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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2864

CONVECTION OF A PATTERN OF VORTICITY THROUGH A SHOCK WAVE

By H. S. Ribner

SUMMARY

An arbitrary weak spatial distribution of vorticity can be repre-
sented in terms of plane sinusoldal shear waves of all orientations and
wave lengths (Fourier integral). The analysis treats the passage of a
single representative weak shear wave through a plane shock and shows
refraction and modification of the shear wave with simultaneous gener-
ation of an acoustically intense sound wave. Applications to turbulence
and to noise in supersonic wind tunnels are indicated.

INTRODUCTION

Turbulence such as the residual small eddying motion in a wind-
tunnel stream will gradually decay as it is carried along. The decay
process has been the subJject of much study in the face of formidable
difficulties. The random character of the motions has been success-
fully handled by the methods of statistics; even with these methods,
however, the nonlinearity of the equations governing the intermixing
processes has severely limited the progress atiailnable without
8implifying assumptions.

On the other hand, for relatively sudden changes in turbulence,
such as occur when it passes through a wire-mesh damping screen,the
decay may be negligible and the changes may follow linear laws. The
linearity is assured if the turbulence constitutes & sufficlently
small perturbation of the main stream. Recently it has been found
that the problem of such linear changes could be solved completely by
a specialized adaptation of the spectrum concept of the statistical
theory of turbulence.

Several of these linear processes have been treated in this
manner: the damping-screen problem (reference 1), the passage of
turbulence through a sudden wind-tunnel contraction (reference 2),
and the passage of turbulence through a series of screens followed
by & sudden contraction (unpublished investigation of M. Tucker). A
basic technique for such problems has been evolved in these papers.
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The present paper 1s motivated by another problem of the same linear
character, namely, the convection of weak turbulence through a shock wave.
Among other circumstances, this problem arises in the Interpretation of
measurements with a hot-wire anemometer in a supersonic stream, because
a detached bow wave stands ahead of the wire.l Such a curved shock is
not attractive for theoretical analysis, but it is not difficult to
replace it with an extended plane shock by use of auxiliary means;
attention can thus be limited to the convectlion of turbulence through
a plane shock.

The conceptual basis for the treatment of these linear problems is
as follows: An arbitrary weak spatial distribution of vorticity - and
hence a weak turbulent velocity field - can be represented as a super-
position or spectrum of plane sinusoidal shear waves digtributed among
all orientations and wave lengths. This is a physical interpretation
of the mathematical formulation as a Fourier integral;z the individual
shear waves may be identified as Fourier or spectrum components. When
the turbulence wave pattern is convected through & screen or through
a shock wave, the individual waves are altered without mutual inter-
ference 1if the waves are suitably weak. Thus the modified field down-
stream of the screen or shock can be obtained, in principle, by super-
position of the modified individual waves. In practice the description
of the detailed mpatlal distribution of velocity, either initially or
finally, is hopeless; the initial wave distribution is known only
gtatistically (e.g., the phase angles are unknown), and statistical

1p simple interpretation for all but very small eddies comparable
witn the scale of the bow wave is, however, available in the work of
. Kovasznay (reference 3).

2The velocity field so represented may be either rotational or
irrotational within the specified region, even though the "building
blocks," the shear waves, are rotational. In case an lrrotational field
is represented, the vorticity of these shear waves, but not the veloc-
ity, mutually cancels within the specified region (which may be mul-
tiply connected), leaving a distribution of vorticity in the external
gspace. The irrotational flow may be regarded as induced by this
external vorticity.

These remarks all refer to a velocity field satisfying the incom-
pressible continuity equation: a small-perturbation field of vorticity
in fluid at rest, or convected by a main stream, will fulfill this con-
dition.
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changes only can be calculated. In elther case the analysis of the
behavior of a representative single wave constitutes a prerequisite to
the determination of the changes 1n the weak turbulent field.

In the present paper such an analysis is carried out for a single
shear wave, of arbitrary inclination, convected through a plane shock.
There remains the task of calculating therefrom the changes in the
statistical properties of a weak turbulent field convected through
a shock.

This single-wave problem is also treated in a current investigation
by F. K. Moore (unpublished). The analyses bear little resemblance:
In that work a reference frame is used in which the flow is unsteady,
whereas herein a frame is used in which the flow is steady. Sound
waves are likewise treated in the work cited.

The outllne of the present analysis 1s as follows: The problem is
posed as the calculation of the flow field behind a plane normal shock
wave due to the convection through the shock of an inclined plane sinu-
goidal shear wave; the shear wave is specified to be weak to ensure
small perturbations to the mean flow. This problem, for which the
flow is unsteady in time, 1s converted into an equivalent steady-flow
problem by transformation to a moving frame of reference. In this
frame the normal shock is replaced by an equivalent oblique shock.

The analysis is now formulated as a boundary-value problem for the
flow in the region downstream of the shock: The governing partial
differential equation for this small-perturbation rotational flow is
derived (extension of Sears' work, reference 4); boundary conditions
on the veloclity components just behind the shock are obtained from the
oblique-shock relations; and finally the rotation term in the governing
equation is evaluated 1n terms of gradients of entropy and total
enthalpy, with use of the entropy changes across the shock. The
initially unknown perturbation of the form of the shock wave 1s taken
into account in.the boundary conditions and rotation term by assuming
it to be sinusoidal with initially undetermined amplitude and phase.

The velocity W (all symbols are defined in appendix A) down-
gtream of this equivalent oblique shock may be either subsonic or
supersonic depending on the inclination of the initial plane shear
wave; separate solutions of the boundary-value problem are worked out
for the two markedly different cases. The horizontal shear wave -
which 1s a simple speclal case for subsonic W - is given a separate
treatment.

1procedures have been developed in references 1 and 2; an exten-
gion will be required if the noise fleld generated by the interaction
is to be treated.
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The analysis of the velocity fleld downstream of the shock is fol-
lowed by an account of the associated pressure and density filelds there
and of the distortion of the initially plane shock. Finally, the
acoustic level of the (fluctuating) presaure field is worked out in
approximate fashion for an example applied to a supersonic wind
tunnel: A particular initial intensity of turbulence is assumed and
considered as being concentrated in a single shear wave rather than
distributed throughout a continuous spectrum. The calculation amounts
to an estimate of the nolse level generated by the passage of a
specified level of turbulence through a shock wave.

This investigation was conducted at the NACA Lewis laboratory.

FORMULATION OF BOUNDARY-VALUE PROBLEM

The unsteady-flow problem. - The inclined plane sinusoidal shear
wvave is shown schematically in figure 1. The flow is viewed in a plane
perpendicular to the shock and to the wave fronts. The wave is supposed
to be convected downstream by the main stream with velocity Uy, so that

it passes through the normal shock. The passage through the shock is
evidently an unsteady process, since the intercepts of the inclined
lines (the nodes of the sine wave) move downward along the shock
front; 1t will be shown that a disturbance ripple moves along the
shock with the same speed V.

In the general case of a plane oblique sinusoidal shear wave there
wlll also exist a perturbation velobity component normal to the plane
of the figure. Now the ripples in the shock front will be two dimen-
sional, and the shock with the ripples will stlll be everywhere perpen-
dicular to the plane of the figure. Thus, the normal velocity component
will be parallel everywhere to the shock and will be unaffected as the
shear wave passes through; the component will have no other effect. Its
invariance established, this normal velocity component will be amitted
from the analyasis.

