficient with angle of
attack, égi
oa
CZ5 rate of chenge of normal—force coefficient with elevator
ac
deflection angle, —2
%
Cmq rate of change of pltching-moment coefficient with pitching
Cpy
velocity, ——
oq
Cp(a) nonlinear pitching-moment coefficient

Crm* (<) nonlinear pitching-moment parameter (See eq. (B15).)
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F(x),F(x)

G(x)

H(t)

Iz

I(ve)
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nonlinear undamped natural—frequency parameter (See eq. (B16).)

nonlinear damping coefficients, arbitrary second—order system

nonlinear restoring—force coefficient, arbitrary second—order
system

forcing function, arbltrary second—order system

moment of inertia #bout y exis
moment of inertia about 2z axis

nonlinear amplifier characteristic, autoplilot servo

I
nondimensional moment—of—inertia parameter, Tnéli—s-

yawing moment

oN

rate of change of yawing moment with angle of yaw, Sv

rate of change of yawing moment with angle of sideslip, a-a—g

period of oscillation
slope of nonlinear amplifier characteristic, autopilot servo
galn parameter, autopilot servo

radius of phase—plane limit cycles of Van der Pol and Rayleigh
equations, small values of W

Wwing area

free—stream velocity

damping coefficient, second—order linear differential
equation, 2§wn

local wing chord

8
mean asrodynemic chord, -Sl~ f_s 2 4y

nonlinear damping term, second-order nonlinear differential
equation
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t

t1

t1/2
V£,Vi,Ve
X,¥,%

v

a,

restoring—force coefficient, second—order linear differential
equation, w,2

parameters, autopilot servo
mass

pltching velocity

time

Qnt

time to damp to half amplitude

output, Iinput, and error voltages of autopilot servo

arbltrary dependent variables

spanwise distance from plane of symmetry
angle of attack

angle of sideslip

elevator deflection angle

parameter, Whittaker's smoothing formula

density of air

aerodynamic time 0
3 oSV,

parameters, asutopllot servo

angle of yaw

parameter, Van der Pol and Rayleigh equations
first, secand, etc., differences

angular frequency of oscillation, radians/sec

undamped natural frequency

damping ratio
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Subscript

8 smoothed by Whittaker's method

SCOPE OF THE ANATYSIS

The dynamic system under consideration, with one exception, will be
assumed to be describable by a second—order differential equation such
as

x + £(x,%) + g(x) = H(%) (1)

where f£(x,x) is either of the form F(x)x, or F(x)X, or by one or two
first—order equations of the form

g (X)Y:t)

fo (xyy:t)

x

(2)

¥

In equations (1) and (2), x and y are arbitrary variables and the dots
over x and y Iindicate differentiation with respect to time +. It
will also be assumed that any nonlinear coefficients or parameters are
functions anly of the dependent variable or its first derivative, and
not of the time.

The exceptional case included will be a fourth—order system. This
example 18 presented to demonstrate the application of the derivative
method to nonlinear systems of higher order. The dynamic system in
this example is an autopilot servo, and the differential equation
describing its open—loop behavior is assumed to be of the form

d4v i3y a3y dv
f g hig f
+ A + A + Ag—=—I(vg) =0
Ao e 175 2 T3 3% (ve) (3)

where vVp and Vv, represent output and error voltages and the coefficlents
Ag,h; ,An, end Ag are constants. The function I(Ve) is nonlinear.

In order to facilitate the actual mumericel work involved in the
illustrative examples presented in the appendixes, a Resves Electronic
Analogue Computer and IBM digital computing equipment were used. For the
purpose of obtaining harmonic analyses of certaln responses a harmonic
analyzer was &lso employed. '
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TETERMINATION OF IEGREE OF NONLINEARITY

The degree of nonlinearity of a dynamic system, as determined by
examination of response data, 1s measured by the deviation of the
responses from those of a purely linear system. It can be considered
as an indication of the magnitude of the physical nonlinearity present
in a given system. For practical purposes it would be desirable to have
some number, or figure of merit, which would be a quantitative measure
of the intensity or degree of the nonlinearity. For example; a complex
dynamic system may have a response thet to all appsarances is linear,
However, if an analysis of the response data is to be attempted, it
might save time and work if tests could be made to ascertaln whether
the deta warranted linear or nonlinear treatment. All physical systems
are essentially nonlinear to some extent, but if the degree of nonline—
arity is small it is possible that linear analyses would suffice.

There are certain response characteristics which are typical of
nonlinear systems and which may be recognized without resorting to a
figure of merit. One example is a system which possesses a self—
sustained oscillation. As another example, the output of the system ~
to two sinusoldal inputs of different frequency may possess not only the
two impressed frequencies, but also multiples, and sums and differences
of multiples of the impressed frequencies. These nonlinear phenomena
and many more are discussed in detail in references 8 and 9. These
effects are readily recognized in dynamic responses and they cannot in
general be descrlbed by linear differential equations. When they are
observed, then, there is no question but that nonlinear analyses must
be used.

On the other hand, there are cases where the effect of a nonline-—
arity in a dynamic system is not strongly evident upon cursory examina—
tion of & response. A transient may have appearances of a linear
response, for example, until it is observed that the period of the oscil-
lation changes as the oscillation damps, which could be the effect of a
nonlinear restoring force. The time to damp to half amplitude may be
observed to vary for transient oscillations about different trim posi-—
tions, which is evidence of a nonliinearity in the damping.

The presence or absence of nonlinearities in a dynamic system can
usually be esteblished by the examination of the ratio of output to
input amplitude for various sinusoidal input magnitudes at a given
frequency, If the amplitude ratio or the phase angle showsa substantial
variation, the system is effectively nonlinear., Such effects are most
emphatically noted on frequency-response plots. These plots are caom—
monly presented with the logerithm of the amplitude ratio and the phase
angle as ordinates and the logarithm of the frequency as the abscissa.
(See, e.g., ref. 10.) TFor a purely linear system these curves do not
vary with the amplitude of the input. In nonlinear systems, however,
the resonance frequency mey shift and peak amplitudes may increase or
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decrease as the input amplitude varies. In the accompanying sketch

logarithmic plots for a nonlinear system for three different amplitudes

of a sinusoidal input are shown.

Any one of these curves has the

a appearance of a linear response but
b since the characteristics of the

system change as the amplitude of

c the input changes it must be con—

cluded that the system is nonlinear,

The deviations from linearity
may be such that for engineering
purposes, linear analyses could be
used with sufficient accuracy. The
Log frequency simple techniques discussed in the
preceding paragraphs, however, do
not provide any figure of merit for
so Judging. If limits are set for
tolerable variation of such quanti-—
a c ties as time to damp to half ampli—
b tude, resonance frequency, peak
amplitude, and phase shift for the
range of inputs under consideration,
then, it may be possible to estab—
lish whether or not linear analyses
can be used by examining transient
Log frequency responses or frequency-response data,

Log amp ratio

Phase angle

As previocusly mentioned, however, i1t would be desirable to have a
number or figure of merit indicative of the degree or intensity of non—
linearity for a given system. It i1s possible to mske a quantitative
estimate of this sort, if stesdy-—state responses to sinusoidal inputs
are obtained. The figure of merit, called the distortion factor,l is
defined as 100 times the square root of the sum of the squares of the
amplitudes of all harmonics present in the response beyond the funda—
mental, divided by the amplitude of the fundemental, For perfect sinus—
oidal response date cobtained from a purely linear system, the distortion
factor is zero. Data obtained from sinusoidal inputs to nonlinear sys—
tems, however, contain various amounts of higher harmonics, and the
distortion factor is a quantitative measure of the asmplitudes of these
harmonics generated by the nonlinearities.

In Appendix A a demonstration of the calculation of the distortion
factor is presented. This quantitative test of nonlinearity was applied
to data used subsequently in the examples illustrating the application
of data reduction methods for nonlinear systems. The results indicated
that a distortion factor in excess of about 5 percent would probably
warrant application of nonlinear analyses.

