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INCLUDING NONLINEAR THICKNESS EFFECTS

By Milton D. Van Dyke
SUMMARY

A solution to second order in thickness is derived for harmonically
oscillating two-dimensional airfoils in supersonic flow. For slow oscil-
lations of an arbitrary profile, the result is found as a series includ-
ing the third power of frequency. For arbltrary frequencies, the method
of solution for any specific profile is indicated, and the explicit
solution derived for a single wedge.

Nonlinear thickness effects are found generally to reduce the
torsional damping, and so enlarge the range of Mach numbers within which
torsional instebility is possible. This destabilizing effect varles only
slightly with frequency in the range involved in dynamic stability analy-
sis, but may reverse to a stabilizing effect at high flutter frequencies.
Comparison with a previous solution exact in thickness suggests that
nonlinear effects of higher than second order are practically negligible.

The eanalysis utilizes a smoothing technique which replaces the
actual problem by one involving no kinked streamlines. This strategem
eliminates all consideration of shock waves from the analysis, yet
yields the correct solution for problems which actually contain shock
waves.

INTRODUCTION

As linearized supersonic-flow theory is increasingly applied to
problems of unsteady motion of lifting wings, the results are sometimes
advanced with the warning that they may be significantly affected by
nonlinear effects of thickness. Such caution is Jjustified because it is
known that even for steady flow, linearized theory is often inadequate
for predicting the pitching moment - and prediction of moments is one of
the main objectives of unsteady-flow theory. It may be anticipated that
nonlinear effects will become increasingly important as the Mach number
falls toward unity, particularly for slow oscillations.
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In the present work the effects of thickness are determined for a
harmonically oscillating two-dimensional airfoil by calculating the
second-order solution. This is the counterpart for unsteady motion of
the well-known steady-flow result of Busemann (ref. 1). First, for
slow oscillations a solution is found for an airfoll of arbitrary pro-
file. The result is given as a series which includes terms up to the
third power of the frequency. Second, for arbitrarily high frequencies
it is shown that a solution can be found for any specific airfoil, and
the solution is carried out explicitly for a single wedge. Finally,
comparison is made with a previous solution for the wedge which is exact
with respect to thickness (refs. 2 and 3), in order to assess the effects
of nonlinear terms of higher than second order.

Extensive use is made of a smoothing technique, which replaces the
actual problem by one having no kinked streamlines. This strategem,
which has been used previously and mey prove useful in future problems,
eliminates all consideration of shock waves from the analysis. It,
nevertheless, leads to the correct second-order solution for the actual
problem, which does involve shock waves.

METHOD OF ANALYSIS

Statement of Problem

Consider a uniform supersonic stream flowing past a sharp-nosed
airfoil which executes prescribed harmonic oscillations. We shall be
concerned with calculating the instantaneous pressure at the surface of
the airfoil and, hence, the unsteady 1lift and pitching moment. It is
usually the custom to consider the oscillation to be compounded of a
rotation (say about the midchord) and a vertical translation (plunging),
which are not generally in phase. However, we shall here limit atten-
tion to the special case of the airfoil pivoted about an arbitrary point
downstream of its leading edge. This is no real restrictlion because the
plunging case can be recovered by letting the distance to the pivot tend
to infinity and the angular amplitude of oscillation tend to zero, their
product remaining finite.

Although the iteration procedure to be employed ylelds a formal
result for any Mach number greater than unity, the solution probably
breaks down when the flow becomes sonic at any point. Since this occurs
at a Mach number somewhat higher than that for bow wave detachment, the
upper and lower surfaces of the airfoil operate independently in the
probable range of validity of the solution. It is therefore sufficient
to consider only the half field of flow lying above the airfoil, and
this viewpoint will be adopted henceforth.
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Choose the origin of coordi-
nates at the mean position of the
leading edge, with the x axis
extending in the direction of the
free ptream (sketch (a)). Then
it is convenlent to describe the
upper surface of the airfoll in
1ts mean (zero angle of attack)
position by

Sketch (a).- Coordinate system for
oscillating airfoll.

¥y = ¥(x) = ¢ g(x) (1)

Here € 18 a small parameter representative of the airfoil thickness,
so that the function g is of order unity. Now let the airfoil pivot
about a point lying a distance b downstream from the leading edge, and
perform harmonic osclllations of frequency « and amplitude aq, B0
that the angle of attack, which is the angle between the instantaneous
position of the airfoil and its original mean position (sketch (a)), is
given by

@ =, cos wt = aoei“t (2)

(Here, as In all1 that follows, it is implied that actual physical
quantities are given by the reel parts of their complex representations.)
Then, at any instant the moving upper surface of the airfoil is described
implicitly, to second order in thickness and angle of attack, by

y = € glx-ay) - (z-b)a (3a)

Now, if the airfoil is smooth (so that the function g is differenti-
able), the equation of the surface can be written explicitly as

y = € g(x) - axel¥t (x-b) (3b)
with an error of order (eza,ea?), which is of third order and, conse-

quently, negligible in the present second-order analysis.

Perturbation Equation

The entropy changes due to shock waves are of third order in the
airfoil thickness and angle of attack. Hence, to second order the flow
is irrotational and isentropic. Because it is irrotational, there exists
e potential function )} whose gradient yields the velocity vector:
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o } (4)

Bernoulli's equation for plane unsteady flow can be written (from
egs. (14.04) and (9.06) of ref. k)

> u
q = grad Q,

<
non

2 2
Qp + (@ ++v2) +8 -8 1¢2 (5)
2 y-l y-1 2

Here a is the speed of sound, and &5 1its value in the free stream,
where the flow velocity is U. Differentiating this expression with
respect to time t, and using the fact that d[a®/(y-1)] = a%dp/p
(ref. 4, eqs. (9.03) and (9.06) gives

2

Qtt + uug + Vv + %T pt =0 (6)

This, together with the corresponding results obtalned by differentiating
with respect to x and ¥y, can be used to eliminate derivatives of the
density from the continuity equation (ref. L4, eq. (7.08.2))

py + (Pu)y + (ov)y =0 (1)
The result is that the velocity potential satisfies the equation
(8%-02) Oxx + (8%-0y%) Oy - 20,00y - 20x0xt - 2090yt - Qtt = 0 (Ba)
where, from equations (%) and (5),

82 = ad® + I3 (V7 - & - 0y® - 20%) (80)

Now introduce a perturbation potential &, normalized through division
by the free-stream velocity U, by setting

Q (x,y,t) =U [x+ ¢ (x7Y;t)] (93)

so that the velocity components are given by

1+ ¢x

Oy (9v)

cl<dcle
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Then substituting into equations (8) gives

(1-17) Oy + -2 Uﬁq’xt' EMgg%t = M [(7—1) (tbx + %’9 + E#) (Gxxtyy) +

2 2,
(20,4+0,5) 0y, + * "0y + 2(l+®x)¢y®xy +

2 (0,0, + 0y04) J (10)

For purposes of a second-order solution (and to higher order a potential
does not exist), the triple products on the right-hand side can be dis-
regarded. Thus, the perturbation equation becomes finally

2 ' )
ny‘Bzoxx- 2 %f®xt - %g@tt = M2 [(7-1)(¢x+-32)(®xx+¢yy) +

20x0xx + 20ydxy + '26 (0x®xt + °y°y‘c)](ll)
where B2 = M® - 1.

