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NATIONAL ADVISORY COMMITTKE FOR AERONAU1TICS 

TECHNICAL NOTE 2864 

CONVECTION OF A PATTERN OF VORTICITY THROUGH A SHOCK WAVE 

By H. S 0 Ribner 

An arbitrary weak spatial distribution of vorticity can be repre-
sented in terms of plane sinusoidal shear waves of all orientations and 
wave lengths (Fourier integral). The analysis treats the passage of a 
single representative weak shear wave through a plane shock and shows 
refraction and modification of the sheax' wave with sinuiltaneous gener-
ation of an. acoustically intense sound wave. Applications to turbulence 
and to noise in supersonic wind tunnels are indicated. 

INTRODUCTION 

Turbulence such as the residual small eddying motion in a wind-
tunnel stream will gradually. decay as it is carried along. The decay 
process has been the subject of much study in the face of formidable 
difficulties. The random character of the motions has been success-
fully handled by the methods of statistics; even with these methods, 
however, the nonlinearity of the equations governing the intermixing 
processes has severely limited the progress attainable without 
simplifying assumptions. 

On the other hand, for relatively sudden changes In turbulence, 
such as occur when it passes through a wire-mesh damping screen,the 
decay may be negligible and the changes may follow linear laws. The 
linearity is assured if the turbulence constitutes a sufficiently 
small perturbation of the main stream. Recently it has been found 
that the problem of such linear changes could be solved completely by 
a specialized adaptation of the spectrum concept of the statistical 
theory of turbulence. 

Several of these linear processes have been treated in thi 
manner: the damping-screen problem (reference i), the passage of 
turbulence through a sudden wind-tunnel contraction (reference 2), 
and the passage of turbulence through a series of screens followed 
by a sudden contraction (unpublished Investigation of M. Tucker). A 
basic technique for such problems has been evolved in these papers.
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The present paper is motivated by another problem of the sane linear 
character, namely, the convection of weak turbulence through a shock wave 
Among other circumstances, this problem arises in the interpretation of 
measurements with a hot-wire anemometer in a supersonic stream, because 
a detached bow wave stands ahead of the wjre.- Such a curved shock is 
not attractive for theoretical analysis, but It is not difficult to 
replace it with an extended plane shock by use of auxiliary means; 
attention can thus be limited to the convection of turbulence through 
a plane shock. 

The conceptual basis for the treatment of these linear probleme Is 
as follows: An arbitrary weak spatial distribution of vorticity - and 
hence a weak turbulent velocity field - can be represented as a super-
position or spectrum of plane sinusoidal shear waves distributed among 
all orientations and wave lengths. This Is a physical interpretation 
of the mathematical formulation as a Fourier Inte-al; 2 the individual 
shear waves may be Identified as Fourier or spectrum components. when 
the turbulence wave pattern is convected through a screen or through 
a shock wave, the individual waves are altered without mutual inter-
ference if the waves are suitably weak. Thus the modified field down-
stream of the screen or shock can be obtained, in principle, by super-
position of the modified Individual waves. In practice the description 
of the detailed spatial distribution of velocity, either initially or 
finally; Is hopeless; the initial wave distribution is known only 
statistically (e.g., the phase angles are unknown), and statistical 

1A simple interpretation for all but very small eddies comparable 
with the scale of the bow wave is, however, available in the work of 
Kovsznay (reference 3). 

2The velocity field so represented may be either rotational or 
irrotational within the specified region, even though the "building 
blocks," the shear waves, are rotational. In case an irrotational field 
is represented, the vorticity of these shear waves, but not the veloc-
ity, mutually cancels within the specified region (which may be mul-
tiply connected), leaving a distribution of vorticity in the external 
space. The irrotational flow may be regarded as induced by this 
external vorticity. 

These remarks all refer to a velocity field satisfying the incom-
pressible continuity ecivation: a small-perturbation field of vorticity 
In fluid at rest, or convected by a maIn stream, will fulfill this con-
dition.
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changes only can be calculated. In either case the analysis of the 
behavior of a representative single wave constitutes a prerequisite to 
the determination of the changes in the weak turbulent field. 

In the present paper such an analysis is carried out for a single 
shear wave, of arbitrary inclination, convected through a plane shock. 
There remains the task of calculating therefrom the changes in the 
statistical properties of a weak turbulent field convected through 
a shock.1 

This single-wave problem is also treated in a current investigation 
by F. K. Moore (unpublished). The analyses bear little resemblance: 
In that work a reference frame is used in which the flow is unsteady, 
whereas herein a frame is used in which the flow is steady. Sound 
waves are likewise treated In the work cited. 

The outline of the present analysis is as follows: The problem is 
posed as the calculation of the flow field behind a plane normal shock 
wave due to the convection through the shock of an inclined plane sinu-
soidal shear wave; the shear wave is specified to be weak to ensure 
small perturbations to the mean flow, This problem, for which the 
flow is unsteady in time, is converted into an equivalent steady-flow 
problem by transformation to a moving frame of reference. In this 
frame the normal shock is replaced by an equivalent oblique shock. 

The analysis is now formulated as a boundary-value problem for the 
flow In the region downstream of the shock: The governing partial 
differential equation for this small-perturbation rotational flow is 
derived (extension of Sears' work, reference 4); boundary conditions 
on the velocity components just behind the shock are obtained from the 
oblique-shock relations; and finally the rotation term in the governing 
equation Is evaluated in terms of gradients of entropy and total 
enthalpy, with use of the entropy changes across the shock. The 
inItially imknown perturbation of the form of the shock wave is taken 
into account in the boundary conditions and rotation term by assuming 
it to be sinusoidal with Initially undetermined amplitude and phase. 

The velocity W (all symbols are defined in appendix A) down-
stream of this equivalent oblique shock may be either subsonic or 
supersonic depending on the inclination of the initial plane shear 
wave; separate solutions of the boundary-value problem are worked out 
for the two markedly different cases. The horizontal shear wave - 
which is a simple special case for subsonic W - is given a separate 
treatment. 

1-Procedures have been developed In references 1 and 2; an exten-
sion will be required if the noise field generated by the interaction 
Is to be treated.
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The analysis of the velocity field downstream of the shock is fol-
lowed by an account of the associated pressure and density fields there 
and of the distortion of the initially plane shock. Finally, the 
acoustic level of the (fluctuating) pressure field is worked out in 
approximate fashion for an example applied to a supersonic wind 
tunnel: A particular Initial intensity of turbulence Is assumed and 
considered as being concentrated In a single shear wave rather than 
distributed throughout a continuous spectrum. The calculation amounts 
to an estimate of the noise level generated by the passage of a 
specified level of turbulence through a shock wave. 

This investigation was conducted at the NACA Lewis laboratory. 

FORMULATION OF BOIJIWARY-VALtJE PROBLEM 

The unteady-f1ow problem. - The Inclined plane sinusoidal shear 
wave is shown schematically In figure 1. The flow is viewed In a plane 
perpendicular to the shock and to the wave fronts. The wave is supposed 
to be convected downstream by the main stream with velocity UA so that 

it passes through the normal shock. The passage through the shock Is 
evidently an unsteady process, since the Intercepts of the inclined 
lines (the nodes of the sine wave) move downward along the shock 
front; it will be shown that a disturbance ripple moves along the 
shock with the same speed V. 

