NACA TN 2868

1026

@ https://ntrs.nasa.gov/search.jsp?R=19930083681 2020-06-17T20:31:17+00:00Z

™
A0b8

c.]

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

LOAN COPY: RETURN TO
AFWL TECHNICAL LIBRARY

TECHNICAL NOTE 2868 " TILAND AFB, N.AL. B

T

NN ‘gdv) AHVHEIT HOFL ’ '

REFLECTION OF A WEAK SHOCK WAVE FROM A BOUNDARY

LAYER ALONG A FLAT PLATE

I- INTE‘RACTION OF WEAK SHOCK WAVES
WITH LAMINAR AND TURBULENT BOUNDARY LAYERS
ANALYZED BY MOMENTUM-INTEGRAL METHOD
By Alfred Ritter and Yung-Huai Kuo

Cornell University

Washington
January 27, 1953

AFRIDC
TECHMIAL 1innany

Fuliwdtdimif])

AT Doyy

Lo~ R > T Y]



1Q

TECH LIBRARY KAFB, Nt

T

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2868

REFIECTION OF A WEAK SHOCK WAVE FROM A BOUNDARY
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I - INTERACTION OF WEAK SHOCK WAVES
WITH LAMINAR AND TURBULENT BOUNDARY LAYERS
ANATYZED BY MOMENTUM-INTEGRAL METHOD

By Alfred Ritter and Yung-Huai Kuo
SUMMARY

The present paper is concerned with the phenomens encountered when
e plane oblique shock wave is incident upon the boundary layer of a flat
plate. In an effort to simplify the problem, the flow field was divided
into a viscous layer near the wall and a supersonic potential outer flow.
The pressure disturbances due to the incident wave would be propagated
upstream and downstream in the subsonic portion of the boundary layer,
thus giving rise to perturbations of the boundary layer. By restricting
the study to 1nfinitesimal incident compression waves, only small per-
turbations were encountered and hence the ordinary linearized theory
could be applied to the outer flow. In the laminar case, the boundary-
layer treatment was based upon a momentum-integral equation previously
derived by Howarth. The two flows must be compatible; hence, the deflec-
tion of the streamlines near the boundary layer was expressed in terms
of the vertical velocity component along the edge of the boundary layer
and this relation was used as a boundary condltion for the outer flow.
The boundary condition determined the form of solution upstream and down-
stream of the point of incidence. Determination of the constants of
integration was accomplished by a consideration of conditions at infinity
and a matching of the two flows at the point of incidence. With the
outer flow thus determined, boundary-layer growth and pressure distribu-
tion were computed and results for the laminar case were obtained as
follows:

] (a) The pressure disturbance along the wall decreased exponentially
from a definite value at the polnt of incidence to zero far upstream of
the point of lncidence. Downstream of the point of incidence, the pres-
sure rose to a meximum velue and then dropped off to the value corre-
sponding to regular reflection.
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(b) The disturbances produced by the lnteraction decayed exponen-
tially upstream; for a free-stream Mach mmber of approximately 2 and a
Reynolds mumber of approximately 1500 in the undisturbed boundary-layer
displacement thickness the upstream influence was of the order of 30
boundary-layer displacement thicknesses. .

(c) The "self-induced" pressure gradient along the wall was such
that the boundary layer might separate ghead of the point of incldence.
If separation occurred, the separation point moved upstream as the shock
strength was increased. With increasing Reynolds number, the separation
point also moved upstream, whereas for increasing Mach mumber, the sepa-
ration point moved downstream.

In the turbulent case the upstream influence was quite small and the
incident wave mist be reflected as a shock wave.

INTRODUCTION

It has been found that if the free-stream subsonic Mach mumber
becomes high encugh so that local supersonic zones are formed on an air-
foil, sharp changes in the airfoill characteristics occur which cannot be
explained by classical aerodynamics. The resulting loss of 1lift is
accompenied by a large increase of drag in consequence of the appearance
of shock wavesg on the surface of the alirfoil. However, close study
reveals that the drag increase is too large to be accounted for by the
shock loss and change in skin friction. It must be caused by the sudden
change of the flow pattern. This seems to indicate that the shock wave,
when formed over the ailrfoil surface, modifles the character of the
boundary layer in such a way as to create a wider wake.

At Guidonia, Ferri, by examining the measured pressure distributions
over airfoils at supersonic speeds, found that for the forward portions
of the airfoil the experimentel pressure distribution agrees quite well
with that calculated from potential-flow theory (reference 1). As the
trailing edge is approached, however, the experimental pressures along
the upper surface, for positive angles of attack, become considerably
higher than the calculated ones. (At negative angles of attack, this
behavior occurs along the\lower surface.) This discrepancy is under-
standable in the light of the fact that the boundary layer on the rear
portion of the airfoil is extremely sensitive to pressure disturbances.
Since the flow far away from the airfoil has to return to its original
pregssure and direction, a shock wave must emanate at or near the tralling
edge. There 1s a sharp pressure rise across the shock and pressure dis-
turbances are transmitted upstream in the subsonic portion of the boundary
layer causing a thickening of the layer near the trailing edge. This
thickening, in ‘turn, generates compression waves which travel downstream



NACA TN 2868 3

and interact with the shock wave. The net result is that there is,
starting from some point forward of the trailing edge, a gradual compres-
sion to the main-stream pressure. The pressure distribution is hence
altered in such a manner as to give values of 1ift and pressure drag
smaller than those calculated from theory. The measured moment coeffi-
clent will also differ from the theoretical values.

The preceding discussion shows that, in the transonic and supersonic
regimes, the Mach number alone is insufficient to determine the flow
characteristics; the Reynolds number can also be important. This was
first demonstrated by Ackeret, Feldmann, and Rott in,experiments which
established the close relationship between the shock-wave pattern and
the Reynolds number (reference 2). These prove beyond doubt that the
flow far away from the wall depends intimately upon the character of the
boundary layer, that is, the Reynolds number. Thus, under such circum-
stances, the concept of the boundary layer requires modification.

As a first step, a simplified problem of a plane shock wave incident
upon the laminar boundary layer over a flat surface willl be dealt with.
For a number of years, Dr. H. W. Liepmann and his associates at the
California Institute of Technology have been conducting experimental
studies of shock-wave boundary-leyer interaction. Recently they investi-
gated the problem of the reflectlon of shock waves from boundary layers
(reference 3). Based on the qualitative experimental data, some impor-
tant conclusions were drawn regarding the reflection of an incident shock
wave from a boundary layer:

(a) The type of boundary layer, whether laminar or turbulent,
markedly affects the interaction. With a turbulent boundary layer, the
reflection is practically the same as that for a regular reflection in
nonviscous flow theory. For a laminar boundary layer, however, there is
a large interaction zone near the point of incidence that is quite dif-
ferent from the regular inviscid reflection. The incident wave is appar-
ently reflected as from a constant-pressure surface in the form of a
Prandtl-Meyer fan. In returning to its final direction parallel to the
wall, the deflected flow, behind the expansion, recompresses to the pres-
sure appropriate to that behind a regular reflection.

(b) For M = 1. and Rex = Ux = 0.9 x 105, the influence of the

incident wave extends upstream in a laminar layer a distance of the order
of 50 boundary-layer displacement thicknesses. On the other hand, the
upstream influence is practically negligible for the turbulent boundary
layer.

(c) It appears that, except for very weak incident waves, the laminar
layer almost always separates somewhere in front of the point of inci-
dence, whereas no separation was found for the turbulent layer.
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Quite recently, Berry, Shapiro, and Neumann (reference 4) made a
similar study and their results are in substantial sgreement with the
GAICIT results. An advantage of their experiments, however, is that,
although the tests were carried out at constant Mach number, the Reymolds
number and shock strength were varied so that more gqualitative as well as
quantitative data are available to serve as a guide to future theoretical
work.