Pregssure Relation

Dividing the Bernoulli equation (eq. (5)) by a2/(y-1) gives

2 -1 242420 o
-%=1+L2—M2<l-—_—_—'—u+U2 t) (l‘—)

The flow is isentropic to second order, so that

i a?‘> Do 2

i =_—\7-1 =
2 k4 1

Po 8.0

and it follows that the pressure coefficient at any point is given by

y
c= PP _ 2 [, 7L e w205\ 72 (13)
D 2 -
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Substituting the velocity components of equation (9b), expanding in
series, and retaining only squares and products of perturbation quanti-
ties gives finally

o o o1\
t 2 2 t 2t
Cp = - 28 -2 = + B20,° -0 +2Ma<:>xU+M2<U> (14)

Here the second-order solution is required only for evaluating the first
two terms; the others are given correct to second order by linear theory.

Smoothing of Problem

From the leading edge and from any subsequent corner of the ailrfoil
spring shock waves or Prandtl-Meyer expanslion fans which oscillate as
the alrfoil oscillates. These introduce serious complications into the
second-order analysis. However, the complications can all be circum-
vented by solving a "smoothed" problem in place of the actual problem.
The solution can thereupon be applied to the actual problem, for which
it yields the correct result everywhere except near the shock waves and
Prandtl-Meyer fans.

¥ The nature of the difficulties
can be understood by considering
T first the special problem of steady
flow past a single wedge (sketch (b)).
U ! The presence of the bow shock wave
C::i:> X means that the analysis must be
undesirably complicated by including
the Rankine-Hugoniot relations (in a
gimplified form). A second compli-
cation arises in the differential
equation which, for steady flow,

Sketch (b).- Steady flo ast a
( ) ° v P becomes

wedge.

Oy - BP0 = M [(7+1) Oelox + (7-1) Oxyy + 2¢y¢xy:| (15)

In the iteration procedure to be employed, the nonlinear right-hand side
is evaluated 1n terms of the first-order solution, and the resulting
nonhomogeneous wave equation solved for the second-order potential.
However, for the wedge the right-hand side vanishes (to any order), which
would imply incorrectly that the second-order solution does not involve
the adisbatic exponent 7. More precisely, the right-hand side vanishes
everywhere except along the Mach lines springing from the apex, where it
has the singular behavior of the Dirac delta function, and only by
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taking account of these troublesome singularities could the correct
solution be found.

Both these complications are avoided by the simple device of
solving the problem of flow past a smooth cusp-nosed airfoil of arbi-
trary shape and then applying the final solution to the wedge. It may
be imagined that the wedge has been
smoothed by adding a cusped exten-
sion to its nose, as indicated in Y
sketch (e¢). It is clear that this T o
artifice removes the troublesome
singularities from the right-hand '
side of the differentlial equation.
Likewise, it eliminates the need
for the shock-wave relations be-
cause, as indicated in sketch (c),
with sufflcient smoothing, shock
waves will form only at such great
distance that their effects cannot
reach the airfoil surface. Although Sketch (c).- Steady flow past
shock waves are thus apparently a smoothed wedge.
excluded, the correct second-order
result for the wedge is nevertheless recovered from the solution by
imagining the extension to shrink in size and disappear. The reason is
that to second order a shock wave 1s equivalent to the 1imit of a rapid
continuous isentropic compression. This 1limiting procedure, which is
equivalent simply to applying the solution for an arbitrary smooth shape
to one which is not smooth, yilelds the proper result except in the vicin-
ity of the shock wave (8see ref. 5). For an airfoil of general shape,
similar broad smoothing must be imagined at any concave corner; whereas
at convex corners (since no shock waves form) the slightest rounding is
enough. This smoothing technique was applied in reference 4 (p. 399) to
steady first-order flow past bodies of revolution, and in reference 5 to
steady second-order plane flow.

We turn now to the question of generallzing this smoothing scheme
to an oscillating airfoil. Modification is necessary only at the lead-
ing edge. Consider first the special case of rotation about the leading
edge. Then it is enough to conceive of an extension which is flexible,
8o that its cusped tip can be maintained fixed and directed always into
the free stream while the airfoil

oscillates, as indicated in Y /,/” e
sketch (d). (The exact motion of -
the flexible tip is immaterial, U PR

) -

provided the surface is suffi- —> / x

ciently smooth and its slope

remains small.) After the solution

has been found, the flexible Sketch (d).— Smoothing for airfoil
extension 1s again imagined to oscillating about leading edge.
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shrink away, and the correct result is recovered for the actual airfoil
oscillating about its nose.

3 4 Finally, consider rotation
e about an arbitrary point. The flex-
R A P ible extension must now oscilllate in
S RN such a way that its tip is always

t__U__.‘> ___(#.,. - x directed into the relative wind.
Hence, as indicated in sketch (e),
the tip must lie parallel with the
free stream at the top (and bottom)
Sketch (e).- Smoothing for airfoil of each stroke but incline in the
oscillating about arbitrary direction of motion for intermediate
point. positions.

We are accordingly led to consider the motlon of an arbitrary flex-
ible oscillatlng surface described by

¥ = ¢ g(x) - ae™® n(x) (16a)

where for the smoothed problem the functions g(x) and h(x) have con-
tinuous first derivatives. The smoothed problem will ultimately be
replaced by the actual problem. According to comparison with equa-

tion (3b), this means that the function h(x) will eventually be identi-
fied with (x - b). The requirement that the leading edge of the smoothed
shape be always parallel to the relative wind may be written as

g'(0) =0

h'(0) = iwb/U (16b)

(These last conditions, as well as the requirement that g'(x) be con-
tinuous, must be relaxed in recovering the solution of the actual

problem.)
Boundary Conditions

The boundery condition at the surface of the airfoll is that the
normal component of velocity is zero. For any surface described by
s(x,y,t) = O moving through a velocity field T, this condition means
that the substantial derivative of S (i.e., its time rate of change
for an observer moving with the fluid) vanishes at the surface (see
ref. 6), so that

__>
St+q -gad S=0 atsS=0 (17)
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With velocity components given in terms of @ by equation (9b), and
for the smoothed surface described by equation (16a), this tangency
condition becomes

jw iwt

1
o€ v ht) - T ¢ h at y=¢€g - aoeiwt h (18)

0y = (L+0y)(eg" -

where g = g(x), etec. It is convenient to refer this condition to the

axis y = O by expanding in Taylor series. Keeping only terms of second
order glves

Oy = (1+ o) (eg’ - aoeimt h') - %? aoeiwt h - (eg - aoeiwt h)¢yy

at y=0 (19)

(Here ¢4 and ny on the right-hand side can be evaluated from linear-
ized theory.)