In the generat case of a plane oblique sinusoidal shear wave there 
will also exist a perturbation veloity component normal to the plane 
of the figu.re. Now the ripples In the shock front will be two dimen-
sional, and the shock with the ripples will still be everywhere perpen-
dicular to the plane of the figure. Thus, the normal velocity component 
will be parallel everywhere to the shock and will be unaffected as the 
shear wave passes through; the component will have no other effect. Its 
Invariance established, this normal velocity component will be omitted 
from the analysis. 

The equivalent steady-flow problem. - If an observer moves down-
ward along the shock with a speed V, relative to him the flow will 
have an apparent upward velocity component V. This scheme of things 
is shown in figure 2, In particular, V has been chosen so that the 
resultant stream velocity (relative to the moving observer) is aimed 
with the velocity in the disturbance wave; that Is, V = UA tan 8. The 

observer then sees what appears to be a steady sinusoidal shear flow 
passing through an oblique shock wave. Thus, by the proper choice of' 
a system of moving axes the original unsteady-flow problem has been 
converted into an equivalent steady-flow problem. 

Governing partial differential equation for rotational flow. - The 
task of the analysis Is to calculate the flow field on the downstream
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side produced by the passage of the sinusoidal shear flow through the 
equivalent oblique shock. It is to be expected that the shock will-be 
perturbed from its mean plane and will, in fact, develop a corrugated 
appearance. Because of these corrugations, vorticity (rotation) will be 
introduced into the downstream flow. This vorticity arid all the down-
stream velocity perturbations will be weak compared with the stream 
velocity because the original disturbance wave has been assumad weak. 
Thus, a small-perturbation, or linearized, treatment of the flow 
field is permissible. 

In reference 4 the governing partial differential equation for 
small-perturbation compressible rotational flow has been derived for 
isoenergetic flow, that is, for flow of constant stagnation enthalpy. 
However, the shear wave under consideration possesses variable stagna-
tion enthalpy; that is, pressure, density, and temperature are constant 
upstream of the shock, but the velocity varies. It has been necessary, 
therefore, to obtain a more general governing equation that applies 
when both entropy and stagnation enthalpy are variable, The derivation 
is given in appendix B. 

This governing equation is expressed in terms of coordinates 
and ri, being the distance in the main stream direction and r 
the distance perpendicular thereto. The equation reads 

(l_2)4r+=._D._2	
(1) 

where W is the stream velocity in the transformed problem, W is 
the corresponding Mach number, H is the stagnation enthalpy, s is 
the entropy, T is the temperature, 2 is the vorticity, and 4r isa 
perturbation stream function such that 

E w = perturbation velocity in 	 direction	 1
r(2) 

-(1 -	 w' = perturbation velocity in T direction J 
(The stream function is defined differently in reference 4, as it 
involves an entropy term.) 

For application of equation (1) in the present problem reference 
should be made to figure 3 for the direction of the axes. In this 
figure W is the resultant stream velocity downstream of the shock 
(in the moving frams of reference), and the 	 and rj axes are
indicated. The final flow pattern depends crucially on whether 'W is 
subsonic or supersonic; the criterion depends, in turn, on the Mach 
number corresponding to UA and on the wave inclination 6.
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Boundary conditions. - The boundary conditions just downstream of 
the shock will now be obtained by application of the shock-wave relations. 

By geometry (fig. 4) the stream velocity components normal and tan-
gential to the undisturbed shock are, respectively, 

UA = WA CO5 C 

V = WA sin e 
The shear wave will provide directly a perturbation WA to WA and 

will cause indirectly a perturbation a(y) to the shock-wave angle, of 
initially undetermined magnitude. The effect of a Is equivalent to 
an increment in e. The associated perturbations to UA and V are 

found by obtaining their respective differentials and replacing dWA 

by wA and d by a therein; the results are 
dUA=wAcose-aWAsIne 1r	 (3) 
dv=wAsine+aWAcose J 

The corresponding change In normal velocity U downstream of the shock 
Is obtained from the normal-shock relation 

7 + 1-2
2 UA 

7-1-2 
1+ 2 

Bylogarltbmic differentlatlon and use of the fact that the upstream 

I	 dUA dUA\ 
temperature is constant twhence - =	 there is finally obtained 

\	 UA	 A, 

dU	 dUAl	 27_hn\	 (4) 
7+1 ) 

where m E UA/U. 

On the downstream side of the shock the velocity perturbations in 
the directions of	 and , respectively, are (fig. 4)
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= (U + du) cos(q + a) + (V + dv) sin(p + a) - w 1
(5a) 

= - (U ^ dU) sin (cp + a) + (v + dv) cos(p + a) J 
Equations (3) and (4) may be used to evaluate the right-band side 

of equation (5a). A first-order approximate result is obtained by 
taking cos a = 1, sin a a and neglecting a tan cp and a cot p 
in comparison with unity. It will be useful also to introduce the 
geometrical relation UA = WA cos e, the definition UA/tJ = in, and 

to eliminate 0 by means of the oblique-shock relation 
tan ( = m tan e. The final rearranged result is 

(WA a 
= -	 - - tan CP)(l - 2	 '\	 cp 

+ (	
tan cp + lncr) sin cp y+l ) 

=	 - - tan )(l - 2 Z m sin	 (WA	

) 
cos - a sec 

Wo t (W	 a

y+1

(5) 

These are the desired boundary conditions in a somewhat general form. 

In the present problem the perturbation WA is associated with an 

incident sinusoidal shear wave parallel to WA (or to A) 

(figs. 2 and 3). It will be shown later that a refracted sinusoidal 
shear wave parallel to W (or to ) will also arise. A suitable 
defining equation for WA is

WA -= e cos '1A	 (6) 
WA 

where k is the wave number (2it/k wave length). The corresponding 
argument for the refracted shear wave will involve r and an altered 
wave number x. The argument of the upstream and downstream waves 
must match along the shock front, so that 

1A =	 along shock 

(By geometry (fig. 3),	 = cos cp \ 
X cos e) 

Thus 

WA
= cos xT	 along shock	 (7)
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Since the disturbance is sinusoidal, the shock inclination a can like-
wise be expected to be sinusoidal. For generality a phase shift can be 
allowed for, so that a can be assumed to have the form. 

a 6(a cos x + b sin xrI) 	 (8) 

Substitution of these sinusoidal relations into the general form of 
the boundary conditions, equations (5), yields, after rearrangement, 

w0 ra i' - 2	 m + m.2) sin - (i - 2 	 sin2q1 cos(p +	 I cos X 1 + 7+1 7+1 1	 COB J 

[ l - 2	 in + m2'\ sin (P] sin x 
y-i-1	 ) 

0'	 r a ( +	 rn'\ sin2cp + a Cm-i ) cos 'p + 2(1 - 2=!	 sin (P] cos Xr1 F = L 	 y+1 J 7+1 ) 

_(1+	 sin2p 
L m \	 y+l /	 + b &n-1 ) cos cp] sin

(9) 

Equations (9) give, in final form, the conditions imposed by the 
shock wave on the components parallel to	 and TI, respectively, of 
the perturbation velocity immediately behind the shock; the parameters 
a and b therein governing the shock inclination a are undetermined. 
These equations constitute the boundary conditions for the perturbation 
flow downstream of the shock. 

