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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECBNICAL NOTE 2977’

TECHNIQIJESFOR CALCULATING PARAMETERS OF NONHNEAR
.

DYNAlfCCSYSTEMS FROM RESPONSE DATA

By Benjamin R. Briggs and Arthur L. Jones

SUMMARY

A study has been made of the problem of determining nonlinear par-
ameters of dynamic systems, such as aircraft or servomechanisms,whose
measured responses are nonlinear. This problem cannot be solved in gen–
eral but, for certain t~es of systems, adequate answers can be obtained.
In the differential equations representing the motion of the latter
systems, one or more coefficients will be functions of the nonlinear par-
ameters. For the systems studied herein, the notinear parameters are
functions of either the amplitude of the dependent variables or their
time derivatives. The techniques developed for coefficient evaluation
are, for the most part, extensione of two well-known methods of stabil-
ity derivative evaluatim for linear systems, namely, the derivative
methai and the methai of inspection of transients for pericd and damping
characteristics. Phase-plane methcds such as those utilized in nonlinear
mechanics are also included. ‘

It was found that the nonconstant coefficients could be determined
satisfactorily for first- or second+rd.er systems, using one or a conbi—
nation of the techniques developed. For higherdrder systems the only
practical means of obtaining results was found to be the derivative
methcKl. For some of the examples tried, however, this latter methcd
gave poor results due to the occurrence of ill-conditioned algebraic
equations. The number of unknown coefficients, constant or nonconstant,
to be determined also affected the accuracy of the results, the smaller
the nuuiber,of course, the better the chances for a satisfactory evalu–
ation. “

INTRODUCTION

Wch attenticm has been given recently to the problem of determining
stability derivatives of airplanes by means of flight and wind-tunnel

-c testing. This problem of reducing response data to obtain stabil–
ity parameters is the inverse problem in dynamics, the direct problem
being to find the response to an arbitrary forcing function when the

.
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2 NACA TN 2977

equations of motion and.the system parameters are lnmwn. For linear
systems, methods for solving the inverse problem are summarized and
evaluated in reference 1. More detailed descriptions of the individual
methcd.scan be found in references 2 through 6. .

In the investigation reported herein, the problem of determining
nonlinear stability parameters from dynamic responses of nonlinear sys-
tems was studied. Revious to performing the actual analytical opera-
tions involved in this inverse type of analysis, it is desirable to
determine the me.gitude of the nonlinearities inVolved in order to class-
ify the problem as either approximately linear or sufficiently nonlinear
to necessitate the more complicated nonlinear approach. It is also nec-
essary to make an assumption about the order and fomn of the differential
equation of the system being investigated. The response of a system to
sinusoidal inputs can be analyzed to find the maguitude of the nonline-
arity involved.,but there is no criterion for the identification of the
order and form of a differential equation to represent the system. The
latter must be determined more or less intuitively.

There is a variety of effects which may cause nonlinear behavior
in a dynamic system. These effects appear in several different ways in
the equations of motion of the system. The cause of one common non–
linear term is an element in the system whose response is dependent on
the amplitude of a dependent v+able. For example, it is possible for
an airplane to have a nonlinear variation of pitching moment with angle .
of attack which would require a nonlinear term C!m(~)to appear in the
equations of motion in place of the usual linear term C%a. The teck
niques presented in this report are concerned essentially with systems
having this type of nonlinearity.

This investigation was mainly concerned with aircraft responses.
The techniques presented, however, are shown to be applicable to responses
of other mechanisms such as an autopilot,servo system. The degree of non-
linearity in tb responses for high+peed aircraft of unorthodox configu-
ratiau, such as a guided missile, is already a matter of concern to design
engineers. (See ref. 7.) Furthermore, the automatic control systems
employed’in aircraft usually contain, within the servo system itself,
nonlinearities due to factors such as ampllfier saturation and velocity
limitation.

For the most part, the methods developed herein are extensions of
certain linesr techniques. In reference 1 the several methcds for ana-
lyzing linear responses are placed in two categories. The first cate–
gory includes methcds wherein the response data are substituted directly
into the differential equations, the general forms of which are assumed.
Such methds are called “equations-of-motionmethds.” Examples of
techniques in this category are the “derivative methcd” given in refer-
ences 2 and 3, and the “matrix msthd’f of reference 4. The second
category involves methods wherein analytical curves are fitted to the .
dynamic responses. These techniques are known as “response curve-fitting

—— — .-
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methods” and the methods described in references 5 and 6 are examples of
this type. The same categorical divisi- seem suitable for the nonlinear
techniques derived from these linear ones. In addition, a technique of
analysis based on phase-plane methcds, which does not fit precisely into
either of the above two categories, is presented for use in determining
nonlinear damping functions associated with certain classes of self–
sustained oscillations.

Experience has shown that the results of the analysis of first-and
second+rder Enear systems are more accurate than those of systems of
higher order. It is not at all surprising, therefore, that this condi–
tion also exists in the nonlinear situation. Fortunately, in many cases
the dynamic behavior of systems can be adequately described by second–
order differential equations whether linear or nonlinear. ~hasis has
therefore been placed on techniques suitable for second-order systems.
The derivative method, however, is applicable in principle in cases where
the differential equations involved are of any order whatever, the pri–
mary lindtation being the accuracy in determining the higher+rder deriv-
atives of the response either by measurement or computation. In order to
show
tion
with

that this lititaticm is not always serious, a successful demonstra-
of the technique of analysis for a ntinear system of f-h order
unlmown parameter is presented in the illustrative examples.

NOTATION

rate of change of pitching+nmnent coefficient with angle

ah
of attack, —

au

rate of change

attack, ~
au

rate of change

of normal-force coefficient with angle of

of normal-force coefficientwith elevator

acz
deflection angle, —

ab

rate of change of pitching+noment coefficient with pitching

acm
Velocity, —

dq

Cm(a) notinear pitching+mment

(!m*(cL) nonlinear pitching+mment

coefficient

parameter (See eq. (B15).)

. . ..——.
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x. nonlinem m-a natural-frequency parameter (See eq. (BI_6).)

F(x),F(~) nonlinear damping coefficients, arbitrary second-order system

G(x)

H(t)

Iy

1=

I(~e)

K

N

%

N~

P

P&&

Pf
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c

f(x,*)

nonlinear restoring-force coefficient, arbitrary second+rder
system

forcing function, arbitrary second-order sfitem

moment of inertia about y axis

moment of inertia about z sxis

nonlinear amplifier characteristic, autopilot servo

I@
nondimensional momentif-inertia parameter, ~

*C

yating mament

aNrate of change of yawing moment with angle of yaw,
w

~Nrate of change of yawing moment with angle of sideslip, —
ap

period of oscillation

slope of nonlinear .ampMfier chsracteristi.c,autopilot servo

gain parameter, autopilot servo

radius of phasaplane I-ititcycles of Van der Pol and Rayleigh
equations, small values of p

wing axea

free+ tream velocity

damping coefficient, second+der Idnear differential
equation, 2!%

local wi~ chord

s~:%d~mean aerodynamic chord, ~

nonlinear damping term, second+rder nonlinear differential
equation

,-

0
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k

%2%

t~/~

Vf,Vi,Ve

X,y,z

T

a

$

5

e

P

T

restoring-force coefficient, second+mier linear differential
equation, ~z

parameters, autopilot servo

mass

pitching velocity

time

%lt

time to damp to half amplitude

output, input, and error voltages of autopilot servo

arbitrary dependent variables

spanwise distance from plane of symmetry

angle of attack

angle of sideslip

elevator deflection angle

psrsmeter, Whittakerts smoothing formula

@ensity of air

aercmiynamic

parameters,

t~> ~;. ,

autopilot servo

angle of yaw

parameter, Van

first, second,

der

etc.