The upstream boundary condition requires that in the actual problem,
the Renkine-Hugoniot relations (or at least a simplified second-order
form thereof) be satisfied across an oscillating bow shock wave whose
position must be determined. However, shock waves have been eliminated
from the smoothed problem, so that it i1s only necessary to require that
the perturbation potential & vanish along the oscillating character-
istic 1ine (Mach line) springing from the leading edge. This insures
that all disturbances produced by the airfoil are swept downstream.

An equivalent and still simpler requirement is that ¢ and its stream-
wise derivetive vanish on, say, the plane x = O:

®=0¢,=0 at x =0 (20)
Restriction to Small Angles of Attack

It is convenient to seek a solution to second order in the airfoil
thickness, but to only first order in angle of attack. This is not a
serious limitation because, just as in steady flow, second-order terms
in angle of attack, though affecting local pressures, have no effect
upon 1ift or moment because they are equal on the upper and lower
surfaces. '

As a consequence of this restriction to linear terms in angle of
attack, the awkward question of when the bow shock wave detaches will
not arise. The amplitude of oscillation may be regarded as infinitesi-
mal, so that if the bow shock 18 attached in the mean steady flow, it
will remain so during the oscillation.




10 NACA TN 2982
Transformation of Perturbation Equation

It is convenient to separate the time-dependent part of the problem
from the mean steady flow at zero angle of attack (for which the second-
order solution 18 known). Furthermore, for harmonic oscillations the
number of independent variables is then reduced to two by separating an
exponential time factor. Finally, the linear portion of the time-
dependent equation 1s reduced to normel form by a transformation of
dependent variable. These three transformations amount to setting

0(x,5,t) = 8(x,5) + ape(WFHX) g (5 y) (21a)

where

(21p)

%ol
ale

Here ¢ corresponds to the mean steady flow, and the term in V¥ repre-
sents the additlonal flow associated with the oscillation through small
angle of attack.l

Introducing this transformation into the perturbation equation
(eq. (11)) gives for

dyy - BP0y = WP [(7—l)¢xA¢ (0,2 + 0y8)y ] (22)

where A 1is the Laplacian operation o°/%Z + &2/dy?, and for V¥

2
\Pyy" qu&x '<’%’> @=
M2 [(7-1)(¢wa1:+ Ty ) + 2( 005 + %Ty)x:l - 1kM? [(7-1)(2¢X*Px + -L%g-‘IfM) +

1If second-order terms in angle of attack were retained, equation (21a)

would include also a term ag2 21 (wt-kx) X(x,y), which would appear

only in the second-order solution. The differential equation for ¥
would have the form

2
Xyy - By - (2—5*‘> X=1.12[(7-1) Ve AVt . . }

and could be solved just as is the equation for V.
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The tangency condition of equation (19) likewise separates into the
two conditions

oy =€ (1 + ¢,)g! - ¢ 4oy & at y =0 (2k)

2
gry = -elkx(1 4 éy) h' - ik BF eIfX b 4 (g - kD) g' -

e‘@wg+einx¢y},h at y =0 (25)

For the actual problem the second of these becomes, identifying h(x)
with (x - b),

Uy = -elfX (1 4 ¢) - 1k fi; elkX (x ~b) + ¢ (‘{fx-—imlr) g' -

¥yy &8 + elkx oyy (x - b) at y=0 (26)

For pressures at the surface of the airfoil, the relation of equation (14)
can be expressed in terms of values at y = O by Taylor series expansion,

with the result that to second order in thickness and first order in angle
of attack :

Cp, = (-20x - 2c0xy & + B0 = 45°) +

2aget (70) [0 g - i+ <(F¥y V) 8+
Bzd’xwx = ¢y@y + einxd’xy h] (27)

Solution by Iteration

Although the equation for ¢ is nonlinear, that for ¥ is linear,
but with nonconstant coefficients depending upon ¢. This corresponds
to the physical concept that because of the restriction to linear terms
in angle of attack, the oscillatory part of the flow is an acoustic
field with, however, the speed of sound varying from point to point in
accordance with the mean steady flow.

The well-known linearized or first-order theory results from disregard-
. ing the right-hand sides of equations (22) and (23). Thus, with the
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first-order potentials denoted by the lower case letters @ and ¥, the
perturbation equations become

P, - BZ P =0 (28)

2

Vyy - B% ¥xx - %% v =0 (29)

The second-order solution is obtained by iterating upon the first-
order results. Using the linear equations to simplify the right-hand
sides gives for the second~order iteration equations

Syy - B2 Oxx = 202 [B2 (N - )% + 4], (30)
and

‘I’W"Bai'xx“(%eq’:mz[sz(l\“l) Px¥x + Py ly -

2
> Bx
2ix [B2(2N-1)P ¥y +BNPyy ¥+ Py¥yl- 2N <M>q>=ﬁf

(31)

where

N—L;ig (32)

(Here, following the usual subscript notation for derivatives, (o 2]
means OP,°/dx, etc.) The second-order solution for ¢, which leads *to
Busemenn' s well-known result at the airfoil surface (ref. l), was given
in reference 5. It is therefore necessary to conslder only the second-
order problem for V. Details of the iteration procedure and discussion
of its limitations are given for the steady flow in reference 5 and
apply also to the present problem.

Partial Particular Integral

The solution of the differential equation for steady flow in
reference 5 was simplified by discovery of a particular integral of the
iteration equation in terms of the first-order solution. It was also
shown there that for steady three-dimensional flow, a particular integrel
can be found to account for all terms in the iteration equation except

those involving the adiabatic exponent ¥ in the form of N. Likewise,
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here, a partial particular integral which accounts for all terms on the

right-hand side of equation (31) except those involving N is given by

Ue =M (9V)y - 1koy (33)
The complete-solution is this partial particular integral plus a

solutlion of the reduced equation whose right-hand side contains only
the terms still unaccounted for:

Yy - B2L,, - (%'3)2@ = 2p°N {M"‘(Mx)x - 16[(Px¥)y + P¥yx] - ;; cpxﬂf}

(34)
First-Order Solution
The first-order solution for @ is known from Ackeret's theory
to be ’
P = - = g(x-By) (35)

B

It is to be understood here and in all similar expressions to follow
that this is the potential only for x 2 By, and that ¢ vanishes
identically ahead of the bow Mach wave (where x <By).