Evaluation of rotation term in governing equation. - Before 
equation (1) can be solved, the vorticity term (rotation term) on the 
right-hand side must be evaluated for the region behind the shock. A 
corresponding term has been evaluated in reference 5 for the flow 
behind a normal shock perturbed by an isoenergetic upstream disturbance. 
This work has proved a useful guide, but it has been necessary to make 
modifications both for the variation in energy (that is, in total 
enthalpy :a) and for the inclination of the shock in the moving 
frame of reference. The derivation is as follows: 

Downstream of the shock, the enthalpy H and the entropy s 
(and hence the vorticity) are constant along streamlines, and in the 
linear theory the streamlines are approximated by lines TI = constant. 

Thus,	 and	 may be evaluated at the shock and the result will
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hold downstream thereof if expressed as a function of ii alone 
(	 eliminated). 

The total enthalpy upstream and at the shock is 

H = cPTA + (wA +WA) 

cPTA + W 2 (i + 
WA) 

Hence, at the shock

21wA'\ 

	

= WA j. 
c)along shock	

(10) 

The entropy upstream of the shock is constant by virtue of the 
assumption of constant pressure and density there. The entropy change 
in. crossing the shock is given in terms of the upstream velocity by 
(reference 6, equation 144): 

- 8A =	 in	 (A + WA) cos2 (9 + a) -	 - 1 )(A + WA) 2 coB2 (O + a) + 217J


tL7+1 

Hence, on writing the differential and expanding the result under the 
assumption that TA is constant and WA/WA and a are small, there 

is obtained

s=_m_l)2(_atane).	 (118) 

and	 along shock 

	

=	 (m - 1)2	 - a tan e)J	 (ii) 

Recall now that the governing equation (1) reads 

(i-)p+

	

	 =---



irn W W 

where the right-hand side is the rotation term in question. The 
factors	 and. s1 have been evaluated in equations (10) and (lla), 

respectively; substitution with use of the geometrical relations 
of figure 3 yields
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(1 -	 +	 =	 ____	
(w\	 2 (WA 

cos2e	 \) - U cos (m - 1)
	 - a tan 

(12)  

where the right-hand side is to be evaluated along the shock (x = 0) and. 

expressed as a function of r alone. 

In the form (12) the governing equation has not yet been special-
ized to a shear flow that is sinusoidal. The substitution of equa-
tions (7) and (8) for wA/VA and a, respectively, introduces the 

sinusoidal character; furthermore, the relation tan ( = m tan e 

can be used to eliminate 0; after simplification 

(i _ 2)+* =U_x[sec+2(rn_ 1) cos +a 
(rn-i)2 1n	 1nx +xb 

(rn-i)2 eincosx 

(13) 

Equation i(13) is the partial differential equation to be satisfied by 
the flow downstream of the shock subject to the boundary conditions 
(equations (9)).

SOLUTION FOR HORIZONTAL WAVE 

The governing equation and boundary conditions have been set up 
for the general case of an inclined shear wave. It will be worthwhile 
to solve first, however, the much simpler special case of the horizontal 
shear wave. The results will illustrate important features of the 
general case as well as provide a limiting case of the general solu-
tion, useful as a check. 

The horizontal wave is obtained by setting 0 = cp = 0 in the 
earlier equations; as a consequence V-O, W-+U, 	 -^y, and 
X-'k. The governing equation reduces to 

+ '4'yy = - kUe(2m - 1) sin icy	 (14) 

where

1 - U2 

The boundary conditions (equation (9)) reduce to
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N) 
O) 
0) 
0)

!._uo -(l_2;;m)cosky 
UE; -	 = 

=	 = (m - 1) a cos ky + m - 1) b	

(15) W0t	 V0 

Particular integral and complementary function. - A particular 
integral of equatIon (14) may be obtained by inspection as 

\If p = iT 
(2m - 1) sin ky 

To obtain a complete solution there must be added a complementary 
function satisfying equation (14) with the right-hand side set equal 
to zero. The boundary conditions at x = 0 require that the function 
possess a sinusoidal variation with y. Such a solution will also 
contain an exponential factor, showing either amplification or atten-
uation of the disturbance with distance x downstream of the shock; 
the case of amplification must be ruled out as physically unacceptable. 
These considerations limit the solution to the form 

kx 

= IJede	 sin ky 

where d is a constant of integration. 

The complete solution is the sun of	 and 

=uc(2m;1+de)sin	 (16) 

Evaluation of undetermined constants. - The velocity components 
are obtained from equation l6) as 

(	 kx\	 1 
u = *y = Ue t 2m - 1 + kde	 cos cy 

-	 r	
(17) 

v = -	 = f3Uckde	 sin ky	 J 
The undetermined constants a, b, and d are evaluated by setting 
x = 0 and comparing with the boundary conditions, equations (15), 
equating the respective coefficients of Bin ky and cos ky0 The 
results are



12	 NACA Th 2864 

a=O

4ni 
-- y+1)(m-l) (18) 

4m 

Velocity components. - Insertion of the value of d into eq .ua-
tion (17) yields the final result for the velocity components valid 
everywhere downstream of the shock

kxl 
4m a = tie [Em - 1 -	 e	 Icos y+l	 J 

v=_Uc7m1e

	

	 s1nky

kx 

Just behind the shock

all xO	 (19) 

u 0 =UC (_l+2 y- l\ cosk 
7+1 )

x=O	 (l9a) 

and far downstream

= Ue(2m - 1) cos

(l9b) 

v=O	
j 

These results and the associated streamline pattern are exhibited 
pictorially in figure 5. 

These perturbation velocity components downstream of the shock 
are to be compared with the corresponding velocity components in the 
shear flow upstream of the shock (cf. equation (7)) 

UA = UA€ cos ky 

= Uem COB ky

vA = 0 
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The ratio of u/uA

1
(20) 

Since in UA/tJ . 1 in order that a normal shock exist, it appears 

from equation (20) that the normal shock always amplifies the 
horizontal shear wave, the maximum amplification of	 being 

approached as the initial Mach number approaches inuinity. 

Shock perturbation. - The local inclination of the shock from the 
vertical is given by equation (8). With the previously determined 
values of a and b (equation (18)) inserted, and with icy in place 
of xr, the inclination is

-	 4!3em 
(y + l)(m - 1) 

sin icy 

If the local shock displacement in the x-dlrection relative to the 
mean shock plane is called x(y), then 

x

413em 
k(y + 1)(m - 1) cos k3r
	 (21) 

Thus the shock. displacement curve is in phase with the velocity 
perturbation in the shear wave upstream of the shock (fig. 5). 

SOLUTION 4KEN FLOW DOWNSTNEAM OF EQUIVALT OBLIQUE 

SHOCK IS SUBSONIC ( <1) 

The present case is a generalization from the horizontal wave 
just discussed to a wave of arbitrary inclination e. The restriction 
to a subsonic mean velocity W behind the equivalent oblique shock 
insures a qualitative similarity of the flow: the governing equation 
is elliptic in both cases. Accordingly, the horizontal-wave result 
can serve as a guide. 

Governing equation and particular integral. - The governing 
differential equation (13) may be written in abbreviated form as
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+	 = - xTJe(A sin xr - B cos xl))	 (22) 

where

[sec cp+ 2(ni - 1) cos ( + a (in _l)2 sin(P]	

(23) B b	
- 1)2 sin 
in 

2 El2 

A particular intea1 is seen to be 

	

= u	 sin xi -	 cos xl))	 (24) 

Complementary function. - from the result for the horizontal wave 
the complementary function should be expected to attenuate exponentially 
downstream of the shock, and from physical considerations the attenuation 
should depend upon the distance measured nonia1 to the shock front, that 
is, upon x rather than, say, . The functional form that has the 
desired attenuation and possesses a sinusoidal behavior at the shock is 

cos p -	 sin )1sin 
e	 or [( sin + 2 cosLcos 

where	 cos tp - l) sin p may be recognized as just x. 

