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SUPERSONIC l?IOWPAST OSCILLATING AIRFOILS

INCLUDING NONLINEAR THICKNESS EFFECTS

By Milton D. Van Dyke

SUMMARY

A solution to second order in thicbess is derived for harmonically
oscillating two-dimensional airfoils in supersonic flow. For slow oscil-
lations of am arbitrary profile, the result is found as a series includ-
ing the third power of frequency. For arbitrary frequencies, the method
of solution for any specific profile is indicated, and the explicit
solution derived for a single wedge.

Nonlinear thickness effects are found generally to reduce the
torsional damping, and so enlarge the range of Mach numbers within which
torsional instability is possible. This destabilizing effect varies only
slightly with frequency in the range involved in dynsmic stability analy-
sis, but may reverse to a stabilizing effect at high flutter frequencies.
Comparison with a previous solution exact in thickness suggests that
nonlinear effects of higher than second order are practically negligible.

The analysis utilizes a smoothing technique which replaces the
actual problem by one involving no kinked streamlines. This strategem
eliminates all consideration of shock waves from the analysis, yet
yields the correct solution for problems which actually contain shock
wave!3.

INTRODUCTION

As linearized supersonic-flow theory is increasingly applied to
problems of unsteady motion of lifting wings, the results are sometimes
advanced with the warning that they maybe significantly affected by
nonlinear effects of thickness. Such caution is,justified because it is
known that even for steady flow, linearized theory is often inadequate
for predicting the pitching moment - and prediction of moments is one of
the main objectives of unsteady-flow theory. It mybe mtieipated that
nonlinear effects will become increasingly important as the Mach number
falls toward unity, particularly for slow oscillations. -.
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In the present work the effects of thic~ess ~e dete~ned for a
h~onically osci~t@ two-~e~io~l airfoilby UIcuating the
second-order solution. This is the counterpart for unsteady motion of
the well-known steady-flow result of Busemann (ref. 1). First, for
S1OW oscillations a solution iS fo~d for ~ afifoil of ~bitr~ prO-
file. The result is given as a series which includes terms up to the
third power of the frequency. Second, for arbitrarily high frequencies
it iS shown that a solution a be fo~ for my Specific airfoil, and
the solution is carried out explicit~ for a single wedge. Finally,
comparison is made @th a pretious solution for Me wedge which is exact
with respect to thickness (refs. 2 and 3), in order to assess the effects
of nonlinear terms of higher than second order.

Extensive use is made of a smoothing technique, which replaces the
actual problem by one having no kinked streamlines. This strategem,
which has been used previously and may prove useful in future problems,
eliminates all consideration of shock waves from the analysis. It,
nevertheless, leads to the correct second-order solution for the actual
problem, which does involve shock waves.

METEOD OF ANALYSIS

Statement of Problem

Consider a uniform supersonic stream flowing past a sharp-nosed
airfoil which executes prescribed harmonic oscillations. We shall be
concerned with calculating the instantaneous pressure at the surface of
the airfoil and, hence, the unsteady lift and pitching moment. It is
usually the custom to consider the oscillation to be compounded of a
rotation (say about the midchord) and a vertical translation (plunging),
which are not generally in phase. However, we shall here limit atten-
tion to the special case of the airfoil pivoted about an arbitrary point
downstream of its leading edge. This is no real restriction because the
plunging case can be recovered by letting the distance to the pivot tend
to infinity and the angular amplitude of oscillation tend to zero, their
product remaining finite.

Although the iteration procedure to be employed yields a formal
result for any Mach number greater than unity, the solution probably
breaks down when the flow becomes sonic at any point. Since this occurs
at a Mach number somewhat higher than that for bow wave detachment, the
upper and lower surfaces of the airfoil operate independently in the
probable range of validity of the solution. It is therefore sufficient
to consider only the half field of flow lying shove the airfoil, and
this viewpoint will be adopted henceforth.
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Choose the origin of coordi-
nates at the mean position of the
leading edge, with the x exis {

3

extending in the direction of the -——- -
‘<

free stream (sketch (a)). Then
it is convenient to describe the

& Iw-as *

upper surface of the airfoil in
its mean (zero angle of attack) E;: ‘A ‘

positionby

Sketch (a).- Coordinate system for
oscillating airfoil.

y=Y(x) = Eg(x) (1)

Here e is a small parameter representative of the airfoil thickness,
so that the function g is of order unity. Now let the airfoil pivot
about a point l~ng a distance b downstream from the leading edge, and
perform harmonic oscillations of frequency u and amplitude ~, so
that the angle of attack, which is the angle between the instantaneous
position of the airfoil and its original mean position (sketch (a)), is
given by

a= ~ cos tit=~etit (2)

(Here, as in all that follows, it is implied that actualphysical
quantities are givenby the real parts of their complex representations.)
Then, at any instant the moving upper surface of the airfoil is described
implicitly, to second order inthiclmess and angle of attack, by

Nuw, if the airfoil
able), the equation

Y= 6 g(x-q) - (x-b)cx (3a)

is smooth (so that the function g is differenti-
of the surface can be written explicitly as

y= e g(x) - ~etit (x-b) (w)

with an
quently,

error of order (e2a,e#), which is of third order and, conse-
negligible in the present second-order analysis.

Perturbation Equation

The entropy changes due to shock waves are of third order in the
airfoil thiclmess and angle of attack. Hence, to second order the flow
is irrotational and isentropic. Because it is irrotatimal, there exists
a potential function fl whose gradient yields the velocity vector:

—.—. .—.—. ..——- ———————-
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(4)

Bernoulli’s equation for plane unsteady flow can be written (from
eqs. (14.04) and (9.06) of ref. 4)

(5)

Here a is the speed of sound, and a. its value in the free stream,
where the flow velocity is U. Differentiating this expression with
respect to time t, and using the fact that d[a2/(7-1)] = a2dP/P
(ref. 4, eqs. (9.o3) and (9.06) gives

This, together with
with respect to x

Qtt+uut+wt+$ Pt=o (6)

the corresponding results obtained by differentiating
and y, can be used to eliminate derivatives of the

density from the continuity equation (ref. 4, eq. (7.@.2))

Pt + (Pu)x + (Pv)y= o (7)

The result is that the velocity potential satisfies the equation

(a2-Slx2)fi=+ (a2-~2)~ - 2Q@y~ - 2f&&t - 2fl@fl - Qtt .0 (8a)

where, from equations (4) and (5),

a2=*2+~(U2 - nx2 - fly2- 2Qt) (8b)

Now introduce a perturbation potential 0, normalized through division
by the free-stream velocity U, by setting

0 (X,y,t) =U [x + 4 (x,Y,t)l (ga)

so that the velocity components are given by

u
–=l+ax
u

;=% 1 (9)
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Then substituting into equations (8) gives

[( )
(1-@ Q=+q2& :%- ~%t = F (7-Q ox + : + * (@xx+Oyy)+

; (QX4M + OYofi)
1

(lo)

For purposes of a second-order solution (and to higher order a potential
does not exist), the triple products on the right-hand side canbe dis-
regarded. Thus, the perturbation equation becomes finally

where &=&-l.

