View metadata, citation and similar papers at core.ac.uk

P
brought to you by ,i CORE

provided by NASA Technical Reports Server

NACA TN 3070 T

K
e, ]

JE

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE 3070

EFFECTS OF PANEL FLEXIBILITY ON NATURAL VIBRATION
FREQUENCIES OF BOX BEAMS
By Bernard Budiansky and Robert W, Fralich

Langley Aeronautical Liaboratory
Langley Field, Va,

Washington
March 1954

4l rr-‘n a
ATl
RN

[ Fa

TECHM!

Au’ FL.

HO

LT29900

(AR

NN ‘B4Y) AHYHEN



https://core.ac.uk/display/42802426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TECH LIBRARY KAFB, NM

NG

NATTONAT, ADVISORY COMMITTEE FOR AERCNAUTICS 00LbL217
TECHNICAL NOTE 3070

EFFECTS OF PANEL FLEXTBILITY ON NATURAL, VIBRATION
FREQUENCIES OF BOX BEAMS

By Bernard Budiansky and Robert W. Fralich
SUMMARY

Effects of local panel oscillations on bending and torsional vibra-
tions of box beams with flexible covers and webs are investigated. Theo-
retical analyses of simplified models are made in order to shed light on
the mechanism of coupling between local and overall vibrations and to
derive results than can be used to estimate the coupling effects in bhox
beams.

INTRODUCTION

Local panel oscillations are often observed during vibration tests
of box beams. (See, for example, ref. 1.) On the other hand, existing
methods of analyses of bending and torsional vibrations of box beams
assume that the panels are rigid in bending out of their own planes, and,
consequently, the possible inertial effects of coupling between local and
overall beam vibrations are not considered by these methods. Thus, unless
these coupling effects are taken into account, the significance of labo-
ratory tests undertaken to verify such methods of box-beam vibration anal-
ysis may be obscured by the presence of panel vibration.

In the present paper the mechanism of coupling between panel and
beam vibrations is discussed. The results of theoretical analyses of
simplified models embodying this mechanism are presented and discussion
1s made of the use of these results to provide estimates of the effect
of panel flexibility on box-beam natural frequencies. Details of the
analyses are given in appendixes.
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SYMBOLS

General

coupling constants

modulus of elasticity
integers

maximm kinetic energy
time

maximm potential energy
reference axes
Lagrangian multiplier
Poisson's ratio

density of material

Bents

cross-sectional areas of members of bent;
Al = atl, A2 = at2

thickness of bent perpendicular to its plane
coefficients of deflection shapes

moments of inertia of cross section of members of bent;

B.tl 5 B.t23
LTy et

mass moment of inertia of bent about its center of

15\2 to 1 £5 [15\3
gravity, )-l-pAlZ:LB -2 +£+_g._2+;__2_2_
11 3 %111 3t\l1

deflectional spring stiffness
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k¢ torsional spring stiffness
1,1 half-lengths of members of bent
t2 [
M mass of bent, ULpA;l(l + ==
1
tl yto thicknesges of members of bent in plane of bent
X4 mode shape of ith member of bent
X root-mean-square deflection of members of bent,
1 2
—_—_— dx
dll- 11 + )-l-Zg §§\ X_'L
Y deflection of bent
Yo maximm deflection of bent
Z4 lateral deflection of ith member of bent
0 rotation of bent
C1Y) maximm rotation of bent
)\1,7\2,’¢rl,1¥2,xl,)(2 frequency parameters
@ coupled frequency for flexible bent elastically
restrained agalnst rotation or deflection
wp uncoupled frequency for rigid bent elastically
k
restrained against deflection, \lM—D
w¢ uncoupled frequency for rigid bent elastically
regtrained against rotation, \lk—¢
Io
) nth uncoupled frequency for member modes of bent that