Theoretical solutions of this problem have been almost as meager as
the experimental results. A first attempt was made by Howarth (refer-
ence 5), who considered the case of a wave incident upon the interface
bounding two semi-infinite uniform streams, one supersonic and one sub-
sonic. Viscosity and heat conduction were neglected and the equations
were linearized. He then demonstrated the upstream propagation of dis-
turbances in the subsonic portion of the flow field and showed that an
incident compression wave is reflected as compression upstream of the
point of incidence-while being reflected as expansion downstream of the
point of incidence. However, these results can only be regarded as quali-
tative because of the obvious shortcomings of the model. In an effort
to make the Howarth model more realistlc, Tsien and Finston simulated
the boundary layer with a uniform subsonic stream bounded by a wall on
one side and a semi-infinite, uniform, supersonic stream on the other
(reference 6). As before, viscosity and heat conduction were neglected
and only small disturbances were considered. For the case of a compres-
sion wave incident upon the interface separating the two streams, it was
shown that except for the local interaction, the incident compression
wave 18 regularly reflected. ILocally, however, the pressure along the
interface exhibits compression ahead of the point of incidence and expan-
sion immedistely behind 1t. This local condition 1s qualitatively the
same as that observed in experiments with shock reflection from laminar
boundary layers; consequently there arose the speculation that perhaps
the effects of viscosity and heat conduction were actually not too impor-
tant in comparison with the effect of coexistence of supersonic and sub-
sonlc streams. If this were the case, it should follow that an improve-
ment in the Tsien-Finston model could give rise to more quantitative
results. Now an obvious discrepancy between the Tsien-Finston model and
the physical situation is that the uniform subsonic stream, in attempting
to simlate the boundary layer, is incapable of satisfying the "no-slip"
condition at the wall. Thus, the next logical step in the development
of the theory would appear to be that of considering a main-stream velo-
city that veries from zero at the wall to a given uniform supersonic
velocity a short distance from the wall, and, in fact, this has been con-
sidered by Robinson (reference T) and Lighthill (reference 8). Robinson
assumed that the main-stream velocity variles continuously from zero at
the wall to supersonic velocity some distance from the wall, whereas
Lighthill assumed that the Mach number varies from zero at the wall to
some supersonic value a short distance from the wall. A weak wave is
incident upon the boundary layer and the reflected waves and upstream
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influence were evaluated. Now with the improved model, however, both
investigators found, contrary to experimental evidence, that the upstream
influence is negligible. Although Robinson was chiefly concerned with
the determination of the upstream influence, Lighthill considered, in
some detail, the local reflection of the shock wave. He concluded that
a shock is reflected locally as a "pressure ridge," that is, a rapid
compression followed immediately by a rapid expansion. Now a note was
added in the proof of reference 8 to the effect that experimental results
of Mair and Bardsley (reference 9), obtained at the Fluid Motion Lsbora-
tory, Manchester, establish that the conclusions of negligible upstream
influence and the shock being locally reflected as a pressure ridge are
correct for the reflection of a weak shock from a turbulent boundary
layer. (These results, however, had been previously observed by Ackeret
and Liepmann.) As Lighthill pointed out, the conjecture that the theory
is correct for velocity profiles typical of turbulent boundary layers
but incorrect for profiles typical of leminar boundary layers may be
valid. But until such time as the theory is modified to account for vis-
coslty, as suggested by Lighthill, the present theory is incapable of
predicting the effects of the interaction between a shock wave and a
laminar boundary layer.

The preceding theories have neglected viscosity and heat conduction
while considering infinitesimal waves and small disturbances. It would
appear that the assumptlon of infinitesimal waves and small disturbances
is vaelid since the linear theory, to be a good approximation, requires
that the slopes of the streamlines be small. For weak incident shock
waves, the slope of the displacement thickness would probably be small,
except perhaps in the immediate vicinity of the wave. The neglection of
viscosity, on the other hand, seems to be more serious. If the effects
of viscosity were not too important, one would expect that, for fixed
Mach number and shock strength, the effect of Reynolds mumber should be
rather small. Actually, this is not the case since the results of Barry,
Neumann, and Shapiro clearly show that changes in Reynolds mumber have a
merked effect upon the shock-wave - laminar-boundary-layer interaction
(reference 4). Hence it appears that a theory capable of predicting the
effects of this complicated phenomenon must include the effects of
viscosity.

At present, as far as the authors are aware, the only solution that
includes viscous effects was given by Lees (reference 10). The Lees
theory is based on an approximate relationship between the slope of the
displacement thickness and the external pressure gradient derived from
Prandtl-Meyer flow. By combining this relation with the momentum-
integral equation and neglecting terms of the order of Re™l Lees arrived
at a third-order, linear, differential equation for the pressure. On the
assumption that this equation is valid all along the boundary layer, he
was able to determine the boundary-layer growth and pressure distribution.
He found the upstream influence comparsble with that which is observed
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experimentally and showed, also, that the boundary layer always sepa-
rates except in those cases where the incident wave 1s quite weak. How-
ever, his theoretical pressure distributions fail to exhibit the charac-
teristic downstream behavior. This point will be discussed later.

Following the approach of Oswatitch and Wieghardt in their study of
the growth of disturbances in a supersonic stream outside laminar or
turbulent boundary layers (reference 11), the problem is treated as an
outer flow, with a shock, in equilibrium with a boundary-layer flow.
Instead of expressing the deflection of the streamline in terms of pres-
sure rise, as in Lees' problem, a procedure after Oswatitch and Wleghardt
is taken by connecting the vertical velocity of the outer flow with the
streamline deflection, as given by the momentum integral of the boundary-
layer flow. This reduces the problem to an inviscld one which can be
solved systematically to any order of approximation.

This study was conducted at the Graduaste School of Aeronautical
Engineering of Cornell University under the sponsorship and with the
financial assistance of the National Advisory Committee for Aeronautics.

SYMBOILS
a speed of sound
A,B,C,D,E constants
b = B%/5 %
CpsCy specific heats at constant pressure and constant volume,
respectively
f,g functions of £ - m,n and £ + m,, respectively
L

F=2q-293 +q

81,80,83,8Y defined by equations (8)
1
G = gﬂ(l -3

h function of £ - mn

H =8*%/6
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ratio of specific heats (cﬁ/cv)

boundary-layer thickness

boundary-layer displacement thickness

undisturbed boundary-layer displacement thickness
boundary-layer thickness in transformed plane
boundary-layer displacement thickness in transformed plane

disturbed boundary-layer displacement thickness nondimen-
slonalized with Bo¥*

flow-deflection angle

1 = y/8" or y/55"
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. 0 Ug/ Pele

boundary-layer momentum thiclkness in transformed plane

roots of equation (16)
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= x/Bo*
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2 Me:>dx
coefficient of viscosity

kinematic coefficient of viscosity

density

. -1
-0 Yy -1.2 .
5 Mo—-(l+ 5 Mm)

shear stress

perturbation velocity potential, nondimensionalized
with UBL*
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) total potential

X function of x' and ¥

L] stream function

Subscripts

d evaluated at distance of upstream influence

e evaluated along edge of boundaery layer

i i, 2, or 3

1 laminar case

o] stendard condition, such as stagnation point or undis-
turbed state

8 separation point

t turbulent case

W evaluated at wall

1,2,3 evaluated in regions 1, 2, or 3, respectively (see fig. 1)

) eveluated in undisturbed free stream

OUTLINE OF PRESENT INVESTIGATION

In the present study the effect of an infinitesimal compression
wave incident upon the laminar boundary layer along a flat plate in
supersonic flow will be considered. The pressure gradient in the flow
direction is determined to the order of approximation of the ordinary
boundary-layer theory solely by the shape of the boundary. The poten-
tial flow thus completely determines the boundary-layer growth. In the
problem of interaction between a shock wave and a boundary layer, how-
ever, the phenomena are quite different. In that case the pressure dis-
turbances that are propagated upstream in the subsonic portion of the
boundary layer will affect the boundary-layer growth. It becomes clear
that the outer flow influences the boundery-layer growth and that the
boundary-layer growth, in turn, influences the outer flow, so that a
solution that is simltaneously compatible with the two flows must be
sought. -
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Another significant difference between the interaction and noninter-
action problems occurs in the separation phenomenon. For the usual case
of boundary-layer flow against a pressure gradient, it is known that the

flow separates from the wall at the point where (gE) = 0. Downstream
Y/ v

of the separation point the original flow is deflected awey from the wall
by the backflow, a vortex layer separating the two flows. The interac-
tion of a shock wave with a laminar boundary layer, however, produces a
different form of separation. Experimental evidence indicates that along
the wall there exists a short thin region, extending slightly upstream
from the foot of the shock wave, in which the flow has practically zero
velocity; the boundary between this separated flow and the main boundary-
layer flow is a vortex sheet. A plausible explanation of this phenomenon
is proposed by Lighthill, who suggests that the pressure discontinuity
occurring when a shock interacts with & laminar boundary layer causes the
flow to separate into some form of "bubble" at the base of the shock wave.
Once such-a bubble is produced, the boundary layer upstream of the sepa-
rated region will be deflected so as to Increase the external pressure
gradient. This results in further separation of the boundary layer and
hence further upstream deflection. This process of repeated separation
causes the edge of the bubble to move upstream until such time as the
induced pressure gradient is no longer able to cause separation of the
boundary layer. The net result is the one indicated 1in experiments.
Immediately behind the point of interaction, the deflected flow, in
returning to its original direction parallel to the wall, undergoes a
very rapid compression, thereby causing an extremely large pressure gra-
dient. It is known from experimental results that the boundary layer
downstream is turbulent, but whether the extreme pressure gradient causes
separation and hence causes the boundary lsyer to become turbulent or
whether the flow at that point is already turbulent and thus can sustain
large pressure gradients must remain at this time a matter of conjecture.
Whatever the case may be, in the problem for weak shock the flow will be
assumed to remain laminar downstreem of the point of incidence (cf. ref-
erence 12). Positive infinity in relation to the problem will be taken
to mean a distance downstream of the order of 100 boundary-layer thick-
nesgses. In addition, any mention of boundary-layer separation will refer
to the "dead air bubble" phenomenon.