Pressure Relation

Dividing the Bernoulli equation (eq. (~)) by a2/(7-1) gives

The flow is isentropic to second order, so that

P
az L

()
~ y-l, Po 2—= =—

Po ao
: Pow

7$

and it follows that the pressure coefficient at any point is given by

(12)

—— .—— —..—.—- - ——— —.
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Substituting the velocity components of equation (gb), expanding in
series, and retaining only squares and products of perturbation quanti-
ties gives finally

()~=-2@x-2: +p’Qx’-4y’+xox:+ M’ g’ (14)

Here the second-order
two terms; the others

FYom the leading
spring shock waves or
the airfoil oscillates. These i&odu~e serious complications into the
second-order analysis. However, the complications can all be circum-
vented by solving a l*smoothedllproblem in place of the actual problem.
The solution can thereuponbe applied to the actual problem, for which
it yields the correct result everywhere except near the shock waves and
Prandtl-Meyer fans.

solution is required only for evaluating the first
are given correct to second order by linear theory.

Smoothing of Problem

edge and from any subsequent corner of the airfoil
Prandtl-Meyer expansion fans which oscillate as

Sketch (b).- Steady flow past a
wedge.

The nature of the difficulties
can be understood by considering
first the special problem of steady
flow past a single wedge (sketch (b)). -
The presence of the bow shock wave
means that the analysis must be
undesirably complicated by including
the Rankine-Hugoniot relations (in a
simplified form). A second compli-
cation arises in the differential
equation which, for steady flow,
becomes

1
(15)

In the iteration procedure to be employed, the nonlinear right-hand side
is evaluated in terms of the first-order solution, and the resulting
nonhomogeneouswave equation solved for the second-order potential.
However, for the wedge the right-hand side vanishes (to any order), which
would imply incorrectly that the second-order solution does not involve
the adiabatic exponent 7. More precisely, the right-hand side vanishes
everywhere except along the Mach lines springing from the apex, where it
has the singular behavior of the Dirac delta function, and onlyby
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taking account of these troublesome singularities could the correct
solution be found.

Both these complications are avoided by the simple device of
solving the problem of flow past a smooth cusp-nosed airfoil of arbi-
trary shape and then applying the final solution to the wedge. It may
be imagined that the wedge has been
smoothed by adding a cusped exten-
sion to its nose, as indicated in

~

Y

sketch (c). It is clear that this
f

\
\

artifice removes the troublesome \
\

singularities from the right-hand \
\

side of the differential equation. \
Likewise, it eliminates the need
for the shock-wave relations be- & - -—- +X

cause, as indicated in sketch (c),
with sufficient smoothing, shock
waves will form only at such great
distance that their effects cannot
reach the airfoil surface. Although Sketch (c).- Steady flow past
shock waves are thus apparently a smoothed wedge.
excluded, the correct second-order
result for the wedge is nevertheless recovered from the solution by
imagining the extension to shrink in size and disappear. The reason is

. that to second order a shock wave is equivalent to the limit of a rapid
continuous isentropic compression. This limiting procedure, which is
equivalent sinrplyto applying the solution for an arbitrary smooth shape

. to one which is not smooth, yields the proper result except in the vicin-
ity of the shock wave (see ref. 5). For an airfoil of general shape,
similar broad smoothing must be imagined at any concave corner; whereas
at convex corners (“sinceno shock waves form) the slightest rounding is
enough. This smoothing technique was applied in reference 4 (p. 399) to

steady first-order flow past bodies of revolution, and in reference 5 to
steady second-order plane flow.

We turn now to the question of generalizing this smoothing scheme
to an oscillating airfoil. Modification is necessary only at the lead-
ing edge. Consider first the special case of rotation about the leading
edge. Then it is enough to conceive of an extension which is flexible,
so that its cusped tip can be maintained fixed and directed always into
the free stresm while the airfoil
oscillates, as indicated in

//-7
Y / /

sketch (d). (The exact motion of
t

/ /

the flexible tip is immaterial, ,+’ /~’
/.L=*

provided the surface is suffi-
&’~

////,
x

ciently smooth and its slope
remains small..) After the solution
has been found, the flexible Sketch (d).- Smoothing for airfoil

. extension is again imagined to oscillating about leading edge.

_—— ——.— ..——— —- — -—
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shrinkaway, and the correct
oscillating about its nose.

Y

result

‘t---—-———-m ..-
# .\ ‘-

x

Sketch (e).- Smoothing for airfoil
oscillating about arbitrary
point.

NACA TN 2982

is recovered for the actual airfoil

Finally, consider rotation
about an srbitrary point. The flex-
ible extension must now oscillate in
such a way that its tip is always
directed into the relative wind.
Hence, as indicated in sketch (e),
the tip must lie parallel with the
free stream at the top (and bottom)
of each stroke but incline in the
direction of motion for intermediate
positions.

We are accordingly led to consider the motion of an arbitrary flex-
ible oscillating surface described by

y= E g(x) - ~eiwt h(x) (l&)

where for the smoothed problem the functions g(x) and h(x) have con-
tinuous first derivative~. The smoothed problem will ultimately be
replaced by the actual problem. According to comparison with equa-
tion (3b), thti means that the function h(x) will.eventuallybe identi-
fied with (x - b). The requirement that the leading edge of the smoothed
shape be always parallel to the relative wind may be written as

g’(o) = o

hr(0) = imbfi
1

(16b)

(These last conditions, as well as the requirement that g’(x) be con-
tinuous, must be relaxed in recovering the solution of the actual
problem.)