The equivalent steady-flow problem. - If an observer moves down-
ward along the shock with a speed V, relative to him the flow will
have an apparent upward veloclty component V. This scheme of things
is shown in figure 2. In particular, V has been chosen so that the
resultant stream velocity (relative to the moving observer) is alined
with the velocity in the disturbance wave; that is, V = Uy tan 6. The

observer then sees- what appears to be a steady sinusoidal shear flow
passing through an oblique shock wave. Thus, by the proper choice of:
a gystem of moving axes the original unsteady-flow problem has been
converted into an equivalent steady-flow problem.

Governing partial differential equation for rotdtional flow. - The
task of the analysis 1s to calculate the flow field on the downstream
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s8ide produced by the passage of the sinusoidal shear flow through the
equivalent oblique shock. It is to be expected that the shock will -be
perturbed from its mean plane and will, in fact, develop a corrugated
appearance. Because of these corrugations, vorticity (rotation) will be
introduced into the downstream flow. This vorticity and all the down-
stream velocity perturbations will be weak compared with the stream
velocity because the original disturbance wave has been assumed weak.
Thus, a small-perturbation, or linearized, treatment of the flow

field is permissible.

In reference 4 the governing partial differential equation for
small-perturbation compressible rotational flow has been derived for
isoenergetic flow, that is, for flow of constant stagnation enthalpy.
However, the shear wave under consideration possesses variable stagna-
tion enthalpy; that is, pressure, density, and temperature are constant
upstream of the shock, but the velocity varies. It has been necessary,
therefore, to obtain a more general governing equation that applies
when both entropy and stagnation enthalpy are variable., The derivation
is given in appendix B. ‘

This governing equation is expressed 1n terms of coordinates E
and 7, £ being the distance in the main stream direction and M
the distance perpendicular thereto. The equation reads

(1- WZ)ng + Wnn = %% - E;& = -R (1)

where W 1is the stream velocity in the transformed problen, W is
the corresponding Mach number, H is the stagnation enthalpy, s is
the entropy, T 1is the temperature, @ 1is the vorticity, and ¢ is'a
perturbation stream function such that

wh = w = perturbation veloclity in & direction .
n(2)

-(1 - Wz)wE = w' = perturbation velocity in 7 direction

(TheAstream function is defined differently in reference 4, as it
involves an entropy term.) .

For application of equation (1) in the present problem reference
should be made to figure 3 for the direction of the axes. In this
figure W 18 the resultant stream velocity downstream of the shock
(in the moving frame of reference), and the £ and 1n axes are
indicated. The final flow pattern depends crucially on whether W 1is
subsonic or supersonic; the criterion depends, in turn, on the Mach
number corresponding to U, and on the wave inclination 6.
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Boundary conditions. - The boundary conditions just downstream of
the shock will now be obtained by application of the shock-wave relations.

By geometry (fig. 4) the stream velocity components normal and tan-
gential to the undisturbed shock are, respectively,

Uy = Wy cos €
'V =Wy sin ?]

The shear wave will provide directly a perturbation w, to W, and

will cause indirectly a perturbation o(y) to the shock-wave angle, of
initially undetermined magnitude. The effect of o 1s equivalent to
an increment in 6. The assoclated perturbations to Uy and V are

found by obtaining their respective differentials and replacing dW,
by wy and d6 by o therein; the results are

dUA = WA cos 6 - OWA sin 6

(3)

av = wp sin 6 + oWy cos 6

The corresponding change in normal velocity U downstream of the shock
is obtained from the normal-shock relation

y +1l=2
Ua z_ UA

T -1 =2
1+ z—z—- Up
By logarithmic differentiation and use of the fact that the upstream
' dUy au,
temperature is constant |Whence —— = ﬁz— , there is finally obtained
' U
A
au
au A y -1
T <G (i -2 I ;) (4)

where m = UA/U.

On the downstream side of the shock the velocity perturbations in
the directions of & and 1, respectively, are (fig. 4)
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L3
1]

o = (U +dU) cos(e + o) + (V+4dV) sin(p +0) - W

(5a)
Vo' = - (U +dU) sin (¢ + ) + (V + aV) cos(® + o)

Equations (3) and (4) may be used to evaluate the right-hand side
of equation (5a). A first-order approximate result 1s obtalned by
taking cos 0 = 1, 8ln 0 = o and neglecting otan ¢ and ocot o
in comparison with unity. It will be useful also to introduce the
gecmetrical relation Uy = Wy cos 6, the definition UA/"U =m, and

to eliminate 6 by means of the oblique-shock relation
tan ¢ = m tan 6. The final rearranged result is

W w W ' ’ 7
2 A o -1 a
T = (WA mtan w)(l 2 o] m) cos ¢ +(WK tan o +mo) sin ¢
w. ! Wa w
~—°—=(—A--9tan¢)<l-zl‘lm sin(p+(-£'ban_cp+mo cos @ - O 8ec @
U WA m 7+1 WA »

(5)
These are the desired boundary conditions in a somewhat general form.

In the present problem the perturbation wy 1s associated with an
incident sinusoidal shear wave parallel to W, (or to &,)

(figs. 2 and 3). It will be shown later that a refracted sinusoidal
shear wave parallel to W (or to &) will also arise. A suitable
defining equation for wp, 1is

w
A e cos knpy - (8)
Wa

wvhere k 1is the wave number (Zn/k = wave length). The corresponding
argument for the refracted shear wave will involve 1 and an altered
.wave number wx. The argument of the upstream and downstream waves
must match along the shock front, so that

kny = xq along shock

(By geometry (fig. 3), %: :g: cg.) Thus

= = £ CO8 W along shock (7)
WA '
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Since the disturbance is sinusoidal, the shock inclination o can like-
wise be expected to be sinusoidal. For generality a phase shift can be
allowed for, so that o can be assumed to have the form

o =¢(a cos xn + b sin xn) (8)

Substitution of these sinusoidal relations into the general form of
the boundary conditions, equations (5) » yields, after rearrangement,

W, - 2
2 [5(1-2-L1m+m2)sin¢-(1-ztl.m) cos-¢p+81n¢]cosuq+
7+l 7+1

eU " |m cos @

m

b 22 2
[(1 27+lm+m) sin(P:] gin xn

\

w,! - 2 ' -1 ) '
e—°—= [--?—1(1+3 7m) 810 ? | a(m-1) cos <p+2(l'-L-l'm) Sin@] cos X1 +

7+1 cos @ 7+1

2
_b 3-7 sin®e _
[ - (l t o0 oso t b(m-1) cos <p] sin xn

(9)

Equations (9) give, in final form, the conditions imposed by the
shock wave on the components parallel to & and n, respectively, of
the perturbation velocity immediately behind the shock; the parameters

a and b therein governing the shock inclination o are undetermined. .

These equations constitute the boundary conditions for the perturbation
flow downstream of the shock.

Evaluation of rotation term in governing equation. - Before
equation (1) can be solved, the vorticity term (rotation term) on the
right-hand side must be evaluated for the region behind the shock. A
corresponding term has been evaluated in reference 5 for the flow
behind a normal shock perturbed by an isoenergetic upstream disturbance.
This work has proved a useful guide, but it has been necessary to make
modifications both for the variation in energy (that is, in total
enthalpy H) and for the inclination of the shock in the moving
frame of reference. The derivation is as follows:

Downstream of the shock, the enthalpy H and the entropy s
(and hence the vorticity) are constant along streamlines , and 1in the
linear theory the streamlines are approximated by lines 1 = constant.