In the present theory it is assumed that the boundary-layer equa-
tions are appliceble over the whole plane. Sirictly speaking, the valid-
1ty of the usual boundary-layer assumptions near the base of the shock
wave is doubted, since separation occurs. However, it is believed that
for weak incident waves, a theory based on the above assumptions will
s8till enable one to determine some of the important characteristics of
the flow. 1In particular it is desired to determine the extent of the
separated reglon, since this investigation is merely the first step of a
proposed theory which will endeavor to take separation into account.
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The more refined theory is then expected to furnish, in the separation
zone, slight corrections to the simplified theory.

The flow field is assumed to be divided into two distinct regions
as follows:

(a) A thin layer adjacent to the plate wherein there is laminar-
type boundary-layer flow

(b) An outer supersonic potential flow field

Since an infinitesimal compression wave is assumed, the upstream
Pressure propagation is expected to perturb the boundary layer just
slightly, thus imposing small disturbances upon the outer flow. This
Justifies the linearization of the supersonic outer flow. (Results of
this theory will of course be applicable only for fairly weak shock
waves.) The flow field has been assumed to be separated into two dis-
tinct regions. In reality a continuous variation in velocity from zero
at the boundary to some main-stream value a short distance from the wall
1s kmown to exist. The actual distance at which the velocity reaches its
main-stream value is rather indefiriite; hence the so-called boundary-
layer displacement thickness &%(x) 1is defined. Physically it represents
how much the potential flow streamlines are deflected because of the
reduction in mass flow caused by the retarded velocitles near the wall.
The viscous effects are thus characterized by a layer whose thickness
is 8*(x), and the link connecting the outer flow to the boundary-layer
flow is the condition that the line y = 8%(x) 18 & streamline of the
outer flow. The treatment of the boundary layer in the present study is
based upon & momentum-integral equation previously derived by Howarth
(reference 13). The deflection of the boundary layer is expressed in
terms of the vertical velocity component along the edge of the layer and
this relation is used as a boundary condition for the outer flow. Hence
the over-all problem is then reduced to the solution of a purely super-
sonic potential-flow problem.

LAMINAR -BOUNDARY -LAYER EQUATIORS

The Prandtl boundary-layer equations for the two-dimensional steady
flow of a viscous compressible fluid are:

Su, ,Su__13p,13/( du
u3x+v3y pbx+pay<HBY>
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P = RpT

Here u and v denote, respectively, the x and y components of the
velocity and p, p, and T, the pressure, density, and temperature of
the fluid. In order to simplify the problem, Howarth (reference 13)
asgumes that the coefficient of viscosity p 1s proportional to the
temperature and the Prandtl number is unity. These assumptions, of
course, introduce some approximation, but according to the results of
Emmons and Brainerd (references 14 and 15), the boundary-layer character-
istics depend very insensitively on the form of u(T) and the change of
Prandtl number for moderate Mach mumbers. Therefore, the simplifications .
brought about by this assumption Justify the slight loss in accuracy.

By introduction of the stream function V¥

oY
pu:p—_
° %

= pg ¥
pv Po S

and by introduction of the transformation
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the momentum equation is transformed into

32x__dx_  _¥®x_ ax =uegu_e Ty 9% v X
dx! Jy! Ayt  (dy')2 dx! dx' | Te g2 ‘(ay:)z © (3y1)3

where p,, T,, end v, stand for the density, temperature, and kinematic

viscosity of a standard condition, the stagnation point, say, and are
constants, and the subscript e indicates the condition at the edge of

the boundary layer. In the case of a thermslly insulated plate

(§§> = 0, the condition of unity Prandtl number admits a special solu-
W

tion on the plate (reference 16)

1l 2 1. 2
CPT+§'L1 =CPTe+‘2‘ue

Upon elimination of T, there results the equation:

Px dx _ x _ax .
ax' 3y’ Iy (P ° ()3

due

%&7 1+

y - 1] 2 [dx\? 7 %%
- - X
te ( ) 20,2 (3y')2

(1)

d
Thus, it is seen that when Egs = 0, that is, at constant pressure, this

equation 1s identical to the equation for the incompressible fluid.

Let ®' be the boundary-layer thickness in the transformed plane,
and define the corresponding displacement and momentum thicknesses by

e[ (o) e
AN
0
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Then, by integrating equation (1) across the boundary layer, the equa-
tion relating the boundary-laeyer thicknesses with the velocity is

2 2
ae' o Ye or + (14221 1 Ye 51| L dug _Y [ou (2)
ax' * 2 .o 2/° ju & 2\3yt
e ue\a}’ Ww

Pag? ae

The similarity of this equation to ‘that of the incompressible flow sug-
gests the appllicability of the Kérman-Pohlhausen procedure.

If the velocity profile is given by (reference 13)

u...
ae = F(n) + a6(n)
where
=2on - 203 + ot
1 _ 3
G =z (1 - )
_(8')2 7y -1 2due
A= o GLJ’ 5 Me )
vwith
/ t
n =L
-

it follows that

B'* = =236 - 4) e (3)
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Substitution of the quantities of equations (3) into equation (2)
gives rise to a relation between the boundary-layer thickness &' and
the velocity ue(x), with a parameter A. Now, in the present problem,
as the flow in the boundary layer must be compatible with the potential
field, the flow deflection d&%/dx of the boundery layer determines the
flow in the outer field. Therefore, &' should be eliminated. For this
purpose, let the displacement thickness be introduced:

But in the transformed plane there is

’

5
1% = _& 1
o] ‘jg ( ue) dy

By means of the temperature-velocity relation end Pohlhausen's profile
this will yleld

1/2 ¢ o
_ (X -0 r-1,2(,  367,1_T1 1 A%\sy
S51¥% = (p ) 5% + 5 Me <:L4-63O + 3 3550 A+ 252 36 e}

Now, from the second of equations (3), d'¥ 1s already expressed in
terms of %' and A. The elimination of ©&'¥ , then gives

21, a .
Lo 222[7’13 d;e(l + 1= Mea) (81)2 +

1 due y o1 o\fy -1 T2 1 3
de(l“L 2 Me)(g 5580 * Ta0)(8')” *

T, ° (%)
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Theoretically, this equation defines &' as a function of &%.
Only in the case of small pressure gradient, namely,

ue:U(l+u'+. . .)
uw <1

however, is a simple analytical solution possible. For by retalning
only linear terms in wu' and its derivatives there is obtained (refer-
ence 17)

UL 72 2 o1\ au', .3 37 263 263 (7 - 1)M 2 oler -
Vo(é 2520 ° 945) & %) " 355 " G300 " 630 o2 ot =

L-37
27’ ls 2 ; 2-7 M0202(7_l) ut] 5% (5)
-3 - r-1y2 '
vhere My = - amd o=1- 5 Mo . Moreover, since u' is assumed

to be small, that is, for weak Interaction, the boundary-layer thick-
ness ©' must also differ from the unperturbed value by a small amount.
Therefore, to the first-order approximation there results the solution:

2-y 1
v 2 207-1) ( _31+é3_) -

315 6300
o 4-37
263 (7 - UM /h63 _ 37\2 . 2 - 7 1 2o207-1 (263 _ 3T\ yrex 4
630 _6-57 6300 315 6300 315
-2(7-1)
-2 -1 '

UflL7w6 " _ o )(263 - ) 02 -1 du' (5x)3 (6)
Vo\3 2520  945/\6300 315 dx

Let Bo¥ be the unperturbed displacement thickness and write

&% = 5%(1 + A)
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Substituting equation (6) in the momentum equation (2), replacing x*
by x, and keeping only first-order terms, one obtains, by taking into

as ¥
account Bg¥

= Constant, the following lihear equation (refer-

ence 17): T

d A_ 1 du' _
Ot e e e o

L

aA du? a2yt
sl o) o

ate

where

X
, £ = 5%

8l = = Toovieay © - ==

1 (263)2 -4 \2
Re (37)(630) 263
AL S A R
o 1. T4 g aly - 1)
263

1l

82 = -81

> (8)
> 1593% , _T4s88 1
g, = 37" o731 Y 3600k7 o
N L NP

20 1 - Lh_ o

263

L

3 -3
g)-l- = _Re0'7'l %(QB_O) (]_ .j& 0')

with
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The momentum integral thus relates the displacement-thickness perturba-
tion A +to the velocity perturbation and its derivatives along the edge
of the boundary layer.

SOLUTION OF BOUNDARY-VAIUE PROBLEM OF OUTER FLOW

Until now the study has been directed at obtaining an explicit rela-
tionship for the boundary-layer displacement thickness as given in equa-
tion (7). Now the extent of the interaction zone is only a fraction of
the distance from the leading edge of the plate, hence 80*(x) can be

assumed to be constant over this range. Equation (7) then becomes a
linear equation with constant coefficients.