The first-order equation for V¥ (eq. (29)) is most readily solved
by applying the laplace transformation with respect to =x. We denote

the Laplace transform of a function either by a bar, or by the symbol L,
whichever is more convenient (and the inverse transform by L), so that

? 8 -] .
(2) = fe-sx £(x) ax (36)

o)

Applying this transformation to equation (29), using the fact that V¥
and VY4 vanish at x = 0, gives

a2
iw-32<82+ fm—g>$=0 (37)
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The solution of this equation which represents waves moving downstream
is

¥ = C(s) e-ByW 8% + KENF (38)

The constant C(8) is determined by the first-order form of the tangency
condition (eq. (25)), which transforms to

Yy =-w(s) at y=0 (392)
wWhere
w(x) = elkx [h'(x) + ik gg-h(x)} (39b)

is the downwash velocity at y = 0.

Consequently,

82 1+ k2 /M2 (ko)

The inverse transformetion is readily carried out using the standard
tables (e.g., ref. T) together with the convolution theorem, which gives
as the solution of the smoothed problem

x-By

¥ (x,5) =-}; cf Jo (ﬁ Jga-sgyz) w(x -¢) at (k1)

The solution for the actual problem is now obtalned by setting
h(x) = x - b, which gives finally®

x-By

V(oY) = f Jo <:—,I~/§—2-—Bz—y§.> ol (x-t) [1 + ix f; (x—g-b)] at (2)

in agreement with the known result of linearized theory (see, e.g., ref.8).

“The smoothing was, of course, unnecessary in this first-order problem.
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SECOND-ORDER SOIUTION FOR LOW FREQUENCIES

Because the first-order solution for arbitrary frequencies 1is
rather complicated, use 1s sometimes found for an expansion in powers
of frequency, which involves only elementary functions. The corre-
sponding second-order solution will now be carried out in detail,
including linear terms in frequency. This result will serve, for
example, to evaluate the effects of thickness upon one-degree-of-
freedom torsional instability, which is primarily a low-frequency
effect., Thereafter, the result of extending the solution to include
third powers of frequency will simply be stated.

Potential Including Linear Terms in Frequency

Expanding the first-order solution of equation (41) in powers of
the frequency perameter & and retaining only linear terms gives

Z

v (x,y) =~% L/Pw(g) At + o o o O(K®) =V¥(2) + . . . (3)

(o]

where z = x - By. To this order the partial particular integral of
equation (33) is a solution of the homogeneous equation (eq. (29)), and
can therefore be disregarded. Substituting the first-order solutions
into the right-hand side of equation (34) and applying the Laplace
transformation glves, to order k,

fyy - 2% - eeve ey | (Pa-)L{a (v ()} s L{a (vt} o)

It is readily found that a particular integral of this equation is
given by an sppropriate multiple of ye'ﬁsy. Then, adding & comple-
mentary functlon representing downgoing waves gives

it (B fon) - wfe ] o

where the constant C is to be evaluated from the tangency corndition.
Inverting the ILaplace transformation shows that for the actual problem,
in which h(x) = x - b, the solution has the form

¥ = £(z) + —‘?— y[MQg' + ik (2p%zg' - pPpg'! - g)] (46a)
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where g = g(z). The arbitrary function f(z) is determined from the
tangency condition of equation (26) to be

M2 2 RY-3
f(z)=%+%z -é—-w.,-]—'z—f?b>+e[flﬂ-¥—lg+(x-b) g'] +
VA

ike {[2-(1&:-1) mZB;lJ _c[g(&)dg + [E(N-l) - %%;]zg + z(z-b)g' +

Bl | (460)

Surface Pressure Coefficient

The pressure coefficient at the upper surface of the actual airfoil
is found from equation (27) to be

Cpy = Cpo + 2a0e® {_ % s B (b 4 2 x> s -

g B g®
- -M2) (MPN-
iz:: ﬁ%[zbf? NB% g + (2 —;_-g N-1) xg' + (MZN-E)bg']} +
e o « 0(k2,e2q,02) (47)

where g = g(x). Here Cp, is the value for the mean steady flow (at
zero angle of attack) which is given by Busemann's second-order theory.
A more useful form of the result is obtained by extracting the real part
and expressing the result in terms of the instantaneous angle of attack
a(t) and its time rate of change a(t). Furthermore, the parameter e
has served its purpose of distinguishing terms of different orders and
can be eliminated (according to eq. (1)). Thus, on the upper surface
of an arbitrary airfoil which is described at zero angle of attack by

y = Y(x), is pivoted about a point a distance b downstream of its
leading edge, and performs slow angular oscillations described by a(t),
the pressure coefficient is, to second order in thickness and first
order in angle of attack,
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e
Cpu=Cpo-g-a.+—2- ——e-sz+b> %-QF—MZN-QY'CO'F

B B\ g

Q[ZME(N"]-} y + (28) OPN-1) o0 f%b?} %+ o o o 0(&,€2a,0®)

p* B*
(48a)
Here the value for the mean steady flow is (ref° 1)
Cp,. = 2y M¥R-2 12 (48b)
0 B 52 ,

(Afpreliminary report of this result was given in ref. 9.) In this
form, the result is not restricted to sinusoidal motion but applies to
any oscillation which is sufficiently smooth and slow that the pressures
depend significantly only upon the instantaneous angle of attack and
angular velocity.

The pressure on the lower surface of the airfoil is obtained from
these equations by reversing the sign of «, and taking Y(x) to be
the ordinate of the lower surface, measured positive downward.

- The result for plunging motions can be extracted by letting «

tend to zero and b tend to infinity in such a way that their product
remains finite, say

ba(t) = h(t) (49)

In the limit, the airfoil simply translates vertically according to
y = h(t). The pressure coefficient on the upper surface isS3

- 2h MN-2
Cpu—CPO+BU+2—B§—Y

gl

(50)

Checks on the Result

The solution can be tested in several special cases for which the
result can be derived from other considerations.

SNote that, as it should be, this is just the result of using Busemann's
formule for steady flow (eq. (48b)), with the local slope increased by
the instantaneous apparent downwash angle ﬁ/U; see the discussion in
the following section of conditions at the nose.
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Of the five terms 1in equation (h8a), the first is known from
Busemann's steady second-order solution, and the second and third from

linearized unsteady theory.

The fourth is obtained by using the instan-

taneous alrfoll slope (Y*-a) instead of the mean steady slope Y' in

Busemann's formula and retaining only linear terms in «.

Therefore,

only the last term, which is the essentlally new result of the present

analysis, requires verification.

Just at the nose of an oseillating airfoll, the pressure can be

determined exactly if the bow shock wave is attached.

The transition

through the moving bow shock is instantaneous, and so depends only upon

the relative velocity at that instant (see ref. 4, p. 297).

Hence the

pressure Just at the nose is instantaneously the same as on a wedge of
the same vertex angle in steady flow with the same relative velocity.

v

Q:g:'

Y~

Sketch (f).- Velocity relative to
leading edge of osclllating
airfoil.