'The distortion factor is commonly used in electrical and communica—
tilons engineering to measure wave distortion.
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REDUCTION OF DATA TO NONLINEAR PARAMETERS

Equations—of-Motion Method

In reference 3 the derivative method, the only equations—of—
motion technique that will be applied herein to nonlinear problems, is
described for application to linear systems. This technique consists
of obtaining the dynamic response of the system to a prescribed input,
obtaining the proper number of response derivatives, and then for sev—
eral instants of time substituting the corresponding values of input,
response, and response derivatives into the differential equations of
the system., In this manner a set of linear algebraic equations is
developed wherein the variables are the coefflcients of the differential
equations. The coefficients are then calculated by solution of this set
of algebralc equations either simultaneously or by least—squares methods.
For linear dynamic systems a single response provides sufficient data
for this calculation. A major difficulty in using this method of data
reduction is in obtaining accurate derivatives of the ocutput when they
cannot be measured experimentally.

The derivative method can be
applied to reduction of nonlinear
data in the following way. Sup—
pose that several oscillations of
the response of the system to a
glven input are recorded. For
the sake of simplifying the fol—
lowing discussion, let the given
response be a free transient and
assume that the system under con—
sideration is of second order,
describable by an equation of the
general form of equation (1),
where f(x,%) is of the form
F(x)k. Obtain the first two deriv— X
atives of the response, then plot
response and derivatives to the
seme time scale, as in the accom—
panying sketch. At a value of x,
58y Xo, draw a line parallel to
the time axis on the x +times his—
tory. At each instant where this
line cuts the response curve read
the values of x and X, In this way
several sets of values of X and ¥, ,,
811 corresponding to the same value ¥
of x, namely =xo, are obtained,

It should be pointed out here that
there must be at least as many sets

X=Xo

:

A

x
Qiiii;‘

._.._.1__._ — ——

—fe——— e e — —

:

———

-+~

__._..._..__.+.__._._. R——
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of values of X and X as there are unknown coefficients in the dif—
ferential equations of the system.

Assume that the equation of motion of the system is of the form

% +F(x)x + G(x)x =0 (&)

Also assume that for a given value of x, damping and restoring force
coefficients have unique values. These unique values will be taken as
the numbers which are found by solving by least squares the set of
equations which are obtained by substituting the sets of values of X%k
and X corresponding to Xo, a8 determined by the graphical procedure
of the previous paragraph, into equation (4). If this procedure is
repeated for several more values of x, say Xj, Xz, etc., then the
numbers F(xg), F(x1), etc., and G(xo), G(x1), etc., may be plotted
against the corresponding values of =x, and the nonlinear coefficients
will then be represented graphically as functions of x,

Consider now the application of the derivative method in the case
where only one coefficlent, suspected to be noncomnstant, is unknown.
From a single response of this system the unknown coefficient can be
calculated by the derivative method. The coefficient will be valid
within the range of values of displacement as given by the experimental
response curve, To compute the coefficient, merely substitute the
response and its derivatives into the differential equation and solve
directly for the unknown parameter as a function of time, These results
are then plotted against displacement to give the nonlinear variation
of the parameter with displacement.

Consider next the case where more than one coefficient is unknown,
If it is assumed that all but one of these unknown coefficlents are
constant, there is a reasonable chance that the constant coefficients
can be found by analyzing a small—amplitude response, using one of the
linear techniques previously mentioned. However, if more than one
coefficlent must be solved for using the derivative method, there is a
great possibility that the data used will result in 1ll—conditioned
equations for the nonlinear systems. The apparent cause of this predi--
cament is that all the values of the derlvatives of the dependent vari-
gble must be reead at the one value of the dependent variable for one
set of similtaneocus equations. As a result, all the derivatives tend
to have nearly the same value in each equation. In order to avoid this
difficulty 1t is desirable to use sets of data for which the particular
value of the dependent variable being used occurs in widely separated
parts of the response excursion. Such data could be obtained from
sinusoidal inputs of different magnitudes or from a modulated sinusoidal
input. A modulated input, wherein either the amplitude or frequency is
modulated, has the advantage that the entire excursion range desired for
the dependent variable could be covered in one input. The separate
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sinusoidal inputs, however, were found to yleld data that resulted in
the less ill-conditioned simmltaneous equations.

As a general rule in applying the derivative method 1t is well %o
determine as meny of the constent coefficients as possible, beforehend,
by other means. When the equations of motion of a system are derived
there is one for each degree of freedom, It is preferable to use the
several equations In the form in which they are derived, rather tham to
eliminate variables and obtain a single equation of high order. The
necesslty for taking derivetives of the ocutput data will thereby be
kept to a minimm,

In Appendix B several mmerical examples are presented in order
to demonstrate the derivative method for one or two umknown parameters.
In the first of these examples the numerical techniques for smoothing
and differentiating response data are used and discussed in some detail.
Examples 1 and 2 show that for a single unknown parameter very good
results can be obtained, even for a system of fourth order. For the
case of more than one unknown, however, demonstrated in the third
example, the resulis were of poor accuracy due to the occurrence of 111—
conditioned equations in the computations. For second—order systems
with more than one wmknown, better results may be obtained by using the
techniques presented in the next section.

Response Curve—Fltting Methods

Curve—fitting methods for response—data reduction are based upon
the assumption that the responses can in some menner be approximated,
or fitted, by analytical curves whose characteristics are known. One
of the most elementary of the linear curve—fitting techniques is to
examine transient responses to determine the period and damping charac—
teristics, from which a sum of exponentials which fits the given tran—
sient response can be written. A technique based upon this simple
linear transient—response analyslis method, applicable to second—order
nonlinear data, will be presented here.®

To carry out this technique of data reduction, responses of the
second—order system are obtained to step inputs of varying amplitude.
Now, the assumption is made that small oscillations about each of the
steady—state, or trim, -displacements are linear, and a period and damp—
ing analysis is made of each response to determine period P, and time
to damp to half amplitude +t;/o. If the oscillaetion is too strongly
damped, of course, this calculation is not feasible. Second—order
linear differential equations are commonly written in the form

2'l‘he application of this well-kmown linear analysis method to nonlinear
problems was suggested by Mr. Stewart M. Crandall of the Ames Aero—
nautical Laboratory of the NACA.




(see, e.g., ref. 10) where
natural undamped frequency.

a step or pulse input, P and t,/,

following manner:

ti/2

il
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% + 2bopx + op°x = H(t) (5)

{ is the damping ratio end ay 1s the
It is also well known that when H(t) is

are related to § and Wy in the

0.693 W
il - (6)
Wy 182

J

The values of P and t;/2 Zfor each of the step input responses are
then substituted into equations (6) to determine the coefficients
obw, and wp®, valid, under the present assumptions, at the particular
trim value of the displacement.

z
%

The values of w2 and 20ay,

are then plotted against the trim
displacement to which they correspond,
thus determining their variation with
displacement. The accompanying
sketches illustrate this graphical
procedure,

To demonstrate this technique,
a numerical example is presented in
Appendix B, The determination of
both the damping coefficient and a
restoring-force term of a second—
order system by this method is found
to be relatively easy and accurate.

A somewhat simpler technique
which can be used only for finding
restoring—force nonlinearities, based
upon inspection of transient responses,
can be developed from the steady—state
method given in reference 3. For a
step input to a second—order system,
the response assumes a constant steady—
state value, where the derivatives of



NACA TN 2977 13

the response and the input are all zero. Thus, in the steady state,
the differential equatlion is reduced to a relationship between the step
input and the restoring force. By using this technique on the first
systém considered in Appendix B (see eq. (A3)), for example, Cp(a) can
be determined from the fellowing relationship:

Cm(ao) = —2— (2.285a0 — 14.62054)

66.181

where oo 1s the steady—state value of «, resulting from a step input
of magnitude 8y, In this manner, the nonlinear parameter can be deter—
mined as a function of steady-state values of the response, as was done
previously in & more elaborate fashion. The advantage of this technique
1s that aperiodic responses can be analyzed, but a disadvantage is that
the damping cannot be calculated directly.