(RN}
.
tend to couple with rotation of bent, ol [Eh

2 pAl
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oy nth uncoupled frequency for member modes of bent that

e
A
: K 1) d£| i)
tend to couple with deflection of bent, - 5 5
p
A1 1

Box Beams
am,bp Fourier coefficients
b bulkhead spacing
Dy,D, flexural stiffnesses of covers and webs;
12 - 123 - @)
11,1 half-widths of covers and webs
tl,t2 thicknesses of covers and webs
Wy mode shape of ith cover or web of box beam
o coupled frequency of box beam
wp uncoupled bending frequency of box beam
m¢ uncoupled torsional frequency of box beam
Wpy first uncoupled frequency for modes of covers and

webs that couple with beam torsion

gy first uncoupled frequency for modes of covers and
webs that couple with beam bending

DISCUSSION OF MODES OF VIBRATION

In order to determine the essential features of coupling between
local panel distortion and overall box-beam vibrations, the simple models
shown in figure 1 are to be studied. In figure 1(a), a rectangular
frame - or bent - having flexible menmbers is mounted on a torsional spring
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attached to the corners; a similar bent is mounted on a deflectional
spring in figure 1(b). The torsional and deflectional oscillations of
these bents are then analogous to the motion of a thin transverse slice

of a box beam executing torsional and bending vibrations, respectively.
Further, the digtortions of the members of the bents that are induced

by the overall oscillations are analogous to those which would take place,
between bulkheads, in the covers and shear webs of a box beam. The possi-
bility of a quantitative correlation between the characteristics of the
models and their box-beam prototypes is to be examined after the analysis
of the bents is discussed and the pertinent parameters are exposed.

The vibrational behavior of the elastically supported bents with
flexible menbers may be considered to consist of a coupling between two
types of oscillations: (1) the vibration of the bent with its members
considered locally rigid and (2) the local vibration of the members of
the bent when its overall motion is prevented by supports at the cormers.
The various possible uncoupled modes of local vibration are determined
in appendix A; as shown in figure 2, these modes are clasgified into four
types, each type corresponding to a different combination of symmetrical
or antisymmetrical motions of the members. However, not all these types
of motion would tend to couple with the overall motion of the bents oscil-
lating on the springs shown in figure 1. It is evident that only for
motion of the type shown in figure 2(b) will the local inertia forces of
the members yield a resultant torsional force; consequently, only this
type of locel vibration would affect the torsional vibrations of the bent
as a whole. Similarly, only the modes of figure 2(d) provide resultant
vertical inertia forces, so just these modes couple with the deflectional
vibrations of the bent of figure 1(b). The actual effects of coupling on
the frequencies of rotational and deflectionsl oscillations of the bents
are presented and discussed in the ensuing sections.

ROTATTONAL VIBRATION OF RECTANGULAR BENTS

WITH FLEXIBLE MEMBERS

An exact solution is presented in appendix B for the coupled rota-
tional frequencies of vibration of the rectangular bent shown in fig-
ure l(a). The exact results for the speclal case of a square bent with
all members identical are presented and discussed in detall. Results
based on an approximate solution, also derived in appendix B, are given
for rectangular bents after the accuracy of these results is assessed by
a8 comparison of the approximate and exact results for the case of the
square bent. ’
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Square Bent

The coupled frequencies are found in appendix B to depend upon the
ratio of the frequencies wbl and w,, where mbl is the uncoupled

frequency of the first mode of the type shown in figure 2{(b) and wg is

the uncoupled rotational frequency of the bent with its members assumed
rigid. The variation of the coupled-frequency ratio ayh¢ with mbl/w¢

is shown for- the first four coupled modes by the solid curves of fig-
ure 3(a). The horizontal dashed line corresponds to a velue of ® equal
to m¢ and the inclined dashed lines correspond to values of w equal

to the values mbl, wbe, . . . of the frequencies of the uncoupled modes

of figure 2(b). The solid curves deviate from these dashed straight lines
because of coupling between the two types of vibration.