Pol and Rayleigh equaticms

,differences

angular frequency of oscillation, rad.ians/sec

undamped natural frequency

damping ratio

—-.— -— —
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Subscript

smoothed hy Whittaker’s methcd

SCOPE OF THE ANALYSIS

The dynadc system under consideration,with one exception, will be
assumed to be describable by a second+rder differential equation such
as

x + f(x,~) + g(X) =H(t) (1)

where f(x,;) is either of the form F(x)*, or F(*)+, or by one or two
fir8t-order equations of t% form

2= f=(x,y,t)

1

(2)
f = f=(x,y,t)

In equations (1) and (2), x and y are arbitrary variables and the dots
over x and y indicate differentiationwith respect to time t. It
will also be assumed that any nonlinear coefficients or parameters are
functions cmly of the dependent variable or its first derivative, and
not of the time.

The exceptional case included will be a fourth-order system. This
example is presented to demonstrate the application of ths derivative
method to nonlinesr systems of higher order. The dynamic system in
this example is an autopilot servo, and the differential equation
describing its open-loop behavi.oris assumal tobe of

d4vf d=vf + ~2 d%f dvf
Aon@-+&~ +A3—— I(ve)

x dt

where vf - ve represent output and error voltages

&,A=,A2, andA3 me const~ts. T~ ~cti~ I(Ye)

In order to faci~tate the actual numerical work

the form

= o (3)

and the coefficients

is nonlinear.

invol=d in the

illustrative examples presented in the appendixes, a Reeves Electronic
Analogue Computer and IBM digital computing equipment were used. For the
p~ose of obtaining harmonic analyses of certain responses a harmonic
analyzer was also employed.

.

—
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The degree of nonlinearity of a dynamic system, as determined by
examination of response data, is measured by the deviation of the
responses from those of a purely linear system. It can be considered
as an indication of the ma@tude of the physical nonMnearity present
in a given system. For practical purposes it would %e desirable to have
some nmiber, or figure of merit, which would be a quantitative measure
of the intensity or degree of the nonlinearity. For =~lej a complex
dynamic systemmsy have a response that to all appearances is linear.
However, if au analysis of the respnse data is to be attempted, it
might save time and work if tests could be made to ascertain whether
the data warranted linear or nonlinear treatment. All physical systems
are essentially nonlinear to some extent, but if the degree of nonline-
arity is small it is possible that linesr analyses would suffice.

There are certain response characteristicswhich are typical of
nonlinear systems and which may be recognized without resorting to a
figure of merit. One example is a system which possesses a self-
sustained oscillation. As another example, the output of the system ‘
to two sinusoidal inputs of different frequency may possess not only the
two impressed frequencies, but also multiples, and sums and differences ‘
of multiples of the impressed frequencies. These nonUnear phenomena
and many more are discussed in detail in references 8 and.9. These
effects are readily recognized in dynamic responses and they cannot in
general be described by linear differential equations. When they are
observed, then, there is no question but that norillnearanalyses must
be used.

On the other hand, there are cases where the effect of a nonline-
arity in a dynamic system is not strongly evident upon cursory examina-
tion of a response. A transimt may have appearances of a linear
response, for example, until it is observed that the periciiof the oscil–
lation changes as the oscillation damps, which could be the effect of a
ntinear restoring force. The time to damp to half amplitude maybe
observed to vary for transient oscillations abuut different trim posi—
tions, which is evidence of a nonlinearity in the damping.

The presence or absence of nonlinearities in a dynamic system can
usually be established by the ex~nation of the ratio of output to
input amplitude for various sinusoidal input maztudes at a given
frequency. If the amplitude ratio or the phase angle showsa substantial
variation, the system is effectively nonlinear. Such effects are most
emphatically noted on frequency—responseplots. These plots are c-
monly presented.with the logarithm of the amplitude ratio and the phase
angle as ordinates and the logarithm of the frequency as the abscissa.
(See, e.g., ref. 10.) For a purely linear system these curves do not

. vary with the amplitude of the input. In notinem systems, however,
the resonance frequency may shift and peak amplitudes may increase or

—— — —_.—.—. .
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decrease as thO input amplitude varies. In the accmupan.yingsketch
logarithmic plots for a nonlinear system for three different amplitudes

L

Log frequency

Log frequency

of a sinusoidal input are shown.
Any one of these curves has the
appearance of a linear respmse but
since the characteristics of the
system change as the amplitude of
the input changes it must be con-
cluded that the system is nonlinear.

The deviations from Mnearity
may be such that for engineering
purposes, linear analyses could be
used with sufficient accuracy. The
simple techniques discussed in the
preceding paragraphs, however, do
not provide any figuce of merit for
so judging. If limits are set for
tolerable variation of such quanti-
ties as time to damp to half ampli-
tude, resonance frequency, peak
amplitude, and phase shift for the
range of inputs under consideration,
then, it maybe possi%le to estab-
lish whether or not linear analyses
can be used by examining transient
responses or frequency-responsedata.

.

As previously mentioned.,however, it would be desirable to have a
nuniberor figure of merit indicative of the degree or intensity of non-
linearity for a given system. It is possible to make a quantitative
estimate of this sort, if steady~tate responses to sinusoidal inputs
are obtained. The figure of merit, called the distortion factor,l is
defined as 100 times the squere root of the sum of the squares of the
amplitudes of all hermonics present in the response beyond the fund&
mental.,divided by the amplitude of the fundamental. For perfect sinus-
oidal response data obtained from a purely linear system, the distortion
factor is zero. Data obtained from sinusoidal inputs to nonlinear sys-
tems, however, contain various amounts of higher harmonics, and the
distortion factor is a quantitative measure of the amplitudes of these
harmonics generated by the nonlinearities.

In Appendix A a demonstration of the calculatim of the distortion
factor is presented. This quantitative test of nonlinearity was applied
to data used subsequently in the examples illustrating the application
of data reduction methcds for nonlinear systems. The results indicated
that a distortion factor in excess of about 5 percent would probably
wezrant application of nonlinear analyses.

lThe distortion factor is commonly used in electrical and communica-
tions engineering to measure wave distortion.