Another curve—fitting method based on linear equivalence, so
obvious that it is usually the first to be suggested, was tried. Im
this method, the linear damping or restoring—force equivalents obtained
from excurslons centered around zero displacement and covering various
amplitudes of the response would be used to construct the nonlinear
function., Unfortunately, however, no basis was found for translating
these equivelent linear slopes into the correct nonlinear function.

The simple technique of falring through the end points of the resulting
femily of linear slopes did not provide a satisfactory result.

Phase—Plane Methods, Self-Sustained Oscillations

In this section, an inverse process will be presented for the cal—
culation of the nonlinear damping term in the differential equation of
a second—order system which exhibits self—sustalned oscillations. The
spaking oscillations of an alrcraft are self-—sustained, for example,
and it is possible that the nature of the nonlinear damping of such
oscillations could be determined by phase—plane methods. It should be
mentioned, however, that unless the damping corresponds fairly closely
to the nonlinear damping of either the Van der Pol or Rayleigh classi—

cal equation of nonlinear mechanics, the phase—plane method presented
here may not be useful,

For any oscillation having a periodic variation of the displace-—
ment with time, the time rate of change of displacement is likewise
periodic. Thus, the phase—plane plot, displacement versus velocity,
for such an oscillation is a closed curve., Morsover, if the closed
curve is unique, that is, if the trajectory of the motion in the phase
plane eventually reaches the closed curve regardless of initial condi-
tions, the oscillation has a limit cycle. The limit cycle is a
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characteristic of self—sustalined oscillations and is markedly different
from the behavior of forced or undamped linear systems which can also
exhibit closed trajectories in the phase plane. In these latter cases,
however, the closed trajectories vary in size and shape for differing
initial conditioms,

It is known that a large class of second—order systems capable of
self—sustained oscillations can be described by either a Van der Pol
equation or a Rayleigh equation. In the former equation the damping
term i1s of the form

£(y,¥) = —(A -By?) ¥ (7)

and in the latter the damping term is

£(y,¥) = —(c§ - D5°) (8)

The nature of the damping coefficlent
2 of Van der Pol's equation is shown
~-(A-By%) in the first of the accompanying
sketches, and the nature of the damp-—
ing term of Rayleigh's equation is
shown in the second sketch. In gen—
eral, the restoring force need not be
X linear for a limit cycle to exist
(see ref. 11). For the present anal-
ysls, 1t is assumed that the observed
self—sustained oscillation can be
described by a Van der Pol or a
Rayleigh equation, and that the restor—
ing forces are linear,

~(Ccy-Dy% When, in equation (1), the restor—
ing force is linear and the damping
force is of the form of equation (7)

// the result is Ven der Pol's equation
/ s T-(A-BF) 7 +my =0 (9)
If the transformations

t1 = opt

«=/2y (20)
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are made, then equation (9) hecomes

4P =

Equation(30) is the form in which Van der Pol's equation is usually
written., Similerly, if Rayleigh's eguation,

¥—(Cy =Dy®) + ay?y = 0 (12)

is transformed by means of

t1 = apt W
2p
x = f—p7 ) (13)
=C
bt & J
The result is
a4z dax 1 /dx \
atla—u[aﬁ_g 5t_1> ]+x ° .

This is the canonical form of Rayleigh's equation. Equations (11) and
(1%) are related by simple tramnsformations, which will be shown next.

dz
In equation (11), let x = P and the result is
1

d b4 2y dz _
Cdts [ (d.tl) } dt,2 ET;I" 0 (15)

Integrate equation (15) and the result is

v

d.zz dz d >
- [——-— iy ——i—) J + z = const, (16)
dti2 dt; 3 \dt
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If the change of variable z — const. = x 1s made, equation (16)
beccmes identical to equation (14). Thus, the Ven der Pol equation has
been tramnsformed into a Rayleigh equation. Conversely, the Rayleigh
equation, equation (14), can be transformed into a Van der Pol equation
by the change of varieble =z = E. The result of this change of vari—

dty
able is differentiated once, which puts it into the form of equation (11).

These menipulations show that the solution of Van der Pol's equation is
the derivative of the solutlon of Rayleigh's equation.

From theoretical considerations (see ref. 8, pp. 197-199), it can
be shown that for small amounts of damping (i.e. sy small values of W

or aTﬁ')’ the phase-plene limit cycle of Van der Pol!s equation is almost

a circle of radius
= / 4a
R = /== (17)

and the limit cycle of Rayleigh's equation with small velues of p

or a—% 1s nearly a circle of radius

R = 73‘% (18)

When Van der Poll's and Rayleigh's equations are written in the standard
forms, equations (11) and (1L4), then the phase plots are almost circles
with radii R =2 for small values of Q.

In reference 12 a series expamnsion valid for all values of u, is
given for the solution of a Van der Pol equation in the form of equa—
tion (11). From this series it can be shown that the meximum value of
displacement does not change appreciably for increasing values of g,
but remains nearly 2. By means of the simple relationship between
Van der Pol's and Rayleigh's equations, and the ebove mentioned series

solution, it can be shown that the varisable % in equation (1%),

1
Rayleigh's equation, changes but slightly as p increases. This prop—
erty is utilized in the inverse process, which will be described next.

The essence of the inverse technique is to compare the phase-plane
plot of the experimental date to previously prepared phase plots of the
standard forms of Van der Pol's or Rayleigh's equation. Such plots were
obtained by solving equations (11) and (14) on the amalogue computer for
several values of M. (See figs. 1 and 2.) It will be observed in
figures 1 that the maximum displacement does remain sensibly constant
as | increases, and in figures 2 that the maximum value of the
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derivatives of the displacement does not change appreclebly as i
increases, Note that figures 1 are quite different in appearance from
flgures 2, particularly at large values of §.

Suppose that & dynamic system is assumed describable by a
Van der Pol equation. The frequency of oscillation of the response
can be observed from the experimental responses, and it is approxi-—
mately equal to an. Thus a value of oy is obtained, Next the

phase plot of x versus X is prepared. The maximm value of x is

On
noted, and it is set equal to R (eq.(17)). This fizes a value for
the ratio % The next step is to plot the tramsformed phase portrait,

the variables of which are \
X = ﬁ ¥

dx _ v
ity [ Ew, J

This new phase plot is compared to the previocusly prepared phase plots
of equation (11), figures 1, from which an approximate value of p is
determined. Now, using the relation

) (19)

T (20)

On

a value of A can be computed. With this value, and equation (17), B
can be calculeted., Thus the coefficients of the Van der Pol type of
equation which approximately fits the experimental date are found.

If the glven data are assumed to be responses of a Rayleigh equa—
tion, the technique for finding the coefficients of the damping term is
similar to that of the foregoing discussion. A phase plot, y versus -L,

is made and the maximum value of y@ is observed. This value 1s then
related to the ratio % through equation (18). The tramsformed phase
portrait, the varisbles being W

e

ax _ /3Dmm® ¥
aty C an J

) (21)
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1s drawn next, and it may be compared to figures 2 to ascertain an
approximate value of p., Now

Ho= (22)

L
n

so C 1is determined., Substituting C into equation (18) will give a
value for D. In this menmer C and D are computed for the system
which is describable by a Rayleigh equation.

An example showing application of the foregolng technigue is pre-
sented in Appendix B. The responses used in this demonstration were
obtained from wind—timnel tests of an aircraft model mounted on a bal—
ance that permitted free oscillation in yaw and roll., Some difficulty
1s encountered in fixing a precise value of 4 in this problem, due to
the fact that fluctuating conditions in the wind tunnel resulted in the
responses not belng exactly periodic. The manner in which a compromise
value of p 18 chosen 1s glven in the sbove-mentioned sppendix.