Thus, %Il{- and %s_' may be evaluated at the shock and the result will

J




JIIJ .

NACA TN 2864 9

hold downstream thereof if expressed as a function of n alone
(& eliminated).

The total enthalpy upstream and at the shock is

H

1 2
cpTA + 'Z—(WA + WA)

. 1., 2 awp
CPTA + E.WA (l + WZ;>

Hence, at the shock :
oH 2 O (VvA
=W — 10
N Aa( 10)

W along shock

The entropy upstream of the shock is constant by virtue of the
assumption of constant pressure and density there. The entropy change
in. crossing the shock is given in terms of the upstream velocity by
(reference 6, equation 144):

- T =32 2 7
8 -8y = 7131 ln{[—-Lszr T (Wy +'V7A)2 cos?(6 + o) - g;{“th 1)(Wy + ¥y)“ cos®(6 +0) + 2]}

(r + 1) (W + %)% cos?(o +0)

Hence, on writing the differential and expanding the result under the
assumption that T, 1s constant and VA/WA and ¢ are small, there

is obtained

-

2 W
T -2 (g )
88 = —=— -1 — - o tan 60} . (11a
8 = (m ) i o tan )
and ‘ r along shock
ds _ U° 2 9 (zg _ ) 1
S$-F @-1 s\ otanG-J (11)

Recall now that the governing equation (1) reads

where the right-hand side is the rotation term in question. The
factors Hy and s, have been evaluated in equations (10) and (1la),

respectively; substitution with use of the geometrical relations
of figure 3 yields
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_ w2 _ g2 c0o8 @ O (VA g © -123(2- tae)
(1 W)\I/E;;«r\pnn Um coszeg\-(wA) cos o(m )a]— a o tan

(12)

where the right-hand side is to be evaluated along the shock (x = 0) and
expressed as a function of 7 alone.

In the form (12) the governing equation has not yet been special-
ized to a shear flow that is ainusoidal. The substitution of equa-
tions (7) and (8) for wp/W, and O, respectively, introduces the

sinusoidal character; furthermore, the relation tan ¢ =m tan 6
can be used to eliminate 6; after simplification

2 132
- WZ)W€E+ Y = Ue{-x [sec ¢+ 2(m~-1)cos o +a (m ;1 1) sin¢€| sin xn + %b iﬁ'}_m.l ein ¢ cos ,‘T}
(13)

Equation Kls) is the partlal differential equation to be satisfied by
the flow downstream of the shock subject to the boundary conditions
(equations (9)).

SOLUTION FOR HORIZONTAL WAVE

The governing equation and boundary conditions have been set up
for the general case of an inclined shear wave. It will be worthwhile
to solve first, however, the much simpler special case of the horizontal
shear wave. The results will illustrate important features of the
general case as well as provide a limlting case of the general solu-
tion, useful as a check.

The horizontal wave is obtained by setting 6 = ¢ = O in the
earlier equations; as a consequence V->0, W-U, £->x, 1>y, and
X *k. The governing equation reduces to
2 .
BVyx + Wyy = - kUe(2m - 1) sin ky . (14)
where

B2 = 1 - §?

The boundary conditions {equation (9)) reduce to

2666
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Wo Uo y =1

Te “Te = - (l -2 7—:_I m) cos ky
w,! v (15)
o] 0

Particular integral and complementary function. - A particular
integral of equation (14) may be obtained by inspection as

Vp = %? (2m - 1) sin ky

To obtain a complete solution there must be added a complementary
function satisfying equation (14) with the right-hand side set equal
to zero. The boundary conditions at x = 0 require that the function
possess & sinusoidal variation with y. Such a solution will also

- contain an exponential factor, showing either amplification or atten-

uation of the disturbance with distance x downstream of the shock;
the case of amplification must be ruled out as physically unacceptable.
These considerations limit the solution to the form

kx
B

Vo = Uede sin ky

where d 1s a constant of integration.

The complete solution is the sum of ¢p and Va:

X
¥ = Ut Zm]; 1,30 P ein Ky (16)

Evaluation of undetermined constants. - The velocity components
are obtained from equation (16) as

=}
n

_kx )
Wy =Ue\2n - 1 + kde P Jcos ky
I ? (17)
B sin ky

- ﬁzwx = BUekde

v

1

-

The undetermined constants a, b, and 4 are evaluated by setting
x =0 and comparing with the boundary conditions, equations (15),
equating the respective coefficients of s8in ky and cos ky. The
results are
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(18)

Velocity components. - Insertion of the value of d into equa-
tion (17) ylelds the final result for the velocity components valid

everywhere downstream of the shock

- )
u = Ue [;m -1- 74T T e —E] cos ky
t
_ k=
v = - BUe 5 iml e 7? gin ky 3

Just behind the shock

u, =Ue (-1 +22=2n cosk’yT
o] Yy +

v, = - BUe

and far downstream

Ue = Ue(2m - 1) cos ky

v, =0

all x2 0 (19)

(19a)

(19b)

These results and the associated streamline pattern are exhibited

pictorially in figure 5.

These perturbation velocity components downstream of the shock
are to be compared with the corresponding velocity components in the

shear flow upstream of the shock (cf. equation (7))

up = Upe cos ky

Uem cos ky

VA 0
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The ratio of uﬁ/qA is

Ug,

1
u_A=2-E (20)

Since m = UAﬁU 21 1in order that a normal shock exist, it appears

from equation (20) that the normal shock always amplifies the
horizontal shear wave, the maximum amplification of %_f_% being

approached as the initial Mach number approaches infinity.

Shock perturbation. - The local inclination of the shock from the
vertical is given by equation (8). With the previously determined
values of a and b (equation (18)) inserted, and with ky in place
of wn, the inclination is

4Bem

M [ ) B

If the local shock displacement in the x-direction relative to the
mean shock plane is called 8x(y), then

d5x -—fcdy

4B
=55 l;”%m —y cos ky (21)

Thus the shock. displacement curve is in phase with the velocity
perturbation in the shear wave upstream of the shock (fig. 5).

SOLUTION WHEN FLOW DOWNSTREAM OF EQUIVALENT OBLIQUE
SHOCK IS SUBSONIC (W < 1)

The present case is a generalization from the horizontal wave
Just discussed to a wave of arbitrary inclination 6. The restriction
to a subsonic mean velocity W behind the equivalent oblique shock
insures a qualitative similarity of the flow: the governing equation
is elliptic in both cases. Accordingly, the horizontal-wave result
can serve as a gulde,

Governing equation and particular integral. - The governing
differential equation (13) may be written in abbreviated form as
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szvgg + ¥ny = - XUe(A sin ¥ - B cos ) (22)

where

- 1)2 )
A= [éec o+ 2(m - 1) cos ¢ + a KE—Erll— sin(a
2 .
B= b.(%)_sin ® ? (23)

%251-%

A particular integral is seen to be

vp = Ue (% sin w - _li. cos )(l]) (24)

Complementary function. - From the result for the horizontal wave
the complementary function should be expected to attenuate exponentially
downstream of the shock, and from physical considerations the attenuation
should depend upon the distance measured normal to the shock front, that
is, upon x rather than, say, &. The functional form that has the
degired attenuation and possesses a sinusoidal behavior at the shock is

-ap_(E cos ¢ - 1 sin @)fsin
Vo ~ e {%s [cf(g sin o + sz 1 cos (p)]} (25)

where & cos ¢ - M s8in ¢ may be recognized as. just x.