—. ———— —— . — —.. . . —
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REDUCTION OF DATA ‘IONONTZNEAR PARAMETERS

Equations-f-Motion Methcd

In reference 3 the derivative methcxl,the only equationsaf–
motion technique that will he applied herein to nonlinear problems, is
described for a~licatim to linear systems. This technique consists
of obtaining the dynamic response of the system to a prescribed input,
obtaining the proper number of response derivatives, and then for sev—
eral instants of time mibstituting the corresponding values of input,
response, and response derivatives into the differential equations of
the system. In this manner a set of linear algebraic equations is
developed wherein the variables are the coefficients of the differential
equations. The coefficients ere then calculated.by solution of this set
of algebraic equations either simultaneously or by leastiquares methods.
For linear dynandc systems a single response provides sufficient data
for this calculation. A major difficulty in using this method of data
reduction is in obtaining ~curate
cannot be measured experimentafiy.

The derivative methd canbe
applied to reduction of nonlinear
data in the following way. Sup-
pose that several oscillations of
the respmse of the system to a
given input are recorded. For
the sake of simplifying the fol–
lowing discussion, let the given
response be a free transient and
assume that the system under con-
sideration is of second order,
describable by an equation of the
general formof equation (l),
where f(x,~) is of the form
F(x)&. Obtain the first two deriv-
atives of the response, then plot
response and derivatives to the
same time scale, as in the accon+
panying sketch. At a value of x,
say xo, draw a line parallel to
the time axis on the x time his–
tory. At each instant where this
line cuts the response curve read

(ierititiws of the output when they

the values of 5 ‘W 5. In this way
< several sets of values of & and i,

all corresponding to the same value 2
of x, namely Xo, are obtained..
It should be pointed out here that
there must be at least as many sets

m

.—.— —...————- ——
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of values of & and * as there are unlmown coefficients in the dif–
ferential equations of the system.

Assume that the equation of motion of the system is of the form

% +F(x)% + G(x)x = O (4)

Also assume that for a given value of x, damping and restoring force
coefficients have unique values. These unique values wilJ be taken as
the numbers which are found by solvingby least squares the set of
equations which are obtained by substituting the sets of values of f
and ~ corresponding to ~, as determined by the graphical procedure
of the previous paragraph, into equation (k). I% this procedure is
repeated for several more values of x, say xl, X2, etc., then the
nunibers F(xo), F(x=), etc., and G(xo), G(xl), etc.,maybe plotted
against the correspcmling values of x, and the nonlinear coefficients
will then be represented graphically as functions of x.

Consider now the application of the derivative method in the case
where only one coefficient, suspected to be nonconstant, is unlmown.
From a single response of this system the unhewn coefficient can be
calculated by the derivative method. The coefficient will be valid -
within the range of values of displacement as given by the experiment~
response curve. To compute the coefficient, merely substitute the
response and its derivatives into the differential equation and.solve
directly for ths unknown parameter as a function of time. These results
are then plotted against displacement to give the nonlinear variation
of the parameter with displacement.

Consider next the case where more than one coefficient is unkncnm.
If it is assumed that &El but one of these unknown coefficients are
constant,there is a reasonable chance that the constsnt coefficients
can be found by analyzing a sma~~litude response, using one of the
linear techniques previously mentioned. However, if more than one
coefficient must be solved for using the derivative methcil,there is a
great possibility that the data used will result in ill-conditioned
equations for the nonlinear systems. The appsrent cause of this predi-
cament is”that all the values of the derivatives of the dependent vari-
able must be read at the one value of the dependent variable for one
set of simultaneous equations. As a result, all the derivatives tend
to have”nearly the same value in each equation. In order to avoid this
difficulty it is desirable to use sets of data for which the particular
value of the dependent variable being used occurs inwide~ separated
parts of the response excursion. Such data could be obtained from
sinusoidal inputs of different magnitudes or from a modulated sinusoidal
input. A mdmlated input, wherein either the amp~tude or frequency is
modulated, has the advantage that the entire excursion range desired for
the dependent variable could be covered in one input. The separate

_.-. ——— .— - ——— --—-—
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sinusoidal inputs, however, were found to yield data that resulted in
the less ill-conditicmd simultaneous equations.

.
As a general rule in applying the derivative method it is well to

detetine as many of the constant coefficients as possible, beforehand.,
by other means. When th equations of motion of a system are derived
there is one for each degree of freedom. It is preferable to use the
several equaticm in the form in which they are derived, rather than to
eliminate variables and obtain a single equation of high order. The
necessity for taking derivatives of the output data wilJ thereby be
kept to a minimum.

In Appefix B several numerical examples are presented in order
to demonstrate the derivative method for one w two unknown parameters.
In the first of these exemples the numerical techniques for smoothing
and differentiating response data are used and discussed in some detail.
Examples 1 W 2 show that for a single unknown parameter very gocd
results can be obtained, even for a system of fourth order. For the
case of more than one unhewn, however, demmstrated in the third
example, the results were of poor accuracy due to the occurrence of ill–
conditioned equations in the computations. For second-onier systems
with more than one unlumwn, better results may ‘beobtained by using the
techniques presented in the next section.

Response CurvtA’itting Methods

Curve-fitting methds for response-data reduction are based upon
the assumption that the responses cAn in some manner be.approximated,
or fitted, by analytical curves whose characteristics are lmuwn. One
of the most elementary of ths linear curve-fitting techniques is to
exanrLnetransient responses to determine the period and damping charac—
teristics, frcnnwhich a sum of erponentials which fits the given tran-
sient response can be written. A tec@nique based upon this simple
linear transientiespmse analysis methd, applicable to second+rder
nonlinear data, wilL be presented here.2

.

To carry out this technique of data reduction, responses of the
second-cuder system are obtained to step inputs of varying amplitude.
Now, the assumptim is made that small oscillations about each of the
steady~tate, or trim,-displacementsare linear, and a period and damp
ing analysis is made of each response to deterndne perid P, and time
to damp to half amplitude tlJ2. If the oscillation is too strongly
damped, of course, this calculation is not feasible. Second~rder
linesr differential equations are commonly written in the form

%8 application of this well-known Ilneer analysis methcd to nonlinear
problems was suggested by Mr. Stewart M. Crandall of the Ames Aero-
nautical Laboratory of the NACA.

_.—_— ——. —



12 I?ACATN 2977

(see, e.g., ref. 10) where ~ is the damping ratio and w is the
natural undamped frequency. It is also well known that when H(t) is
a step or pulse input, P and tl~a are related to ~ and ~ in the
following manner:

t=/= =
0.693

P.g

‘1

#

a= %/

The values of P and tllz for each of
then substituted into equations (6) to
2cq and ~=, valid, under the present
trim value of the displacement.

I

(6)

the step input responses are
determine the coefficients
assumptions, at the particular

2 and 2cqThe values of ~

are then plotted against the trim
displacement to which they correspond,
thus determining their variation with
displacement. The accompanying
sketches illustrate this graphical
procedure.

To demonstrate this technique,
a numerical example is presented in
Appendix B. The determination of
both the damping coefficient and a
restorin~force term of a second-
order systemby this method is found
to be relatively easy and accurate.