DATA AND METHODS REQUIRED FOR TETERMINATION
OF NONLINEAR PARAMETERS

The procedure for reducing nonlinear response data to values of
the parameters of the physicel system being studied begins with knowl—
edge or assumptions concerning the order and form of the differential
equations describing the system. Such information can usually be
obtained by careful consideration of the mechanical or electrical com—
ponents of the system. Once sulitable assumptions regarding the differ—
ential equations have been made, the nature of the various parameters
can be investigated by methods such as those discussed and referred to
herein.

First—Order Systems

When the mass of a one-degree—of-freedom mechanical system is
negligible with respect to the damping- andrestoring—force coefficients,
the system can be approximately represented by a flrst—order differen—
tial equation. Such a situation may also occur in an electrical sys—
telm having very small inductance. These are known as degenerate sys—
tems. The parameters of degenerate systems can be determined by the
derivative method, using one or more dynamic responses.
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Second-Order Systems

The derivative method can be applied in the case of second—order
systems with any or all of the parameters unknown. The data recommended
for the calculation of several parameters by this method are responses
to sinusoidal inputs of various magnitudes, or modulated sinusoidal
input responses, It was found, in the calculations given in a previous
section, that the difficulty of ill-conditioned algebraic equations was
not greatly reduced when responses to modulated inputs were used, how—
ever, The most satisfactory kind of data appeared to be several
responsses to simusoidal Inputs having greatly differing amplitudes.

When the restoring—force and damping—force coefficlents are the
unknowns, and if either or both are nonlinear, then the curve-fitting
technique wherein responses to several step inputs are used can be
applied with much more assurance of success than can the derlvative
method., It 1s of interest to note that this curve—fitting technique
is independent of parameters in the forcing function, which may or may
not be known, '

If any one parameter, such as the restoring-force coefficient,
the damping coefficlent, or a coefficient in the forcing function is
unknown, then the derivative method may be applied. A single dynamic
response, such as & sinusoidal, or pulse or step input respomse is all
the data that are needed. In the special case of nonlinear demping,
which is partly dissipative and partly regenerative, limit cycles can
occur, and this sort of nonlinearity is best studled by means of phase—
plane techniques. One or more cycles of the self—sustained vibration
of the response are the required data.

Systems of Higher Order Than Second

In all cases of this type the derivative method seems to be the.
only practical approach. The number of responses required, preferably
to sinusoidal inputs of different amplitudes, will depend entirely on
the number of unknown paremeters.

CONCILUDING REMARKS

Methods have been presented for reducing response data from certain
nonlinear dynamic systems to coefficients or system parameters. The non—
constant coefficlents were assumed to be functions either of the depend—
ent variable or of 1ts time derivative. The methods could be separated
into three categories, namely, the equations—of-motion methods, the
response curve—fitting methods, and the phase-plane methods.
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Of the first category, the derivative method, which was applliceble
to all the cases investigated, was found to be most sultable when only
ons unknown nonconstant coefficlent was to be determined. As the number
of unknown coefflclents, constant or nonconstant, increased, the accu—
racy of the derivative method decreased due to the ill—conditioned
nature of the simltaneous equations to be solved. Furthermore, as the
order of the differential equation representing the system Increased,
the accuracy of the derivative method tended to decrease due to the
difficulty of msasuring or computing higher—order derivatives of the
dependent variable.

The response curve-fitting method employed was the most satisfactory
for second—order systems having more than one unknown coefficient, If
the demping force is known to be pertly degenerative and partly regen—
erative, such that self-sustained oscillations are observed, the phase—
plane method was found to be a suiteble method of determining the form
of the nonlinear demping in certain types of second—order systems.

Ames Aeronautical Isboratory
National Adyisory Committee for Aeronautics
Moffett Field, Calif., Apr. 14, 1953
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APPENDIX A
CALCULATION OF THE DISTORTION FACTOR

The purpose of this appendix 1s to demonstrate numerical technigues
for determining the distortion factor of the responses of a dynamic
system to sinusoldal inputs. The dynamic system under conslideration
here could be characteristic of a missile, and oniy the longitudinal
motion of the missile will be studied. The equations of motion of this
system, which are used in the numerical examples of Appendix B also,
are presented here,

The longitudinal equations of motion of the missile are assumed in
the form

274 — 2Tq — Cgua = ~Czgd
5 (A1)
2KT q — Cm(@) — Cmy@ = Cmgd

For a particular situation the coefficients in equation (Al) were calcu—
lated to be

T =2,188 sec
K = 0.001578
Cmq ='0.028,-|- gec
CZB = 0.030

Cmﬁ = 0.070

Cza = 5,32

The numerical values of the above
coefficlents are based upon « C.(a)
being measured in radians, q in m
radlans per second, and 8 in
degrees. The function Cp(a) is
nonlinear and of the form shown in
the sketch., Equations (Al) can now
be written @

a~-q+1.2157a + 0,006855 = 0 }
A2)
q+1.8795q — 66.181Cx(a) — 4.63276=0
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If q 1is eliminated between the two equations (A2), the result is
& + 3.0952% + 2.28500 — 66.181Cp(a) = 4.61985 — 0.006855 (43)

The data for the present computation were obtained by solving
equation (A3) on the analogue computer with & = 8g sin wt where = ®
is 2x radiems per second, and where values of B&p used were O. 5 y 1° y
29, 39, and 3.5°. The B term was not included. The function Cp(a)
as determined from wind—tunnel tests is shown in figure 3. The responses,
to the sinusoidal inputs are presented in figure L4,

By use of a wave analyzer, the amplitudes of the first 10 harmonics
of a steady-state cycle of each of the ebove responses were found. The
amplitude of the first harmonic was adjusted to the value 100 so that
the computation of the dlstortion factor would be simplified. The
results are summarlzed In the chart that follows:

Relative amplitudes of harmonics
Harmonic
80 = 0.5° | 8o = 1°| 8o = 2°| 85 = 3°| 8o = 3.5
1 100,00 100,00 | 100.00 | 100.00 100,00
2 8.95 13.02 16.00 13.90 12,90
3 3.61 2,08 L, 85 6.23 7.90
4 1.1k 2.00 1.09 1.68 1.68
5 37 .26 .20 1.4 1.7
6 54 67 .20 .32 ik
7 2 .12 .25 .5k .6L
8 .15 .24 .25 .21 .55
9 .11 .35 .33 2 .50
10 .10 .33 .16 T 27
Distortion
Pactor 9.8 13.3 16.7 15. 4 15.3

As a check on the accuracy of the wave analyzer two exact sine waves
were analyzed. The distortion factors for the two cases were 2.0
and 1.5.

By use of the same steady—state responses (fig. h) the harmonic
content of each was calculated by a digital integration process with
the aid of the IBM computing equipment. The relative amplitudes of
the first five harmonics of each response cycle are presented in the
following chart:
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Relative amplitudes of harmonics
Harmonic
8o = 0.59] 85 = 19 B, = 2°| B, = 3°| &, = 3.5°
1 100,00 100.00 | 100.00 | 100.00 100,00
2 9.85 15,68 19.10 17.25 17.21
3 .87 1.30 5.51 5.62 T.14
L 1.16 1.1k .81 1.90 .90
5 .29 .65 51 .18 1.17
Distortion .
factor 10.0 15.8 19.8 18.3 18.6

An exact sine wave was analyzed in this manner amd the percentage dis—
tortion was nearly zero,

The distortion factors weresmaller when the wave analyzer was used
than when the digital analysis was employed. There ig probably no
particular significance in this trend. It may be said, however, that
there is much less chance for error in the digital process since the
data to be used are read directly from the analogue computer records.
For the wave enalyzer it was necessary to cut a template in the shape
of the wave to be analyzed, and there existed the probability of intro—
ducing inaccuracies at this step.