Boundary Conditions

The boundary condition at the surface of the airfoil is that the
normal component of velocity is zero. For any surface described by
S(x,y,t) = O moving through a velocity field ~, this condition means
that the substantial derivative of S (i.e., its time rate of change
for an observer moving with the fluid) vanishes at the surface (see
ref. 6), so that

St +?* gradS=O atS=O (17)
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With velocity components
for the smoothed surface
condition becomes

9

given in terms of Q by equation (9b), and
described by equation (16a), this tangency

.

.

~=(l+~)(eg’ -~eiwh~)
iti.lt

-~qe h

where g= g(x), etc. It is convenient to

at

refer

Y =cg-~e i(dt h

this condition to
axis y= O by expanding in Taylor series. Keeping
order gives

~=(l+@x)(eg’ -~eiuth~) -~~eiuth- (eg -

aty=o

(18)

the
second

(19)

(Here @x and~m on the right-hand side can be evaluated from linear-
ized theory.) ““

The upstresm boundary condition requires that in the actual problem,
the Rankine-Hugoniot relations (or at least a simplified second-order
form thereof) be satisfied across an oscillating bow shock wave whose
position must be determined. Howeverj shock waves have been eliminated
from the smoothed problem, so that it is only necessary to require that
the perturbation potential O vanish along the oscillating character-
istic line (Mach line) springing from the ieading edge.
that all disturbances produced by the airfoil are swept
An equivalent and still simpler requirement is that @
wise derivative vanish on, say, the plane x = O:

O.ox=o atx=O

fiis insures
downstream.
and its stream-

(20)

Restriction to Small Angles of Attack

It is convenient to seek a solution to second order in the airfoil
thiclmess, but to only first order in angle of attack. This is not a
serious limitation because, just as in steady flow, second-order terms
in angle of attack, though affecting local pressures, have no effect
upon lift or moment because they are equal on the upper and lower
surfaces.

As a consequence of this restriction to
attack, the awkward question of when the bow
not arise. The amplitude of oscillation may
real,so that if the bow shock is’attached in
will remain so during the oscillation.

linear terms in angle of
shock wave detaches till
be regarded as infinitesi-
the mean steady flow, it

..— ——-— -—— —— ..—— _———__ _
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Transformation of

It is convenient to separate
from the mean steady flow at zero

Perturbation Equation

the time-dependent part of the problem
angle of attack (for which the second-

order solution is known). Furthermore, for harmonic oscillations the
number of independent variables is then reduced to two by separating an
exponential time factor. Finally, the linear portion of the time-
dependent equation is reduced to normal formby a transformation of
dependent variable. These three transformations amount to setting

@(x,y,t) = O(x,y) + ~e ‘(ut-’x)~ (X,y) (21a)

where

Here 4 corresponds
sents the additional
angle of attack.1

=l.@
K

p’ ;

to the mean steady flow,
flow associated with

Introducing this transformation into
(eq. (n)) gives for

where

l$y -

the

the

(21b)

and the term in ~ repre-
oscillation through small

perturbation equation

[
@yy - p%= = # (7-1)040 + (4X2 + OY2)X1

A is the Iaplacian operation */&? + ~1~, and for ~

(22)

(23)

lIf second-order terms in angle of attack were retained, equation (21a)

would include also a term %2 ezi(~t-~x) x(x,y), which would appear

only in the second-order solution. The differential equation for X
would have the form

xm -’2X=-(+J”x=+-’)’xA”+O● d
and couldbe solved just as is the equation for y.
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The tangency condition of equation (19) likewise separates into the
conditions

OY =e(l++x)g’ -~ ODg aty=O (24)

~qWg+eiKx$Wh

the actual problem the second of
with (X - b),

Iy = -ei~x (1 + $x) - i~ f$ ei~X

CIJlug+e i~x Ou (x

aty=O

these becomes,

(25)

identifying h(x)

(x-b) +e (~x-i~~) g’ -

- b) at y=O (26)

l?orpressures at the surface of the airfoil, the relation of equation (14)
can be expressed in terms of values at y = O by Taylor series expansion,
with the result that to second order in thickness and first order in angle
of attack

%=
(-2@ p2G4@3+fl%x’ - 4Y2)+

P2@&- I$y!& + eiKx$q h1
Solution by Iteration

Although the equation for $ is nonlinear, that for ~ is linear,
but with nonconstant coefficients depending upon 4. This corresponds
to the physical concept that because of the restriction to linear terms
in angle of attack, the oscillatory part of the flow is an acoustic
field with, however, the speed of sound varying from point to point in
accordance with the mean steady flow.

The well-known linearized or first-order theory results from disregard-
ing the right-hand sides of eqwtions (22) and (23). Thus, with the

(2?)

——.—— —.. — —.. — ———
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first-order potentials
perturbation equations
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denoted by the lower case letters p and $, the
become

%
-$=~==o (28)

(29)

The second-order solution is obtained by iterating upon the first-
order results. Using the linear equations to simplify the right-hand
sides gives for the second-order iteration equations

41W- &@==@ [B= (N - 1)%2 +W’lx (30)

where

(Here, following the usual subscript notation for derivatives,
mem *~/~, etc.) me second-order solution for o, which
Busemann’s well-known result at the airfoil surface (ref. 1), was given
in reference 5. It is therefore necessary to consider only the second-
order problem for ~. Details of the iteration procedure and discussion
of its limitations are given for ‘thesteady flow in reference 5 and
apply also to the present problem.

(31)

(32)

[q 21~eymxto

Partial Particular Integral

The solution of the differential equation for steady flow in
reference 5 was simplified by discovery of a particular integral of the
iteration equation in terms of the first-order solution. It was also
shown there that for steady three-dimensional flow, a particular integral
can be found to account for all terms in the iteration equation except
those involving the adiabatic exponent Y in the form of N. Likewise,
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here, a partial
right-hand side

13

particular integralwhichaccountsfor all termson the
of equation (31) except those involving IV is given by

9* = F (Qw)x- iw-! (33)

The complete-solution is *his partial particular integral plus a
solution of the reduced equation whose right-hand side contains only
the terms still unaccounted for:

First-Order

The first-order solution for ~
to be

(34)

Solution

is known from Ackeret’s theory

g(x-py) (35)

It is to be understood here and in all similar expressions to follow
t~t this is the potential only for x ~ ~y, and that 9 vanishes
identically ahead of the bow Mach Wave (where x<~y).