The arbitrary constant a in equation (25) is determined by a 
consideration of the boundary conditions (equation (9)): the argument 
of the cosine must reduce to xri along the shock front, where 

= T tan cp. This requirement gives c = xcos q/3 2 . Finally, when 
constants of inteation c' and dt are included, the complementary 
function is written as 

.x13w -- cos	 cos p - r sin w)
X COB	

( sin q +	 T COB cp1 + COB 4r=Uee

[d' sin	
COB cp	

sin p +
	

coB	 (26)
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Velocity components with undetermined constants. - The complete 
solution for the perturbation stream function is 

	

\fr =	 + 

This expression (cf. eq.uations (24) and (26)) contains four arbitrary 
parameters a and b (which occur in A and B, respectively, eq .ua-
tion (23)) and c' and dt, which remain to be determined. First the 
corresponding expressions for the velocity components will be obtained - 
they will be needed anyway - and then the boundary conditions on these 
velocities at the shock wave will be applied for the determination of 
a, b, c', and d'. 

	

The perturbation velocity components in the direction of 	 and 
r are w =	 and W t = -	 respectively; by differentiation of 

equations (24) and (26) there results 

xw 
- - cos CP( COB CP - Ti sin (p) 

A cos xT + B sin Xli + 2e 2
	

x 

[(c sin cp + d	 cos p) 
cos x cos cp( sin p + 2 cos p)

+ 

xcos (sinp+2iicosp) 
( c	 cos cp + d sin cp) sin 	

]
(27) 

q3 
-2 - --- cos cp( cos p - i sin p) 

e. 

cos cp(	 sin	 p+	 2	 cos p) 
[(cw2 cos cp - d	 sin cp) COB +

(c	 sin ( + d 2 cos cp) sin
x cos cp( sin + 2 cos cp) 

where c' and d' have been absorbed for convenience into new 
constants

C	 C1X	 COB 

d d Tx 	 COB 
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The undetermined constants may now be considered as a, b, c, and d. 

Conditions along the shock on the downstream side have been 
designated by subscript zero; here	 cos p = Ij sin cp, and the arga-
mentsof the exponential and sine and cosine terms reduce to zero 
and xri respectively: 

w	 t C	 d A + - sin cp + -	 cos	 cos x1 + 

I'B-..2_cos (P+-sinP) sinxi

(28) 
Wt

=	 2 (cl32 cos Cp - d	 sin cp) cos Xr + 

sin cp+ d32 cos p) sin xr 

Evaluation of undetermined constants, - Equations (28) must 
a'ee identically with the boundary conditions (equations (9)) imposed 
by the- shock qave on w0 and w0 7 . Therefore the respective coef-

ficients of sin xT and cos x li are to be equated; this yields four 
simultaneous equations for the four undetermined constants a, b, 
c, and d. In the reduction of the solution to final form certain 
alternative forms of the oblique-shock relations, given in appendix C, 
have been used. The results are

CE + DF 
a =m

C + D 

CF - DE 
b=m

+ D

(29) 

o = D' - Ft 
m 

d = Dt 

where
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C E (7 - 1 + - 7 m tan - (m - 1) 2 + 2(m - 1)1
sincp cospl y+1 J \i+1 y+1 

D - (in - i) [1 + (m - i)	 - D 

E=2(17_1m)+2(m_1)	
2 -	 7-fl 

FE	 2(m - i) sin cos	 F' 
L

SOLUTION WBEN PLOW DOWNSTREAM OP EQUIVAIET OBLIQUE 

SHOCK IS SUPERSONIC (>i) 

When the mean velocity W behind the equivalent oblique shock is 
supersonió, the solution must exhibit Mach waves. If the cross-stream 
velocity V of the moving reference frame is subtracted out, these 
waves appear to be moving downward (cross-stream) with the velocity V. 
If another transformation of axes is made so that the reference frame 
is "convected" downstream with the stream velocity U, then the Mach 
waves can be identified as plane sound waves moving normal to the wave 
fronts with sonic velocity. Mach waves and plane sound waves are, of 
course, the same phenomena viewed relative to different frames of 
reference. 

Governing equation and particular integral. - The governing 
equation (22) changes from elliptic to hyperbolic when W exceeds 
unity (that is, when W is supersonic). The particular integral is 
unchanged thereby arid is still given by equation (24). It is found 
that the final solution yields b = 0 (and hence , B = 0), and so it is 
convenient to delete the B-term at the outset; the particular integral 
is thus

UeA 
'Vp = -i- sin xii 

Complementary function. - The complementary function satisfying 
equation (22) must be of the general form 

0 =f(+i) +g(-ii) 

where	 E	 - 1.
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The function f represents Mach waves inclined downward by the Mach angle 
i from the c-axis and the function g represents Mach waves inclined 
upward by the Mach angle. If attention is restricted to the range of 
shear-wave inclinations 	 then the g-family of Mach waves can 

be shown to represent disturbances overtaking the shock wave from 
behind. This property is related to the fact that, for a finite shock 
strength, the Mach angle is always greater than the angle between the 
shock and the c-axis. Since the disturbances actually originate at the 
shock wave by virtue of the passage therethrough of the initial shear 
wave, such Mach waves cannot arise, and the g-function must be zero. In 
what follows it will suffice to limit the discussion to the specified 
range	 since the results for the remaining range O&-



are readily obtained therefrom from symmetry considerations. 

The function f must reduce to 

f sin x1 

along the shock front, where 	 = tan cP, in order to satisfy the
boundary conditions (with b = 0). A suitable complementary function 
is therefore

	

- Uec	 x( + wii) 
sin-- 

	

x	 +tan(p 

where ctt is a constant of Integration. 

The complete solution for the perturbation stream function is thus 

+ 
'fr =	 + C = T[A sin Xli + c''	 + tan 

This expression contains two arbitrary parameters a (occurring in A) 
and c'' which remain to be determined 0 First the corresponding 
expressions for the velocity components will be obtained, and then the 
boundary conditions on these velocities at the shock wave will be 
applied for the determination of a and ctT. 

Velocity components with undetermined constants, - The perturba-
tion velocit components in the direction of 	 and r are w = 

and w' = 13w 4r, respectively; the expressions are 

sec (p	 ___________ 
_=[Acosxli+ cos 

+tancp	 13 

	

+tan	

w+tani}	
(32) 

w' 13csec(p	 _______ 
cos
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where the constant c' has been absorbed into a new constant 
c c''	 cos p. The undetermined constants are now a and c. 

Along the shock	 = r tan p, and the arguments of all cosine 
terms reduce to Xli; the expressions for the velocity components w 
and w' become

w	 csec(P\ = (A +
	 + tan ) cos
	

(33) 
- w c sec

cos Xli =	
+ tan ( 

Evaluation of undeterm.ined constants. - EquatIons (33) must agree 
identically with the boundary conditions (equation (9)) imposed by the 
shock wave on w0 and w0 1 . If the respective coefficients of sin xri 

and cos xri are equated, there results b = 0 and two simultaneous 
equations for a and c. Thus, the initial specification of b = 0 
has been justified a posteriori. 