. There are many methods for computing harmonic coefficients by hand,
(See, for instance, refs. 13 and 14%.) In the digital method used in
the IBM computation, 24 points were taken over each of the steady—state
response cycles, Then parebolas were fitted to overlepping triples of
these points, thus giving 12 parabolas for each response. The integrals
which define the Fourier coefficients were then integrated exactly,
using these parabolic approximations'to the function being analywed,
end the 12 integrals were summed to obtain each Fourler coefficient.
This technique is quite accurate, but is probably too lengthy for hand
camputation. From the results of the previous analyses, it is apparent
that the amplitude of the first harmonic divided by the amplitude of the
fundamental closely approximates the value of the distortion factor.
Thus any of the harmonic analyses which may be performed quickly by
hand on desk calculating machines or slide rules probably give a good
indication of the distortion factor, if enough points are used to
assure a reasonsbly accurate determination of the first two harmonics
beyond the fundamental.
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APPENDIX B

TILIUSTRATIVE EXAMPIES

Numerical Examples of the Derivative Method

Inasmuch as the success of the derivative method depends to a great
extent upon the accuracy of the derivatives of the response, which are
usually computed rather than measured, the numerical techniques employed
herein for the data differentiation will be discussed briefly. The
differentiations were performed by means of finite difference formulas,
which are described in detail in reference 13. Since experimental data
contain errors and irregularities, it is necessary to smooth the data
mathematically before a numerical differentiation can be performed with
accuracy. In the present work this smoothing has been carriled out by
means of a technique which Is presented in reference 13, pages 303—316,
and in references 15 and 16. Examples of the application of this method
of smoothing, to be called herein the Whittaker method, will be found in
these references,

In order to illustrate the effect of the Whittaker smoothing
method, data which have been smoothed will be compared to the unsmoothed
data in example 1, It will be shown that a primary effect of smoothing
is that the third differences of the data are much smaller and more
regular than the third differences of the unsmoothed deta. The differ—
entiation formulas therefore converge quite rapidly by using only the
first three differences of the smoothed data.

Since the smoothing process 1s quite tediocus, it has been per—
formed on IBM computing equipment. The differentiations were all
carried out by means of desk—type calculating machines, however.

Example 1, determination of nonlinear restoring—force parameter,
all other parameters known, of a second—order system.,— With the aid of

the analogue computer, equation (A3) was solved using as the input
d = sin 2nt and with Cp(a) given by the cubic

Cm(a) = —1.2a— k4,002 — 90a> (B1)

The response o 1s shown in figure 5. This response is now regarded
as the given data, and Cp(a) is to be calculated. All of the other
parameters of equation (A3) will be assumed known.

If several cycles of the response were available in the steady—
state range, then an average of corresponding ordinates for several
such cycles would undoubtedly reduce some of the irregularities in the
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data, In the present example, however, there were not sufficient data
for this, but the first five points were averaged with the first five
points of the following cycle so that there would be more assurance
that the numerically computed derivatives of the assumed cycle of data
would appear as derivatives of a truly periodic response.

Ordinates of « were read from figure 5 at intervals of 0,02
gecond, starting at t = 1.84 seconds and ending at t = 2.92 seconds.
These data are recorded in column 1 of teble I. The first and last
five values were then palired and averaged in the mamner mentioned in
the preceding paragraphs. These averaged end values are given in
colum 2 of table I, With these new end ordinates the data were assumed
to be a representative steady—state cycle of «. The first three dif-
ferences of the response « were taken, and in columm 3 of table I the
third differences were recorded, and for purposes of comparison later
on, the derivative da/dt was taken and recorded in columm k.

Whittaker's smoothing method was then applied to the o data,
using 0.05 as the value of the parameter € in the smoothing formmla.
The smoothed values are denoted by the symbol ag., In table I and
columns 5, 6, and 7, these values are tabulated, along with their third
differences and the averaged end values of ag. Note that the third
differences of the smoothed data, designated by the symbol A?as, are
mich smaller than those of the unsmoothed data, while the actual devia—
tion of smoothed from unsmoothed values is very slight,

The ag data were next differentiated and the result was denoted
dag/dt., These data are tabulated in teble I, columm 8. After smooth—
ing das/dt, the result being designated by thes symbol (das/dt)s, and
after peiring and averaging the first and last five values of the
smoothed. data, a second derivative d(dasﬁiws/dt was taken, For com—
parative purposes, the derivative of the unsmoothed data dag/dt was
also computed, In columms 9, 10, 11, and 12 of table I the data per—
taining to the second derivetive of o are tabulated.

In figure 6 the derivatives of o and ag are plotted, and in
figure 7 the derivatives of dag/dt and (dag/dt)s are likewise shown.
These comparisons serve to show the need for, and effect of, the smooth—
ing of a set of data prior to performing a numerical differentistion.

The derivatives that have been computed will now be used in con—
nection with equation (A3) to demonstrate the derivative method of data
reduction.

The forcing function of equation (A3) is

H(t) = 4.6198 & — 0.00685 & (B2)
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which is, in thig example,
H(t) = 4.6198 sin 2nt - 0.0431 cos 2nt (B3)

Solving equation (A3) for Cp(a) gives

Cpla) = 66;181- [& + 3.0952 & + 2.2850 o — E(t) ] (Bk4)

In equation (BY) the date of columms 5, 10, and 12 of table I were used
for «, a, and o, respectively. The forcing functlion, given by equa—
tion (32) » was tabulated in columm 13 of teble I. By use of these

data Cm(ct.) was Tirst computed as a function of time., Since each wvalue
so- found corresponds to a value of a, a plot of Cp(t) versus a(t) gave
the desired functiom, Cp(a). In columm 14 of table I Cp(a) is given.

The function Cm(a) is plotted against o« in figure 8. If the
results were regarded as mathematically exact, then it might be con—
cluded that Cp(a) is double valued. It is known, however, that Cp{c)
is single valued, so this apparent hysteresis 1s, in fact, due to sys—
tematic distortion injected into the calculation in the smoothing and
differentiating processes. For a more direct comparison of this result
with the known Cp(a) (eq. (B1l)), a cubic was fitted by least—squares
methods to the computed function. This cubic is

Cm(a) = —1.234 o — 4,004 a® — 40,456 o° (B5)

The large discrepancy between the coefficients of a® in equations (B5)
and (Bl) is undoubtedly caused by the strong effects of a® which are
only felt at large values of o, and the data of this example do not
extend sufficiently far from zero to afford a more accurate value for
this coefficient. Note in Pigure 8 that the function Cp(a) of equa—

tion (B5) is qulte accurate except at large values of a.

As a further example In computing a single umknown parameter by
the derivative method, the techniques described in the first example
will be applied to transient respomses of equations (A2), The data
were obtained by solving equations (A2) on an analogue computer, using
for Cp(a) the function given in figure 3. The oscillation was initi—
ated by an initial displacement in o« of 8° (0.1396 radians). The
responses were thms free oscillations, and the forcing term & was not
present in the computations to determine Cp(a)..
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In figure 9 are shown portions of the responses q and a of the
gbove system. The unknown function Cp(a) can be calculated from the
second of equations (A2), so only one derivative of q was required,
and none of a, The responses Iin q and @ were read at intervals of
0.02 second for a l-second range starting at + = O, and these results
are glven in table II. The q data were smoothed by Whitteker's method,
with €=0.1, and the first derivative was taken. These results are
also presented in teble II. In figure 10 the derivative dgg /it is
plotted, and it is apparent that the value of € of 0.1 is not too
large. The accuracy with which the unsmoothed a and q can be read
from the analogue computer traces in this case Justifies the use of a
value larger than was used in the first example.

The function Cp(a) was found from the equation

Cm(a) = Es_liﬁ (4 + 1.8795 q) (B6)

The results of this calculation are given in teble II and are plotted
in figure 11.