The problem is now one of determining the supersonic potential flow
past a thin body whose thickness at any point corresponds to the perturbed
boundary-layer thickness at that point. Consider the problem in the
coordinates shown in figure 2.

The undisturbed thickness is seen to correspond to y = 0. Strictly
spegking, the undisturbed thickness should be at y = 5o*¥ 1in the physical
plane. But since the outer flow does not depend upon the location of the
origin of coordinates, the boundary conditions can be simplified slightly
by choosing the axes as indicated in figure 2. Then, consistent with
linear theory, the boundary conditions are satisfied at the undisturbed
surface, namely, y = O.

The linearized differential equation for the perturbation velocity
potential of the supersonic stream is

2 2
Il]m2 a_é - é_g =0 (9)
dE 2

vhere £ = > and M= 52?3 and the general solution is given by
o}

B =f£(& - myn) + g(& + myy) (10)
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The incident waves will be taken as

gle +my) =0 wvhen £ +mn <O
(11)
g(& + m1) =-é%§§ + m.) when £ +mn >0

This corresponds to a simple compression wave, of deflection angle ¢,
incident upon the origin. (According to the above definition, the abso-
lute value of ¢ will be used in any computations.)

Upstream Solution

The incident wave causes the boundary layer to be perturbed upstream
and downstream of the point of incidence. Since no disturbances can be
propagated upstream into the supersonic flow, the physically possible
solutions in region 1 will be waves of the form @7 = £(& - men). The
normal velocity component at the boundary must be zero, hence the condi-
tion that the slope of the streamline is equal to the slope of the dis-
placement boundary-layer thickness &% is imposed. The velocity vector

of the supersonic flow has' components [U(l + u'),Uv{], where u' = 8¢/8§
and v' = Bﬂ/an, so that the linearized boundary condition becomes

%Eé = %% at =0
or
g—g-A = -m f'(¢) at 1=0 (12)

Now since the boundary condition is on d A/dt rather than A,
equation (7) is differentiated with respect to §, considering &po*% to
be constant:
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g1 at
1aaf au a2 a3u!
) a—(ge qE * 383 gt R g;:r) (23)

If the boundary condition (12) is substituted into equation (13), and it
1
is noted that at 1 =0, %E— = £''(¢), and so forth, an ordinary

nonlinear differential equation for £(&) will be obtained. By line-
arizing this equation:

- ey tTV(E) + ggf't(E) + (82 + me)£'(8) + gymg£(E) = 0 (1k)

The coefficients in equation (14) are constent for a specific case of
Mach number and Reynolds number, hence the solution can be immediately
written as

(&) = Ay + Aekeg + Boe}\1§ + Coex3g (15)
vhere the MN\,'s are roots of the equation
gyh> + 830° + (8o + my)A + gymy, = O (16)

For the cases under consideration equation (16) has three real roots,
one positive and two negative. Let Ao > 0, A <0, and k3 < 0. In

order to have all disturbances vanish as & —» -o it is seen from
equation (15) that
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The upstream solution is then

e?\g( g -m.7 )

£f(E.-mp) = A (17)

or in the physical plane
Ao

x-my)
B1 = nePo®
| (18)
X-my <o

The solution in region 2 follows immediately. The equation for the outer
flow is linear, hence, by adding solutions,

Srlxny)

1
fo = Ae® " a B X * Ty)
v

5 (19)

Xx-my <0

x+nmy >0

Downstream Solution

In region 3 the solution to the linearized supersonic flow equa-
tion is

P53 = g(& + myn) + h(E - m )

But g(& + Mgn) 1is known since it is the incident wave, hence use of the
boundary condition at the interface will result in an ordinary differen-

tial equation for h(&). The nondimensionalized boundary condition takes
the form

%Eé = -mh'(E) - ¢ at 1 =0 (20)
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gince ,§2= -¢ - mh'(E)

on .
Substituting equation (20) into equation (13),

8l|.hiv + g3h! LI (g2 + moo)%l“ + g]_mcoh' = _‘gle (21)

It can be seen that the complementary solution will be identicel to
equation (15). Hence the complete solution is

E A N E
h(§)=D0+Ee)\2 +Bel§+Ce3 —-I-:—E (22)

where again A2 >0, A1 <0, and A3 < 0. Choose Do =0 without
affecting any of the physical quantities such as velocity or pressure
since h(%) merely represents a velocity potential. To eliminate the
possibility of any velocity becoming infinite as £ ~—>» o put E = O.
Then the solution becomes

)\
ME A€
h(E,)=Bel+Ce3 -ﬁ—iﬁ 4
M(Emgn)  Ag(E-mgn) ~ (23)
h(_E,--rlqu):Be:L n+Ce3 ol -Ee-(é-mmn)
Then the perturbed velocity potential in region 3 is )
N
M A
—(x-m_y) 3 (x-m_y)
. = Be5°*( b 2 x
3 o, So* > (24)
X - muy >0

Determination of Constants

The problem now involves four constants A, B, C, and pl with
three parameters M,, ¢, and Re. Additional conditions must therefore

be imposed in order to determine the constants as functions of the

1lThe constant D 18 a measure of the downstream boundary-layer
thickness as shown in the following discussion.
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parameters. It is noted that the outer flow field was divided into dis-

tinct regions by the lines 0S and OM (figure 2), so that the boundary
layers in regions 1 and 3 were treated independently of each other.

These boundary layers are therefore related at the point of incidence by

the following conditions:

(a) The boundary-layer displacement thickness must be continuous
at x=0 )

(b) The wall pressure must be contimious at x = 0

Xo
(c) Discontimuities, if any, must satisfy 1lim Kdx =0
Xo——> 0] -Xo
where K = O denotes the Kirman momentum equation for compres-
sible viscous fluids

Condition (a).- Compute the boundary layers for regions 1 and 3 and
then match the displacement thicknesses at the origin. One has as a
boundary condition

d oy 9fy
_—— = at =0, 1=21o0r3
ag o 1 ?
5%
Where A = §1¥ -1 and B4*¥ 18 the total boundary-layer displacement
o) )

thickness in regions 1 or 3.

From equation (18) one obtains for region 1

asn Aot
_dg— = -m MpAe

xeg
Al = -m_Ae + Constant

A1l disturbances vanish far upstream so that Aj(-«) = 0. But since
M > 0, the exponential term vanishes as £ —> -, hence the constant

equals zero. Therefore

3
N = --mmAek2

An =
* * 2 Bo*
51% = B %1 - mAe

or
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For region 3 one obtains, according to equations (24),

4 A A . A
_d§_3 = -mBAe . mLAze’ 3

€
A3 = --mm;Be)\lg - mupex3g + Constant

. Let AB(w) =D and since the exponentials vanish at positive infinity,
the constant equals D.

Therefore
A
A3 = -mmBe?\lg - mCe 3§ + D
or
X X
M 5¥ 73 8%
B3% = 5% |1 - mBe - n.Ce + D

Thus it is seen that for the total downstream thickness

1im’

E 3 o 3% = B5¥(1 + D)
By putting &1% = 63* at x=0,
A=B+c-ml (25)
o

Condition (b).- Since the validity of the usual boundary-layer
assumptions in the Interaction zone has been assumed In the case of weak
shock interaction, the pressure at the wall, as a first approximation,
equals the pressure at the interface. The pressure at the wall as well
as at the interface is therefore required to be continuous. As a conse-
quehce, the pressure jump due to the incident wave must necessarily be
neutralized by a reflected expansion wave. This deduction is actually

confirmed by experiments.

The pressure in each region consisits of an undisturbed pressure Po
plus a perturbed pressure p' due to the incident wave; D = p, + p'.

Since the undisturbed pressure is the same throughout the flow field,
only the perturbed pressures, which, by small perturbation theory,
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are p' = -pUu', will be considered. The velocity potentials ¢l, ¢2,
and ¢3 have previously been found, and, accordingly, the pressures are
given by ’ '
A2
SR X TY)
D' = -7MuPp ANge (26)
A A
R X Ty 52—*(x-m°&’) »
= €
P3' = —7M°°2PO B)\le + 07\33 - i (27)
The condition for contimious pressure at the origin is
Pl' = P3'
hence
ANp = BAp + CA3 - 2€ (28)
m,,

This condition shows that the discontinuity between regions 2 and 3 cor-
responds, in linear theory, to an expansion of the flow from regions 2

to 3 by a wave of the same magnitude as the incident wave. Now since

AL

and 3 are negative, the downstream pressure along the interface y = 0

is

-
7™,
p3' —> —— py(2¢)

(29)

a8 & —> ». This agymptotic value of the pressure is exactly twice the
incident pressure rise; therefore, as anticipated, the incident wave is

reflected as a regular reflection from a solid boundary.