The arbitrary constant o in equation (25) is determined by a
consideration of the boundary conditions (equation (9)): the argument
of the cosine must reduce to wxn along the shock front, where
£ =1 tan ¢. This requirement gives o = A cos m/Bz. Finally, when
constants of integration ¢! and d' are included, the complementary
function is written as

- x
-_2_" cos ¢(£ cos @ - N sin 9)

\yC=UeeB ~ {[c' cosxc;g@ (& sin¢+ﬁw2ncos wil +

I:d' sin —’5—°;g—‘° (£ sin 9 + B,° 7 cos 9)]} (26)
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Velocity components with undetermined constants. - The complete
solution for the perturbation stream function is

Vv =¥p + V¥g

This expression (cf. equations (24) and (26)) contains four arbitrary
parameters a and b (which occur in A and B, respectively, equa-
tion (23)) and c¢' and 4!, which remain to be determined. First the
corresponding expressions for the velocity components will be obtained -
they will be needed anyway - and then the boundary conditions on these
velocities at the shock wave will be applied for the determination of

a, b, c', and 4.

The perturbation velocity components in the direction of & and
N are w = Wn and w'! = - szﬁt, respectively; by differentiation of

equations (24) and (26) there results

w - :gﬂ cos ®(E cos ¢ - n sin @)
T = A cos xn + B sin xq + B'ze pe X
_ %x cos Q(E sin ¢ + sz n cos @)
(c sin ¢ + dB, cos ¢) cos > +
B
% cos o sin ¢ + BWZ n cos @)
(-cB, cos ¢ + d sin ¢) sin >
B
> (27)
W .
! > - —5- cos o(& cos ¢ - 1 sin ¢)
U_5=B e. B X
) % cos ¢(E sin ¢+ B, q cos o)
(cBy® cos @ - APy sin @) cos 7 +
5 - % cos ¢(& sin ¢ + sz 7 cos )
(cBy 8in @ + dBy“ cos @) sin "

where c¢! and d' have been absorbed for convenience into new
constants

c = c'xﬁw cos @

o)
i

= d’xﬁw cos @
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The undetermined constants may now be considered as a, b, c, and 4.

Conditlions along the shock on the downstream side have been
designated by subscript zero; here & cos ¢ =1 sin ¢, and the argu-
ments of the exponential and sine and cosine terms reduce to zero
and %N respectively:

ﬁ
Yo : c a ‘
Te = A +E§-sin tP-l-.é-z-chos ®) cos nn +
c d
(B -_.chos ¢® + — 8in @) sin xuy
B2 B2
> (28)
wo‘
Te = B"z(cﬁw2 cos ¢ - 4B, sin @) cos X +
B'z(cﬁw sin ¢+ dsz cos @) sin xnq
-

Evaluation of undetermined constants. - Equations (28) must
agree identically with the boundary conditions (equations (9)) imposed
by the- shock wave on w, and w,'. Therefore the respective coef-

ficients of sin wn and cosxn are to be equated; this ylelds four
similtaneous equations for the four undetermined constants &, b,

¢, and d. In the reduction of the solution to final form certain
alternative forms of the oblique-shock relations, given in appendix C,
have been used, The results are

g =g CBt DF )
c2 + D2
C®+ D
> (29)
G=§'D' - F?
m
d=BD'
m
' J

where
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~
- - 1 3 - -
C = (; —5 + > ;—{ m) tan ¢ - [}m - 1)2 + Eég:_fl;] sin ¢ cos ¢

8 .
D= —%»(m - 1) [; + (m - 1) coszé] = E% D!

B B > (30)

2 2
Esz(l-r'_lm>+2(m-1)w
7 + 1 B2

F= E‘zi 2(m - 1) sin ¢ cos (p:lz?-g-F'

B B -

SOLUTION WHEN FLOW DOWNSTREAM OF EQUIVALENT OBLIQUE
SHOCK IS SUPERSONIC (W > 1)

When the mean velocity W behind the equivalent oblique shock is
supersonic, the solutlon must exhibit Mach waves. If the cross-stream
velocity V of the moving reference frame is subtracted out, these
waves appear to be moving downward (cross-stream) with the velocity V.
If another transformation of axes is made so that the reference frame
1s "convected” downstream with the stream velocity U, then the Mach
waves can be identified as plane sound waves moving normal to the wave
fronts with sonic velocity. Mach waves and plane sound waves are, of
course, the same phenomensa viewed relative to different frames of

reference.

Governing equation and particular integral. - The governing
equation (22) changes from elliptic to hyperbolic when W exceeds
unity (that is, when W 1s supersonic). The particular integral is
unchanged thereby and is still given by equation (24). It is found
that the final solution yields b = O (and hence, B = 0), and so it is
-convenient to delete the B-term at the outset; the particular integral
is thus

WP = Q%é 8in x7

Complementary function. - The complementary function satisfying
equation (22) must be of the general form -

Vo = £(& + Bn) + 8(& - BA)

where By = '\/ﬁz - 1.
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The function f represents Mach waves inclined downward by the Mach angle
u from the E-axis and the function g represents Mach waves inclined
upward by the Mach angle. If attention is restricted to the range of
shear-wave inclinations oses%, then the g-family of Mach waves can

be shown to represent disturbances overtaking the shock wave from
behind. This property is related to the fact that, for a finite shock
strength, the Mach angle is always greater than the angle between the
shock and the £-axis. Since the disturbances actually originate at the
gshock wave by virtue of the passage therethrough of the initial shear
wave, such Mach waves cannot arise, and the g-function must be zero. In
what follows it will suffice to limit the discussion to the specified
range 056=%, since the results for the remaining range 0262- &

are readily obtained therefrom from symmetry considerations.
The function f must reduce to
f~sin un

along the shock front, where & =1 tan ¢, in order to satisfy the
boundary conditions (with b = 0). A suitable complementary function
is therefore )

Uec!? 1 (& + B,n)
Vo = % M By + tan ¢

where c'! is a constant of integration.

The complete solution for the perturbation stream function is thus

: (& + B.M)
\!’=‘VP+\90=%EXSinm+°”Sinﬁw+t§§ ]

m (31)

This expression contains two arbitrary parameters a (occurring in A)
and c'' which remain to be determined., First the corresponding
expressions for the velocity components will be obtained, and then the
boundary conditions on these velocities at the shock wave will be
applied for the determination of a and c'?.

Velocity components with undetermined constants. - The perturba-
tion velocity components in the direction of & and 1 are w = Wn

and w' = Bw ¢£’ respectively; the expressions are
x(£+ 8n)] |
.w_z A cos )(1'] +_m_.008 .__w._.
Ue By + tan ¢ B, + tan ¢
| g (32)
Wt B,c sec o (& + BM)
Ue'BW+tanq>C°st+tancp )
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has been absorbed into a
The undetermined constants are

where the constant c'!?
c=c'? Bw cos8 .

19

new constant
now a and c.

Along the shock & =1 tan ¢, and the arguments of all cosine
terms reduce to %NM; the expressions for the velocity components w

and w' Dbecome

c gec © cos X
Bw+tan<p N

W
O
.[—J:E—(A'l'-

4
LA Bw c sec ¢

Ue ~ B, + tan o

cos XN

R

-

Evaluation of undetermined constants. - Equations (33) must agree
identically with the boundary conditions (equation (9)) imposed by the

shock wave on w, and w,'.