The solutions may be written in the form 

C + GF' 
a = V + GD1

(34) 

c =	 D' - F' 
in 

where

C' 2	 - 1 m - 2 [i + (m - 1) cos2q] 
7+1 

D' (in - i) [1 + (in - 1) cos2cp] 

E'E (m - 1) 2 sin cos	 - (1 + -	 tan	 (35) 
\	 y+l ) 

F' E 2(m - 1) sin p cos p 

1 - w tan 
GE

+ tan 

where t = cot	 is the Mach angle. (The definitions for D t and

F' herein are unchanged from those included in equation (30).)
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RESULTS AND DISCUSSION

Velocity Field 

The velocity field downstream of the shock wave, produced by con-
vection of an oblique sinusoidal shear wave through the shock, has been 
calculated; the results are distributed through the preceding sections. 
The main results will now be presented in more compact form,. simplified 
to aid in the geometrical interpretation. (The special case of the 
horizontal shear wave was discussed earlier.) 

Frames of reference. - The analysis has been carried out in a 
special frame of reference in which the flow is steady; all formulas 
will be given relative to this steady-flow frame. Also of considerable 
Interest Is a frame of reference convected by the mean flow downstream 
of the shock; this frame is at rest relative to the general mass of 
fluid there. The relation between the two frames is shown in figure 6. 
Formulas relative to the steady-flow frame may be converted to apply 
to the convected frame by means of the transformations 

r	
+

(36) 

f	 + 
y y + Vt 

The criterion on W. - Although the stream velocity U downstream 
of the specified normal shock (fig. 1) Is always subsonic, the nature 
of the flow depends. primarily on the stream velocity W downstream of 
the equivalent oblique shock (figs. 2 and 3), which may be either sub-
sonic or supersonic. The velocity W may also be interpreted as the 
relative velocity of the steady-flow frame of reference and the con-
vected frame (fig. 6). Two forms of the solution for all flow quan-
tities thus appear one for the subsonic range W<1, the other for the 
supersonic range W>l. The dividing line W = 1 is what has been 
designated "the criterion on W" at the head of this section. Since 
W depends on the initial Mach number UA and the inclination e, the 

equation W = 1 gives, in effect, a relation between a critical 
value of 8 and UA. The relation is conveniently expressed In terms 

of m UA/EJ, which depends on. UA (see appendix C): 

+ l)(m - 1)	
(37) 0cr = ± tan1A/	

2m2
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A graph of IOcrI versus UA is given in figure 7. 

Resultant velocity, W< 1. - Equations (27) may be recast in the form 

	

= s cos [x	 - x tancp) +
	

+ ri(x) co [c_ x tan p) + p] 

= fl(x) sin [x(y - x tan cp t ) + op]

(38a) 

where 

IWAI	 = amplitude of sinusoidal velocity WA In initial shear wave 

X = x cos p = k cos e 

S	 e 4A2 + B2 ; A = A(a), B = B(b) m

cos e F j 2 + 2 xxy13w/132 
r1(x)

	

	 e 
m 

= tan () 

1	 tan = - tan 

- c-dtancp 
p=tfldt 

The functions A and B are given by equations (23) and a, b, c, and 
d are the initially undetermined constants which have been evaluated in 
equations (29) and (30). 

Resultant velocity, W>l. - Equations (32) may be recast as well 
as generalized to apply for both positive and negative values of p 
as follows:

w 

I WA I 

- = S cos x(y - x tan ip ) + Ii COB x.(y - I tan PI)} 

(38b) 

	

=	 H cos x(y - x tan p*) 

I 
WA 

I



22
	

NACA TN 2864 

where 

IWAI WAe = amplitude of sinusoidal velocity WA -' 
initial shear wave 

S	 A =A(a) 
m 

= x cos cp = k cos 6 

cos6	 sinL 
111	 sin(p. + p) 

cp = angle of xnaaitude (In) - i) and has the same sii as cp 

= Mach an€le = cot 

The function A is still given by equations (23), and a and c are 
evaluated in equations (34) and (35). 

Shear-wave component. - The cosine in the S-term is constant along 
lines y - x cot tp = constant; such lines are inclined at an angle p 
with the horizontal and are thus parallel to the c-axis. Since w 
is parallel to	 and w' is parallel to r, it is seen that the 
S-term represents a pure shear flow parallel to the c-axis. Stated 
otherwise, this is a rotational flow; the rotation (or vorticity) is 
just Q, which was evaluated earlier in terms of gradients of entropy 
and total enthalpy (cf. equations (1) and (13)). The shear flow may 
be described also as an incompressible, plane, transverse, sinusoidal 
wave.

The amplitude and phase of the shear wave are compared with those 
of the initial shear wave in figure 8 for an Initial Mach number of l.5 
The amplitude amplification ratio is S and the angle of phase lead 
is ; both are plotted against the initial wave inclination 0. There 

is seen to be a small phase lead in the subsonic range (W<l) and 
none at all In the supersonic range (W>l). The amplification is 
nowhere less than unity, with a cusp-like peak of 1.73 at the sonic 
point W = 1. 

Pressure-wave component. - The remaining terms in equations (38a) 
and (38b), involving the factor H, correspond to an irrotational 
velocity field, or potential flow. That is, if the derivation is 
traced backward, the fl-terms are found to have come from the coxaplemen-
tary function, which is a solutic'n of the governing equation with the 
vorticity 2 set equal to zero. This part of equations (38a) and 
(38b) defines what may be called a pressure wave since there is 
associated with it a first-order pressure field: the shear wave 
contributes nothing to the pressure.
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The pressure wave may be interpreted as a distribution of sound 
waves. This interpretation is particularly evitient for the case 
W>1, where the solution has been obtained in the form of Mach waves:. 
if a transformation is made from the present special frame of refer-
ence, relative to which the flow is steady in time, to a frame moving 
with the general stream, then the Mach waves will reappear as plane 
sound waves moving normal to themselves with sonic speed. 

The same transformation results in somewhat more complication 
when W<l: the resultant pressure pattern does not then propagate 
with the speed of sound, but it can be represented (as can any 
two-dimensional irrotational gas-flow field) as a superposition of 
cylindrical sound waves which individually propagate with sonic speed. 
The associated velocity pattern in this case exhibits the following 
features, which are brought out by an examination of equations (38a): 
The radius vector in a graph of w' versus w (hodograph) moves in 
an ellipse when x is held fixed and y varied; the major and 
minor axes are fliwAl and wflI wAI, respectively. At x = 0 the phase 

angle relative to the incident shear wave is 	 On the other hand 

the argument of the cosine and sine is constant along lines 
y - x tan p ' = constant; these are lines inclined at an angle pt to 
the horizontal. Along such lines the perturbation velocity (w,w) 
remains constant in direction but attenuates exponentially with x; 

wXyX 
the exponent is 

For the case W>l, the velocity pattern associated with the 
pressure wave is much simpler (equations (-38b)). The perturbation 
velocity vector (w,wt) is constant along lines y - x tan cp' = 
constant and is, in fact, normal to such lines. In this case 

= (p - Mach angle), and these are just the Mach lines (or 
envelopes of the sound waves); they are Inclined downward by the Mach 
angle i.' relative to the c-axis. It will be noted that the 
definitions of cp'. the inclination angle of the lines of constant 
phase, agree at W = 1, although expressed differently for W<l 
and for W>l. 