A somewhat simpler technique
which can be used only for finding
restoring—forcenonlinearities, based
upon inspection of transient responses,
can be developed from the steady~tate
methcd given in reference 3. For a
step input to a second-order system,
the response assumes a constant steady-
state value, where the derivatives of

— .———
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the response and.the input are all zero. Thus, in the steady state,
ths differential equation is reduced to a relationship between the step
input and the restoring force. By using this technique on the first
systdm considered in Appendix B (see eq.(A3)), for example, %(a) cam
be determined

where aO is
of magnitude

from the fullowing relatiaiship:

c~(ao) = ~ (2.28~o - 4.6205.)
66.181

thO steadydtate value of a, resulting from a step input
80. In this manner, the nonlinear parameter can be deter-

mined as a function of steady~tate values of the response, as was done
previously in a more elaborate fashion. The advantage of this technique
is that apericdic responses can be analyzed, but a disadvantage is that
the damping cannot be calculated directly.

Another curve=fitting method based on linear equivalence, so
obvious that it is usually the first to be suggested, was tried. In
this methcd, the linear damping or restorin~f orce equivalents obtained
from excursions centered around zero displacement and covering various
amp~tudes of the response would be used to construct the nonlinear
function. Unfortunately, however, no basis was found for translating
these equivalent linear slopes into the correct nonlinear function.
The simple technfque of fairing through the end points of the resulting
family of linear slopes did not provide a satisfactory result.

.

Phase-1ane Methods, SelfSustained Oscillations

In this section, an inverse process will be presented for the cal-
culation of ths ntinear damping term in the differential equation of
a second~rder system which exhibits self-ustained oscillations. The
snaking oscillations of an aircraft are self-sustained, for example,
and it is possible that the nature of the nonlinear damping of such
oscillations could be determined by phase-plane methcds. It should be
mentioned, however, that unless the damping corresponds fairly closely
to the nonlinear damping of either the Van der Pol or Rayleigh classi-
cal equation of nonlinear mechanics, the phase-plane method presented
here may not be useful.

For any oscillation having a pericdic variation of the displace–
ment with time, the time rate of change of displacement is likewise
periodic. Thus, the phase~lane plot, displacement versus velocity,
for such an oscillation is a closed curve. Moreover, if the closed
curve is unique, that is, if the trajectory of the motion in the phase
plane eventually reaches the closed curve regardless of initial condi-
tions, the oscillation has a limit cycle. The litit cycle is a

———— ———
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characteristic of
from the behavior

NACA TN 2977

self-sustained oscillations and is markedly different
of forced or undamped linear systems which can also

exhibit closed trajectories in the phase plane. In these latter cases,
however, the closed trajectories vary in size and shape for differing
initial conditims.

It is lmown that a large class of second+rder systems capable of
self+wstained oscillations can be described by either a Van der Pol
equation or a Rayleigh equation. In the former equation the damping
term is of the form

and in the latter

f(y,~) = –(A – B~) ~ (7)

the clampingterm is

f(y,t) ‘–(H–MS) (8)

-(A-BYq

The nature of the damping coefficient
of Van der Po1*s equation is shown
in the first of the accompanying
sketches, and the nature of the damp
ing term of Raylei@ts equation is
shown in the second sketch. In gen-
eral, the restoring force need.not be .

linear for a limit cycle to exist
(see ref. I-1). For the present anal-
ysis, it is assumed that the observed
self+mstained oscillation can be
described by a Van der Pol or a
Rayleigh equation, and that the restor–
ing forces are linear.

When, in equaticm (1), the restor–
ing force is linear and.the damping
force is of the form of equation (7)
the result is Van der l?ol~sequation

If

‘o (9)

(lo)

.

— -- — —.
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are made, then equation (9) becomes

ri?x
-=ll(bx=).&+x. o
M=2

(I-1)

Equation (30) is the form in which Van der Pol?s equation is .uzually
written. Similarly, if Rayleighls e@ation,

y–(c$-Dj-”)+@y=o (12)

is transformed by mans of

t~ = ~t

IJ
c=—
%

The result is

%-p[%-i(sv+x’o

(13)

(14)

This is the canonical form of Rayleigh~s equation. Equations (M.) and
(14) are related by simple transformations, which will be shown next.

az
In equaticm (n), let x = — and the result is

at=’

.a$’[+ns+~=”
Integrate equation (15)

,

d2z
——
dtl=’

and the result is

‘[e-%)”1-l-z= Const.

(15)

(16)

.._ —_. — — —..—— —--
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If the change of variable z – const. = x is made, equation (16)

becomes identical to equatim (14). Thus, the Van der 201 equatiw has
been transformed into a Rayleigh equation. Conversely, the Rayleigh
equation, equation (14), can be transformed into a Van der I?olequatim

by the change of varia%le z = ~. The result of this change of vari-

able is differentiated once, w~d% puts it into the form of equation (1.1).
These manipulations show that the solution of Van der 201 *S equation is
the derivative of the solution of RayleighSs equation.

from thoretic~ considerations (see ref. 8, PP. 197-199), it Cm
be shown that for mnald.amounts of damping (i.e., small values of p

or #-),the phas%~lane limit cycle of Van der Pol’s equation is almost

a circle of radius

R=
f

4A
Ti-

and the limit cycle of Rayleighls equation tiithsmell values of w

~ is nearly a circle of radius
‘r %

(17)

(18)

When Van der Pelts and.Raylei@ts equations are written in the standaml
forms, equations (n) and (14), then the phase plots are almost circles
with radii R = 2 for small yalues of w.

In reference W a series expansion valid for all values of W, is
given for the solution of a Van der Pol equation in the form of equa-
tion (n). From this series it can be shown that the maximum value of
displacement does not change appreciably for increasing values of p,
but remains nearly 2. By means of the simple relationship between
Van der Yolts and Rayleights equations, and tlm above mentioned series

axsolution, it can be shown that the variable — in equation (14),
at=

Rayleights equation, changes but slightly as w increases. This prop-
erty is utilized in the inverse process, which will be described next.

The essence of the inverse technique is to compare the phase-lane
plot of the experimental data to previously prepared phase plots of the
standard forms of Van der Po1*s or Rayleighfs equation. Such plots were
obtained by solving equations (IL) and (14) on the analogue computer for
several values of p. (See figs. 1 and 2.) It willlbe observed in
figures 1 that the maximum displacement does remain sensibly constant
as u increases, and in figures 2 that the maximum value of the

.
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derivatives of the displacement
increases. Note that figures 1

17

does not chmge appreciably as p
are quite different in a~arance from

figures 2, particularly at lsrge values of p.

Suppose that a dynamic system is assumed describable hy a
Van der 201 equation. The frequency of oscillation of the response
can be ohsermd from the experimental responses, and it is approxi–
mately equal to ~. Thug!a value of ~ is obtained. Next the

phase plot of x versus ~ is preparwl. The msximum value of x is

noted, and it is set equ% to R (eq.(17)). This fixes a value for

the ratio ~. The neti step is to plot the transformed phase pcrtrait,
A

the variables of which are

\

(19)

This new phase plot is compared to the previously prepared phase plots
of equation (11), figures 1, from which an approximate value of w is
determined. Now, using the relation

P
A=—
%

(20)

a value of A csn be computed. With this value, and equation (17), B
can be calculated. Thus the coefficients of the Van der Pol type of
equation which apprazimately fits the experimental data are found.