Example 2, determination of-amplifier characteristic curve in auto—
plilot servo system, 8ll other parasmeters known.— In reference 17 the
dynamic behavior of an autopllot servo system was simmlated on the ana—
logue computer. An amplifier in the servo system was known to possess
a saturation type of nonlinear characteristic. In order to account for
certaln time lags in the dynamic system it was found necessary to intro—
duce an exponential lag operator (see ref. 10) into the equations of
motion, A three—term approximation was made to the lag operator, which
had the effect of raising the differential equation from second to fourth
order., By use of this fourth-order differential equation and experimen~—
tal responses obtained in bench tests of the autopilot, the problem in
this example was to calculate the nonlinear amplifier characteristic
when all the other paremeters of the system are: known,

After the approximation to the lag operator has been made, the open—
loop equation is

Tl
4 D a
T5PTn EVe TpTm t 5 aTve  TpeTp dove 1 dve
- + = + + = I(vg) (BT)
OPskeky dt Prkeky,  dt Prkely dt°  Ppkeky dt

where vy 18 the output voltage and vy the error voltage. The error
and output are related to the input by the relation ve = vi — ve,
where vy 18 the lnput voltage. The parameters TDs Tms Ppsr kp,

and k, are all constants, and
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I(ve) = Pahave (B8)

where PghAg 1s the nonconstant slope of the emplifier characteristic,
In a certain case the parameters in equation (1k4) were

Pf = 0.2)4-

kp = 12,8 ,

km = 0.063 (B9)
Tm = 0,052

Tp = 0.009

When these values are used, equation (B7) becomes

d*vp dSve dav, dv;
—L bl o —£ ke S =
0,000011 —=3 + 0,00263 —= + 0.315 == + 5.17 - — I(7g) =0 (B10)

The response of the servo system to an input yoltage
vy = 1.56 sin 2xt was obtained. In figure 12, vy, vp, and ve are
plotted. The fumction ve, does not appear at a glance to be the
response of a nonlinear system. By use of the digital harmonic analysis
technique described in Appendix A, the distortion factor was computed
and found to be T7.68.

After smoothing vy by Whittaker's method with € = 0.25, the
first derivative of vp was found, using the difference formulas previ—
ously cited. Three more derivatives were calculated, smoothing each
one before the next derivative was taken, These four derlvatives are
shown in figure 13. It is apparent that even with the large magnitudes
attained by the fourth derivative, its contribution in equation (17)
was very small., The four derivatives of vp were substituted into
equation (17). Then I(ve) was computed in the seme mamner as was
Cm(a) in the previous two examples. The results of this calculation
and all the other data for this exeample are given in teble III, In
figure 14, I(vg) is plotted as calculated here and also as found by
static tests of the autopilot. The false hysteresis effect is present,
but the actual saturation trend of the characteristic is preserved in
the function as computed by the derivative methcd.

Example 3, determination of two unknown paramsiers by the deriva—
tive method,— The extension of the derivative method to the analysis of
nonlinear response data for two unknown coefficients will now be demon—
gtrated with mmerical exemples. The data were obtained by solving
equation (A3) on the analogue computer, where Cp(a) is again given by
figure 3, and the B +term is neglected. For the purpose of the follow-
ing computations, equation (A3) was put into the form
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& +ba + ka = Cod (B11)

where b, k, and Cy, are constants. Equation (B1ll) is therefore linear,
but it was used to describe the behavior of the system under considera—
tion only over small ranges of values of a. The coefficient b was
assumed known from other considerations, and k and Co Were calculated
as constants for several values of a, using the technique previously
described. The computed values of k and Co could then be related to
the values of o at which they are determined in order to ascertain
their varistion as o 1s varied. In this particular example the func—
tion Cp(a) was calculated in addition to X, using the relation

Cm(a) = 820 =k o (B12)

Equation (B12) was obtained from the restoring-moment terms of equa—
tion (A3), end kX is the number computed above for the value of o at
which Cp(a) was to be determined.

A set of date was obtained for the phase—modulated sinusoidal input
% =1.75 sin (2%t + x sin 0,3nt) (B13)

As was mentioned in & previous section, this seort of response data has
the advantage that one run of the dynamic system is sufficient. The
data so obtained were smoothed and.differentiated., Then the response,
its first two derivatives, and the forcing function were plotted to the
seme time scale in the manner described previously. At values of a
of 0.02, 0,06, and 0.08 radians, lines were drawn through the response
curve parallel to the time axis. At each instant where a line cuts

the o curve, the corresponding values of the two derivatives and the
forcing function were read. For each value of «, then, the quantities
so read were substituted into equation (B1l)., The resulting sets of
equations were solved by least squares for k and Co. These calcula—
tions are summarized in the following teble, where k 1s also related
to Cm(a) by equation (Bl2):

Cp(a) from Cp(a) from

a Co k equation (B12)| figure 3
0.02 | 4.8611 111.k42 -0,033 -0.030
.06} 6,082 161.51 - 144 -.120

.08 5,446 150.31 -.179 -.180
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The correspondence between the calculated values of Cm(a) and. the
values taken fram figure 1 is indicated in the above chart, and the
true value of Cp is 4,62,

As a second example, an amplitude—modulated sine wave was used
for &; that is,

5 = 2 sin 21t + sin 2,27t (B1k)

Again b was assumed known, and calculetions similar to these above
were made to determine values of k and Cy for several values of «a.
These results are given in the following table:

C,(a) from () from
« Co k equgtion (B12) c?igure 3
0.025 | 2.669 k9,25 -0.018 -0,032
.050 | 3.806 | 101.22 -.075 —. 095
—-.075 | 5.154 | 105.94 .118 110

Responses of this same system to sinusoidal inputs of varlous
amplitudes were cbtained, and a calculation similar to the ones dis—
cussed above was made. The values of Co were more accurate in the
case of the responses to sinusoidal inputs, but Cp(ax) was of about
the same order of accuracy as before.

The results of the above calculations are not entirely satisfactory.
The difficulty of ill—conditioning of the least—squares normal egquatlons
was present, although modulated inputs were tried.

From these examples it is apparent that the accuracy of the deri-—
vative method of nonlinear data reduction may be poor for the case
of twvo unknown parameters, due to the seemingly unavoldeble 111—
conditioned equations that must be solved. For systems of order
higher than second, however, this method may yield results which can
then be further refined.



NACA TN 2977 31
Numericel Example of the Curve-¥itting Technique

In order to demonstrate the simple period and damping technique of
analysis of nonlinear response data, the follewing example is presented.
The data were obtained by solving equation (A3), with the 5 term
omitted, on the analogue computer, using step inputs of magnitudes -0.5°,
—1°, 2%, 39, _4°, 0,25°, 0.5°, 0.75°, 1°, 29, 3°, and 4°, The func—
tion Cp(c) that was used is that given in figure 3. With the assump—
tion that each response is linear, ti/o and P were computed for the
responses. It was found that +,,o 1is nearly constant, and the

values of 2f{wy, the demping coefficient, are tabulated here. The aver—
age value for 2fwn 1s 2.91, which differs by about 5 percent from the

correct constant value, 3,095. This indicates that the technique glves
reasonably accurate results.