Condition (c).- The Kdrmén momentum-integral equation for compres-

glble fluids is

5 o 5
d - 2 4 L
dxfocudyfuedx_/; pudy =-3-08 - Ty
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where T, indicates the wall shear stress. With the ordinary definitions
of the displacement and momentum thicknesses, the equation becomes

du
i 2 * ._e —
ax("eue 9) * Peued¥ Fm = Tw

From the outer flow

dug dp
P &x ~" &

thus

f;(peueze) - 8% % -1, =0

From the previous notation it is seen that
= a 2 ads*
K.—.-ax--(peue 6 - 8*p) +p.a..x....- Ty

As the boundary-layer regions 1 and 3 are independently considered,
the pressure gradient and velocity therein might be discontinuous at the
origin. In order that the discontinuities be consistent with the dymamil-
cal equations, it is necessary that:

%o 5%
1im %(peueee -5@) rpSZ rylax =0
Xo —> 0V ~xo

or

2 Xo Xo a5% Xo
X0 —>0 “Xo Y -Xo -Xo

Now &% dis required to be continuous at the origin, p g—?ci’ discontimous
but finite, and the shear stress Ty, finite; then, in the limit, the
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two integrals vanish and

%o

]
O

lim

(peue29 - B*P)
X, —>0

remains. Therefore, 1n the limit,

D3u3293 - pluleel - 8*(0)(p3 - Pl) =0 (30)

The condition that b1 = P3 at x =y =0 has already been imposed
and hence equation (30) reduces to

pluleel = p3u3293 at x = Yy = 0 (31)
This equation, linearized in u' and its derivatives, becomes
duz' duy'
* - = t 1
o 8, (dx = ) GQCu ul) (32)
where
’ ]
3(2-7) Ll - o~
Re =1 2 I N 3(2520 95
a =- :
1 37 _ 263 )3 11llo 37 _ 263 ) f
315 3300 315 6300
g J
= 63 \1 6
= -g2\7-1 _31__2_3_) o 2263 7 -1 _ 4
%2 =0 (315 6300 * Mo 630 o

The pressures were equal at the origin, so that, in linear theory, the
streamwise perturbation velocities are also equal. Therefore upt = u3'

at x=y=0.
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Now since aj # O and ap # O, for the range of M, and R,
studied ‘

dul' du3'
& T & % xTyso (33)

It is therefore seen that, in the linear theory, continuous pressure
also implies continuous pressure gradient. Since

dul' A?\QE
dx 8% at x=y=0
dug' 3 2 2
?=$(B7‘l +C7\3) at x=y =0
there is obtained from equation (33)
mMp? = Bn® + OAg® (34)

Conditions (a), (b), and (c) lead to equations (25), (28), and (34)
for four constants A, B, C, and D. But previously it has been shown
that

lim  83% = 5,*(1 + D)
£ —>o

Thus it is seen that D merely determines the downstream boundary-layer
thickness, whereas A, B, and C determine the local character of the
perturbation. Therefore, if the downstream thickness can be estimated,
there will be a determinate problem. Assume for the present at least,
that D is determined. The constants A, B, and C can then be solved
for from the following equations: N

A?\2=B?\1+C?\3‘%

A=B+cC -2
]11.:n

AP = BN 2 + Cag?
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The. solution is

s ) ey AN o )
N R CRD S A TR Cn e
5 s (73 -(:i)zxzz)- ) (- %) NOE )\S?(\ig - A) (' %) )

Ao

w) + (23 - 1) (2 - A3) (- oo) ]

no
a

Q
I
5|
5o

_ -+ ) (_
(A3 - A)(Pe - 7\3

Evaluation of D.- It is seen from equations (35) that the local
perturbations are determined once the constant D 1is specified. As
it has been shown that D characterizes the thickening of the boundary
layer through a shock, it can be determined approximstely by the
following consideration.

-

When a weak shock is incident upon the boundary layer, it is assumed
that the KArmén momentum-integral equation

ap 5 du T
%““eijﬁl'ﬁe*(z*’ae_)uidxe]: 5
e (5] peue

is valid throughout the disturbed boundary-layer flow. For a given pres-
sure distribution, the growth of the boundary layer is governed by this
equation. When a shock 18 incident upon the boundaery layer, it has been
theoretically predicted and experimentally verified that the flow up-
gtream of the point of incidence is separated over a considerable portion
of the disturbed flow; hence the shear stress becomes relatively unimpor-
tant. Downstream of the point of incidence, since the flow is dominated
by pressure forces, whether the flow is laminar or turbulent the shear

is known, from experimental results, to be very small (reference 18).
Hence for the present approximation, the shesr stress can be neglected.

Furthermore, if the ratio 5%/0 = H is regarded as a parameter,
the momentum equation gives the momentum thickness as a function of ue(x).

Now, it is known that H i1s substantially increased by the shock, and
to a lesser extent by the compressibility. In going through a shock, H
first increases because of the shock and then decreases because of the
drop in Mach mumber. Hence, as a first approximation, H can be taken
to be some constant average value over the interaction range. (This is
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similar to the procedure mentioned by Nitzberg and Crandall (refer-
ence 19).) In particular, H will be teken as the value shead of the "

interaction.

The momentum-integral equation now becomes:

(2 + m)L 2
+ (2 + H)—
. lle

B
g

or
d 2+H
n (loge fpeue ) =0

Integrating between reglons 1 and 3, stations far upstream and downstream
of the point of incidence,

2+H 2+H
Glplul = 63p3u3

or

2+H "
?i_gl;u_l (36)
51* - p3 u3

For leminar flow over a flat plate where L « T, Pr =1,
and (OT/dy), = O, the formula given by Lees (reference 20, p. 119)

for H can be taken:

H = 2.50 + 3.50(1—5—1)Mm2
The thickening predicted by equation (36) is shown in figure 3.

Values of the density and velocity ratios were computed exactly and to
first order in the deflection angle. TFor small deflection angles, the
agreement between the "exact" thickness ratio and that obtained from
linear theory is quite good. The crosses on figure 3 are the experi-~
mental values for various Reynolds mumbers obtained by Barry, Shapiro,
and Neumann (reference h), and there 1s fair agreement between theory
and experiment. Actually, the experimental data are visual estimates of
the ratio of boundary-layer thicknesses, so that for a comparison between
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theory and experiment, the ratio of boundary-layer thickness to displace-
ment thickness would have to be assumed to be the same upstream as well
as downstream of the point of incidence. In view of the assumption and
the allowable experimental error in the visualization of schlieren photo-
graphs, the experimental values must be regarded as qualitative. The
theoretical values of the thickness ratio are near the lower limit of the
experimental values. This is probably due to the fact that the value

of H was underestimated, since an average H through the interaction
range would be larger than the initial value.

Evaluating D according to the linear theory,

-8—3;)(.— pl >2+H
¥ u3

51 D3
and
o, 2
P3 m,,
u
hence
2+H
p
(1 =l+(2+H—Mm2)g£
p3u3 m,
But
83*
EF=1+D
Therefore




NACA TN 2868

32
Now since
= 2.50 + 3.50(7 > l)Mge
p =250 - 0.3v.) (37)
Effects of Downstream Thickeniﬁg
Consider the constant A governing the upstream flow:
po (M3 M) (-29) ws (.2
(% - M3)(%2 - )\ Pl (B2 - )R - M) e
or
A= .__2_6 -()\3 + ?\l) N 7\17\3 ()-I-.5O - 0.3M°°2>
ez - M) (R - M) (e - Mg)(Re - M)\ e

The coefficients are given 1n taeble I; hence it is seen that for all
cases in the present range of Mach numbers and Reynolds numbers the con-
tribution of D toward A amounts to less than 10 percent. Thus it is
seen that, in the present range, a precise knowledge of the downstream
thickness is not essential to the determination of the upstream flow.

The effect on the downstream flow is not quite so straightforward,
since two constants B and C are involved. As an indication of the
downstream flow, consider the pressure distribution along the wall. It
has been seen that, far downstream, the pressure attains a constant
value, namely the pressure that would have been anticipated had there
been a regular reflection. Immedlately behind the point of incidence the
pressure is much lower than this end pressure since the flow has just
undergone an expanslon to the pressure that existed before the point of
incidence. The manner in which the pressure proceeds from its value at
the origin to its final downstream value is then of some importance.

Does the pressure increase monotonically to its final value, or does the
pressure at any point rise higher than the final value? Liepmann (refer-
ence 3) has found experimentally that for the reflection of a shock wave
from a laminar boundary layer there indeed exists a definite downstream
overcompression. The pressure rises sharply to some value higher than

1
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the end pressure and then tapers off. The experimental findings of Barry,
Shapiro, and Neumann (reference 4) also confirm this observation, although
their results show the overcompression to be slightly less pronounced.