If the given data are assumed to be responses of a Rayleigh equa–
tion,the technique for finding the coefficfents of the damping term is

similar to that of the foregoing discussion. A phase plot, y versus L,
.

is made and the maximum value of ~ is observed. This value is the~

~ through e~uationrelated to the ratio
D

portrait, the variables being

/
.= -2

Cy

(18). @ trmsformed phase

(21)

..— .——. — —
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is drawn next, and it may be cmpared to figures 2 to ascertain an
approximate value of p. Now

(22) -

so C is determined. Substituting C into equation (18) will give a
value for D. In this manner C and D are ccmputed for the system
which is descrihallely a Raylei~ equation.

An example shuwing application of the foregoing technique is pre-
sented in Appendix B. The responses used in this demonstration were
obtained from wind-tunnel tests of an aircraft model muunted on a bal-
ance that permitted free oscillation in yaw and roll. Some clifficulty
is encountered in fixing a precise value of w in this problem, due to
the fact that fluctuating conditions in the wind tumnel resulted in the
responses not being exactly periodic. The manner in which a compromise
value of w is chosen is given in the above-ntioned appendix.

DATA AND METHODS REfJKtKEDFoR m~m
OF liONZINEARPARAMETERS

The yroced.urefor reducing nonldnear response data to values of
the parameters of the p~sical system being studied begins with knowl-
edge or assumptions concerning the order and form of the differential
equations describing the system. Such information can usually be
obtained by careful consideration of the mechanical or electrical com-
ponents of the system. Once suitable assumptions regarding the differ-
ential equations have %een made, the nature of the various parameters
can be investigated ly methais such as those discussed and referred to
herein.

WhOn the mass of a
negligible with respect

Firs~der Systems

one-degree-of-freedommechanical system is
to the dampin~ addrestoring-force coefficients,

the system can be a~roximately represented by a first-order differen-
tial equation. Such a situation may also occur in an electrical sys–
ternhaving very smill inductance. These are known as degenerate sys–
tem3. The parameters of degenerate systems can be determined by the
derivative methcd, using one or more dynamic responses.

— .
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Second-order Systems

.
The derivative math-d can be applied in the case of second-order

systems with any or all of the parameters unknown. The data recommended
for the calculation of several parameters by this methcd are responses
to sinusoidal.inputs of various magnitudes, or modulated sinusoidal
input responses. It was found, in the calculations given in a previous
section, that the difficulty of ill<onaitioned elgebraic equations was
not greatly reduced when responses to mdulated inputs were used, how—
ever. The most satisfactory kind of data appeared to be several
responses to sinusoidal inputs having greatly differing smpli.tides.

When the restoring-force and damping-force ccmfficients are the
unknowns, and if either or both are nonllnear, then tba Curv-fitting
tec~que wherein responses to several step inputs are used can be
applied with nuch more assurance of success th&n can the derivative
methcd. It is of interest to note that tkh curve-fitting technique
is independent of parameters in the forcing function, which may or may
not be known.

If any one parameter, such as the restorinef orce coefficient,
the damping coefficient, or a coefficient in the forcing function is
@mown, then the derivative methcd may be applied. A single dynamic
response, such as a sinusoidal, or pulse or step input response is all
the data that are needed. Tn the special case of nonlineer damping,
which is partly dissipative and partly regenerative, limit cycles can
occur, and t~s sort of nonlinearity is best studied by means of phase-
plane techniques. One or more cycles of the self+mstained vibratim
of the respcmse are the required data.

Systems of Higher Order Than Second

Zn all cases of this type the derivative methcd seems to be the.
only practical approach. The number of responses required, preferably
to sinusoidal inputs of different amplitudes, wi~ depend entirely on
the number of @own parameters.

CONCLUDING KEMARKS

Methods have been presented for reducing response data from certain
nonlinear dynamic systems to coefficients or system parameters. The non-
constant coefficients were assumed to be functions either of the depend-
ent variable or of its time derivative.. The methods could be separated
into three categories, namely, the equations~f-motion methcds, the
response curve-fitting methds, and the phase~lane methods.

-—_._—— —. _——-—. .
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Of the first category, the derivative method, which was applicable
to all the cases investigated, was found to be most suitable when only
one unlmown nonconstant coefficient was to be detemined. As the number
of unhewn coefficients, constant or nonconstant, increased, the accu-
racy of the derivative methml decreased due to the ill<onditioned
nature of the simultaneous equations to be solved. Furthermore, as the
order of the differential equation representing the system increased,
the accuracy of the derivative method tended to decrease due to the
difficulty of measuring or computing higher-order derivatives of the
dependent variable.

The response curve-fitting methd employed was the most satisfactory
for second-order systems having more than one unlmown coefficient. If
the demping force is known to be partly degenerative and partly regen-
erative, such that self~ustained oscillations are observed, the phase-
plane meth.cdwas found to be a suitable methoi of determining the form
of the nonlinear damping in certain ty_pesof seconikmier systems.

Ames Aeronautical MbOratory
National Adfisory Committee for Aeronautics

Moffett Field, Calif., Apr. 14, 1953

—..—— ._— —__ .._
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APPENDIX A

CMCUIATION OF THE DISTCIRTIONFACTOR

.

The purpose of this appendix is to demonstrate numerical techniques
for determining the distortion factor of the responses of a dynamic
system to sinusoidal inputs. The dynsmic system under consideration
here couldbe characteristic of a missile, and only the longitudinal
motion of the missile will be studied. The equations of motion of this
system, which are used in the numerical examples of Appendix B also,
sre presented here.

The longitudinal equations of motion of the missile are assumed in
the form

2ti – 2Tq – Czaa = -cz#

I

(Al)

2KT2~ – cm(a) - C%q = C@

For a particular situation the coefficients
lated tobe

T = 2.188 sec
K = 0.M1578

%
=-o.0284 sec

cz~ = 0.030

c%
= O.op

cZa = 4.32

The numerical values of the above
coefficients are based.upon a
being measured in radians, q in
radians per secand, and 5 in
de~ees. The functim Cm(a) is
nonlinear and of the form shown in
the sketch. Equatims (Al) can now
be written

&q+l.2157a + 0.006858 = O

}
(A2)

&+l.8795q -66.181~(a) –4.6FP=0

in equation (Al) were calcu–

_. ..— -— .—— ——
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If q is eld.minatedbetween the two equations (A2), the result is

& + 3.0952& + 2.285Gx – 66.181Cm(a) = 4.61985 - o.oo685& (A.3)

The data for the present computatim were obtained by solving
equation (A3) on ths analogue computer with 5 = b. sin & where (D
is 2n radians per second, and where values of 50 used were 0.5°, 1°,
2~, 30, and 3.50. The b term was not included. T& fUIICtiOllCm(a)
as determined fram wind-tunnel tests is shown in figure 3. The responses,
to the sinusoidal i~ts ere presented in figure 4.