The first-order eqwtion for ~ (eq. (29)) is most readilysoI,ved
by applying the Lapbce transformation with respect to x. We denote
the Laplace transform of a fun:~ion either by a bar, or by th~lsymbol L,
whichever is more convenient (and the inverse transformby L ), so that

Applying
and *X

7(s) 1m

~}

=
f

e-Si f(x) &

f(x) o

(36)

this transformation to equation (29), using the fact that $
vanish at x = O, gives

‘-20’+ 3“=0 (37)

_. —_—. —.— .——
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The solution of this equation which represents waves moving downstream
is

The constant C(s) is
condition (eq. (25)),

(38)

determined by the first-order form of the tangency
which transforms to

Ty = - =(s) at y=O (3%)

where

is the downwash

Consequently,

[

P’
w(x) = efix hr(x) + ik ~ h(x)

1

velocity at y = O.

(3%)

The inverse transformation is readily carried out using the standard
tables (e.g., ref. 7) together with the convolution theorem, which gives
as the solution of the smoothed problem

X-$y

$-(X,y) = * f Jo (:df=iz=)W(x -g, (3, (41)
o

The solution for the actual problem
h(x) =X - b, which gives finall~

X-$y

is now obtained by setting

[ 1
~i~(x-~) l+fi ~ (x-E-b) dE (4@

in agreement with the lam-n result of linearized theory (see, e.g., ref.8).

‘The smoothing was, of course, unnecessary in this first-order problem.
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SECOND-ORDER SOLUTION FOR LOW FREQUENCIES

. Because the first-order solution for arbitrary frequencies is
rather complicated, use is sometimes found for au expansion in powers
of frequency, which involves only elementary functions. The corre-
sponding second-order solution will now be carried out in detail,
including linear terms in frequency. This result will serve, for
exsmple, to evaluate the effects of thickness upon one-degree-of-
freedom torsional instxibility,which is primarily a low-frequency
effect. Thereafterj the result of extending the solution to include
third powers of frequency will simply be stated.

Potential Including Linear Terms in Frequency

&panMng the first-order solution of equation (41) in powers of
the fkequency parameter R and retaining only 13near terms gives

(43)

where z = x - @y. To this orderthe partialparticularintegralof
equation(33)” is a solution of the homogeneous equation (eq. (29)), and
can therefore be disregarded. Substituting the first-order solutions
into the right-hand side
transformation gives, to

It fs readily found that

of equation (34) and a~l~ the Laplace
order tcj

[(Fs-m)L{g’(x)*’(x)}-ksL{g’(x)*
a particular intjegralof this equationis

given by an appropriate multiple of ye-~sy. Then, adding a comple-
mentary function representing downgoing waves gives

where the constant C i~ to be evaluated from the tangency condition.
Inverting the Laplace transformation shows that for the actual problem,
in which h(x) = X - b, the solution has the form

-- .—. . ....— —— —. —-—— ———— -— -- —.. — -—— -
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where g =g(z). The
tangencycondition of
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arbitrary function f(z) is determined from the
equation (26) to be

(2&-1

)[
f(z) =~+~z ,W-z-$b +e ‘N~$-l

P 1
g + (x-b)g’ +

-1

[ 1}
-& (N-1) bg

Surface Pressure Coefficient

The pressure coefficient at the upper surface of the
is found from eqxation (27) to be

[

(2-#) (~N-1)~+ #.#g+.~- xg’ + (~N-2)bgt
. 1}

. . . 0(IF,e%,%)

1

1zg i-z(z-b)g?+

(k6b)

actual airfoil

+

+

(47)

where g s g(x). Here Cpo is the value for the mean steady flow (at
zero angle of attack) which is given by Busemann‘s second-order theory.
Amore useful form of the result is obtainedby extracting the real part
and expressing the result in terms of the instantaneous angle of attack
a(t) and its the rate of change c%(t). Furthermore, the parameter e
has served its purpose of distinguishing terms of different orders and
canbe eliminated (according to eq. (l)). Thus, on the upper surface
of an arbitrary airfoil which is described at zero angle of attack by
Y = Y(x), is pivoted about a point a distance b downstream of its
leading edge, and performs slow angular oscillations describedby a(t),
the pressure coefficient is, to second order in thiclmess and first
order in angle of attack,



3K NACA TN 2982 17

[
2 ?!mkAl y + (=~)(~N-1) .yl + !@byt + , ~ ● ~ ~(& ~,a ~)

P4 B4 1+ 1
Y

(48:)
Here the value for the mean steady flow is (ref. 1)

Y,2 (M-b)

(A<preliminaryreport of this result was given in ref. 9.) In this
form, the result is not restricted to sinusoidal motion but applies to
any oscillation which is sufficiently smooth and slow that the pressures
depend significantly only upon the instantaneous angle of attack and
~ velocity.

The pressure on the lower surface of the airfoil is obtained from
these equations by reversing the sign of a, and taking Y(x) to be
the ordinate of the lower surface, measured positive downward.

The result for plunging motions canbe extractedby letting a
tend to zero and b tend to infinity in such a way that their product
remains finite, say

ha(t) =h(t) (49)

In the limit, the airfoil simply translates vertically according to
y = h(t). The pressure coefficient on the upper surface iss

(50)

Checks on the Result

The solution canbe tested in several special cases for which the
result can be derived from other considerations.

aNote that, as it should be, this is just the result of using Busemann’s
formula for steady flow (eq. (~)), with the local slope increased by
the instantaneous apparent downwash angle 6/U; see the discussion in
the following section of conditions at the nose.

_—.—_—_. —.—_
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Of the five terms in equation (Ma), the first is known from
Busemann’s steady second-order solution, and the second and third from
linearized unsteady theory. The fourth is obtained by using the instan-
taneous airfoil slope (Yt-u) instead of the mean steady slope Y! in
Busemann‘s formula and retaining only linear terms in a. Therefore,
only the last term, which is the essentially new result of the present
analysis, requires verification.

Just at the nose of an oscillating airfoil, the pressure can be
determined exactly if the bow shock wave is attached. The transition
through the moving bow shock is instantaneous, and so depends only upon
the relative veloci~at that instant (see ref. 4, p. 297). Hence the
pressure just at the nose is instanlxmeously the same as on a wedge of
the same vertex angle in steady flow with the same relative velocity.

+b-+

Sketch (f).- Velocity relative to
leading edge of oscillating
airfoil.