The significance of the curves giving the coupled frequencies may
be clarified by the corresponding amplitude-ratio curves of figure 3(b)
which give for each coupled mode the ratio of the linear displacement of
a corner of the bent to the root mean square of the local deflections
(see appendix B). This ratio constitutes a measure of the relative
amounts of overall rotation and member deflection in a particular coupled
mode of vibration. The first coupled mode of vibration 1s seen to have
a varying significance .depending on the value of wbl/d¢. For low values

of this ratioc - that is, for very flexible members - the first coupled
mode is essentially a local vibrational mode with very little rotational
motion of the bent; on the other hand, for higher ratlios of mbl/d¢, the

first coupled frequency corresponds to a mode in which the main component

is overall vibration, with the frequency diminished somewhat (fig. 3(a))
from its uncoupled value by the presence of some local vibration. The
higher coupled modes also correspond to different types of motion, depending
on the relative values of local and overall stiffness. Thus, the second
coupled mode is essentially motion in the second uncoupled local menber
mode (see fig. 2(b)) for very low values of wbl/&¢ and is essentially

the first local member mode (together with a little overall rotation)
for high values of abl/&¢. Between these extremes, there is a range

of abl/&¢ for which this second coupled mode has substantial overall

rotational motion. Similar results are obtained for the third and for
higher coupled modes; each of these modes for either very low or high
values of abljhw is essentially motion in a particular local member

vibrational mode while, for a small range of mbl/&¢ between these

extremes, the coupled mode has a significant amount of overall rotational
motion.
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It is evident from these results that there is no clear-cut answer
to the question: How is the rotational frequency of the bent affected
by the local member flexibility? Depending on the value of abl/&¢, one

or another of the coupled modes of vibration is most nearly like a pure
rotational mode, and, consequently, the frequency of that particular mode
is the quantity of interest. TFor wbl/b¢ greater than about one, the

situation is fairly clear; the first coupled mode consists mostly of
rotation, and its frequency is always less than that of the uncoupled
rotational oscillation. However, for abl/h¢ less than unity, the fre-

quency of the mode that is most like pure rotation is sometimes less than
and sometimes greater than the uncoupled rotational frequency. Indeed,
in the vicinity of values of abl/&¢ where two of the amplitude-ratio

curves intersect, two coupled modes having substantial rotational com-
ponents occur; therefore (in a test, say), either one might conceilvebly
be taken for the rotational mode.

In view of the uncertalnties for low values of abl/&¢, the remaining

studies in this paper are limited to the situation when the local member
stiffness is large enough so that mbl/m¢ 1s greater than about one.

This limitation is actually not very serious since - with application to
box beams in mind - very low values of abl/&¢ do not generally corre-

spond to panel frequencies and overall torsional frequencies in the range
of greatest practical interest.

An approximate energy solution for the first coupled mode is carried
out in appendix B. This approximation, based on only the overall vibra-
tional motion and the first uncoupled member mode, is much more simple
than the exact solution and yields the result that the first coupled fre-
quency of the square bent is given by the lower root of the following

equation:
ERCE

2

Results from this approximate solution, as shown by the plotted points
in figure 3(a), are in practically perfect agreement with the exact
results for the first coupled mode.
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Rectangular Bents

An approximate solution for the first coupled frequency of a rectan-
gular bent on a rotational spring, based on only the first uncoupled local
mode of figure 2(b) coupled with overall rotation, yields the result, found
in appendix B, that this first coupled frequency is the lower root of

EE R I

where C¢ is & constant depending on the bent aspect ratio 21/12 and
on the ratio tl/t2 of the thicknesses of the horizontal and vertical
members. The variation of C¢ with these parameters is shown by the
family of curves in figure 4. The magnitude of mbl may be determined

from the curves of figure 5, which are based on the analysis of appendix A;
as before, w¢ is the uncoupled rotational frequency. Curves of wym¢

plotted against wbl/&¢, as determined by equation (2), are shown in fig-

ure 6 for various values of the constant C¢.