It was observed that the per—

iod P of the oscillations varies Bo 2lan
as the amplitude of the input varies. Lo 3,11
Thus ®,2 varies. In order to make 3'0 3:00
a comparison with Cp(c) of the var— 2.0 2,91
iation of w,2 1let 1.0 2.89
. 2.85

0 * 5 2.85

on @ = ~66.181 -gg- a (B15) .25 2.78

: -5 3.15

3o * ~1.0 3.00

The numbers acz: are calculated —{328 ng
and then plotted against the corre— k.0 2.89

sponding trim values of «., This curve,
given in figure 15, was then integrated
in an approximate mammer and the result was designated by the sym—
bol Cp*(a). This function is related to Cm(a) by the equation

—66.181 Cp*(a) = 2.285 o — 66,181 Cp(a) (B16)

The function Cp(a), as calculated from equation (B16), is plotted in
figure 16. The Cp(a) of figure 3 is also given in figure 16 for com—
parison. Considering the basic simplicity of this calculation, the
results are very good.
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Numerical Example of the Phase-Plane Method

As an example of the application of the phase—plane technique for
determining the nonlinear damping involved in a self-sustained oscilla-
tion, a numerical problem will be solved. In wind—tunnel tests per-
formed upon an aircraft model, the model was observed to initiate a
self—sustalned lateral oscillation gbout its mounting as the speed of
the wind in the tunnel reached a certain level. Several cycles of this
oscillation were recorded and read at intervals of 0.005 second, and
these data are tebulated in table IV, The above data were smoothed by
Whittaker's method with € = 0.25, and then differentiated. The results
of this calculation are also presented in table IV,

The differential equation of the dynamical system was assumed to
be of the form

Iz¥+ 2(V, 0+ My + Ng)¥=0 (B17)
The constants Iz and (Ny + Ng) were known to be

Iz = 0.94%4 in-db-sec®/radien

Ny + Ng = 742.5 in-1b/redien

and f(V¥,¥) was to be calculated. If the notation of the previous dis—

cussion is adhered to, then

¥+ NB
on = [—0== 28,05 radians /sec
z

The phase portrait, V¥ versus V/wn, wes drewn next. (See fig. 1T.)
Note that the phase curve is not a closed 1limit cycle. This is due to
variations in the data, caused undoubtedly by fluctuating conditions
in the wind tunnel. From the general trend of this phase portrait,
namely the predominently negative slopes in the first and third quad—
rents, and also from physical considerations that the damping should be
a function only of V¥, it was concluded that a Rayleigh equation can be
used to describe the motion, The damping term of equation (B17) was
therefore assumed to have the form
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___f(}’;‘” = ~(C ¥ - D¥?) (B18)

From figure 17 the average maximum value of ﬁﬁbn.'was found to be
approximately

R = 0.391(57.3) = 22.40,

The conversion factor 57.3 is required, since ¢ 18 glven in degrees
and wp bhas the dimensions of radians per second, and R must be
dimensionless. Then, using equation (18), it was found that

]Cl = 36.40 (B19)

By means of equations (21), the new tramsformed phese portrait was con—
structed. The variables were

x = 5,10V
(B20)

ax ¥
— =5,10 —
d.tl ®dOn

This phase plot (fig. 18) was compared to figure 2, and it was found
that the phase curve of p = 0,6 fits the experimental phase portrait.
This curve is superimposed upon figure 18 for comparison. From the
value of 4 of 0.6 and the relation B = Cﬁnn the value of C was
found to be 16.82, and then from equation (B19), D was calculated.

Tt was 612, With these two numbers, equation (B17) can be written

0.944¥ — (15.9V — 57811?3) + Th2.5v =0 (B21)
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TABLE II.— CALCULATICNS FOR EXAMPIE 1
[Determination of Cp(a) from transient response data ]

100 gg 100 %C—lti 10% Cm(a) 100 gq qg | 100 % 10%z| Cpla)
—3.4 2819 140 -0, k269 32 T 854 61{-0,1200
54,0 -2255 127 | - 3421 15 .3 877 6h] —,1285
-93.2 —1675 112 | —. 2796 4 .0 845 63| —. 1285
-121.2 —1135 92 | —.2059 —20 .1 —746 59| — 1181
-138.9 -639 61 | —. 1360 —34 .8 616 501 —, 108k
~147.1 -194 32 | - 0710 - 6 VG L} — o822
~147.1 180 3| —. 0146 52 .2 -296 33| - 0591
-140.3 490 -25 | ,0341 55 .5 -145 23| - 0377
-127.8 749 51| 0767 —5»6 .0 —13 11} — 0181
—110.6 970 -T2 | .1152 56 A S 100 0} —.0008
-589.3 1144 90| .1475 53 .1 196 ~11] .0145
~65.0 1274 -103 | .17ko 49 A 275 21| .0278
—38.6 1341 ~113 | .1917 o .2 338 29| .,0391
-11.7 1333 ~115 | .1981 35 .0 380 -38] .o475
ik.2 1238 -112 { .1911 27 .1 h10 43| .0543
37.6 1078 1051 .1736 -19 T " 428 46| L0594
57.0 866 52 | .1470 -10 .1 k28 47| .0618
72.0 633 -T9 | .1161 -2 1.7 hog | 48| .0613
8.3 300 -59 1 .0838 6 6.2 383 471 0596
88.1 187 b2t ,0533 1k 13.5 339 44| 0553
89.9 -5 -21 | ,0248 20 19.7 286 38| .ok88
88.0 —182 -2 {—, 0025 25 24,9 229 35| .o0h7
8.7 ~3k9 16 | - 0293 29 28,8 162 28| .o0327
7h,1 507 3L 1 — 0556 31 3Lk o7 | 21l ,oeko
6.5 ~654 4L | — 0811 33 32.8 -13| .0157
48,1 ~T78 5k | —.1039

LL62 ML VOVH

LE
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TABLE ITIT.— CALCULATIONS FOR NONLINEAR SERVO EXAMPIE

3 3 3 3 3., o
t | 10%p | 10°w | 1077, | 107ve | 1%, | 17, | 10 7| ¥ I

1748 | 1493 —2U3| 1727 81 | -9000{ 2192{ 15020 -27.22
L0251 1690 | 1hok| —292| 1696 | —2111 | -807T7{ Lu4990| 8280 —34.98
.050| 1605 | 1281 -334| 1615 | —3945 | -6619| 6389 252k —39.56
L0751 1500 | 1126 369 1495 | 5329 | -5000| 6300} —2851] —41.70
.100} 1331 o3| —Uo5| 1348 | —6326 | 3552| 51731 SH56T4| U2.60
1251 1180 7371 —B47) 1184 | —7009 | 2445| 3685| 5861 —43.03
.150] 1009 513] 492 1005 | —7516 | <1697} 2392 U256 —43.63
A7 820 276 -539 815 { —7915 | —121k4| 1577| —ek11l| k.36
.200 623 33| -580 613 | -8237| -881| 1110| —1484| 45,09
.225 hoo| -e12| 61k koo | -B470} —6U48 BTl L4571 45,65
.250 184 | hs1| —638 187 | -8613| S0k 347 —1886| 46,04
275 Ao | 679 645 34 | -8691{ 471 78| —1111{ 46,4k
.300| 27| Bo0o| 64| b5 | 8735 | H06 24l 2565 | 46, Th
.325| 460 |-1080| —620| —U60 | -8784| L29 658f L4705 —-46.55
.350| 677 |-1243| 568 675 | -8873 93| 2430 9496 | 45,93
3751 890 |1375| 481 -89k | -8831 857 5181} 11510 —41.93
.4oo [ —1098 | —1b7h | —36L4| —1110 | -8535 | 2k90| T830| 9273| —3%.15
Jhos5| 1300 | 1535 218 | —1317 | 7748 | 4692| 9512 3460| —22.77
L4501 =1502 | 1560 58] <1502 | —6324 | T098| 9328| 5161 —7.97
A5 1 —16ko | 1546 95| —1641 | —kolk | 09183( 6945(-13610 8.65
.500 | 1748 | -1493 208 | 1721 | —1636 | 10432] 2798]-18770| 2L.9k
.525| <1748 | =140k 322 | —1726 1106 | 10529 —2012|-18840| 38.17
5501 1659 | —1282 377 | 1659 3710 | 9k473| —6218}|-14100| k7.25
575 | 41520 | —1126 4331|1536 5868 | T546| 8827 66611 51.75
600 1349 | —943 yi7| 1360 7413 | 5220) —9435| 2212] 52.33
625 <1150 | —T737 hos | 1160 8351 | 2987| —7954] 17838] 50.59
650 -959 | -513 437l -950 8793 | 1307{ -5828| 9637| 48.16
6| =730 276 skl —730 8715 106| —3262) 10110| U45.67
.700} -507 -33 k76| 509 8869 | —343| -9T1] T998| Lk.60
.25} —290 212 500| 288 8791 —260 T31{ 6056 Uk, 89
.50 67 453 519 68 8764 130! 1833 1284 L6.21
i) 160 679 528 151 8826 5341 1274 4718 47.60
.800 372 890 519 371 8991 677 —3k6] -8389| 48.62
.825 590 | 1080 485 595 9132 295| —2805|-10830| 47.31
.850 807 | 1243 koo 823 9155 | -Thk| —5516|-13260] k43.k2
.87 1040 | 137 324 1051 8833 | —2h19| —7692] —6966] 35.98
.900] 1273 | 147k 205 1269 802k | 4L87| 8644 839} 25.12
.925| 1460 | 1535 771 1458 6638 | ~-6573| ~738%] T186| 11.76
.950| 161k ] 1560 451 1605 705 | -804k | —5291) 10350 -2.18
975 | 1700} 1546 —151| 1697 ouh8 1 —9oT7| —2048| 16030| —16.32