_'éb ’

In the present problem, the relative
veloclty is compounded of the hori-
zontal velocity U of the free
stream, plus the 1lnstantaneous
vertical velocity of the leading
edge, which is given by & (see
sketch (f)). The effect of the
vertical component upon the equiva-
lent free-stream velocity and Mach
number is of second order in angle
of attack, but the equivalent
vertex angle of the airfoil is
increased by the apparent downwash

angle &b/U. Replacing Y' by Y! + ab/U in Busemamnn's formula (eq. (48b))
gives, to first order in angle of attack

2

CPu = CPo +=b=+2

B

b&g——rlg‘e by 2 (51)

which checks the part proportional to b of the last term in equa-

tion (48a).

Msaon position of
shock wave —

Sketch (g).- Wedge oscillating
about its vertex.

The remainder of the term in
question can be checked for a single-
wedge airfoil oscillating about its
vertex (sketch (g)). It can be shown
using the results of reference 3
that in this case disturbances
reflected from the shock wave are of
third order in the wedge angle
(although fecr other pivot positions
they are of second order). There-
fore, a solution correct to second
order in thickness and first order
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in angle of attack can be found by epplying linearized theory to the
mean steady flow behind the shock wave.? For slow oscillations, the
first three terms of equation (48a) give

P-p1 2 2(2-M,%) &
T ST et X (52)
EpiUla Bx Bx 1

where subscript 1 denotes values in the mean steady flow behind the
shock wave. From linearized theory

M =M _1-;3 (N-1) e]

By = B f1-—;”;E(I<r-1) e]

wovfeg]

pl=po[l+7b—§—€]

P1L = Po [1+'—3M3e:l J (53)

where € 1s the semivertex angle. Hence, referring the surface pressure
coefficlent to free-stream quantities (end noting that x; = x +to second
order) gives

- MN-2
Cpu=Cpo —%—(L-{-Q?——_‘.Mg_xé_e__e

Bs U 52 @+

5 oME(N-1) + (i-Mz)(MzN-l)
B

€xX % (54)

which checks the first two parts of the last term in equation (48a)
when Y(x) = ex.

Recently, Lighthill has glven a further check for the case of
?ach numbers so high that 1/M° is negligible compared with unity
ref. 10).

“This concept was suggested to the author by W. P. Jones of the National
Physical Laboratory, England.
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Lift and Moment Coefficients for Symmetrical Airfoils

The coefflcients of 1lift and pltching moment (about the pivot) are
given in terms of the pressure coefficlents on the upper and lower sur-
faces by

cy = % j(cpz T Cp )ax (558)
C
cm=;lgof(b —X)GPZ -cpu>dx (55b)

For simplicity, consider only airfolls symmetric about the chord line.
In this case, the pressure difference is given by

M . MN-2 +,
cpl—cpu=%a—% -2—55—}{+b> %+h7’1i2—?-xa
L [21?(11-1) v (2-M?)i1»12N-1) oyr , MEN-2 bY,] & (56
B B B U

If the airfoil has a sharp trailing edge, substituting into equations
(55) and 1ntegrat1ng by parts gives

MAN-3M242 1 &
c1= ——[(—E—B—g +——'—B3éME'L'62' de]_% (57)
(o]

[¢]
kv 1 M"‘N-zlf 2-M  2M2-3b b3\ _
oo b (oD 2 d [ e 3 (5 - 212
[&4
M(N-1) b 1 N-2 1 cd
_Jgg_l.é.c?f vax + 2 12 E-5/”(::4;) de]F“ (58)
o] (o]

Inside each square bracket the first term is the result of linearized
theory, and the remainder represents the second-order effect of thick-
ness. Thickness effects are seen to appear in the form of the area of
the airfoil profile and its first moment sbout the vertical line through
the pivot.
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If the airfoil has a blunt trailing edge of semithickmess ¥(c¢),
the following additionel second-order terms must be added to the above
expressions:

to e3:
to cme
_&f_}{;g(___g_l g[me(m) MZN-2< >] (__)x &
U
(60)

Examples: Biconvex and Double-Wedge Airfoils

To second order, a biconvex airfoll of thickness ratio T 1is
given by the parebolas

y = £¥(x), ¥(x) =27 ¥ (e-x) (61)

The expresslions for 11ft and moment become

b ke b @ﬂfﬁ]c_&
CZ—EG—E[<—§B—2+C + 3B3 T T (62)
~k [/p_1) , ¥N2
°m"BKc 5) * 738 T]“”
b roe-M M3 b P MN-2(1 , b\ _ye N-1b 7 c&
E[3s2 5% o o2) T3 <12"T M3 ET]’IT

(63)

It happens that for a double-wedge airfoil (with meximm thicknéss at
midchord), both the area and first moment are Just three fourths of
those for the biconvex alrfoil. Consequently, the above results apply
to double-wedge airfoils, if T/3 is replaced throughout by T/k.

In the expression for pitching moment, the term proportional to «
represents an aerodynamic stiffness or restoring moment in phase with
the angular displacement, while the term proportional to a corresponds
to an aerodynamic damping moment in phase with the angular velocity.

The effects of thickness upon aerodynamic restoring and damping moments
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are shown in sketches (h) and (1) for a 6-percent-thick double-wedge or
a h-l/a-percent-thick biconvex airfoil with two different pivot posi-
tions. The sketches have been labelled with both the usual American
notation (e.g., ref. 11) and the British notation (e.g., ref. 12),

LS ~ —— T T
N —>
—— T T T vm—
N\ s7AsiL1Zline
N\
» Lo \\ — — — Linearized theory
% ~ ————— Secand-ardsr theory
;h \\\
v 5 7] G —
o o DT e
| bfc = .5
o =5 L
LOO L85 1.50 L75 2.00 Loo L5 150 L75 2.00
I o

Sketch (h).- Effect of thickness upon restoring moment coefficient for
h-l/2—percent-thick biconvex or 6-percent-thick double-wedge

airfoil.
5 T
b/c =0 = — — Linearized theory
—) = —— o S d-order the
L==""" i
e ° 74 .5 ]
< / b= .5
& /)
& \
' -5 ) 4 —
/ /
DEST|ABILI|ZING /loESTIABILINZING
-LO l -5
Loo L25 150 175 2,00 Loo 125 150 175 2.00
M M

Sketch (i).- Effect of thickness upon demping moment coefficient for
h—l/?—percent—thick biconvex or 6-percent thick double-wedge air-
foil.

defined for harmonic oscillations of arbitrary frequency by

. _.% K (M + iM,) (American)

hogelnt B _% (m, + 1Amg) (British) (6k)
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Here Xk and A are the reduced frequency in the American and British
notations, respectively, related by

we
A =2k = e (65)

For slow oscillations, the coefficients a;e given by
(66)

(and, indeed, this was originally the definition of my and mg, that
given by equation (6#) being a later extension to the case of rapid
harmonic oscillations).

It should be noted that according to second-order theory, the non-
linear effects of thickness are themselves linear in thickness. This
means, for example, that doubling the airfoil thickness ratio would
double the distance between the linearized and second-order curves of
sketches (h) and (1).