The amplitude and phase of the w and w t components of the 
velocity In the pressure wave are compared with the amplitude of the 
initial shear wave in figure 9 for an initial Mach number of 1.5. The 
amplitude amplification ratios are fl and 3w' respectively; 11, 

fl, and a phase angle (lead) 	 are plotted in the curves against 

the initial wave inclination 0. In the subsonic range (7<l) fl 

and	 fl attenuate exponentially with x and only the values for 

x = 0 are plotted. The phase lead varies from 1800 to zero in this
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subsonic range and remains zero throughout the supersonic range (w>i). 
A rather striking feature is the relatively small perturbation velocity 
in the supersonic range. Thus, although the incident shear wave can 
give rise to a simple sound wave upon passing into the shock wave, the 
particle velocity in this sound wave amounts for most cases to 
10 percent or less of the velocity in the initial shear wave for 
UA = 1.5.

Pressure Field 

It is shown in appendix B that the perturbation pressure is 
related to the velocity according to equation (Bil); in the present 
notation this becomes

1 
or

	

-	

(But) 

p 

n:ere w is that component of the perturbation velocity associated 

with the pressure wave and directed parallel to W (that is, along the 
c-axis). Equation (Bli?) may be recognized as the linearized Bernoulli 
equation as limited to the velocity in the pressure wave. 

Upon substituting for W and W and using for w equations (38a) 

and (38b) with the S-terms omitted, there results 

- I wAl 2in Ii sec	
cos	 - x tan p') +	 (39) 

p	 UA (y+l)ni - (y-1) 

where	 is to be taken as zero in the supersonic range of W. 

This result for the perturbation pressure is proportional to 
fl sec p ; 11 has been plotted in figure 9, together with 6, as a 

function of wave inclination e for WA = 1.5. 

Density Field 

The density perturbation is related to the velocity and entropy 
perturbations according to equation (B12) of appendix B; in the 
present notation this is
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p	 _2!_	 (Bl2') - 
p	 W 

The terni In w Is the contribution Of the pressure wave. This term 

differs from op/p (eq.uatlon (Bil')) by a simple factor 1/7, so that 
the contribution is obtained at once from equation (39). 

The term in Os is the contribution of the shear wave. The 
entropy perturbation Os has not been given explicitly before, but it 
can be obtained from equation (ha) by use of geometrical relations 
and the known result for c (see following section). Upon evaluation, 
the term in Os is found to be 

_Os - I WAI 2(m - 1)2 cos e [(a tan e - 1) cos x + tan e sin x] 

y-1

(40) 

Shock-Wave Perturbation 

The local perturbation in the shock inclination angle may be 
written (cf. equation (8)) 

a = e(a cos xyy + b sin xyy) 

where a and b are evaluated in_equation (29) for W<1 and equa-
tion (34) for W>l (b = 0 for w>i). 

The local shock deflection Ox from the plane x = 0 is obtained 
by Inteation of the slope a: 

Ox =J 'a dy 

The result may be put in the form

+ b2 
Ox = IWAI	 2CUA	

cos(xy + Oshock)	 (40) 

where 0shock = tan () is the phase angle and X = 2ir/k is the 

wave length of the Initial shear wave. 

For a given wave length the factor Ja2 + b2 is proportional to 
the amplitude of this sinusoidal corrugation In the shock wave;
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4a2 + b2 is plotted against the initial wave inclination e in 
figure 10. The phase angle shock is also plotted: the shock-

wave corrugation is in phase with the initial shear wave (shock = o) 

when the initial wave Is horizontal (e = 0). The shock corrugation 
progressively lags the Initial shear wave as e is increased until 
the sonic condition W = 1 is reached; at this point the lag is 900, 
and this value is maintained throughout the range W>1 as 0 is 
increased to 900 (vertical initial shear wave). At 0 90° the 

amplitude factor	 a2 + b2 has fallen to zero: a vertical sinusoidal 
shear wave passing by convection through a vertical shook 'wave causes 
no perturbation of the shock form or position. 

Intensity of Sound Field 

The acoustic intensity of the noise or sound field generated by 
the interaction of the shock wave and the turbulence has been found 
to be relatively high. l It will gaff Ice for an order-of-magnitude 
estimate to replace the turbulent field by a single plane wave, or 
Fourier component, with the same kinetic-energy density. Roughly 
this Implies that the root-mean-square turbulent velocity is to be 
identified with 0.707 IwAl. 

The sound pressure is proportional to fl sec p , where U Is 
plotted in figure 9. The relatively hIgh values indicated for the 
subsonic range attenuate rapidly with distance x downstream of the 
shock; when x appreciably exceeds several wave lengths the values 
are negligible compared with those in the supersonic range. A rough 
average over all wave inclinations e, assuming the subsonic range 
contributes nothing, gives Jfl sec	 0.082; this value will be 
used in the noise estimate. 

The noise level In decibels relative to the standard reference 
level p0 = 2.015Xl0° atmospheres at standard density p0 and speed 

of sound a0 is given by 

1A high acoustic intensity does not imply a large fractional 
pressure perturbation in relation to ambient pressure: the sensi-
tivity of the ear is so great that extremely small pressure pertur-
bations correspond to very loud noises.
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pa 
db=20 log — +l0 log

pa 

= 20 log	 + 10 log 
p0a0	

(41) 
\p 5p0 )	 pa 

where the öp t s are root-niean-sqaare values0 By egaation (39) 

p rins	 IWAI	 .v/•	 In sec (	 (42) 
p	 = UA (y + 1)m - ( - 1) 

As an exaniple the noise level generated by the turbulence passing 
through a normal shock in a representative supersonic wind tunnel will 
be estimated. A root-niean-sq .uare velocity of turbulence of 1 foot per 
second is assumed to exist in the test section where the mean speed Is 
1400 feet per second and the Mach number is 1.5 (A = 1.5). 

Thus 0.707 IwA l and UA are taken to be 1 and 1400 feet per second, 

respectively. A summary of these and the remaining parameters of the 
example is

In seccp = 0.082 

0.707 twA I 1 foot per second 

UA = 1400 feet per second 

= 1.862 (J U = 1.5) 

7	 1.4 

p = 0.272 atmosphere (- 1 atm. reservoir pressure) 

5p0 = 2,015xl0 0 atmospheres 

pa 
° ° = 1.425 
pa 

The estimate based on equation (42) gives a pressure perturbation 
p rms/p = 7.50xl0 5 , and by equation (41) the corresponding sound 
intensity is 102 decibels. This represents very intense noise, reaching 
a level which can damage the ear on continued exposure (reference 7). 
This noise estimate is thought to be conservative, corresponding to a 
supersonic wind tannel with a relatively low level of turbulence. It 
appears probable that many tunnels will considerably xceed this level.
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Generalization to Oblique Shocks 

The analysis refers to flow through a normal shock, but the 
results are easily generalized for oblique shocks. In the oblique-
shock case the component of the upstream velocity normal to the shock 
plays the role of UA; the component parallel to the shock is iiored 

in formulating the equivalent steady-flow problem. A formal approach 
is to retain the present definitions wherein 	 is the actual upstream 

velocity (taken horizontal) and e and P are referred to the 
horizontal; the oblique shock is assumed inclined by some angle a 
measured clockwise from the vertical. Then the present formulas 
will be generalized to apply to the oblique shock if the following 
transformations are made:

UA-UA COB a. 

e-e + a 

Related Problems 

The sound field produced downstream by the convection of turbulence 
through a shock has been discussed. Also of interest are sound fields 
incident upon a shock in the absence of turbulence. The elementary 
sound disturbance is the plane sinusoidal wave: a longitudinal wave. 
The passage of such a wave through a shock, which is an unsteady-
flow problem, can again be converted to an equivalent steady-flow 
problem by transformation to a reference frame moving with a suitable 
velocity parallel to the shock front; in this frame the sound-wave 
pattern will appear as a stationary Mach wave pattern. A diagrammatic 
construction is shown in figure 11. Note that either of two sound 
patterns of uniquely related inclinations may be rendered stationary 
by a given choice of V; the two patterns may be identified with the 
two families of Mach waves in a stream of supersonic velocity WA. 