In the present problem, the relative
velocity is compounded of the hori-
zontal veloci~ U of the free
stream, plus the instantaneous
vertical velocity of the leading
edge, which is given by &b (see
sketch (f)). The effect of the
vertical component upon the equiva-
lent free-stream velocity and Mach
numiberis of second order in angle
of attack, but the equivalent
vertex angle of the airfoil is
increased by the apparent downwash

angle &b/U. Replacing Y’ by Y’ + ah/U in Busemannts formula (eq.(~b))
gives, to first order

CPU

which checks the part
tion (48a).

/

Mean position of
shock W~>

.
in angle of attack

(51)

proportionalto b of the last term in equa-

The remainder of the term in
question can be checked for a single-

4,4 wedge airfoil oscillating about its

.m” “ vertex (sketch (g)). It can be shown

Sketch (g).- Wedge oscillating
about its vertex.

usingthe resultsof reference 3
that in this case disturbances
reflected from the shock wave are of
third order in the wedge angle
(although fcr other pivot positions
they are of second order). There-
fore, a solution correct to second
order in thickness and first order
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in angle of attack can be found by applying linearized theory to
mean steady flow behind the shock wave.4 For slow oscillations.
first

where
shock

where

three terms of equation (48a) give
,

P-Pi 2 2(2-M12) &
—=——a+

;tiul* P1 P13 ‘1 z

19

the
the

(52)

subscript 1 denotes values in the mean steady flow behind the
wave. From linearized theory

M=
[

=Ml- ~ (N-1) ~
1

J%
[

=j31 A&-1) E
1 1

u= =

Pi =

P1 =

[1
U1-;

[
F’po l+YTG

1

‘0[1+:’1
(53)

~ is the semivertex angle. Hence, referring the surface pressure
coefficient to free-stream quantities (and noting that xl = x to second
order) gives

%?U 2 .+2- X$4=..+.Cpo –F
@s B2

(54)

which checks the first two parts of the last term in eqyation (%)
when Y(x).= CX.

Recently, Lighthill has given a further check for the case of
Mach nuribersso high that l/# is negligible compared with unity

, (ref. 10).

2TMs concept was suggested to the author by W. P. Jones of the National
Physical Laboratory, England.

——— —-.—-.———- .—. — ——.—. -—
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Lift and Moment Coefficients for Symmetrical Airfoils

The coefficients of Hft and pitching moment (about the pivot) are
given in terms of the pressure coefficients on the upper and lower sur-
faces by

c

(55a)

For simplicity, consider only airfoils symmetric about the chord line.
In this case, the pressure difference is given by

(4 2-IFx+b “_cpu=*a–F ~
)

~N-2 ~,a _
CPz :+4—

F

[
k 2@(I?-1) * + (2-F) (tiN-1) ~, . EN-2 bY,

1
~ (56)

$4 P* F

If the airfoil has a
(55) and inte~ating

4 4
cz=-u ——

P P

sharp trailing edge, substituting into equations
by parts gives

c

Inside each square bracket the first term is the result of linearized
theory, and the remainder represents the second-order bffect of thick-
ness. Thickness effects are seen to appear in the form of the area of
the airfoil profile and its first moment about the vertical.line through
the pivot.
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If the airfoil hae a blunt trailing edge of
the following additional second-order terms must
expressions:

to cl:

21

semithiclmess T(c),
be added to the above

4#N-2 Y(c) ~ 4 M%-2b + (2-@) (M%-1) Y(c) c&

[

.— —- -— —

PPC P flc 13s 1YT (59)

to cm:

(60)

-lea: BicOnveXandDouble-Wedge Airfoils

To second order, a biconvex airfoil of thickness ratio T is
given by the parabolas

y = *Y(X), Y(x) = 27: (c-x) (61)

The expressions for lift and moment become

(62)

It happens that for a dotile-wedge airfoil (with maximum
tidchord), both the area and first moment are just three
those for the biconvex airfoil. Consequently, the above
to double-wedge airfoils, if T/3 is replaced &oughout

(63)

thickn~ss at
fourths of
results apply
by T/h.

In the expression for pitching moment, the term proportional to a
represents an aerodynamic stiffness or restoring moment in phase with
the angular displacement, while the term proportional to & corresponds
to an aerodtic damping moment in phase with the angular velocity.
The effects of thickness upon aerodynamic reetoring and damping moments

—. ——.——. ——— .— —.
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are shown in sketches (h) and (i) for a 6-percent-thick-double-wedgeor
a &l/2-percent-thick biconvex airfoil with two different pivot posi-
tions. The sketches have been labelled with both the usual American
notation (e.g., ref. 11) and the British notation (e.g.y ref. 12)}

/.5
\

\ \ STA BILIZ IIVG
\\

\

b/c = O

-LOO L25 130 /!75 m

M

-_, ,,,,_

——— Liharhd theay

— Secmd-am’er fh~

Lz3zEI
Loo us 130 L75 zm

M

Sketch (h).- Effect of thickness upon restoring moment coefficient for
k-1/2-percent-thickbiconvex or 6-percent-thick double-wedge
airfoil.

.5 I
b/c .0

}-
——

*O / /

s

)

●

~
-.5 i

EsT ABI.LI ZIIVG

-1.0 I

LOO L25 MD /.z.J zoo
M

——— Lfnearhed theay
Secma%der theory

.5 I

b~. .5

0
/

/ DEST ABILI ZING

-.$
“-LOO L25 130 1X5 #?m

M

Sketch (i).- Effect of thickness upon damping moment coefficient for
4-1/2-percent-thickbiconveX or 6-percent thick double-wedge air-
foil ●

defined for harmonic oscillations of arbitrsry frequencyby

cm
~eimt =

1kw~+iM4)——
2

(American)

+ (~ + iAr&) (British)

1

(64)
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Here k and A are the reduced frequency in
notations, respectively, related by

.
For slow oscillations, the coefficients are

23

the American and British

given by

(65)

k&_uh
%%2=—— 2C & J

(66)

(and, indeed, this was originally the definition of ~ and m& that
givenby equation (64) being a later extension to the case of rapid
harmonic oscillations).

It should be noted that according to sec~nd-order theory, the non-
linear effects of thiclmess are themselves linear in thickness. This
means, for exsmple, that doubling the airfoil thickness ratio would
double the distance between the linearized and second-order curves of
sketches (h) and (i).