By use of a wave analyzer, the amp~tudes of the first 10 harmonics
of a steady-tate cycle of each of the above respunses were found. The
smplitude of the first harmonic was ad~ted to the value 100 so that
the computation of the tistorticm factor wuuld he simp~fied. The
results are sumarized in the chart that follows:

Harmonic

1

2
3
4
5
6

i
9

10

Distortion
factor

Relative amplitudes of harmonics

50 = 0.5°

100.00
8.95
3.61
1.14

.37
:54
.42
.15
.ll
.10

9.8

50 = lC

100.00
13.02
2.08
2.CX)
.26
.67
.12
.24
● 35
● 33

13.3

100.OO
16.00
4.85
1.Og
.20
.20
.25
.25
● 33
.16

16.7

50 = 30

100.00

13.90
6.23
1.68
1.42
.32
.54
.21
.42
.47

15.4

100.OO
K?*9O

7.%
1.68
1.7’5

.44

.64
● 55
.50
.27

15.3

As a check on the accuracy of the wave analyzer two exact sine waves
were analyzed. The distortion factors for the two cases were 2.0
end 1.5.

By use of the seinesteady+tate responses (fig. 4) the harmonic
content of each was calculated by a digital integration process with
the aid of the IBM computing equipment. The relative amp~tudes of
the first five harmonics of each response cycle are presented in ths
fOllcmbg chart:

— —
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Relative amplitudes of harmonics
Harmonic

b~ = 0.50 60 = 10’ ~. = 20 ~. = 30 ~. = 3.50

1 100.m 100.00 l(X).00 lm .00 100.00
2 9.85 15.68 19.10 17.25 17.21
3 .87 1.30 5.51 5.62
4

7.14
1.16 1.14 .81 1.90 .90

5 .29 .65 .51 .48, 1.17

mstortim
factor 10.0 15.8 19.8 ~8.3 18,6

An exact sine wave was analyzed in this manner and the percentage dis-
tortion was nearly zero.

The distortion factorswere smaller when the wave analyzer was used
than when the digttal analysis was empl~ed. There is prolably no
p~ticuhr significance in this trend.. It may be smd, howe~r, t~t
there is mch less chance for error in the digital process since the
data to be used are read directly from the analogue computer records.
For the wave analyzer it was necessary to cut a template in the shape
of the wave to be analyzed, and there existed the probability of intro-
ducing inaccuracies at this step.

There are many methods for computing harmonic coefficients by hand.
(See, for instance, refs. 13 and 14.) In the digital methd used-in
the IBM computation, 24 points were taken over each of the steady~tate
response cycles. Then parabolas were fitted to overlapping triples of
these points, thus giving 12 parabolas for each response. The integrals
which define the Fourier coefficients were then integrated exactly,
using these parabolic approximations’to the function being analyzed,
and the 1.2integrals were summed to obtain each Fourier coefficient.
This technique is quite accurate, but is probably too lengthy for hand
computation. From the results of the previous analyses, it is apparent
that the amplitude of the first harmonic divided by the amplitude of the
fundamental closely approximates the value of the distortim factor.
Thus any of the harmonic analyses which may be performed quickly by
hand on desk calculating machines or slide rules probably give a god
indication of the distortion factor, if enou@ points are used to
assure a reasonably accurate deterdnation of the first two harmonics
beyond the fundamental.

.——. — .—— ——— — -—- -.—.————--..
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APPENDIX B

IUDSIRATI’VE EXAMPIES

Numerical Examples of the Derivati~ Methcd

Inasmuch as the success of the derivative method depends to a great
extent upon the accuracy of the derivatives of the response, which sre
usuaIly computed rather than measured, the numerical techniques employed
herein for the data differentiation will be discussed briefly. The
differentiations were performed by means of finite difference formulas,
which are described in detail in reference 13. Since experimental data
contain errors and irregularities, it is necessary to smooth the data
mathematically before a numerical differentiation can be performed with
accuracy. In ths present work this smoothing has been carried out by
means of a technique which is presented in reference 13, pages 303-316,
and in references 15 and 16. Examples of the application of this method
of smoothing, to be cslled herein the Whittaker method, will.be found in
these references.

In
methcd,
data in
is that
regular

order to illustrate the effect of the Whit’takersmoothing
data which have been smoothed will be compared to the unsoothed
example 1. It will be shown that a primary effect of smoothing
the third differences of the data are much smaller and more
than the third differences of the unsoothed data. The differ-

entiation formulas therefore converge quite rapidly by using only the
first three differences of the smoothed data.

Since the smoothing process is quite tedious, it has been per-
formed on IBM computing equipment. The differentiationswere all
carried out by means of desk—~ calculating machines, however.

Example 1, determination of nonlinear restoring–force parameter~
all other parameters known, of a second-order SW tem.– With the aid of
the analogue computer, equation (A3) was solved using
5= sin 2fitand with ~(a) given by the cubic

as the input

Cm(a) = –l. XL.-4.0Z2 –gcus

The response a is shown in figure 5. This response
as the given data, and ~(a). is to be calculated. All of the other
parameters of equation (A3) will be assumed lnmwn.

(Bl)

is now regarded

If several cycles of the response were available in the steady–
state range, then an average of corresponding ordinates for several
such cycles would undoubtedly reduce some of the irregularities in the
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data. In the present example, however, there were not sufficient data
for this, but the first five points were averaged with the first five
points of the following cycle so that there would be more assurance
that the numerically computed derivatives of the assumed cycle of data
would appear as derivatives of a truly periodic response.

Ordinates of a were read from figure 5 at intervals of 0.02
second, starting at t = 1.84 seconds and ending at t = 2.92 seconds.
These data are recorded in column 1 of table I. The first and last
five values were then paired and averaged in the manner mentioned in
the preceding paragraphs. These averaged end values are given in
column 2 of table I. With these new end ordinates the datawereassumed
to be a representative steady~tate cycle of a. The first three dif–
ferences of the response a were taken, and in column 3 of table I tk
third differences were recorded, and for purposes of comparison later
on, the derivative da/dt was taken and recorded in column 4.

Whittakerrs smoothing method was then applied to the a data,
using 0.05 as the value of the parameter ~ in the smoothing formula.
The smoothed values are denotedby the synibol us. In table I and
columns 5, 6, and 7, these values are tabulated, along with their third
differences and the averaged end values of US. Note that the third
differences of the smoothed data, designated by the symibol ~SaS, are
much smaller than those of the unsoothed data, while the actual devia-
tion of smoothed from unsmoothed values is very s~ght.

The us data were next differentiated and the result was denoted
d% /dt. These data are tabulated in table I, column 8. After smooth
ing das/dt, the result being designatedby the synibol(da-s/dt)s,and
after pairing and averaging the first and last five values of the
smoothed data, a second derivative d(d~/dt)s/dt was taken. For com-
parative purposes, the derivative of the unsoothed data dus/dt Was
also computed. In columns 9, 10, 11, and 1.2of table I the data per-
taining to the second derivative of a are tabulated.

In figure 6 the derivatives of a and a.s are plotted, and in
figure 7 the derivatives of das/dt and (d~/dt)~ are Hkewise shown.
These comparisons serve to show the need for, and effect of, the smoot~
ing of a set of data prior to performing a numerical differentiation.

The derivatives that have been computed wil.lnow be used in con-
nection with equation (A3) to demonstrate the derivative methai of data
reduction.