The equations for the boundary conditions at the shock and the 
vorticity behind the shock will be modified from those for the 
present case of the shear wave, but the general character of the 
solution will be unchanged. Thus, a shear wave as well as a sound 
wave will appear downstream of the shock. The discussion will be 
carried no further here: the solution has been Obtained in the 
unpublished investigation of F. K. Moore by his unsteady-flow method, 

The Interaction of a sinusoidal Mach wave pattern with a normal 
shock constitutes a simple special case: here the velocity V of the
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moving reference frame may be taken to be zero. This problem has been 
solved in general terms by Adams (reference 5); he limited his 
discussion, however, to the vicinity immediately downstream of the 
shock. The character of the flow further downstream can be Inferred 
from the parallel that exists between this problem and. the problem 
herein of the horizontal shear wave: in both cases V is zero. The 
asymptotic flow far downstream Is therefore a horizontal sinusoidal 
shear wave. Near the shock the wave is modified by transverse and 
axial components (with associated pressure perturbations) which attenuate 
exponentially with distance downstream of the shock (cf. fig. 5). 

According to these considerations, sinusoidal corrugations In a 
wind-tunnel wall, or a plate, upstream of a plane shock wave will 
generate a horizontal sinusoidal shear flow. Such a shear flow might 
have applications In special experimental work. 

CONCLUDING RMABEB 

The effects produced by the convection of an inclined plane 
sinusoidal shear wave through a normal shock have been analyzed. Such 
a wave may be Interpreted as a single spectrum component of a turbulent 
field; that is, the turbulent field can be represented as a super-
position of such shear waves of all orientations and wave lengths 
(Fourier Integral). 

When the turbulence is convected through a shock, the individual 
waves do not mutually interfere if, as specified herein, the Intensity 
Is sufficiently low; thus the modified field downstream of the shock 
can be obtained in principle by superposition of the modified indi-
vidual waves. In practice the initial wave distribution is known only 
statistically, and statistical changes only can be calculated. In 
either case the present analysis of the behavior of a representative 
individual wave constitutes a prerequisite to the determination of the 
changes in the weak turbulent field. 

It is found that a sinusoid 'al shear wave of arbitrary inclination 
as it passes into the shock gives rise downstream to a shear wave of 
altered inclination and altered amplitude. In addition, there is 
generated a "pressure wave": an additional velocity field with 
associated pressure disturbances that can be recognized as sound waves. 

The analysis is made in a frame of reference moving with a certain 
velocity W referred to axes at rest relative to the general mass of 
fluid downstream of the shock; W is the vector suni of the reversed 
downstream velocity and the cross-stream speed of the ripple pattern 
In the shock wave. The results depend crucially on whether W is
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subsonic or supersonic: when W is subsonic both the shear wave and 
pressure wave are shifted in phase relative to the initial shear wave, 
and the pressure wave shows an exponential attenuation downstream of 
the shock; when W Is supersonic there are no phase shifts, and the 
pressure wave takes the form of a plane, undamped, sinusoidal sound 
wave.

A weak initial shear wave is foand to produce a surprisingly 
intense pressure wave or sound field downstream of the shock, as 
measured in acoustic terms. This implies that the convection of 
relatively low-Intensity turbulence through a shock will generate a 
very Intense noise field in the downstream region. In an example 
the noise level generated by turbulence in a representative supersonic 
wind tunnel was estimated to be of the order of 100 decibels. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, September 26, 1952
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APPENDIX A

SYMBOLS 

A function defined in equation (23) 

a parameter in shock-wave perturbation (equation (8)); also 
speed of sound 

B function defined in equation (23) 

b parameter in shock-wave perturbation (equation (8)) 

C function defined in equation (30) 

C' function defined in equation (35) 

c parameter (= c'	 cos	 for	 L>l 
\= C'X	 COS	 for	 W<1 

constant of inteation 

c?I constant of inte'ation 

c specific heat at constant pressure 

D function defined in equation (30) 

D' function defined in equation (35) 

d parameter	 (= d'x	 cos 

d' constant of inte'ation 

E function defined in equation (30) 

function defined in equation (35) 

F function defined In equation (30) 

F' function defined in equation (35) 

G function defined in equation (35) 

H stagnation enthalpy (per unit mass) 

k wave number of shear wave in region A (incident shear wave)
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M	 Mach number (U/a', appendix B) 

in	 velocity ratio across normal shock (UA/EJ)

p	 pressure 

S	 relative amplitude of refracted shear wave (see equa-
tions (38a) and (38b)) 

s	 entropy (per unit mass) 

T	 temperature (absolute) 

t	 time 

u,v	 etreani velocity components in x- and y-directions (fig. 3) 
(equivalent steady-flow problem) 

U	 Mach number associated with U (U/a) 

u,v	 perturbation velocity components In x- and y-dIrections, 
respectively, (fig. 3) 

w	 stream. velocity in -direotion (resultant of U and V) 
(equivalent steady-flow problem) 

W	 Mach number associated with W (W/a) 

w,w'	 perturbation velocity components in - and TI-directions, 
respectively (fIg. 3) 

that part of w associated with pressure wave 

x,y	 rectangular coordinates (fig. 3) 

____ i<i 

ratio of specific heats 

phase lead of pressure wave relative to Incident shear wave 

phase lead of refracted shear wave relative to incident 
shear wave 
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e	 measure of strength of incident shear wave (WA/WA) 

0 inclination of lines of constant phase in incident shear wave 
(figs. 1, 2, 3, and 4) 

0cr critical value of	 0 for which i = 1 (function of	 UA)

wave number of refracted shear wave 

Mach angle associated with 	 (e1n(1/)) 

inclined rectangalar coordinates (fig. 3) 

fl	 relative amplitude of velocity component w in pressure 
wave (see equations (38a) and (38b)) 

P	 fluid density 

perturbation in local shock angle (fig. 4) 

<p	 inclination of lines of constant phase in refracted shear wave 

<p t	 inclination of lines of constant phase in pressure wave 

perturbation stream function 

complementary function (component of 4r) 

particular inte'al (component of ,) 

2	 vorticity ( v - Uy) 

Subscripts: 

A	 region A (upstream of shock) 

o	 . evaluated at shock, on downstream side 

x, y, , indicate , the corresponding partial derivatives (e.g., 

v =	 an exception is	 = x cos <p = k cos 9 

(Unsubscripted velocity components, pressure, and density 
refer to region downstream of shock.) 

Prefix 

8( )	 increment in ( 
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APPDIX B 

LINEAR PERTUPBATION THEORY FOR ROTATIONAL ELOW 

The generalized governing equation for the stream function can be 
obtained by extending Sears t constant-energy development (reference 4) 
to include the effects of variation of energy (total enthalpy). A 
different approach is, however, employed herein. Equations for the 
pressure and density fields are also obtained. 