Neutral Damping Boundary

Linearized theory indicates the possibility of instability of
pitching oscillations for low frequencies. For a range of Mach numbers

below &= 1.58 and pivots ahead of two thirds of the chord, the
aerodynamic dsmping moment becomes negative, and so tends to destabilize.
(Whether or not the motion is actually unstable depends, of course, upon
the other dynamic parameters in the problem.) This zone of possible
instability shrinks and eventually disappears as the frequency of oscil-
lation increases. The present low-frequency solution is therefore
adequate for determining how the region of instability is rnodifiedby
nonlinear thickmess effects.

Sketch (j) shows the boundary of neutral aerodynamic damping for
slow oscillations of’s 4-1/2-percent-thickbiconvex or 6-percent-thick
double-wedge airfoil. The aerodynamic damping is destabilizing for
Mach nunibersand pivot positions lying inside the loops. Within the
region where linearized theory predicts a destabilizing moment, thick-
ness is seen to exert a further destabilizing effect except for pivots
near midchord. The second-otier solution becomes unreliable when the
bow shock wave detaches, at about M = 1.2.

_ -.——.— —— ——.
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/.8

/.6

M /.4

1.2

/.0

STABILIZING

Uneorized theory
/
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/

DESTABILIZING
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-/.5 -/.0 -.5 0 .5 LO
Pivot position, b/c

Sketch (j).- Neutral damping boundary for 4-1/2-percent-thick biconvex
or 6-percent-thickdouble-wedge airfoil.

Comparison With Previous Investigations

Two previous investigators have sought a second-order solution for
slowly oscillating airfoils in supersonic flow. Their results agree
neither with each other nor with the present solution.

In 1947, W. P. Jones obtained an estimate of the thickness effect
by assuming that the ratio of second-order to linearized pressure
disturbances is the same for slow oscillations as that givenby
Busemann!s formula for steady flow (ref. 13). That this assumption is
not altogether correct is indicated by the fact that the results do not
check those obtained for a wedge oscillating about its vertex by apply-
ing linearized theory to the mean steady flow behind the shockwave.
However, the assumption is correct at the leading edge, and also (as
noted by Lighthill in ref. 10) in the limit of high l&ch number. It iS
seen in sketch (j) that this estimate fails to give a useful prediction
of the actual effects of thictiess, except for pivots near midchord.

In 1951, Alexander Wylly attacked the problemby methods similar
to those used here (ref. 14). Unfortunately, it a~ears that the
smoothing was not carried out with sufficient care; as a consequence
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the solutionsatisfiesUone of the threechecksdiscussedpreviously.
In contrastto the presentresults,the effectof thiclmessupon aero-
dynamicdampingwas predictedto be stabilizingand so greatthat for
airfoilsof the thicknessesshownin sketch(j),the zoneof possible
instabilitywouldhave disappearedaltogether.

Comparison With Experiment

The onlyexperimentalresultsavailableare those quotedin
reference15, which are derived from tests by Bratt and Chinneck.
A l’-l/2-percent-thickbiconvexairfoil, pivoted at midchord, was tested
at Mach numbers of 1.28, 1.k6, and 1.52 over a range of freqyency. The
aerodynamic damping was measured by giving the airfoil an initial dis-
placement and measuring the logarithmic decrement. The experimental
data are shown in sketch (k) in comparison with linearized theory and

.75- L
\
\

-.. ~~ \

%=’ \y \
/$

mre supersonic
flow

.50 —

v
W/&”

& Pnxent theov \
h .25 —
“b I
:

--~ ---

- - .

0
_- ———

/-
0

/
LLneariad YH

-.25 1 I
1.0 L/ L2 /.3 M L5 1.6

b?

Sketch (k).- Comparison of experimental and
theoretical damping moment coefficients for
Y-1/2-percent-thickbiconvex airfoil pivoted
at midchord.

the second-order theories of W. P. Jones, Wylly, and the present
analysis. As indicated on the sketch, the lowest test Mach number lies
in the range of mixed subsonic and supersonic flow (and a detached bow
wave). The present theory predicts only a fraction of the discrepancy
between experiment and linearized theory. The same is true of Jones’
estimate which, according to sketch (j), agrees with the present analysis

. . ..—. -— —. .—.—. —.. —. ———
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ouv for Pivots near midchord. Wylly’s result,
be &rone&s, happens to Me much closer

Extension to Cube of

The dependence of thiclmess effects

to the

NACA TN 2982

which has been shown to
measured results.

Fregyency

upon frequency
CELII be estimated by ext~ tie seco~-order solution

of oscillation
to include

higherpowersof frequency. Thishas been carried out for an arbitrsry
airfoil by including second and third powers, which is enough to show
an effect of frequency upon both aerodynamic stiffness and damping.
The computation, though cumbersome, is a straightforward extension of
the previous analysis, so that only the final result wilIlbe given here.

The expressionfor pressurecoefficienton the uppersurface,
correspondingto equation(47)$ iS fo~d to be

%U-%0 ( ) $x(~x+$i) -l+ti 2-~x+&._b+—= .-
E%eiut B $--F-

[
itte 2Qg+*bg’ +(2-~J&”-l)w’+

$2 1
x

[

~2G 3(@-2)~-2(~-3)
f

g+4N-5bg+ (16-@4@(@-3) Xg+

2M=$2
o

F
v

!6&-(5M’-2)N ~ g +

2M4 o

7&(21&1) -@M%%4)N ~ ‘g +

my f
o

2(@+l)-(M%8)N bxg + (3@+Q)-(3@+4)N ~g +
hi? M&p’

2(I@+1)-3&ibgg, + @+2-~(w)N #gt

43P l.m?p’ 1

where g s g(x) ~d~g~ ~g(g)d~, etc. (The first four terms are
o 0

(67)

the result of linearized theory.) This result meets the three tests
discussed previously, and also checks the solution given later for a
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wedge with general pivot location at arbitrary frequency. The remilt-

ing

the
the

expressions for lift and moment involve the airfoil thiclmess in
fo-m of the area of the profile and
vertical line through the pivot.

its first three moments about

_le: Biconvex Airfoil

These rather formidable results simplify considerably for specific
airfoils. For example, for a biconvex airfoil of thickness ratio T
oscillating about midchord, the pitching-moment coefficient is given by

~%w ~(2-M2)+(ti-4)N + ~xs~~ 2(4W$-61F+1) -(3&+2*-16)N

24Qp6 1440pa
(68)

The first three terms are the result of linearized theory.