The forcing function of equation (A3) is

H(t) = 4.6198 b – 0.00685 i (B2)

.—— — .— .—- — — . .—-—
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which is, in this example,

H(t) = 4.6198 sin 2nt-O.0431 cos 2tit

Solving equation (A3) for ~(a) gives

cm(u) =4 [H + 3.0952 & + 2.2850 a -H(t) ] (B4)
66.181

NACA TN 2977

(B3)

In equation (B4j the data of columns 5, 10, and 12 of tale I were used
for a, &, and u, respectively. The forcing functim, given by equa-
tion (B2), was tabulated in column 13 of table I. By use of these
data Cm(m) was first computed as a function of time. Since each value
sofound corresponds to a value of a, a plot of Cm(t) versus a(t) gave
the desired functim, ~(a). In column 14 of table I ~(a) is given.

The function Cm(a) is plotted against a in figure 8. If the
results were regerded as mathematically exact, then it might be con-
cluded that ~(a) is dmible valued. It is tiown, however, that Cm(a)
is single valued, so this apperent hysteresis is, in fact, due to sys-
tematic distortion injected into the calculation in the smoothing and
differentiating processes. For a more direct
with the known ~(u) (eq. (Bl)), a cubic was
methcds to the computed function. This CUbiC

Cm(Ct)=–1.234a- 4.~4a2 -

comparison of this result
fittedby least+qusres
is

40. !i56 CLs (B5)

The large discrepancy between the coefficients of a.3 in equations (B5)
end (Bl) is”undcnibtedlycaused by the strong effects of a.s which are
only felt at large values of a, and the data of this example do not
extend sufficiently far from zero to afford a more accurate value for
this coefficient. Note in figure 8 that the function Cm(a) of equ-
tion (B5) is quite accurate except at large values of u.

As a further example in computing a single unknown parameter by
the derivative method, the techniques described in the first example
will be applied to transient responses of eqiations (A2). The data
were obtained hy solving equations (A2) on an analogue computer, using
for Cm(a) the function given in figure 3. Tbe oscillation was initi-
ated by an initial displacement in CY,of 8° (0.1396 radians). T&
responses were thns free oscillations, and the forcing term 5 was not
present in the computations to determine ~(a)..

—
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In figure 9 are shown portions of the respomes q and a of the
above system. The unknown function Cm(u) can be calculated from the
second of equations (AZ?),so only one derivative of q was required,
and none of a. The responses in q and.a were read.at intervals of
0.02 second for a l+econd range starting at t = O, and these results
are given in table II. The q data were smoothed byl?hittakerts methcd,
with 6 = ().1,@ t~ first deri~tive was t~~m These results are
also presented in table II. In figure 10 the derivative dqs/dt is

plotted, and it is apparent that the value of ~ of 0.1 is not too
lmge . The accuracy with which the unsoothed a and q can be read
from the analogue computer traces in this case justifies the use of a
value larger than-was used in the first example.

The function ~(a) was found from the equation

Cm(CL)‘—
66.:81 (Q + 198795 q) (B6)

T& results of this calculation are given in table II and are plotted
in figure Il.

Exam-P10 2, determination of”amplifier characteristic curve in auto-
pilot servo system, all other Parameters ?m3wn.– In reference 17 the
dynamic behavior of an autopilot servo system was s~ated on the ana-
logue computer. An smplifier in the servo system WEW known to possess
a saturation type of nonlinear characteristic. In order to account for
certain time lags in the dynandc system it was found necessary to intro-
duce en exponential lag operator (see ref. 10) into the equations of
motion. A three-term,approximationwas made to the lag operator, which
bad the effect of raising the differential equati(m from second to fourth
order. By use of this fourth-order differential equation and experimen-
tal responses obtained in bench tests of the autopilot, the problem in
th$s example was to calculate the no@inear amplifier characteristic
when all the other parameters of the system are’lamwn.

After the approximation to the lag
loop equation is

T2
d4vf D

TD2Tm ‘DTm + ~ dsvf T~Tm
.

—+ —+—
2Pfkf~ dt4 Pfkf~ dt3 Pfkf&

operator has been made, the open–

d2vf 1 dvf
—+——= I(ve) (B7)
de Pfkf& dt

where vf is the output voltage and Ve the error voltage. Ths error
and output are related to the input by the relation ve = vi - vf,

where vi is the input voltage. The parameters TDJ Tm) Tf$ ~y

and ~ are all constants, and

.
.

.——— .—— ..— —
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I(ve) = P&&v~

where PA is the nonconstant slope of the

In a certain case the parameters in equation

Pf = 0.24

Q = 12.8

km = 0.063

~ = 0.0-52T

‘D = 0.009

NACA m 2977

(B8)

amplifier characteristic.
(14) were

1

(B9)

When these values are used, equation (B7) becomes

d4vf
0.000o11

d%+ d%f
~ + 0.00263 ~ + 0.315 _ + 5.17 ~-I(~e)=o (B1O)

The response of the servo system to an input mltage
vi = 1.56 sin at was obtained. In figure 12j ~, Yf, S?ldVe are
plotted. The function vf, does not appear at a glance to be th

response of a nonlinear system. By use of the digital harmonic analysis
technique describd. in Appendix A, the distortion factor was computed
and found to be 7.68.

After smoothing vf by Whittakerts method with e = 0.25, the
first derivative of Vf was fou@ using the difference formulas preci-
ously cited. Three more derivatives were calculateii,smoothing each
one before the next derivative was taken. These fuur derivatives ere
shown in figure 13. It is appsrent that even with the large magnitudes
attained by the fourth derivative, its contribution in equation (17)
was very small. The four derivatives of vf were mibstituted into
equation (17)0 Then I(ve) was computed in the same manner as was
~(a) in the previous two examples. The results of this calculation
and all the other data for this example are given in table III. In
figure 14, I(ve) is plotted as calculated here and -o as found by
static tests of the autopilot. The false hysteresis effect is present,
but the actual saturation trend of the characteristic is preserved in
the function as computed by the derivative methc&

Example 3, determination of two unknown parameters by the deriva-
tive methcxi.–The extension of the derivative me= to the analysis of
nonlinear response data for two unbown coefficientswill now be demcm-
atrated with numerical examples. The data were obtained.by solving
equation (A3) on t% snalogue computer, where ~(a) is again given by
figure 3, and.the b term is neglected. For the propose of the followi-
ng computations, equation (A3) was put into the form

—
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?i+&+ti=c@ (Bll)

.

where b, k, and Co sre constants. Equation (Bll) is therefore linear,
but it was used to describe the behavior of the.system under considera–
tion only over small ranges of values of a. The coefficient b was
assumed known from other considerations, and k and Co were calculated
as constants for several values of a, using the technique previously
described. The computed values of k and Co could then be related to
the values of a at which they are determined in order to ascertain
their variation as a is varied. In this particular example the func-
tion Cm(a) was calculated in addition to k, using the relation

cm(~) .a&!2&&
●

(B12)

Equation (B12) was obtained from the restorin~oment terms of equa–
tion (A3), end k is the nuuibercomputed above for tbs value of a at
which ~(u) was to be determined.