- Consider the behavior of the theoretical downstream pressure distri-
bution. Along the interface the total pressure is given as

X X
AEF e
P3 = Dy - 7Muo2p0 B-)\le 170 + C?\3e 3" _ %—: (38)
and
oYM 2
P3_—)Po<l + o, ; (39)
X
as — = g-%oo
(o]

so that far downstream, consistent with linear theory, the correct pres-
sure behind the regular reflection is obtained. Then

B = (h + %) (2e)+ Mo /D>

(A3 - M)(Pe - M) CERCE A )\

vherein ¢ >0 and D >0. Now Ap >0, A <0, and A3 <O, where Ap
and Ay are of the same order of magnitude, while K3 is about ten
times as small. Hence B < O.

Consider

c - -(Ap + Nq) AW MAs D
(r3 -(7\1)(7\2 - ?\3)< mm) (A3 - M) (e - 7\3)( mm)

_2e| (ot ) o ‘7‘1?‘2 fi.50 - 0.3Mm2>
Tol(h3 - M)(%e - 23) (A3 - M)(he - Ag)\
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Now the second term is always negative in the Mach mumber range considered,
whereas the first term may be either positive or negative depending upon
the sign of Ay + Ay. It turns out that for M, > 2.4 (approx.) the

first term is positive, hence C > 0. For M, < 2.k (approx.) the first
term is negative, but

(R + N) . MM fir.50 - O.3Mm2>
(s - )02 - 23)| (3 - M)(2 - ng)\ e

hence C is positive. Thus for the whole range of Mach numbers and
Reynolds mumbers, C > O.

The gqualitative behavior of the downstream pressure distribution
will now be established. The downstream pressure along the interface is

X X
p3 = By + M D, -fi + M, (—B?xle)\lSO* - 07\3e7‘350*>

The first two terms represent the constant end pressure while the third
actually describes the variation of the pressure. Consider the curve

X_ A ==
* *
It is known that B <0, C >0, A} <O, and A3 < 0; hence -BN <O
and -013 > 0. The constants B and C are of the same order of magni-
tude, but A3 1s about ten times as large as 2A3; hence

|| > |c7\3|

Therefore, wvhen x = 0, y is negative and, when x becomes lerge, ¥y 1s
positive but small. The point at which the maximum occurs is given by

2
(50* v N-MT CA32
max
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If

A X ) X
Yy = —B}\le 150* - Chge 300%

is now interpreted as the pressure varietion, it 1s immediately seen that
the theoretical pressure distribution exhibits the overcompression that
is observed experimentally.

RESULTS AND DISCUSSION

It has been seen that if the downstream thickening is estimated,
the constents A, B, and C are completely determined as functions of
the flow parameters. With the outer flow thus determined, the boundary-
layer growth and pressure distributions can now be computed, and hence
the effects of Mach number, Reynolds mumber, and shock strength upon the
upstream influence and the location of the separation point can be
studied. (Of course, when the results are compared with experiment, the
Reynolds numbers must be low enough so that the boundary layer will
remain laminar, prior to the interaction, in the corresponding experi-
mental case.) .

Upstream Influence
In order to estlimate the upstream influence of the interaction,
define a length in which the pressure on the boundary-layer displacement

thickness decays to a specified fraction of its amplitude at the origin.
This length would then be determined solely by the exponent An. For

example, consider the upstream boundary-layer disturbance:

At the origin

8,%(0) = -mAB ¥
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It xd/Bo* is defined as the distance required in order that
51% = a(-mAS.*) at xd/Bo* vhere a < 1,

X

a(—mwASO*) = _mwAso*exg’azi

Therefore
80* )\2 € a

Since a 1is a constant it is seen that the upstream influence is then
inversely proportional to Ao. Values of ke have been plotted in fig-

ure 4. (Values of Ay and A3 are plotted in figures 5 and 6, respec~

tively.) For fixed Mach number, xd/SO* increases with increasing

Reynolds number. For large Reynolds number, this dependence can be
deduced from the equation:

g g )
A+ 32, (2. —IJN + 2} =0
g) gy, &L gl
The coefficients are functions of Mach number and for the range of Mach
numbers considered, the roots are real. When the Reynolds number is
large, it can be shown that

)\2 Q:E
-8),

vhere g),(Re ) <0 and g) <Re. This is in agreement with Lees'
L\ 4

1/2.

result. Consequently, for large Reynolds numbers, xd/BO* « Re For

fixed Reynolds numbers, the upstream influence decreases with increasing
Mach number as indicated in figure 4(b). If the disturbance is considered
to decay to, say, 5 percent of its amplitude at the origin, it i1s found
that, at the high Reynolds mumbers, and Mach munbers about 2 or less,

the upstream influence is of the order of 30 boundary-layer displacement
thicknesses.
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The result that the upstream Influence increases with Reynolds num-
ber may appear to be disconcerting since the viscous effects are expected
to be more prevalent at the lower Reynolds numbers and hence to produce
a greater influence upon the upstream flow. This apparent paradox arises
because the upstream influence has been measured in multiples of a length
which is also dependent upon Reynolds number. If the absolute values of
upstream influence are considered,

X
-4 « Rel/2
B,% t

But
1 1
50* @ o« =
172 Re
ReX
hence
X3 60* Rel/2
or

-1/2

xd «< Re

Thus, measured on an gbsolute scale, the upstream influence increases
with decreasing Reynolds number.

As defined above, the distance of the upstream influence is depend-
ent solely upon Mach mumber and Reynolds number. It can be redefined so
that it will also depend upon the shock strength. This is accomplished
by defining the upstream influence to be that distance at which the dis-
turbance decays to a given fraction of the undistrubed value. The per-
turbed boundary-layer displacement thickness ahead of the point of inci-
dence is given by:

where ©8p* is the undisturbed displacement thickness. The upstream
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influence is then the distance xd/Bo* to the point where B % = b ¥
and b < 1:

X
X
O ¥ = -m AB ¥e 200
X,
b
o]

*a_ _ 1, Tt
57 =R e

Now A 1is negative and decreases with increase of the deflection angle,
so that for fixed Mach mumber and Reynolds number, the upstream influ-
ence decreases with shock strength. If the upstream influence is mea-
sured to the point at which the disturbance decays*to 5 percent of its
undisturbed value, b = 0.05. In figure 7, xd/So is plotted against
deflection angle. For € S 20,.the results seem to agree fairly well
with the experimental values presented in figure 10, reference 2. For
larger deflection angles, however, the théoretical values are too low in
comparison with the experimental values. This might be due to the fact
that the linear theory becomes less accurate as the deflection angle
increases.

" Boundary-Layer Separation

Since the outer potential flow is known, the point of separation
can be computed on the basis that separation occurs when (du/dy), = O

Now Ou/dy is proportional to Ju/y' so that one can just as well use
(du/dy')y;, = 0 as a criterion for separation. In view of the assumption

of a Pohlhausen velocity profile, in the transformed plane

Ju Ue A
- = —(2 4
(By')w 5'( * 6)

hence, as in the incompressible case, separation occurs at A = -12.

Now it is known from experience in the incompressible case that, in
regions of retarded flow, the KArmAn-Pohlhausen method gives values of
the skin friction that are too high and consequently predicts separation
too late or not at all. This feature of the method is also to be
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expected in the compressible case, since it was shown by Howarth that

the effect of compressibility is equivalent to exasggerating the pressure
gradient in the incompressible case (reference 13). In particular,
Stewartson has used the KArmin-Pohlhausen method to treat the case of
flow against a linear pressure gradient and has shown that the predicted
distance from the leading edge to the separation point is an overestimate
of the actual value (reference 21).

In the present problem, where the flow upstream of the point of
incidence is subject to a positive pressure gradient, the same overesti-
mation of the separation point will, of course, be expected. But the
effects of Mach number, Reynolds number, and shock strength upon the
separation point are of primary interest, so that inaccuracy in the abso-
lute values is unimportant.

It is known from the boundary-layer theory that the parameter that
defines the separation point is

-

12
A=(8) due(l+7-1Me2)

Vo dx 2
By neglecting products of wu' and its derivatives,

A = EB')E/VCZI(U/U)(du'/dx)

Now, from equation (6), to the order of approximation,

3-27
Ao Re Bo¥ o1 du'
37 _ 263 \® ax
315 6300

Along the edge of the boundary layer, from the upstream solution (see
equation (18))

2 X
aut _ N AR
ax = T B *
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so that

=2y X
2 =
A Re %2 07_1 ex250*

A =

37 _ 263 \?
315 6300 |
For separation (
©3-2y . %s
2 275 5 B
1o = A Re 7\2 07_1 e7\250* ‘
37 _ 263\ ;
’ 315 6300 j
Xg 1 A Re ng
5% -~ o loge \——35 B (%0)
where
3-27
7-1 !
p=—O S
2
37 _ 263 \*-
315 6300 .

and %2 is positive, hence separation ahead of the point of incidence

will be predicted only when -i%-A Re %226 > 1.