The component of this moment which is out of phase with the angle
of attack gives a parabolic approximation for the variation of aero-
dynamic damping with frequencyas shown by dashed lines in sketch (Z)

.16
M= /.5
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Sketch (Z).- Effect of frequency~on damping moment coefficient
for 5-percent-thickbiconvex airfoil pivoted at midchord.
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for a 5-percent-thick biconvex airfoil. The accuracy of the parabolic
approximation for linearized theory is fndicated by comparing it with
the exact result (solid line). In this example the linearized and
second-order curves run almost parallel, which means that the nonlinear
effects of thickness vary only slightly with frequency.

Recently, Jones and Skan have treated biconvex airfoils at arbi-
trary frequency by a numerical procedure (ref. 16). Their result is
shown in sketch (Z). It fails to give the initially parabolic form of
the curve which is implied by the fact that the second-order solution,
llke the first-order result, can be expanded in powers of the square of
the frequency. Their solution involves several dotitful assumptions, in
mrticular. that the effect of the bow shock wave can be disregarded.
it has alr&ady been r~ked here that, actually, the bow shock
second-cnder effect unless the pivot Bes at the leading edge.

SECOND-ORDER SOLUTION FOR ARBITRARY FREQUENC~S

has a

For some purposes the previous solution for slow oscillations may
be inadequate. In principle, the second-order solution can be extended
to include still higher powers of frequency, but the hbor required is
clearly prohibitive. Alternatively, one can attack directly the problem
for arbitrary frequencies.

The second+mdersolutioncan, in fact, be carried out for a general
airfoil at arbitrary frequencies. However, the result is formidable,
involving multiple integrals of products of Bessel functions, and the
reduction to simpler form for specific profiles appears to be difficult.

A more practicalapproachis to choosea specificairfoilshapein
advance. Then the second-ordersolutioninvolvesonly functionsof the
type encounteredin the 13nearizedtheory. Inparticulsr} it iS found
that (at least for the simplest shape) the final eqwessions for lift
and moment involve only functions which have been already studied and
tabulated, so that numerical results are reaWLy obtained.

Wied Smoothing Procedure

The smoothingdiscussed previouslymust be droppedat an earlier
stageof the solutionwhen a specificairfoil shape is chosen. It iS
therefore necessary first to modify the differential equation and
bom conditions so that no s~ terms appear.

Consider first th& differential equation (eq. (31)). Applying the
Iaplace transformation of equation (36), and envisioning the smoothed
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problem, so that ~ and TX vanishat x= O,

29

reducesit to

“

.

(69)

h this fomn, ELLLtrmiblesome second derivati=ms have disappeared from
the right-hand side, so that the smoothing can now be dropped.

Consider next the tangencyconditionof equation(Z?5),which
containssecondderivativesof both 9 and $. These cause no difficflty
when, as in the solution for slow oscillations, the tangencycondition
lB imposedas it stands. However, its Iaplace transform will be used
here, and then the Dirac delta functions associated with the second
derivatives wmld affect the integration imp~ed in the inversion of the
transformation. These troublesome second derivatives can be eliminated
by first expressing them in terms of z derivatives only through the
first-order equations:

and then
smoothed
gives

(70)

Qgy= F’%

& %“F’(&+# )I
“applyingthe I@Lace transformation while envisioning the
problem (so that ~, ~, ~, and *X vanish at x = O), which

Q =- ;(s) -
{ } ~X }-- L{,.f}- Fdt-(,xg}-

lFLe*~+dF ~g’

{} {
FG $ J.-IW + P’(s-iic)L eiKx qx(x-b)

}
aty=O (71)

Again, all second derivatives have disappeared, so that the smoothing
c-e dropped.

Consider finally the upstream condition. For the smoothed problem,
one statement of the condition was seen to be that the solution repre-
sents downgoing waves. This means that the complementary function for
the iteration equation should have the same form as the linearized
solution, and this statement of the upstream condition applies as well
to the actual problem.

——— ______ .— —— ..—. ——— _- —.——.——.



30 NACA TN 2982

The simple
tionwhich can,

Solution for Wedge

case of a single wedge illustrates the methciiof solu-
in principle, be applied to any profile formed of

piecewiseanalyticarcs. For a wedge of semivertexangle e, the
first-order solution for Q is givenby equation (35) as

Q= -:(x-py) (72)

and the first-order solution for ~ is givenby equation (~). Substi-
tuting into the right-hand side of equation (69)5 gives for the trans-
formed iteration equation

(73)

A particular integral of this equation is given by
>

an appropriate

multiple of ye-~y~++~~, and adding a c~lementary function which
represents downgoing waves gives the solution

~= C(s)e-pym+

: ‘Fs-iw-=+ii=’‘N-X27
The constant C is evaluated by imposing the tangency condition of
equation (11), with the result that the Laplace transform of the second-
order solution is found to be

T= e-iW- --(s)

{[

l+ey(M%-iK) + ; (M%-iK)
(N-l)s-iKN/#

13JW J’ (py -t

(75)

% this simple case, the partial Particular integral of equation (33)
offers little actual simplification.
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The inversion can be carried out using the
ref. 7) together with the convolution theorem.

31

standard tables (e.g.,
For calculating surface

pressures,it sufficesto obtainthe solutionin the plane y ; O,
which is found to be

()~w=(0) Jo $x

()
-eb Jo ~~x +

‘2* 7’‘(v)d’1 -e’R(x-’) } “
o

where

With the pivot
ing IlneccLzed

at the nose (b = O), this agrees with the
theory to the mean steady flow behind the

(76a)

(76b)

result of apply-
shock wave.

Also, when expanded in powers of frequen~y, it agrees with the previous
low-frequency solution up to terms in tta.

The mmface pressure coefficient can nowbe calculated from eqw
tion (27) and the lift and moment coefficients fram equations (55).