If the respective coefficients of

gin uy

and cos W are equated, there results b = 0 and two simultaneous

equations for a and c.
has been justified a posteriori.

The solutions may be written in the form

a_mC‘ + GF!
=LET oD

¢ ==Df - F!
m

where

ct= Zum-2[1+(m-l) coszw]
y + 1

D'= (m-1) |1+ (m- 1) cosch]

E's (m - 1)2 sincpcosw—(l +-:;l—;—%m) tan ¢

F'z 2(m - 1) sin ¢ cos ¢

o = 1 - Bw tan @

L

By + tan @ tan (k- ©)

where u = cot'lBW is the Mach angle.

Thus, the initial specification of b =0

(34)

Vv

(35)

(The definitions for D' and

F!' herein are unchanged from those included in equation (30).)
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RESULTS AND DISCUSSION
Velocity Field

The velocity fleld downstream of the shock wave, produced by con-
vection of an oblique sinusoidal shear wave through the shock, has been

calculated; the results are distributed through the preceding sections.

The main results will now be presented in more compact form, simplified
to aid in the geometrical interpretation. (The special case of the
horizontal shear wave was discussed earlier.)

Frames of reference. - The analysls has been carried out in a
speclal frame of reference in which the flow is steady; all formulas
will be given relative -to this steady-flow frame. Also of considerable
interest is a frame of reference convected by the mean flow downstream
of the shock; this frame is at rest relative to the general mass of
fluld there. The relation between the two frames is shown in figure 6.
Formulas relative to the steady-flow frame may be converted to apply
to the convected frame by means of the transformations

E+E + Wt

N> (56

x*x + Ut

y>y + Vt
, -’
The criterion on. W. - Although the stream velocity U downstream
of the specified normal shock (fig. 1) is always subsonic, the nature
of the flow depends primarily on the stream velocity W downstream of
the equivalent oblique shock (figs. 2 and 3), which may be elther sub-
sonic or supersonic. The velocity W may also be interpreted as the
relative velocity of the steady-flow frame of reference and the con-
vected frame (fig. 6). Two forms of the solution for all flow quan-
tities thus appear, one for the subsonic range W<1, the other for the
supersonic range W >1. The dividing line W =1 1is what has been
designated "the criterion on W" at the head of this section. Since
W depends on the initial Mach number U, and the inclination 6, the

equation W =1 glves, in effect, a relation between a critical
value of 6 and Up. The relation is convenlently expressed in terms

of m E'UA/U, which depends on. ﬁk (see appendix C):

Oer = + tan'11/€7 ks ;)@n - 1) V (37)

me

Y afagal
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A graph of Iecrl versus ﬁk is given in figure 7.

Resultant velocity, W<1. - Equations (27) may be recast in the form

w

: N
TN S cos [xy(y -x tan @) + Ss:l + I1(x) cos [xy(y - X tan o') + Sp]

wl
IW—AI- = BWH(X) sin [ly(y - X tan @‘) + Sp]
’ -
(38a)
where
IVAl = Wpe = amplitude of sinusoidal velocity wp 1in initial shear wave

ly =% cos ¢ =k cos 6

S = com9_9 Na2 + B%; A =A(a), B =B(b)

o
[¢7]
|
ct
[
:jl
'_l
N
2|8
~——”’

o' = - tan-l ﬁe tan @
2
B
ch, - 4 tan o
5. = tan'l ﬁw
P dBw - c tan @

The functions A and B .are given by equations (23) and a, b, ¢, and
d are the initially undetermined constants which have been evaluated in
equations (29) and (30).

Resultant velocity, W>1. - Equations (32) may be recast as well
as generalized to apply for both positive and negative values of ¢
as follows:

S cos xy(y - x tan @) +II cos xy(y - X tan o?)
. (38b)

B, Il cos Xy(y - X tan o)
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where
IwAl = Wpe = amplitude of sinusoidal velocity wp in
initial shear wave

g = cos 6

A; A =A(a)

Xy =% co8 @ =k cos 6

o = o8 8 c 8in p
m sin(p + )

o' = angle of magnitude (|®] - p) and has the same sign as ¢

= Mach angle = cot'lBw

The function A 1is still given by equations (23), and a and c are
evaluated in equations (34) and (35).

Shear-wave component. - The cosine in the S-term is constant along
lines y - x cot ¢ = constant; such lines are inclined at an angle ¢
with the horizontal and are thus parallel to the E-axis. Since w
is parallel to & and. w! is parallel to n, it is seen that the
S-term represents a pure shear flow parallel to the £-axis. Stated
otherwise, this is a rotational flow; the rotation (or vorticity) is
Just &, which was evaluated earlier in terms of gradients of entropy
and- total enthalpy (cf. equations (1) and (13)). The shear flow may
.be described also as an incompressible, plane, transverse, sinusoidal
wave.

The amplitude and phase of the shear wave are compared with those
of the initial shear wave in figure 8 for an initial Mach number of 1.5.
The amplitude amplification ratio is S and the angle of phase lead
is B4; both are plotted against the initial wave inclination 6. There

is seen to be a small phase lead in the subsonic range ﬁi<]) and
none at all in the supersonic range (W:>l) The amplification is
nowhere_less than unity, with a cusp-like peak of 1.73 at the sonic
point W = 1.

Pressure-wave component. - The remaining terms in equations (38a)
and (38b), involving the factor I, correspond to an irrotational
velocity field, or potential flow. That is, if the derivation is
traced backward, the [1-terms are found to have come from the complemen-
tary function, Wthh is a soluticn of the governing equation with the
vorticity @ set equal to zero. This part of equations (38a) and
(38b) defines what may be called a pressure wave since there is
associated with it a first-order pressure field: +the shear wave
contributes nothing to the pressure.
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The pressure wave may be interpreted as a distribution of sound
waves. This interpretation is particularly evident for the case
W>1, where the solution has been obtained in the form of Mach waves:
if a transformation is made from the present special frame of refer-
ence, relative to which the flow is steady in time, to a frame moving
with the general stream, then the Mach waves will reappear as plane
sound waves moving normal to themselves with sonic speed.