Contrary to the separation phenomenon in ordinary boundary-layer
flow, the location of the separation point is influenced by the Reynolds
number. This is easily understood when one considers the fact that
separation of the flow is controlled by the pressure gradient of the
outer flow; according to boundary-layer theory, the outer flow depends
solely upon the geometry of the body. Consequently, the location of the
separation point is independent of Reynolds number. In the present
problem, however, an outer flow that is compatible with the boundary-
layer flow has to be found. This relationship is expressed by the condi-
tion which requires that the direction of the potential flow be the same
as the slope of the displacement thickness. Since the boundary-layer
growth depends upon the Reynolds number, the outer flow, and eventually
the separation point, must also vary with Reynolds number.
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In order to determine the effect of shock strength upon the position
of the separation point, the constant A must be examined:

=__2£l— (a+n) A3 >/u,5o _ O.3Mm2>
Bol(h2 = A3)(P2 - A1) (P2 - A3)(he - M)\ e

For the range of Mach numbers and Reynolds numbers considered, the terms
in the bracket are positive, since A, >0, A <O, and K3 < 0. There-

fore as € 1s increased A becomes more negative; consequently

- f%.A Re KQQB becomes more positive and hence the separation point moves

upstream. Thus an increase of shock strength increases the distance
between the separation point and the point of incidence.

To express Xq/Bo* explicitly in terms of Mach number and Reynolds

number would be difficult; hence this relationship will be presented
numerically by varying, separately, the Mach number and Reynolds number.
In figure 8, lines of constant Reynolds . number are plotted in the
xs/SO*,e‘ plane, and the separation point, measured in multiples

of Bg¥*, moves upstream with increasing Reynolds number. This is not

too surprising since the same behavior occurs with the upstream influ-
ence. As the upstream influence increases, the "self-induced" pressure
gradient will begin farther upstream and hence separation will occur
farther upstream. For fixed Reynolds number, the upstream influence
increased with decreasing Mach number, and accordingly (see fig. 9)

the separation point, measured in multiples of 8o¥%, moves upstream with

decreasing Mach number.

Before closing the discussion on separation, the importance of D
in the determination of the separation point should be discussed. The
coefficients in the expression for A are such that, for fixed Reynolds
number, Mach number, and deflection angle, the magnitude of A increases
as D 1Increases. The separation point has been seen to move upstream
as A 1is increased in magnitude, hence an overestimation of the down-
stream thickening would result in a slight overestimstion of the upstream
distance to the separation point. In figure 9 the variation of separa-
tion point for .different Mach numbers has been plotted for fixed Reynolds
number. The location of the separation point for the case D = 0 has
also been plotted in this figure. These curves thus give the greatest
lower bound of the separation distance since it is known that actually
D >0. A comparison of results reveals that D has a very small effect
upon the location of the separation point. For the higher Mach numbers
in the range investigated, the percéntage difference between the two cases
mey be fairly large, but the fact that the separation distance is mea-
sured in multiples of a boundary-layer displacement thickness must be
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considered. In an actual experimental measurement of the absolute dis-
tance to the separation point, this difference will be extremely small.
Hence, for practical purposes, one can consider D = O when estimating
the separation point. The results obtained under such conditions will
then yield a slight underestimation of the separation point.

Pressure Distribution

The pressure disturbance along the wall (fig. 10) decays exponen-
tially from a definite value at the point of incidence to zeroc far
upstream of that point. Downstream of the polnt of incidence the pres-
sure rises to a meximum value before dropping to the value corresponding
to regular reflection. This downstream overcompression has been observed
experimentally, and it eppears to be a characteristic feature of shock-
wave Interaction with a laminar boundary layer. The Lees' theory, as
mentioned previously, failed to predict this downstream behavior. This
is due to the fact that an incomplete solution for the pressure was used
in the determination of the pressure distribution. The boundary layer
was divided, longitudinally, into four reglons, and it was assumed that
the solutions to a third-order differential equation were valid in each
region. In the two reglons that extended to positive and negative infin-
ity, certain solutions could be rejected since they became infinite at
the ends of their respective regions. In the finite regions, however,
the complete solutions must be reteined. The incompleteness of the Lees'
theory, then, arises from the fact that only one term of the general
solution was used in each of the finite regions.

The linear theory yields pressure distributions that are similar
irrespective ‘of the size of the deflection angle. Now for very small
angles, the experimental results exhibit the general behavior predicted
by theory. In figure 10 the experimental values of the pressure distri-
bution have been plotted for ¢ = 1° and M, = 2.05. (In this case,

separation has probebly not occurred since the wave is quite weak.) The
values of the pressure ratio were taken from figure 13 of reference 4
and converted to the scale indicated. The upstream portion of this
curve can be well represented by an exponential curve, thus verifying,
at least for this case, the predicted exponential pressure rise. For
larger deflection angles, the experimental pressure distributions are
characterized by the familiar pressure "bump" ahead of the point of inci-
dence, thus indicating that separation has occurred. The linear theory
is inadequate, as regards predicting this upstream behavior; hence for
large deflection angles the theory must be modified, possibly by taking
account of the second-order effects upstream of the point of incidence.
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SHOCK-WAVE INTERACTION WITH A TURBULENT BOUNDARY IAYER

Method of Approximations

When the flow in the boundary layer is turbulent, the Kirman
momentum-integral equation will teke on the same form as for the laminar
boundary layer except that the quantities involved are not the exact, but
average, values. However, since general relationships between the shear
stress and the mean velocity in turbulent layers have not yet been estab-
lished, rigorous treatment of the problem at this time is, of course, not
possible. Here, for the purpose of exhibiting the characteristic d4if-
ference between the laminar and turbulent cases, certain approximations
are proposed.

The momentum-integral equation expresses the shear stress at the
wall in terms of the growth of the boundary-layer momentum thickness and
the velocity gradient. Using experimental results as a guide, the rela-
tive Importance of these terms can be estimated. Experimental results
of Fage and Sargent (reference 18) show that the shear stress in front
of the shock is practically constant; behind the shock, it is very small.
Therefore, unlike the laminar case, the shear stress to the first appproxi-
mation, both in front of and behind the shock, can be regarded as con-
stant and hence has no effect on the perturbed flow. It follows then
that, in the case of a turbulent boundary layer, the growth of the momen-
tum thicknmess is influenced primarily by pressure changes due to the
presence of the, shock.

To simplify the problem further, it is noted, for practical pur-
poses, that the shape parameter H = &%/6 is relatively insensitive to
change even though there may be a considerable adverse pressure gradient.
In the transonic case, where there is a normal shock in the local super-
sonic reglon and a large change in H i1s anticipated, H at its maximum
1s only increased by a factor of about 1.2 (see reference 2). The reason
for this 1s possibly the fact that the increase by the shock may be
counterbalanced by a decrease due to compressibility effect. Moreover,
in the momentum-integral equation, the coefficient of the velocity gra-
dient is positive and usually greater than unity within the Mach number
range; hence one can ignore the slight variation in " H and consider 1t
a constant. By the same token, the Mach number in this coefficient can
also be considered to be conmstant. (The Mach number enters when the
density is eliminated in terms of the velocity.) Consequently, the
momentum-integral equation reduces to:

1
i.é+a,3.d_l}_.=o
dx ax
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where

a3 =2 + H - M2

Solution for Oﬁter Flow

Similar to the previous case, for the upstream region _
$1 = £(& - m_n). By applying the original condition da/de = d@/dn
at 1 = 0, there is obtained from the linear theory

£ = foém“/a3(§'mm") + Constant

Since m,/a3 >0, the disturbances vanish far upstreem. When a3 is

evaluated the exponent nmJaB is found to be about one order larger
than A, of the laminar case. This 1s the well-known experimental

result that there is very little upstream influence in the turbulent
case. This, therefore, confirms the hypotheses made in the previous
section.

For the downstream solution

¢3=g(§—mwn)-;f~j(§+mmn) \

The original differential equation remains the same; hence the down-
stream solution would be

£ + Constant

oo Jw/ag(E-mgn) 26
¢3 &o€ o,

It shows that 1f the solution ¢l is contimied to the downstream side

the velocities would become infinite at positive infinity and must be
rejected. There 1is therefore a principal difference between the laminar
and turbulent cases. In the laminar case several solutions for the outer
flow were obtained and the solution appropriate for either upstream or
downstream could be chosen. In the turbulent case ‘there i1s no choice
since there is only one solution for the cuter flow, which, if continued,
falls at positive infinity. This indicates that linearization of the
flow is incapable of accounting for the flow near the polnt of incidence
where the nonlinear effects become important. Since large changes in
flow velocities can be brought about only through a shock, in the pres-
ent problem a reflected shock must be considered.
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From general considerations it can be argued that if one puts a
shock wave between regions 2 and 3 and considers perturbations of a regu-
lar reflection it may be possible to obtain a solution which will satisfy
the conditions at infinity. By perturbing the regular reflectlon, there
would be, in each region, undisturbed quantities plus their perturba-
tions. Consider the total potential in region 3:

03 =& + £(t - myy) + gt + mgy)

At infinity f£' = g' = 0; along the reflected wave ¢ - m3n = 0, to first
order, the velocities are constant; hence

f' + g' = Constant

But to first order, along the wave, £'(0) = Constant; hence 7
g'(€) = Constant. Therefore, g'(&) is constant throughout region 3.
But g' = 0 at infinity; hence g' = 0 in region 3.