TABLE IV.— CALCULATIONS FOR SELF-—SUSTATNED %CMON EXAMPIE

t 10%¢| 10y | 10%% t | 10% J1oty, | 0% t 10 [10fw, | 10°| ¢ 10%¥ | 1oty | 10%%

—38% [ 38m6| —£050 (| 0.22%| —13 | h111]| —1868 0.550 | 362 (3580 88| [0.613 | 0T | —Xko | 3073
L005( —396 | 3019 578 .230| 418 | Jasg 200 L85 | =351 [ 3505 2057|| .6B0 | —396 | —3967 kaos
.0x01 ~309 | 3915 746 235 18! 4131 1578 60 | 333 | 3377 327]| .688| 373 | 37T 5572
.015| 378 | 3845 | 225 || .2ho| 396 —ko1e iu: Jugs | 318 2195 | hoof| .650| ~3h0 | —3h1B | 6872
.020| 373 | 31e| 3303 .25 | 378 ~382 557 o |eos | 9761 LeaT|i (695 | -307 | —30k0 | &S8
.025| —351 | 3510 k903 280 | =362 | 3556 €053 .ﬁgg -273 |e70R | 603%{| .700| 267 | o594 [ 9552
.030| 329 | -3218| 6&8hko L2851 =313 | -3217 Tho8 . —2ho [ 2371 E’{ LT05 | 800 | 2050 | 10317
L0335 282 | -e83%| BT .260| —e8L | —e8o4| 9120 Jios | <196 | -1976 5|} .70 | -156 | <asky | 113
.0 -2h0 | -eho8| okoo .265| 236| —=305| 10753 Lhgo | s -CL:?E 93201| .15 ﬁ 578 | 1152t
.0h5 | -18L | <1503| 10383 L270| —171| -AT32| 12228 L3y 107 5| 1003(| .70 0 | 397 | 11788
.050| ~1k0 | 1380 10743 LTS | 111 | ~10%h| 12907 501 g | B33 1Lowé3[| TS| -16 200 | 12035
.035| 87| -Bho| 1o9ks .28 | -ko| 3] 12797 305 T -3 | 10685|| .30 S &2 | 1970
L0680 29| -£90| 109 285 6| 183 12599 S0 56| 523 | 10k3 7?3 138 | 1383 | 11697
0650 27| 230| 107 290 @& 736 11703 J15 | 104 | 1 9667|| . T 200 1 1078
SO & 78| 10392 295 133( 13h7{ 10513 G20 | kg ) 1 a8, .73 ek | 2 10093
03| 27| 1287 9868 .300| 18%| 18h7 9367 De5 | 193 | 1 T807{| .90 gﬁg 29TL 8822
.080( 1718| 17| 9%%0 305 ea7| 228 2187 30| 227 | 2267 | eTmO|| L5 3377 | 7613
085 216 ezhi; o1to J101 271 =286k &8E8 535 2ho g 2880 sou0y LTE0Y 37B ¢ 3RS L1587
.090| 271 | 260k ’?352 5| 298| 29m 3512 .5k0 ggg pE38 | 5o5T[| (TED 6 3981 k537
(053] 311 | Jobo > .320| 36| 3218 390 555 3083 hor7|| .TTO 16 173 2978
.100| 338 | 3keB! %947 .325] 338| 3h08| 3080 50 el 57| 2833 LTre| W7 | ReTT | 1273
L105 gg 3676 30932 .330| 353| 3526 188 I55 ] 33 3362 1351{| .780 k27 k3oo s
110 3812 1978 .333| 360| 3367 0 .60} 3k2 | 3389 _ﬂ—ge 857 he7 | he33 | -eees
L1137 387 3862| Bk .340) 360 3mR1] -23%0 L5365 327 | 338 Tl 790 | %09 | Lo7e | M55
.120] 3&e | 3883l 1360 3651 333[ 3368] —Ahso 5701 3181 3206 | 33131 .79 3 3018
,125( 378 | 3TMR| 3257 350 311| 378| —hk73 . ,g 304 | 299 | —s180|| .Boo | ake | 3b73 | T8
.130| 360 | 33570| k203 3% 91| 291B| —5TTR . 271 | 2685 | -6935(( .80 m 5283
A3 327 | 3306| 5603 J360( en —£827 585 | 233 2300 | -85%5(| .610 glgg L
.1k0| 298 | 2999 | 6088 .365| 2e0| 223T| 7843 590 | 178 | 1631 | -98&2|] .81 1996 —11953
s |27 | 2631 ﬁ .370] 182 | 18e6] 8388 L895 | 138 | 1321 | -10500(f .820 138 1397 |-12ko0
.150| 216 | seo7 375 138 | 1ko2| 8589 600 n 786 | 10848} | .825 78 T8 | 12857
55| 1n | it | -ofes || 38| 93| 93B| B9 605 | 22| 2o f-aogky|| 830 4| 117 [-12900
L160 127 | 1252 -10eaR J3E3| w9 50R| 9197 L610 | 29| —308 | -1020(| .8 B0 | B30 |-138%0
A85]  T6{ 726 (HloT6 .3%0| 18 39| 9368 615 | 84| 863 |-11195|! .8 129 —13010
.170 16 187 |-1.0995 .395] —B1} -U3e| —ohl2 .620 | -1ho | 1426 | 11717 8BRS | 73 | —12020
A3 b0 | 37011082 oo -85 | Bor| 20T 625 | 196 | 1587 | -10858(| .B%0| 38 | -2 ~11212
.180| -8Bk 19 (1082 L4os| —133 | -1337| 8600 L630 | 251 | -o810 | —L0165|( .B55 | —=28k —1cek7
,185| 151 | -1550 |-10378 L0 T3 -8062 .635 | =307 | 2996 | —69%2|| .B60| —su7 | 3383 | 8393
190 | 196 "1€53 —5688 1w 1o | -1k | 7993 ,6h0 | —3h0 | 3390 | -T312|| 865 —§73 7328
155 k0 1 ek5 ) 875 Jhas! emg o= -T2 G55 1 373 13728 | —5798(] .B70| -h1S | —hii5 | 57k
.200 | —o0k |-pa286 | 76K Jhas! oBh| -eB61| —4e08 6m0 ﬁ oo | Ztebo|| & | s | Diggo
L2035 | —318 | 3187 (30| 313 | —3135| 5003 655 157 | -2968|| .B80| —hs1 | 4mes | M8
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Figure 13.— The first four derivatives with respect to time of the output
voltage of a fourth—order servo system.
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Figure 17.— Phase—plane plot of the self-sustained oscillation of an air—
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