Additional inertia.- The results found for the first coupled fre-
quency must be modified if there exists additional mass, distinct from
that of the bent itself, that participates in the overall rotational
motion. Not only is the uncoupled rotational frequency m¢ affected,

but also, as shown in appendix B, the coupling constant C¢ must be
miltiplied by the fraction IO/«IO + IA), where I, 1is the mass moment

of inertia of the bent itself, and Ip 1s the additional moment of
inertia of the extra mass. Thus, the effect of additional inertia is

to reduce the magnitude of the coupling constant, so that for a given
uncoupled frequency m¢, the effect of coupling between local and overall

oscillation is reduced.

DEFLECTIONAL VIBRATION OF RECTANGULAR BENTS

WITH FLEXTBLE MEMBERS

The fundamental coupled frequency for a rectangular bent elastically
restrained against deflection (fig. 1(b)), obtained in appendix C by an
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approximate energy solution that takes Into account only overall
deflection plus the effect of the first uncoupled member bending
mode (fig. 2(d)), is given by the lower root of the equation

&

The uncoupled bent deflectional frequency op 18 the frequency of the

bent with its members considered rigid; the fundamental uncoupled member
frequency “hﬂ_ corresponding to the first mode of figure 2(d) can be

found from the curves of figure T determined in the analyses of appen-
dix A. Values of the coupling constant Cp are given by the curves of

figure 8. The first coupled frequency w as given by the lower root of
equation (3) may be found from the frequency-ratio curves of figure 6.

For the sake of completeness, an exact solution for all the coupled
frequencies is also derlived in appendix C. Calculations based on this
more refined analysis for the case of & square bent indicate that, as in
the torsional-vibration case, the accuracy of the approximate solution
is adequate for the first coupled mode.

Additional mass.- If there is mass M, on the deflectional spring

in sddition to the mass M of the bent, the uncoupled deflectional fre-
quency wp must be taken as that frequency corresponding to the total

mess (M plus Mp), and the coupling constant is changed to Cp' . S Cp-

M+MA
The curves of figure 6 then apply with these modifications.

APPLICATION TO BOX BEAMS

The effect of local cover and web vibration on the bending and tor-
slonal frequencies of box beams could, in principle, be determined by
analyses that are analogous to those that have been carried out for the
gimplified bent models. Such analyses would have to0 combine the dynam-
ical effects of overall modes with those of the local plate bending modes
that tend to couple. However, a full-fledged calculation of this type
would tend to become gquite complex for any particular box beam, since
very many types of plate vibration are possible and are complicated by
the presence of bulkheads, stiffeners, cover attachment, taper, and so
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forth. Furthermore, the possibility exists that the local vibration
would tend to couple together the various overall modes of bending and
torsion. The construction of charts that would cover all possible prac-
tical ranges of box-beam combinations is thus clearly out of the question.

However, the results obtained for the simplified models may be used,
together with engineering judgment, to provide rational estimates of the
effect of panel flexibility on box-beam vibration. For example, if the
bulkhead spacing is not very small, the stiffener areas not too large,
the taper not extreme, and the cross section not very different from
that of an integral rectangular bent, a reasonable procedure to f£ind
the corrected first torsional frequency would be as follows:

(a) Calculate the first uncoupled torsional frequency by whatever
is deemed the most appropriate method and call it w¢.

(b) Choose a spanwise.station that appears to have representative
cross-sectional properties, and idealize these properties to £it the
configuration of figure 1.

(c) For the idealized cross section taken of unit length, use fig-
ures 4 and 5 to calculate C¢ and @, -

(d) Finally, if @oq > @f, use Figure 6 to estimate the coupled

frequency o.

Similarly, the effect of coupling for the higher modes of torsional oscil-
lation might be estimated by letting a¢ assume the role of the frequency

of the particular uncoupled higher mode under consideration. In the same
way, the effect of panel flexibility on a bending mode would be found by
getting wg; and Cp from figures 7 and 8 and using figure 6 with ap

equal to the uncoupled frequency of the bending mode under consideration.
Since, as shown for the bents, additional masses tend to reduce the
coupling, the presence of such masses on the box beam should be con-
sidered by modifying the coupling constant in a fashion indicated for
the bents. ‘

It is evident that the procedure outlined is somewhat crude; never-
thelegs, it could probably be used quite successfully to guide the design
of box beams in such a way as to prevent significant panel vibrational
coupling, at least for the first few bending and torsional modes.