Then at the boundary layer 4 A/d¢ = -m3f'(§) vhere f is nondi-

mensional, and the substitution into the momentum-integral equation
yields

-m3f, + CL3f' t = O
mafa
f = Constant + fse 3/ 3¢

£t = £ 2% em3/a3§

Now f' =0 at infinity; hence one must choose fo = 0, and thus

£ = Constant

This means that behind the reflected shock, the flow, to the first order,
is uniform. Since the flow behind the incident shock has undergone com-
pression up to the reflected wave, 1t can be seen that, to satisfy the
condition at infinity, the reflected shock must be followed by a very
rapld expansion. Otherwise, the pressure after the second shock would
have been higher than that after the regular reflection. It is there-
fore concluded that in the case of a turbulent boundary layer the inci-
dent shock is reflected as a shock and behind the reflected shock there
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must be an abrupt expansion so as to cancel the overcompression brought
about by the train of upstream compression waves. The existence of the
sharp expansion behind the reflected shock was also confirmed by experi-
ments (reference 9). The pressure distribution and boundary-layer
growth, to the first order, appear to be discontimious as shown in fig-
ure 12.

Downstream Thickening for Turbulent Boundary Layers

The downstream thickening can be estimated by use of the formula

2+H

53* pl U.l
81% ~ P3lug,

P3\u3

Now the difference between the laminar and turbulent cases is that H
differs for the two cases. Since, in general, Hy < H;, the downstream

thickening in the turbulent case is less than the thickening in the
corresponding laminar case. Empirical relations mist be relied on to
estimate H because of the lack of knowledge of the compressible turbu-
lent boundary layer. According to Nitzberg and Crandall (reference 19),
for local Mach numbers greater than the free-stream Mach number, but
less than 1.4, the compressibility effect is well approximated by

H=HM=O(1+%M2)

Use this relationship to estimate the downstream thickening and
then compare the results with the existing experimental data. By
assuming a l/7-power law for the incompressible profile,

H = 1.29(1 + O.MMmE)

The predicted thickening is shown in figure 13. It shows that the down-
stream thickening increases as the Mach number is decreased. This
behavior is also present in the laminar case.

Using this value of H, it was found that the predicted thickening
for Mo = 1.4 and €= 4.5° is larger than the visually estimated
thickening in the experimental case. On the other hand, the predicted
thickening for M, =2 and € = 6° 1is s8lightly less than the visually
estimated thickening in the experimental case. It should be noted, how-
ever, that, for M > 1.4, a relationship has been uséd that is supposedly
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valid for M < 1.4. Moreover, this relationship merely accounts for the
effects of compressibility. It would appear that some effect of the
shock must also be included in the determination of H. However, at
this time, owlng to the lack of exact information, 1t must be neglected.

Consequently, it appears that if the relation H = 1.29(1 + O.hM@?) is

used for Mach numbers not too much larger .than l.h, one can expect to
have a minimum estimate of the downstream thickening.

SUMMARY OF RESULTS

An investigation of the reflection of a wesk shock weve from a
boundary layer along a flat plate yielded the following results.

Laminar Case
1. In all cases investigated, the pressure along the wall overcom-
presses downstream of the polnt of incidence. The pressure disturbance
decays exponentially from a definite value at the point of incidence to
zero far upstream of the point of incidence. Downstream, the pressure
rises to a maximum value and then falls, gradually, to the constant
value corresponding to regular reflection.

The exponential pressure rise appears to be verified in the case of
a shock deflection angle of l°, since separatlion has probably not
occurred. For larger deflection angles (the next larger angle for which
there are experimentsl pressure distributions is 30), the experimental
pressure distributions exhibit the familiar pressure bump between the
separation point and the origin. For these angles, a true comparison
between experimental results and theoretical results cannot be made
since the present theory does not account for the effects of separation.

2. If the upstream influence is considered to be the distance to
the point at which the disturbance has decayed to a specified fraction
of its amplitude at the origin, the upstream influence, when measured 1n
multiples of the boundary-layer displacement thickmess g%, is found to

increase with increasing Reynolds number: x/8,% « (Re/mm,)l/2 where x
i1s the coordinate parallel to the flow direction, Re is the Reynolds

number, my, = 2. l, and My 18 the free-stream Mach number. For
J

decreasing Mach number, the upstream influence also increases. If the
disturbance 1s considered to decay to, say, 5 percent of its amplitude
at the origin, the upstream influence for My, =~ 2 and Re = 1500 is of

the order of 30 boundary-layer displacement thicknesses.
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3. The pressure gradient is such that the boundary layer may separate
ahead of the point of incidence. In the event of separation, an increase
of shock strength, for fixed Mach numbers and Reynolds number, increases
the distance between the separation point and the point of incidence.

For fixed Mach number and shock-deflection angle, the separation point
measured in multiples of J&po¥ moves upstream with increasing Reynolds

number. For the case of M, =,1.4t and Re = 2000, the boundary layer
separates for all flow-deflection angles ¢ > 1.03°.

For fixed Reynolds number and shock—deflection angle, the separa-
tion point, measured in multiples of Jo¥, moves upstream with decreasing

Mach mumber.

For a complete determination of the constants of integration, an
estimate of the downstream boundary-layer thickness was required. TFor
the cases investigated, the effect of the downstream thickening on the
outer flow is rather small. In fact, for practical purposes, this effect
of downstream thickening can be neglected in the determination of the
separation point. The distance between the origin and the separation
point will then be slightly underestimated.

4. The present theory is applicable only in the case when a weak
shock is incident upon a laminar boundary layer. In addition to the
outer flow field, the boundary-layer displacement thickness has also
been linearized. The latter linearization enables a linear differential
equation with constant coefficients to be obtained for the perturbation
velocity potential. This equation immediately yields the general solu-
tion of the outer flow. Upon investigating the slze of the perturba-~
tions, the maximum velocity perturbations are found to be about 10 per-
cent or less. The thickness perturbations, on the other hand, are much
larger, being about 30 percent near the origin; thus the linearization
of the displacement thickness becomes gquestionsble as the point of inci-
dence 1s approached. Had the displacement thickness not been linearized,
a rather complicated nonlinear differential equation would have been
obtained from the boundary condition for the perturbation velocity poten-
tial. A solution of this eguation would be expected to yield more accu-
rate results. However, it is problematical as to whether the equation
could be solved without the imposition of additional assumptions which,
in themselves, might mullify- any accuracy that the nonlineer boundary
condition may provide.

Turbulent Case
In the case of shock-wave interaction with & turbulent boundary

layer the upstream influence 1s found to be considerably less than in
the laminar case. In addition, to first order, the incident wave must
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be reflected as a compression wave followed immediately by an expansion
wave, so that the end pressure condition is satisfied.

Cornell University
Ithaca, N. Y., January 11, 1952
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CCEFFICIEHTS USED IN LETERMINING COMSTARIE OF INTEGRATIOR

us * “(h + N) MM {23+ %) “Ashs (P + M) A%

M Re o —2 AN "y S A\ / 273 2 / 172
Vo [ (e M)(P2 M) [ (e - 2)(Re - M) | (P - M)(Re - M) [ (Bs - 2)(Re - 2 | (B3 = 2)(Re = 3s) | (B~ M)(Re = 2y)

144 250 2,970 0.06h2 0.965 0.02%0 2,020 -0.961

500 3.810 .0k35 1.771 0225 2.370 -.980

1000 4.880 .0282 2,822 L0179 2.050 -.959

2000 6.600 L0192 L. 360 0136 2.230 -.977

2] 250 1.103 0.05h8 0.747 0.0h53 0.357 -0.592

500 1.578 .0k39 1.168 .0383 .ho8 -.994

1000 2.182 .0330 1.81% L0311 ) -.998

2000 3.070 .0R3% 2.679 .022h .396 -.999

2.5 250 0.ho2 0.0366 0.698 0.07653 -0.29% ~1.,0k3

00 651 .0363 1.038 0706 -.386 -1,034

1000 1.018 0326 1.h472 0558 ~.k55 -l.022

2000 1,540 .0287 2,025 L0h3h -.488 -1.01%
%’/
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Figure 1.- Simplified model of shock-wave boundary-layer interaction.
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Figure 2.- Bhock-wave boundary-layer interaction showlng choice of axes.
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