Neutral Damping Boundary

Linearized theory indicates the possibility of instability of
pitching oscillations for low frequencies. For & range of Mach numbers

below 5/2 = 1,58 and pivots ahead of two thirds of the chord, the
aerodynamic damping moment becomes negative, and so tends to destabilize.
(Whether or not the motion is actually unstable depends, of course, upon
the other dynamic parameters in the problem.) This zone of possible
instability shrinks and eventually disappears as the frequency of oscil-
lation increases. The present low-frequency solution is therefore
adequate for determining how the region of instebility is modified by
nonlinear thickness effects.

Sketch (j) shows the boundary of neutral aserodynamic demping for
slow oscillations of a 4-1/2-percent-thick biconvex or 6-percent-thick
double-wedge airfoil. The aerodynamic damping is destabilizing for
Mach numbers and pivot positions lyling inside the loops. Within the
region where linearized theory predicts a destabllizing moment, thick-
ness 18 seen to exert a further destebilizing effect except for pivots
near midchord. The second-order solution becomes unreliable when the
bow shock wave detaches, at about M = 1.2.
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1.8 |
STABILIZING
/.6‘ P~
P
/ i\\
Sacond-ordsr theory 4
\ /17 \
M 14 } /z
/7
Linearized thsory / \ \
q\}y’ DESTABILIZING \
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— :-:'.’/ - : \‘
— - —— -|— WP Jones— - — ———/
) ' ool \
R = TSI IIN T =
—:ﬂm—
=15 -.0 -5 (7] S 1O

Pivot position, b/c

Sketch (Jj).- Neutral demping boundary for h-l/2-percent—thick biconvex
or 6-percent-thick double-wedge airfoil.

Comparison With Previous Investigations

Two previous investigators have sought a second-order solution for
slowly oscillating airfoils in supersonic flow. Thelr results agree
neither with each other nor with the present solution.

In 1947, W. P. Jones obtained an estimate of the thickness effect
by assuming that the ratio of second-order to linearized pressure
disturbances is the same for slow oscillations as that given by
Busemann's formula for steady flow (ref. 13). That this assumption is
not altogether correct is indicated by the fact that the results do not
check those obtained for a wedge oscillating about its vertex by apply-
Ing linearized theory to the mean steady flow behind the shock wave.
However, the assumption is correct at the leading edge, and also (a8
noted by Lighthill in ref. 10) in the limit of high Mach number. It is
seen in sketch (j) that this estimate fails to give a useful prediction
of the actual effects of thickness, except for pivots near midchord.

In 1951, Alexander Wylly attacked the problem by methods similar
to those used here (ref. 14). Unfortunately, it appears that the
smoothing was not carrled out with sufficient care; as a consequence,
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the solution satisfies none of the three checks discussed previously.

In contrast to the present results, the effect of thickness upon aero-
dynamic demping was predicted to be stabilizing and so great that for

eirfoils of the thicknesses shown in sketch (J), the zone of possible

instabllity would have dlsappeared altogether.

Comparison With Experiment

The only experimental results avallgble are those quoted in
reference 15, which are derived from tests by Bratt and Chinneck.
A.7-1/2-percent-thick biconvex airfoil, pivoted at mlidchord, was tested
at Mach numbers of 1.28, 1.46, and 1.52 over a range of frequency. The
serodynamic damping was measured by glving the airfoil an initial dis-
placement and measuring the logarithmic decrement. The experimental
data are shown in sketch (k) in comparison with linearized theory and

S5 T \ [ |

¥ N \Oﬁiarimanf
oy ~
':e 25 P/Tsanf theory e — 0
3 w. P Jones s e—
0 e
—
| —~
7
Linearized theory /
-25 | L /
Lo Ll L2 L3 .4 L5 L6

L4

Sketch (k).- Comparison of experimental and
theoretical damping moment coefficlents for
7-1/2-percent-thick biconvex alrfoil pivoted
at midchord.

the second-order theories of W. P. Jones, Wylly, and the present
analysis. As indicated on the sketch, the lowest test Mach number lies
in the range of mixed subsonic and supersonic flow (and a detached bow
wave), The present theory predicts only a fraction of the discrepancy
between experiment and linearized theory. The same is true of Jones'®
estimate which, according to sketch (j), agrees with the present analysis
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oniy for pivots near midchord. Wylly's result, which has been shown to
be erroneous, happens to lie much closer to the measured results.

Extension to Cube of Frequency

The dependence of thickness effects upon frequency of osclllation
can be estimated by extending the second-order solution to include
higher powers of frequency. This has been carried out for an arbltrary
airfoil by including second and third powers, which is enough to show
an effect of frequency upon both aerodynamic stiffness and demping.

The computation, though cumbersome, is a straightforward extension of
the previous analysis, so that only the final result will be given here.

The expression for pressure coefficient on the upper surface,
corresponding to equation (h?), is found to be

e ( x+s;b>+s§x(ﬁfx+fb> ]

2a0e M
153 <f4X+nfg;> LFNQ N

- - . M) (MPN-1) .
1ue[21‘:21g+1'i§2bg L L2 M;éz )xg]+

X
«2e [3(3»#-2)N-2(5ME-3) g+ M5 o, (16-TR)Hsb(M-3) o
oM p2 oM2 IpPp2

(o]

vl om?g®
X
af-(w-2)y [ DEEE)-(2M-RELN f g +
om* o) 2M452 o

2(M+1)-(M48)N | (3F4R)-(MHMN o

vt Lt p®
2 (MP+1)-3MPN , M (bW .

o bxPg! o x°g ] (67)

x x
vhere g = g(x) and fg = [g(&)dt, etc. (The first four terms are
0 o

the result of linearized theory.) This result meets the three tests
discussed previously, and also checks the solution given later for a

X
M-l et 4 _@g%gﬁ ng,] N 1,{36[(17»1"‘-10142-1;)1.\1-(51&2-2)(mvﬁ-l) f§3+
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wedge with general pivot location at arbitrary frequency. The result-
ing expressions for 1ift and moment involve the airfoil thickness in
the form of the area of the profile and its first three moments about
the vertical line through the pivot.

Example: Biconvex Airfoil

These rather formidable results simplify considerably for specific
airfoils. For example, for a biconvex airfoil of thickness ratio T
oscillating about midchord, the pitching-moment coefficient is given by

Cn ., 28 o ¥ 3 ME(6MP-1) M2N-2 M2 (N-1)
m—i)\iz—-ég—!-)\ 1—6?5--1)\ 160B7 + 7T 3B§ -~ iAT 6ﬁ4 +

A2 1228)+(MB-MN | o8 2(hOME-61 MB+1) -(3TM 12512 -16)N
o40p® 14hop® (68)

The first three terms are the result of llnearized theory.