A set of data was obtained for the

As was mentioned in a previous section,

phasuncdulated sinusoidal input

sin 0.3fit) (B13)

this sort of response data has
the advanta~ that one run of the dynamic system is sufficient. The
data so obtained were smoothed anl.differentiated. Then the response,
its first two derivative, and the forcing function were plotted to the
same time scale in.the manner described previously. At values of a
of 0.(2, 0.06, and 0.08 radians, lines were drawn through the response
curve parallel to the time axis. At each instant where a line cuts
the a curve, the corresponding values of the two derivatives and the
forcing function were read. For each value of a, then, the quantities
so read were substituted into equation (Bll). The resulting sets of
equations were solved by least squares for k ad Co. These calcula–
tions are summarized in the following table, where k is also related
to Cm(a) byequatim (BE’):

~(a) from cm(a) from
a co k equation (B12) figure 3

0.02 k.861 m. 42 -0.033 4.030
.06 6.o& 161.51 -.144 -.120
.08 5.446 150.31 –.179 -.180

\
— _—.——— — ---
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The correspondencebetween
values taken from figure 1

MACA m 2977

the calculated values of ~(a) and the
is indicated in the above cM, and the

true value of Co is 4.62.

As a second example, an amplitude+miulated
for 5; that is,

5 = 2 sin Wt + sin 202tit

sine wam was used.

(B14)

Again b was assumed lmown, and calculatims similar to these above
were made to determine values of k and Co for several values of a.
These results are given in the following table:

a co k
Cm(a) from ~(a) from

equation (B12) figure 3

0.025 2.669 @.25 -0.018 -0.032
.050 3.806 101.22 –.075 –.095

–.on 5.154 1~. 94 .=8 .Slo

Responses of this same system to sinusoidal inputs of various
amp~tudes were abtained, and a calculation similar to the ones dis-
cussed above was made. The values of Co were more accurate in the
case of the responses to sinusoidal inputs, but ~(a) was of about
the same order of accuracy as before.

The results of the above calculations are not entirely satisfactory.
The difficulty of ill..onditioning of the leas~quares normal equations
was present, although mcxiulatedinputs were tried.

From these examples it is apparent that the accuracy of the deri–
vative methal of nonMnear data reduction may be poor for the case
of two unhewn parameters, due to the seemingly unavoid~le ill–
conditioned equations that must be solved. For systems of order
higler than second, however, this method may @eld results which can
then be further refined.

— _.— —
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Numerical Example of the Curw#?itting

31

Technique

In order to demonstrate the simple period and.d~ing technique of
analysis of nonlinear response data, the following example is yresented.
The data were obtained by solving equation (A3), with the b term
omitted, on the analogue computer, using step inputs of magnitudes -0.50,
-1°, +0, –3°, -4°, 0.25°, 0.5°, o.~”, 1°, 2°, 3°, @ 4°. IIU3tic-
tion Cm(a) that was used is that given in figure 3. With ths assump-
tion that each response is linear, tlj= and P were computed for the

responses. It was found that tlla is nearly constant, and the

values of 2~~, the damping coefficient, are tabulated here. The aver–
age value for 2~~ is 2.91, which differs by about 5 percent from the

correct consyant value, 3.095. This indicates that the technique gives
reasonably accurate rehults.

It was observed that the per–
id P of the oscillations varies
as the amplitude of the input varies.
Thus %2 varies. In order to make

a comparison with Cm(a) of the var-
iation of ~z let

(B15)

~&*
The nuuibers — are calculated

b
and then plotted against the corre-
sponding trim values of a. This Curvey
given in figure 15, was then integrated

4.0
3.0
2.0
1.0
.75
.5
.25
5

--; o
4.0
-j. :

●

25%

3.11
3.00
2.91
2.89
2.85
2.85
2.78
3.15
3.00
2.89
2.96
2.89

in an approximatemanner and the result was designated by the s-
bol Cm*(u). This function is related to ~(a) by the equation

46.181 Cm*(a) = 2.285 a – 66.181 ~(a) (B16)

The function Cm(a), as calculated from equation (B16), is plotted in
figure 16. The ~(a) of figure 3 is al-sogiven in figure 16 for c-
parison. Considering the basic simplicity of this calculation, the
results are very gOOa.

.—. ——— ——
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Numerical Example of the Phase=lane Methd

As an example of the applAcation of the phas~lane technique for
determining the nonlinear damping involved in a se~+ustalned osci~a-
tion, a numerical problem will.be solved. In wind-tunnel tests per–
formed upon an aircraft mcdel, the mcdel was observed to initiate a
self~ustained lateral oscillation about its mounting as the speed of
the wind in tlm tunnel reached a certain level. Several cycles of this
oscillation were recorded and read at intervals of 0.005 second, and
these data are tabulated in table IV. The above data were smoothed by
Whittuer rs method with c = 0.25, and then d.ifferentiated. The results
of this calculatim are also presented in table IV.

The differential equation of the dynamical system was assumed to
be of the form

Izt+f(V,V) +(N~+Np)W=O (B17)

The constants 12 and (N$ + N~) were lnmwn to be

12 = 0.944 in-lMec2/radian

NV + Np = 742.5 in-lb/rti~

and f(~,v) was to be calculated. If the notation of the previous dis-

cussion is adhered to, then

/

*+q3=
%= 28. @ radians/see

12

The phase portrait, w vers~ $/m~ w= ~~ ~xt ● (See fig. 17.)
Note that the phase curve is not a closed limit cycle. This is due to
variations in the data, caused undoubtedly by fluctuating conditions
in the wind tunnel. From the general trend of this phase portrait,
namely the ~redomimtly negative slopes in the first and third quadr-
ants, and also fran-physicalconsiderations that the damping should be
a ~tion only of V, it was concltied t~t a R@ei@ equation C= be
used to describe the motion. The damping term of equaticm (B17) was
therefore ass~a to have the form
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.

.

From figure
approximately

f(i,$)
— = -[ C$-D$”)

12
(B18)

17 the average maximum value of $/un was found to be

R = 0.391(57.3) =22.40

The conversion factor 57.3 is required, since ~ is given in degrees
and ~ has the dimensions of radians per second, and R must be
dimensicmless. Then, using equation (18), it was found that

D–=36. h
c

(B19)

By means of equatims (21), the new transformed phase portrait was con-
structed. The wiahles were

x = 5.10$
1 (B20).

dx
—=
dtl

5.10 :n

1

This phase plot (fig. 18) was compared to figure 2, and it was found
that the phase curve of p = 0.6 fits the .srperim-ent~phase portrait.
This curve is superimposed upon figure 18 for comparison. From the
value of p of 0.6 and the relation H = C!/~ the value of C was
fuund to be 16.&, smd then from equation (B19)~ D was calculated.
It was 61.2. With these two numbers, equation (B17) can be written

o.944i– (15.9{- 578$3) + 742.5$ = O (B21)

..——.
.—.

— —
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TABLE III.– CALCULATIONS FOR NON?XNEMR SERVO EXAMPLE

1748
1690
1605
1500
1331
M_80
1009

820
623
400
184
--40

447
-460
-67’7
-890

–1098
–1300
–1502
–1640
-1748
–lpm
–~659
–1520
–1349
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–507
-290

47
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10svi
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-451
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108Q
1243
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