The same transformation results in somewhat more complication
when W<1l: +the resultant pressure pattern does not then propagate
with the speed of sound, but it can be represented (as can any
two-dimensional irrotational gas-flow field) as a superposition of
cylindrical sound waves which individually propagate with sonic speed.
The associated velocity pattern in this case exhibits the following
features, which are brought out by an examination of equations (38a):
The radius vector in a graph of w'! versus w (hodograph) moves in
an ellipse when x 1is held fixed and y varied; the major and
minor axes are HIWAI and BWHIWAl, respectively. At x = O the phase

angle relative to the incident shear wave is 6p. On the other hand
the argument of the cosine and sine is constant along lines
y - x tan @' = constant; these are lines inclined at an angle ¢' to

the horizontal. Along such lines the perturbation velocity (w,w?!)
remains constant in direction but attenuates exponentially with Xx;

-B. % ‘
the exponent is ——Eézf.
B

For the case WI>1, the velocity pattern associated with the
pressure wave is much simpler (equations (38b)). The perturbation
velocity vector (w,w') 1is constant along lines y - x tan ¢' =
constant and is, in fact, normal to such lines. In this case
9' = (9 - Mach angle), and these are just the Mach lines (or
envelopes of the sound waves); they are inclined downward by the Mach
angle p relative to the £-axis. It will be noted that the
definitions of @', the inclination angle of the lines of constant
phase, agree at W = 1, although expressed differently for W<l
and for W=>1. :

The amplitude and phase of the w and w' components of the
velocity in the pressure wave are compared with the amplitude of the
initial shear wave in figure 9 for an initial Mach number of 1l.5. The
amplitude amplification ratios are I1 and B/, respectively; II,

B,[l, and a phase angle (lead) 5, are plotted in the curves against

the initial wave inclination 6. In the subsonic range (W<1) 0
and Bwﬂ attenuate exponentially with x and only the values for

x = 0 are plotted. The phase lead varies from 180° to zero in this
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subsonic range and remains zero throughout the supersonic range GV>JJ.
A rather striking feature is the relatively small perturbation velocity
in the supersonic range. Thus, although the incident shear wave can
give rise to a simple sound wave upon passing into the shock wave, the
particle velocity in this sound wave amounts for most cases to

10 percent or less of the velocity in the initial shear wave for

Uy = 1.5.

Pressure Field

It is shown in appendix B that the perturbation pressure is
related to the velocity according to equation (B11l); in the present
notation this becomes

dp = - pwwp

or L _ (B11t)
% _ .. %
p 7 w J

Here w, 1s that component of the perturbation velocity associated

p ,
with the pressure wave and directed parallel to W (that is, along the
E -axis). Equation (B11l') may be recognized as the linearized Bernoulli
equation asg limited to the velocity in the pressure wave.

Upon substituting for W and W and using for w

p ©duations (38a)
and (38b) with the S-terms omitted, there results

8p _ YAl 2om 11 sec o

P Uy (y+l)m - (9-1)

cos [}y(y - x tan ¢') + Gé] (39)

where Sp is to be taken as zZero in the supersonic range of W.

This result for the perturbation pressure is proportional to
1 sec ®; 1 has been plotted in figure 9, together with Sp, as a

function of wave inclination 6 for Wk = 1.5,

Density Field

The density perturbation is related to the velocity and entropy
perturbations according to equation (B12) of appendix B; in the
present notation this is
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% _ . ¥ Os
= WV 2 - o (B121)

The term in Vp is the contribution of the pressure wave. This term

differs from ®p/p = (equation (B1l')) by a simple factor 1/7, so that
the contribution is obtained at once from equation (39).

~ The term in ®s is the contribution of the shear wave. The
entropy perturbation ©s has not -been given explicitly before, but it
can be obtained from equation (11a) by use of geometrical relations

and the known result for o (see following section). Upon evaluation,
the term in %s 1is found to be

5 ,
. W, -

_8_s=|UA|2(m l)l cose[(zav.’ceame—l) cosxn+btanesinxn]
°p A g—f-Tm-l

(40)
Shock-Wave Perturbation

The local perturbation in the shock inclination angle may be
written (cf. equation (8))

o = ¢e(a cos xyy + b sin xyy)

wvhere a and b are evaluated in_equation (29) for W<l and equa-
tion (34) for W>1 (b =0 for W>1).

The local shock deflection 8x from the plane x = O 1s obtailned
by integration of the slope o:

8x=f0dy

The result may be put in the form

Bx = |wy| TN cos(xyy + Bgp00k) (40)

(%) is the phase angle and X = 2x/k 1s the
wave length of the initial shear wave.

For a given wave length the factor N‘az + b2 1is proportional to
the amplitude of this sinusoidal corrugation in the shock wave;



26 ' NACA TN 2864

NaZ + b2 1s plotted agalnst the initial wave inclination 6 in
figure 10. The phase angle O,y . 1is &lso plotted: the shock-

wave corrugation is in phase with the initial shear wave (8,0 = O)

when the initial wave is horizontal (6 = 0). The shock corrugation
progressively lags the initlal shear wave as 6 1s increased until
the sonic condition W =1 1is reached; at this point the lag is 900,
and this value is maintained throughout the range W>1 as 6 is
increased to 90° (vertical initial shear wave). At 6 = 90° the

amplitude factor a2 + b% has fallen to zero: a vertical sinusoidal
shear wave passing by convection through a vertical shock wave causes
no perturbation of the shock form or position.

Intensity of Sound Field

The acoustic intensity of the noise or sound field generated by
the interaction of the shock wave and the turbulence has been found
to be relatively high.l It will suffice for an order-of-magnitude
estimate to replace the turbulent field by a single plane wave, or
Fourier component, with the same kinetic-energy density. Roughly
this Implies that the root-mean-square turbulent velocity is to be
identified with 0.707 lVAl'

The sound pressure is proportional to Il sec ¢, where II 1is
plotted in figure 9. The relatively high values indicated for the
subsonic range attenuate rapidly with distance x downstream of the
shock; when Xx appreclably exceeds several wave lengths the values
are negligible compared with those in the supersonic range. A rough
average over all wave inclinations 6, assuming the subsonic range
contributes nothing, gives Il sec o] % 0,082; this value will be
used in the noise estimate.

The noise level in decibels relative to the standard reference
level 6po = 2.015)(10'lo atmospheres at standard density Py and speed

of sound a is given by

(e}

_ 1a high acoustic intensity does not imply a large fractional
pressure perturbation in relation to amblent pressure: the sensi-
tivity of the ear is so great that extremely small pressure pertur-
bations correspond to very loud noises.
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. P .a
db = 20 log 5 + 10 log o0
Sp, pa
P a
= 20 log (2B B} + 10 10g 20 41
g(p 6p0> & —a (41)

where the O®p's are root-mean-square values. By equation (39)

op rms Z YWAI 1[5 ym
P Ty (y+Llm=-(y-1)

|11 sec o | (42)

As an example the nolse level generated by the turbulence passing
through a normal shock in a representative supersonic wind tunnel will
be estimated. A root-mean-square velocity of turbulence of 1 foot per
second is assumed to exist in the test section where the mean speed is
1400 feet per second and the Mach number is 1.5 (U) = 1.5).

Thus 0.707 |wa| and U, are taken to be 1 and 1400 feet per second,
respectively. A summary of these and the remaining parameters of the
example 1is

|l sec | = 0.082
0.707 IWA| = 1 foot per second
Uy = 1400 feet per second
m=1.862 (v Uy = 1.5)

7=l.4

p = 0.272 atmosphere (~1 atm. reservoir pressure)

®pgy = 2,015%10~10 atmospheres
(oK1

0 = 1.425

pa

The estimate based on equation (42) gives a pressure perturbation
dp rms/p = 7.50x10’5, and by equation (41) the corresponding sound
intensity is 102 decibels. This represents very intense nolse, reaching
a level which can damage the ear on continued exposure (reference 7).
This noise estimate is thought to be conservative, corresponding to a
supersonic wind tunnel with a relatively low level of turbulence. It
appears probable that many tunnels will conslderably exceed this level.
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Generalization to Oblique Shocks

The analysis refers to flow through a normal shock, but the
results are easily generalized for oblique shocks. In the oblique-
shock case the component of the upstream velocity normal to the shock
plays the role of Up; the component parallel to the shock is 1gnored

in formulating the equivalent steady-flow problem. A formal approach
is to retain the present definitions wherein Uy 1s the actual upstream

velocity (taken horizontal) and 6 and ¢ are referred to the
horizontal; the oblique shock is assumed inclined by some angle a
measured clockwise from the vertical. Then the present formulas
will be generalized to apply to the oblique shock if the following
transformations are made: '

Uy +Uy cos a

6-+6 + a

. \ Pro+

Related Problems

The sound field produced downstream by the convection of turbulence
through a shock has been discussed. Also of interest are sound fields
Incident upon & shock In the absence of turbulence. The elementary
sound disturbance 1s the plane sinusoidal wave: &a longitudinal wave,
The passage of such a wave through & shock, which 1s an unsteady-
flow problem, can agaln be converted to an equivalent steady-flow
problem by transformation to a reference frame moving with a suitable
velocity parallel to the shock front; in this frame the sound-wave
pattern will appear as a stationary Mach wave pattern. A dlagrammatic
construction is shown in figure 1ll. Note that either of two sound
patterns of uniquely related inclinations may be rendered stationary
by a given cholce of V; the two patterns may be ldentified with the
two families of Mach waves in a stream of supersonic veloclty W,.