The component of this moment which is out of phase with the angle
of attack gives a parabolic approximation for the variation of aero-~
dynamic damping with frequency as shown by dashed lines in sketch (1)

.16

ol T T T 7
::> <TZZEZZZ=  Jones & Skan— . 7 /
v . A /
42 R Vi
i 7 /
. : ‘/ /
4 / /
.08 \— Second-order theory - ya
s:r ‘X’ 1. 7
- 1" /
é° — - . 4 /
T ol — e /{/ ~
* L : / Linearized theory
0 f——T=
I
DEST\IABI/LINZING
-.04
o o/ 4 I <& ) .5 7

Reduced frequency, A=2k = ac/U

Sketch (1).- Effect of frequency upon damping moment coefficient
for 5-percent-thick biconvex airfoil pivoted at midchord.
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for a S5-percent-~-thick biconvex airfoil. The accuracy of the parabolic
approximation for linearized theory is indicated by comparing it with
the exact result (solid line). In this example the linearized and
second-order curves run almost parallel, which means that the nonlinear
effects of thickness vary only slightly with frequency.

Recently, Jones and Skan have treated biconvex airfoils at arbi-
trary frequency by & numerical procedure (ref. 16). Their result is
gshown in sketch (1). It fails to give the initially parabolic form of
the curve which is implied by the fact that the second-order solution,
like the first-order result, can be expanded in powers of the square of
the frequency. Their solution involves several doubtful assumptions, in
particular, that the effect of the bow shock wave can be disregarded.

It has already been remarked here that, actually, the bow shock has a
second-order effect unless the pivot lies at the leading edge.

SECOND-CRDER SOLUTION FOR ARBITRARY FREQUENCIES

For some purposes the previous solution for slow oscillations may
be insdequate. In principle, the second-order solution can be extended
to include still higher powers of frequency, but the lasbor required is
clearly prohibitive. Alternatively, one can attack directly the problem
for arbitrary frequenciles.

The second-order solution can, in fact, be carried out for a general
airfoil at arbitrary frequencies. However, the result is formidable,
involving multiple integrals of products of Bessel functions, and the
reduction to simpler form for specific profiles appears to be difficult.

A more practical approach is to choose a specific airfoil shape in
advance. Then the second-order solution involves only functions of the
type encountered in the linearized theory. In particular, it is found
that (at least for the simplest shape) the final expressions for 1ift
and moment involve only functions which have been already studied and
tabulated, so that numerical results are readily obtailned.

Modified Smoothing Procedure

The smoothing discussed previously must be dropped at an earlier
stage of the solution when a specific airfoil shape is chosen. It is
therefare necessary first to modify the differential equation and
boundary conditions so that no singular terms appear.

Consider first the differential equation (eq. (31)). Applying the
Iaplace transformation of equation (36), and envisioning the smoothed
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problem, so that ¥ and {, vanish at x = O, reduces it to

TW g2 <32+ i.‘;,) T = 2(Ms-ix) [Bz (N-l)l{q’x‘q‘x} + L{DYVY}" ik g L{%\y}]

(69)

In this form, all troublescme second derivatives have disappeared from
the right-hand side, so that the smoothing can now be dropped.

Consider next the tangency condition of equation (25), which
contains second derivatives of both @ and V. These cause no difficulty
vhen, as in the solution for slow oscillations, the tangency condition
is imposed as it stands. However, 1ts Laplace transform will be used
here, and then the Dirac delta functions associated with the second
derivatives would affect the integration implied in the inversion of the
transformation. These troublesome second derivatives can be eliminated
by first expressing them in terms of x derivatives only through the
first-order equations:

Ry = B® Ry
Vyy = B (g + 32 ¥) (70)

and then applylng the ILaplace transformation while envisioning the
smoothed problem (so that @, ¥, @y, and ¥, vanish at x = 0), which
gives

Ty = - w(s) - b?L{einq)x} + (-:MZL{ﬂrxg'} - ike L{\yg'} - BZGSL{\]ng} -

p2e ﬁ; L{wg} + sa(za;-in)L{eiKx cpx(x-b)} at y =0 (71)

Again, all second derivatives have disappeared, so that the smoothing
can~he dropped.

Consider finally the upstream condition. For the smoothed problem,
one statement of the condition was seen to be that the solution repre-
sents downgoing waves. This means that the complementary function for
the iteration equation should have the same form as the linearized
solution, and this statement of the upstream condition applies as well
to the actual problem.
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Solution for Wedge

The simple case of a single wedge illustrates the method of solu-~
tion which can, in principle, be applied to any profile formed of
plecewise analytic arcs. For a wedge of semivertex angle ¢, the
first-order solution for @ is given by equstion (35) as

=2 (x-8y) (72)

and the first-order solution for V¥ 1s given bysequation (42). Substi-
tuting into the right-hand side of equation (69) gives for the trans-
formed iteration equation

10 (B-1)s-1k/M2 F(B)e-sy«/szwa/r&a

Tr - g2 £2\7- - M2s-
By 7 (% 15) ¥ - e |10 Bl (73

A particular integral of this equation is given by an appropriate

multiple of ye'By‘V 5= +K2/M2 » and adding a complementary function which
representa downgolng waves gives the solution

\—Ir-= C(s)e-By"‘ &%+ 0 +

1, (N-1)s-ieli/® T'-T-(E)ye-;ay,,/ g24K2 /M2
N 822 N 8Z+2 /P :’

The constant C 1is evaluated by imposing the tangency condition of
equation (71), with the result that the Laplace transform of the second-

order solution is found to be

i _ e-By /52 +12 /M (N-1)s-1kN/M? <By s
By 82412 /M2 J s2+x2 /M2

>] _Bem%ﬁ(s)—ﬁeb—%;i—g} (75)

€
B (Mzs-m[ (74)

w(s) [l+¢-:y(].\112)s-_’uc)+-:—3 (M®s-1k)

1
N e

—5.[‘11 this simple case, the partial particular integral of equation (33)
offers little actual simplification.
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The inversion can be carried out using the standard tables (e.g.,

ref, T) together with the convolution theorem. For calculating surface
pressures, 1t suffices to obtain the solution in the plane y = O,
which is found to be

¥ (x,0) =% f Jdo (% f.) wix-t)at + ex w(x) +
o

€ %wxw(O) Jo (ﬁ x) - €b Jg (% x) +

fz f 7 (% §>{g [ME(N-l) W (%t ) -1k (2N-1)w(x£) -

x-£
K2 % of w(n)dn :l-e“‘(x'g) } at (762)
where
w(x) = elkx [l + ik ‘B-wi (x—b)] (76b)

With the pivot at the nose (b = 0), this agrees with the result of apply-
ing linearized theory to the mean steady flow behind the shock wave.
Also, when expanded in powers of frequency, it agrees with the previous
low-frequency solution up to terms in kS,

The surface pressure coefficient can now be calculated from equa~
tion (27) and the 1ift and moment coefficients from equations (55).