In applying the results of this appendix to the developments in 
the main text it is to be noted that the x- and y-axes herein will go 
over, respectively, into the - and TI-axes therein; this is a conse-
quence of the difference in direction of the main stream. in the two 
cases. There is a corresponding change in the notation for the 
velocity components.

Governing Equation 

Basic equations. - Consider the steady two-dimensional adiabatic 
flow of an Inviscid fluid with local velocity u',v', pressure p, 
density p , temperature T, and entropy s. Assume only small pertur-
bations from a uniform horizontal flow such that u = U + u, v t = v, 
with u/U, v/U<<l, and also op/p, p/p, etc. <<1. Then the basic 
flow equations may be linearized by neglecting quantities of order 
u/U, and so forth, in comparison with unity. A convenient form of 
these linearized equations is

1 Dp Continuity: Ux + Vy +	 = 0	 (Bl) 

State •	 - L_ -	 (B2) P	 pa	 c 

De 
Energy:	

E =
	 (B3) 

Momentum: Px = pUul 
-p = PUvXI	 (B4) 

where D/Dt signifies the La'angian operator for differentiation 
following the fluid motion. 

Elimination of density from continuity equation. - The Lagrangian 
form of the state equation is, by virtue of the energy equation,
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a 
PDt pa2 

=	 [Cu + u)p + 
vp pa 

Upon linearizing, assuming p and p to be of comparable magnitude, 

this is

1DP Up 

p Dt - pa2 

and by use of the first momentum equation 

1DP	 2 
.	

= - M u 

The linearized continuity equation (Bi) may accordingly be written 

( l - M2 ) u + v=O	 (B5) 

Formulation of governing equation. - Define a stream function 4r 
such that

=

(B6) 

v = - (1 - 

Then equation (B5) is identically satisfied by u and v as defined 
in equation (B6). The governing equation for fr is now obtained by 
expressing the vorticity v - uy 2 in terms of '4 

(1-M2)4+=-2	 (B7) 

A useful expression of the vorticity in terms of adients of 
entropy and total enthalpy is given in reference 8, equation (8.3), as 

i(u 

where q is the resultant velocity and /n indicates differentiation 
normal to a streamline. In the small-perturbation flow the streamlines 
are approximated by the lines y = constant, so that /fl 	 /y; also 
qU. Thus
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1f'E 
-2 - (-.- - T 

U\°Y	 cy 

The governing equation for , equation (B7), can now be amplified 
to read

(1 - M2 )4t	 +	 = - 2	
H -Ts	

(Be) 

This equation and its companion 

U =

(B6) 
v = - (1 - 

constitute the simplified generalization of Sears' governing equation 
for linearized rotational flow (reference 4, equations (12) and (15)); 
Sears' equation is restricted to flows of constant total enthalpy R. 

Equation (B8) exhibits the following very interesting property: 
In the small-perturbation velocity field considered here the effect of 
the rotation or vorticity 2 is independent of how it arises, whether 
from a gradient of entropy or a gradient of total enthalpy, or a 
combination of both. And it Is only through their contribution to 2 
(and perhaps to the boundary conditions) that variations in entropy 
and total enthalpy affect the velocity field at all. 

Pressure Field 

Equations relating the pressure distribution to the velocity 
distribution will now be derived: The momentum equations (B4) may be 
rewritten in the form:

+ Uu.1 = 0

(B9) 
p

+ UUy = - U2 

since 2 = v - 

Now let consideration be limited to special ty-pes of flow such that 

(Blo) 
v=v'	 J
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where u',v' is an irrotational flow (v'1 - u t = 0) and 
= Ut t (y ) is a pure shear flow parallel to x (v' t 0) . Then the 

vorticity Q is given by

= v -	 = - 

and

Uttx = 0 

Thus equations (B9) become

px 
-- + Uu ,x = 0 

- + Uu z = 0 

These two equations are equivalent to 

+ Uu' = 0
	

(Bil) 

which is just the linearized Bernoulli equation in terms u' alone. 

The Dhvsical interDretation is this: If the assumed total Dertur 
bation consists of a plane shear flow (u??,0) and a potential flow 
(U t , V 7 ), then there isno pressure perturbation associated with the 
shear flow; the entire pressure perturbation arises from the potential 
flow and is related to u' by the ordinary linearized Bernoulli 
equation. In other words, the pressure is obtained by subtracting out 
the shear-f low velocity and applying the linearized Bernoulli equation 
to the remaining velocit

Density Field 

The density distribution can be related to the velocity and entropy 
distributions as follows: The starting point is the differential 
equation of state (B2)

pa2 cp 

1Since H and s are constant along streamlines (reference 8), this 
approximates the general small-perturbation flow to the extent that the 
lines y = constant approximate streamlines.
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Again assuxae that the flow is a combined potential flow (u',v') and 
shear flow (utt,O).' (See equation (BlO) and after.) Then equation (Bil) 
applies for p/p , and the density field is given by 

p _ Uu t	 s 

a2	 cp 

or

M2 --	 (B12) c 

Thus it is found that the density perturbation depends on the potential 
flow via the velocity perturbation u t and on the shear flow via the 
entropy perturbation ös. 

1Since H and s are constant along streamlines (reference 8), this 
approxinates the general small-perturbation flow to the extent that the 
lines y = constant approximate streamlines.
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APPENDIX C 

VARIANTS OF THE SHOCK RELATIONS 

The ratio of the normal velocities before and after the shock has 
been defined as m

m UA/U
	

(Qi)

Thus by reference 6, eq.uation (114), 

7+1-2
2 UA 

i+ 7	 U2	
(c2) 

where UA is the normal Mach number ahead of the shock. Correspondingly, 

U is the normal Mach number behind the shock, and by reference 6, 
equation (112),

7-1-2 

	

U = -	
- i	 (03) 

	

A	 2 

From equations (02) and (03) it can be shown that 

2 
- (y + i)(ni - 1)	 (04) 

and

UA2 - 1
121-1	 (05) 

+ 7 1 

where

1 - if2 

The equality of transverse velocity components across an oblique-
shock wave requires, in the present notation, that 

UA tan e = U tan ip 

Then, with the definition (ci),



40	 NACA TN 2864 

mtane=tan P	 (Ce) 

Equations (c2) and (06) together allow 'P to be determined in terms 
of e and UA. 
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Shock

U 

Figure 1. - Convection of' plane oblique sinusoidal shear wave
through shock: original unsteady-flow problem. 

Figure 2. - Transformation to equivalent steady-flow problem by 
superposition of velocity V.
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Figure 4. - Geometrical relations across shock, with 
and without perturbation a in shock angle.
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I 
________________________________	 LI 

Shock 

Figure 5. - Passage of horizontal shear wave through normal shock, showing 
perturbation of shock and final amplification of shear wave. 

Figure 6. - Relative motion of reference frame moving with general 
downstream flow (convected frame) and reference frame of analysis 
(steady-flow frame). The steady-flow frame moves downward along 
the shock front with a component velocity V and carries the 
ripple pattern with it.
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Figure 10. - Amplitude and phase of ripples developed In shock by passage of shear wave. 
Initial Mach number UA, 1.5. 
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Shock 

Figure 11. - Construction for translation V to render either of two
sound-wave patterns stationary in a main stream UA. 
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