The equations for the boundary conditions at the shock and the
vorticity behind the shock will be modified from those for the
present case of the shear wave, but the general character of the
solution will be unchanged. Thus, a shear wave as well as a sound
wave will appear downstream of the shock. The discusslon will be
carried no further here: +the solution has been obtained in the
unpublished investigation of F. K. Moore by his unsteady-flow method.

The interaction of & silnusoidal Mach wave pattern with a normal
shock constitutes a simple special case: here the veloclty V of the

[ p YadaTdal
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moving reference frame may be taken to be zero. This problem has been
solved in general terms by Adams (reference 5); he limited his
discussion, however, to the vicinity immediately downstream of the

shock. The character of the flow further downstream can be inferred
from the parallel that exists between this problem and the problem
herein of the horizontal shear wave: 1in both cases V 1s zero. The
agsymptotic flow far downstream is therefore a horizontal sinusoidal

shear wave. Near the shock the wave is modified by transverse and

axlal components (with associated pressure perturbations) which attenuate
exponentially with distance downstream of the shock (cf. fig. 5).

According to these considerations, sinusoidal corrugations in a
wind-tunnel wall, or a plate, upstream of & plane shock wave will
generate a horizontal sinusoidal shear flow. Such a shear flow might
have applications in special experimental work.

CONCLUDING REMARKS

The effects produced by the convectlon of an inclined plane
slnusoidal shear wave through a normal shock have been analyzed. Such
a wave may be interpreted as a single spectrum component of a turbulent
field; that is, the turbulent field can be represented as a super-
position of such shear waves of all orientations and wave lengths
(Fourier integral).

When the turbulence is convected through a shock, the individual
waves do not mutually interfere if, as specified herein, the intensity
1s sufficlently low; thus the modified field downstream of the shock
can be obtained 1n principle by superposition of the modified indi-
‘vidual waves. In practlice the initial wave distribution is known only
statistically, and statistical changes only can be calculated. In
either case the present analysis of the behavior of a representative
individual wave constitutes a prerequisite to the determination of the
changes in the weak turbulent field.

It is found that a sinusoidal shear wave of arbitrary inclination
as 1t passes into the shock gives rise downstream to a shear wave of
altered Inclinatlion and altered amplitude. In addition, there is
generated a "pressure wave": an additional velocity field with
assoclated pressure disturbances that can be recognized as sound waves.

The analysis is made In a frame of reference moving with a certain
veloclty W referred to axes at rest relative to the general mass of
fluid downstream of the shock; W 18 the vector sum of the reversed
downstream velocity and the cross-stream speed of the ripple pattern
in the shock wave. The results depend crucially on whether W 1is
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subsonic or supersonic: when W 1s subsonic both the shear wave and
pressure wave are shifted in phase relative to the initial shear wave,
and the pressure wave shows an exponential attenuation downstream of
the shock; when W 1s supersonic there are no phase shifts, and the
pressure wave takes the form of a plane, undamped, sinusoidal sound
wave.

A weak initial shear wave is found to produce a surprisingly
intense pressure wave or sound fileld downstream of the shock, as
measured in acoustic terms. This implies that the convection of
relatively low-intensity turbulence through a shock will generate a
voery intense noilse field in the downstream region. In an example
the noise level generated by turbulence in a representative supersonic
wind tunnel was estimated to be of the order of 100 decibels.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, September 26, 1952
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APPENDIX A
SIMBOLS

function defined in equation (23)

parameter in shock-wave perturbation (equation (8)); also

speed of sound
function defined in equation (23)
paramster in shock-wave perturbation (equation (8))
function defined in equation (30)

function defined in equation (35)

=c''B,cos 9 for W>1
=c’uBW cos ¢ for W<1l

N

parameter (

constant of integration
constant of integration

specific heat at constant pressure

function defined in equation (30)
function defined in equation (35)

parameter (= AR, cos @)

congtant of 1ntegré.tion

function defined in equation (30)
function defined in equation (35)
function defined in equation (30)
function defined in equation (35)
function defined in equation (35)

stagnation enthalpy (per unit mass)

31

wave number of shear wave in region A (1pcident shear wave)
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U,V

ai
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Mach number (U/a, appendix B)

velocity ratio across normal shock (UA/U)

pressure

relative amplitude of refracted shéar wave (see equa~
tions (38a) and (38b))

entropy (per unit mass)
temperature (absolute)

time

" gtream velocity components in x- and y-directions (fig. 3)

(equivalent steady-flow problem)
Mach number associated with U (U/a)

perturbation velocity components in x- and y-directions,
respectively, (fig. 3) :

gtream velocity in £-direction (resultant of U and V)
(equivalent steady-flow problem)

Mach number assoclated with W (W/a)

perturbation velocity components in ¥- and n-directions,
respectively (fig. 3)

that part of w assoclated with pressure wave

rectangular coordinates (fig. 3)

1 -0

Ni1-%  @<1
l\[?-l W>1

ratio of specific heats

phase lead of pressure wave relative to incldent shear wave

phase lead of refracted shear wave relative to incident
shear wave
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¢ measure of strength of incident shear wave (wp/Wj)

0 inclination of lines of constant phase in incident shear wave
(figs. 1, 2, 3, and 4)

Ocr critical value of 6 for which W =1 (function of ﬁk)
X  wave number of refracted shear wave .

" Mach angle associated with W (sin™t(1/W))

E,M inclined rectangular coordinates (fig. 3)

11 relative amplitude of velocity component w in pressure

wave (see equations (38a) and (38b))

o fluid density

o perturbation in local shock angle (fig. 4)

¢ inclination of lines of constant phase in refracted shear wave
@' inclination of lines of constant phase in pressure wave
¥ "perturbation stream function

Yo complementary function (component of V)

Vp particular integral (component of W)

9] vorticity (v, - uy)

Subscripts:

A region A (upstream of shock)

0 . - evaluated at shock, on downstream side

X, ¥, &, 1indicate the corresponding partial derivatives (e.g.,
ov .

n . a = y =
Vx = 3%/ an exception is xy = A CO8 @ = k cos 6

(Unsubscripted velocity components, pressure, and density
refer to region downstream of shock.)