Example: Wedge Plvoted at Nose

For simplieity, the results will be given only for the special
cagse of rotation about the nose. Then it is found that the 1ift end
moment coefficients are given by
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o = %+5MZBE‘2> fy + (2-V) 1A (%-_.,.e) G‘o-fuv) -
A2 1
m<3+?€> <f°'2+"> ¥
M1 M 1
T [E"e <”EZ"£§+—N Kfl‘fzw> -

c I'Ei- <N-1 + -Ml;i [ (lw)fv . TINE/EE <M7\/132>:l -

M Mt-ME-1 M2 £ o +
A Zo o> T 3 = L2
e <3 e P2 N) fivv + 1A% (Bz -N>[2+V =

fa,v
(1+V) (24V) ] (11

where ¥ = 0 for the 1ift amd v = 1 for the moment. The functions
fn, gi'V’en by

fn(M,A) = fxne-info/Bz Jo <§g— 7\X> dx (78)
o

arise in linearized theory for n ranging from O to 3. They have been
gtudied and tebulated by von Borbély (ref. 17), Schwarz (ref. 18), and
Garrick and Rubinow (ref. 11). They can all be expressed in terms of
fo by a recurrence relation due to von Borb€ly (see, e.g., eq. (A.87)
of ref. 12), so that the additional %, required here is easily
computed.
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Sketch (m) shows the variation of aerodynamic damping moment,
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Reduced frequency, A=2k= wcfU

Sketch (m).- Damping moment coefficient for 10-percent-
thick wedge oscillating about its vertex at
M= 10/7.

according to first- and second-order theories, for a lO-percent-thick
single wedge oscillating about its nose at a Mach number of 10/7. Also
shown for comparison are the parabolic approximations of the low-frequency
analysis. It is seen that the thickness effect is reversed at high
flutter frequencies, as is suggested by the parsbolic approximation.

DISCUSSION

Higher-Order Effects

The moderate magnitude of second-order effects would suggest that
the influence of third- and higher-order terms is of no practical
Importance, except perhaps in the transonic range neer shock detachment.
This supposition can be confirmed in the case of the single-wedge eirfoil,
for which a solution exact in thickness (but linearized with respect to
angle of attack) has been derived in references 2 and 3. Sketch (n)
compares the boundaries of neutral aerodynamic damping for e slowly
oscillating wedge of 5°C semivertex angle as predicted by the linearized,
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Sketch (n).~ Neutral damping boundary for wedge of 5°
semivertex angle.

second-order, and exact theories. The second-order solution lies close
to the exact result down to the Mach number for shock detachment (which
is almost the same as the Mach number at which the flow ceases to be
purely supersonic).

Application to Finite-~Span Wings

Extension of the second-order solution to wings of finite aspect
ratio does not seem possible at present. No second-order solution has
yet been found even for steady flow past the simplest 1ifting wing.

Fortunately, the main conclusion to be drawn from the present
analysis is that nonlinear thickness effects are quite moderate in
magnitude. Practical supersonic wings will, therefore, probably be
go thin that nonlinear effects are negligible, so that rellance can be
placed in the predictions of linearized theory. Only if the wing is
unduly thick, or if the Mach number is close to unity, or if unusual
accuracy is required, may the engineer be forced to estimate the effects
of thickness. In this event, he might assume that the effects of thick-
ness are in some sense additive to those of aspect ratio, provided the
agpect ratio is high and the frequency low. TFor example, the two-
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dimensionel correction might be applied stripwise to the spanwise load-
ing predicted by linearized theory. Some indication of the extent to
which such an assumption would be Justified can be obtained by consider-
ing other pairs of effects whose combined influence is known. Sketches
(1) and (m) show that the effects of thickness and frequency are roughly
additive for the frequencies of usual practical interest in dynamic
stability analysis (say A< 0.2). Idikewise, sketch (o) shows that the

16
J2 —
A=4, parabola -~ /
-
| -~
.08
= [ —
oy — s
0 r-—--— r’ s
S A=, pamba/z/
r.o4 A=, exact
0 E————
DESTIABILIIZING
~.04
o J .2 .3 4 5 6 7

Reduced frequency, A=2k= wc/U

Sketch (O)o‘ Effect of aspect ratio upon damping moment
coefficient for rectangular wing according to
linearized theory.

effects of aspect ratio and frequency, determined from Watkins' linear-
ized solution for the rectangular wing (ref. 19), are nearly additive
in the same range of frequencies.

Recently, Martin and Gerber have calculated the second-order effects
of thickness upon damping in roll for wings of infinite span (ref. 20) .
They then estimate the effect for a finite rectangular wing by increasing
the result of linearized theory in the same ratio as for the infinite
wing. Agreement with experiment is thus considerably improved, which
gives further assurance that superposition of thickness effects may be
Justified also for osciliating wings.
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Further Anelysis

If thickness effects of the magnitude indicaeted by the present
analysis are Judged to be significant at flutter frequencies, extension
of the high-frequency solution to more practical profiles would be
warranted. The solution given for a single wedge at arbitrary frequency
should be extended next to the biconvex or double-wedge airfoll.
Although considerable computation is involved, it does not appear that
the labor would be prohibitive.

Ames Aeronautical ILaboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., April 20, 1953
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c(s)

c1

=2

'»Q\l, el =

m

APPENDIX

SYMBOLS

speed of sound

aspect ratio of wing

downstream distance from leading edge to pivot
airfoil chord

constant of integration

section 1ift coefficlent

section moment coefficient

pressure coefficient

surface pressure coefficient in mean steady flow

pressure coefficients on upper and lower surfaces of
airfoil, respectively

function defining upper surface of airfoil at zero angle of
attack

elevation of plunging airfoil

function defining amplitude of oscillation of upper surface
of smooth alrfoil

reduced frequency, g%

aerodynamic damping coefficients
(See eq. (66))

free-stream Mach number
7411

2 p?

static pressure

velocity vector

Laplace transformation variasble
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s(x,y,t) function defining moving surface

t time

u,v velocity components parallel and perpendicular to free stream
U free-gtream velocity

w(x) downwash velocity at y = O

X,¥ coordinates parallel and perpendicular to free stream

¥(x) ordinate of upper surface of airfoil at zero angle of attack
Z x - By

a angle of attack

angular amplitude of oscillation

do
B e -1
7
A

adigbatic exponent of gas
>

Laplacian operator, QE— + —
ox=

ayZ

€ small paremeter representative of airfoil thickness
A reduced frequency, wc

v constant which is OILr 1 in equation (Th4)

p density

T airfoil thickness ratio

o first-order mean steady perturbation potential

¢ second-order mean steady perturbation potential

Q complete perturbation potential

first-order time-dependent perturbation potential

¥ second-order time-dependent perturbation potential
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partial particular integral of time-dependent iteration equation

w angular frequency of oscillation

Q complete velocity potential

( )o free-stream conditions

( )i conditions In mean steady flow behind bow shock wave on wedge
(%) differentiation with respect to time

)

Laplace tramnsform
i)
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