_le: Wedge Pivoted at Nose

. For simplicity, the results will be given only for the special
case of rotation about the nose. Then it is found that the lift and
moment coefficients =e given by

.——— -.— — —.— -.—. .———.—-—
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E ~ (N-. +-.$ [ (l+v)f, - e-itii~Jo(MA,F)]-

fs+v

(l+V)(2+V) 1 (77)

where v = O for the lift and v = 1 for the moment. The functions

fn) givenby

(78)

arise in Unearized theory for n ranging from O to 3. They have been

studied and tabulated by von Borb~ly (ref. 17), Schwarz (ref. 18), and
Garrick and Rubinow (ref. 11). They can all be expressed in terms of
f. by a recurrence relation due to von Borbdly (see, e.g.J eq. (A.87)
of ref. 1.2),so that the aiiditioti fA req~red here is easi-
computed.
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Sketch (m) shows the variation of aerodynamic damping moment,

Secmo%der theo~-

I

“ ‘LUneor&ud tbeo~ I

~BILl ZING
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0 .4 .8 L2 /.6 2.0 2.4 2.8
hbduced fquen~, A=Zk = u@/

Sketch (m).- Damping moment coefficient for 10-percent-
thick wedge oscillating about its vertex at
M= 10/7.

according to first- and second-order theories, for a 10-percent-thick
single wedge oscillating about its nose at a Mach number of 10/7. Also
shown for comparison are the parabolic approximations of the low-frequency
analysis● It is seen that
flutter frequencies, as is

the thickness effect is reversed at high
suggested by the parabolic approximation.

DISCUSSION

Higher-Order Effects

The moderate magnitude of second-order effects would suggest that
the influence of third- and higher-order terms is of no practical
importance, except perhaps in the transonic range near shock detachment.
This supposition can be confirmed in the case of the single-wedge airfoil,
for which a solution exact in thickness (but linearized with respect to
angle of attack) has been derived in references 2 and 3. Sketch (n)
compares the boundaries of neutral.aerodynamic damping for a slowly
oscillating wedge of 5° semivertex angle as predicted by the linearized,

——._— .._ _ —.—.— .,
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Sketch (n).- Neutral.damping boundary for wedge of so
semivertex angle.

L

second-order, and exact theories. The second-order solution lies close
to the exact result down to the Mach number for shock detachment (which
is almost the same as the Mach number at which the flow ceases to be
purely supersonic).

Extension
/ ratio does not

yet been found

Application to Finite-Span Wings

of the second-order solution to wings of finite aspect
seem possible at present. No second-order solution has
even for steady flow past the simplest Efting wing.

Fortunately, the main conclusion to be drawn from the present
analysis is that nonlinear thickness effects are quite moderate in
magnitude. Practical supersonic wings will, therefore, probably be
so thin that nonlinear effects are negligible, so that reliance can be
placed in the predictions of linearized theory. Only if the wing is
unduly thick, or if the Mach number is close to unity, or if unusual
accuracy is reqtired, may the engineer be forced to estimate the effects
of thicbess. In this event, he might assume that the effects of thick-
ness are in some sense additive to those of aspect ratio, provided the
aspect ratio is high and the frequency low. For example, the two-
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dimenstinal correctionmightbe appliedstripwiseto the spanwiseload-
ing predictedby linearizedtheory. Some indication of the tient to
which such an assumption would be justified can be obtained by consider-
ing other pairs of effects whose combined influence is lmown. Sketches
(Z) and (m) show that the effects of thickness and frequency are roughly
additive for the frequencies of usual practical.interest in dynsmic
stability analysis (say A< 0.2). Likewise, sketch (o) shows that the
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Sketch (o).- Effect of aspect ratio upon damping moment
coefficient for rectangular wing according to
linearized theory.

effects of aspect ratio and frequency, determined from Watkins’ linear-
ized solution for the rectangul~ wing (ref. 19), sre nearly additive
in the same range of frequencies.

Recently, Martin and Gerber have calculated the second-order effects
, of thickness upon damping in roll for wings of infinite span (ref. 20).

They then estimate the effect for a finite rectangular wing by increasing
the result of linearized theory in the same ratio as for the infinite
wing. Agreement with experiment is thus considerably improved, which

. gives further assurance that superposition of thictiess effects maybe
justified also for oscillating wings.

.

—.. —.— ——.
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Further Anal.ysiB

If thickness effects of the magnitude indicated by the present
analysis are judged to be significant at flutter frequencies, extension
of the high-frequency solution to more practical profiles would he
warranted. The solution given for a single wedge at arbitrary frequency
should be extended next to the biconvex or double-wedge airfoil.
Although considerable computation is involved, it does not appear that
the labor would be prohibitive.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics

Moffett Field, Calif., April 20, 1953
—
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APPENDIX

SYMBOLS

a

A

b

c

c(s)

c1

cm

%

CPO

WY CPZ

g(x)
,,

h(t)

h(x)

k

%h

M

N

P
+. ~

s

speed of sound

aspect ratio of wing

downstream distance from leading edge to pivot

airfoil chord

constant of integration

section lift coefficient

section moment coefficient

pressure coefficient

surface Qressure coefficient in mean steady flow

pressure coefficients on upper and lower surfaces of
airfoil, respectively

function defining upper surface of airfoil at
attack

elevation of plunging airfoil

function defining amplitude of oscillation of
of smooth airfOil

reduced frequency, ~

aerodynamic damping coefficients
(See eq. (66))

free-stream Mach number

y’tl*—.
2 B2

static pressure

velocity vector

Iaplace transformation variable

zero angle of

upper surface

_. —. .—— -. .—— —.— —.— -—..
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S(x,y,t) function defining moving surface

time

velocity componentsparalleland perpendicular

free-streamvelocity

downwashvelocityat y = O

coordinates yartiel and perpendicular to free

NACA TN 2982

to free stream

stream

ordinate of upper

x- PY

angle of attack

~ amp~tude

surface of airfoil at zero angle of attack

of oscillation

+/IF-l

adiabatic

Iaplacian

exponent of gas

Foperator, ~ +

small parameter representative of airfoil thiclmess

reduced frequency, ~
u

constant which is O or 1 in equation (74)

density

airfoil thickness ratio

first-order mean steady perturbation potential

second-ordermean steady perturbation potential

complete perturbation potential

first-order time-dependent perturbation potential

second-order time-dependent perturbation potential
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!2%
(d

Q

( )0

( )1

(0)

(–)
L{}1

Jymtial particular integral.of time-dependentIterationequation

frequencyof oscillation

completevelocitypotential

free-streamconditions

conditionsin mean steadyflowbehindbow shockwave on wedge

d.ifferentiationwith respectto time

Ikplacetransform

~- ———. ~ .—— ..—_.—— —.——
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