Prefix

5( ) increment in ( )
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APPENDIX B
LINEAR PERTURBATION THEORY FOR ROTATIONAL FLOW

The generalized governing equation for the stream function can be
obtained by extending Sears'® constant-energy development (reference 4)
to include the effects of varlation of energy (total enthalpy). A
different approach is, however, employed herein. Equations for the
pressure and density fields are also obtained.

In applying the results of this appendix to the developments in
the main text it 1s to be noted that the x- and y-axes herein will go
over, respectively, into the £- and n-axes therein; this is a conse-
quence of the difference in direction of the main stream in the two
cagegs. There 1s a corresponding change in the notation for the
veloclity components. '

Governing Equation

Basic equations. -~ Consider the steady two-dimensional adisbatic

‘flow of an inviscid fluid with local velocity u’,v?!, pressure p,

density p, temperature T, and entropy s. Assume only small pertur-
bations from a uniform horizontal flow such that u! =U + u, v! = v,
vith /U, v/U<<1, and also B8p/p, dp/o, etc. <<l. Then the basic
flow equations may be linearized by neglecting quantities of order
u/U, and so forth, in comparison with unity. A convenient form of
these linearized equations is :

1

Continuity: wu, + Ve t55e =0 (B1)
State: -5p—° = §2—2- _%s ' (B2)

pa”  %p
Energy: %% =0 (B3)

. 'px = pUu.x

Momentum:

...py = vax (B4)

where D/Dt signlfies the lLagrangian operator for differentiation
following the fluid motion.

Elimination of density from continuity equation. - The Lagrangian
form of the state equation is, by virtue of the energy equation,
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.
pa? Dt

oI
FI8

1
= ;a—z- [(U + u)pg + vpy]

Upon linearizing, assuming Py and py to be of comparable magnitude,
this is

pr
pa?

Ol
=4S

and by use of the first momentum equation

1 Dp 2
The linearized continuity equation (Bl) may accordingly be written

(1 - M¥)uy + vy = 0 - (B5)

Formulation of governing eiuation’° - Define a stream function
such that :

u = Wy
(B6)
v

- (1 - M)y,

Then equation (B5) is identically satisfied by u and v as defined
in equation (B6). The governing equation for  1s now obtained by

expressing the vorticity vy - QYE £ 1in terms of V!

(1 - MWyy +¥yy = - 2 (B7)

A useful expression of the vorticity in terms of gradlents of
entropy and total enthalpy is given in reference 8, equation (8.3), as

where ¢ 1is the resultant velocity and J/0n indicates differentiation

normal to a streamline., In the small-perturbation flow the streamlines

are approximated by the lines y = constant, so that o/dq ¥ 9/dy; also
~

q = U. Thus



36 NACA TN 2864

1 [oH os
'9=ﬁ(a?-Ts§>

The governing equation for V¥, equation (B?), can now be amplified
to read

- '
(1-M2)WXX+VW=-9=EIZ—7EI (B8)

This equation and its companion

u = Wy

B6
Vo= (1 - My (26)

constitute the simplified generalization of Sears' governing equation
for linearized rotational flow (reference 4, equations (12) and (15));
Sears' equation 1s restricted to flows of constant total enthalpy H.

Equation (B8) exhibits the following very interesting property:
.In the small-perturbation velocity field considered here the effect of
the rotation or vorticity & is independent of how it arises, whether
from a gradient of entropy or a gradient of total enthalpy, or a
combination of both, And 1t 1s only through their contribution to §
(and perhaps to the boundary conditions) that variations in entropy
and total enthalpy affect the velocity field at all.

Pressure Field
Equations relating the pressure distribution to the velocity

distribution will now be derived: The momentum equations (B4) may be
rewritten in the form:

(B9)

since R = Vx - Uy.

Now let consideration be limited to special types of flow such that

u=nu’+ut’
(B10)

v =v!
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where u',v' 1is an irrotational flow (v'y - uly = 0) and
u'' = u'*(y) 1is a pure shear flow parallel to x (v'! = O)l. Then the
vorticity & 1is given by
= - = - yt?
R = vy uy utts
and
u"x=0

Thus equations (B9) become

P
_E + Uu'x =0

p

P
_l 3 o

3 + Uu y 0

These two equations are equivalent to
S
2402 =0 (B11)

which 1s Jjust the linearized Bernoulli equation in terms u? alone.

The physical interpretation is this: If the assumed total pertur-
bation consists of a plane shear flow (u’!',0) and a potential flow
(u',v?), then there is no pressure perturbation associlated with the
shear flow; the entlre pressure perturbation arises from the potentlal
flow and is related to u' by the ordinary linearized Bernoulli
equation. In other words, the pressure 1ls obtained by subtracting out
the shear-flow velocity and applying the linearized Bernmoulli equation
to the remaining velocity.

Density Field

The density distribution can be related to the velocity and entropy
distributions as follows: The starting polnt is the differential
equation of state (B2)

1.,

Since H and s are constant along streamlines (reference 8), this
approximstes the general small-perturbation flow to the extent that the
lines y = constant approximate streamlines.
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Again assume that the flow is a combined potential flow (u',v') and

shear flow (u",O).l (See equation (B10) and after.) Then equation (Bll)
applies for 5p/p, and the density field is given by

P aZ Cp
or
op 2 u' Os
= - M = E;- (B12)

Thug it is found that the density perturbation depends on the potential
flow via the velocity perturbation u' and on the shear flow via the
entropy perturbation ©Os.

lgince H and s are constant along streamlines (reference 8), this
approximates the general small-perturbation flow to the extent that the
lines y = constant approximate streamlines.
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APPENDIX C
VARTANTS OF THE SHOCK RELATIONS

The ratio of the normal velocities before and after the shock has
been defined as m

m = U, /U (c2)
Thus by reference 6, equation (114),
7 +1=2
= =
1+ 1=,

m (c2)

where ﬁk is the normal Mach number ahead of the shock. Correspondingly,
U 1s the normal Mach number behind the shock, and by reference 6,

equation (112), )
1+ LZ=7,2
=2 2

- =2 - 1 (03)
7,2 - 5L

From equations (C2) and (C3) it can be shown that

U 2

Z G DED ()
and
= 2
T2 -1
2 ~=m -1 (c5)
1+ 1—5—— Uy
where
B2 = 1 - TF

The equality of traneverse velocity components across an oblique-
shock wave requires, in the present notation, that

Uy tan 6 = U tan o

Then, with the definition (Cl1),
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m tan 6 = tan @ (ce)

Equations (C2) and (C6) together allow ® +to be determined in terms
of 6 and U A
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Shock

Figure 1. - Convection of plane oblique sinusoidal shear wave
through shock: original unsteady-flow problem.

Figure 2. - Transformation to equivalent steady-flow problem by
superposition of velocity V.



42

ﬁA,WA

NACA TN 2864

Figure 3. - Symbols and coordinate axes.

UA+dQA

V|| v+av

o <

Unperturbed
Perturbed
3

W

W+dW 4

vi| V+dv
U > x
U+dU

Figure 4. - Geometrical relations across shock, with
and without perturbation o in shock angle.
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Figure 6. - Relative motion of reference frame moving with general
downstream flow (convected frame) and reference frame of analysis
(steady-flow frame). The steady-flow frame moves downward along
the shock front with a component velocity V and carries the
ripple pattern with it.
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[ [ ]

Shock
. :

Figure 11. - Construction for translation V +to render either of two
gsound-wave patterns stationary in a main stream U,.

-

NACA-Langley - 1-9-53 - 1000



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52