In order to refine the procedure somewhat (without going too far),
a little modification of the procedure might be desirasble to take into
account the effect of bulkheads in restraining the plate oscillation
and, hence in reising the local uncoupled frequency. For this purpose,
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figures 9 to 12, to be used in conjunction with the results for local
frequencies of bents in figures 5 and 7, have been prepared. Figure 9
(0;)

> plate
presents values of the ratio \1 - p

» Where (ay, 3
(mbl)bent ( 1)plate

corresponding to a system of webs and covers clamped at the bulkheads,

is the frequency of the first local mode that couples with box-beam

torsion; (@b ) is the frequency of the analogous mode of bent oscil-

1/bent

lation, given in figure 5. The same ratio 1s presented for covers and

webs simply supported at the bulkheads in figure 10. Figures 11 and 12

give similar results for the frequency of the first mode that couples

with box-beam bending; from these figures, together with the results of

i btained,

figure T for (aﬁl)bent’ values of Gndl)plate can be obtaine These

results, exact for simple support and approximate for clamped edges, are

given by the analyses contained in appendix D. It may be remarked that
21

the results in the limiting case of infinite bulkhead spacing, -ifk = Q,

correspond, except for the factor 41 - u2, to those for the bent.

The results for the plates with clamped support at the bulkheads
would be more sppropriate when a low mode of overall oscillation is
being considered, because in this case the plates on either side of a
bulkhead would usually tend to deflect in the same direction. However,
for a high mode of overall vibration, when the spacing of nodal lines
is comparable to that of the bulkheads, the covers and webs would tend
to deflect antisymmetrically with respect to a bulkhead, so that the
simple-support condition would constitute a closer approximation to the
actual restraint condition.

The effect of bulkheads (or nodal lines) is not only to raise the
plate frequency but also, in all likelihood, to reduce the coupling
(even at the raised frequency) below that given by figure 6. Conse-
quently, conservative estimates would most likely be found for the reduc-
tion of frequency from the uncoupled value when the coupling constants
of figures 4 and 8 are used.

When the box beam has a substantial amount of longitudinal stiffening,
idealization of its cross section into the configuration of figure 1 may
not be adequate. The coupling constant C¢ or Cp could still be esti-

mated by "smearing out” the stiffeners into an equivalent area thickness
and then using figures 4 and 8. This procedure seems reasonable since
the coupling effect is essentially an inertial one. On the other hand,
it would not be appropriate to use this equivalent-thickness procedure

in conjunction with the charts for finding local frequencies, since these
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frequencies depend on both the inertia and stiffness characteristics of
the stiffeners. Comsequently, a@p; or ag, should be estimated in the

best way known to the analyst, possibly by use of simple energy solutions.
The coupled frequencies can then be estimated from figure 6.

CONCLUDING REMARKS

The vibrational behavior of bents with flexible members, mounted on
either deflectional or rotational springs, has been analyzed in detail
in order to shed light on the mechanism of coupling between overall box-
beam oscillation and local panel vibration. The results obtained for the
bents can be used to guide the estimation of these coupling effects in
box beams when the uncoupled local frequency is higher than the uncoupled
overall frequency under consideration. Charts giving plate frequencies
for a variety of configurations and bulkhead restraint conditions are
presented as aids in such estimates.

Langley Aeronautical ILaboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., November 27, 1953.
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APPENDIX A
UNCOUPLED VIBRATION OF MEMBERS OF RECTANGULAR BENTS

Vibration of the members of a rectangular bent, supported at its
corners (fig. 1), is governed by the differential equations

S
b 4
__dxi_?‘l_hXi:o (1 = 1,3)
> (A1)
4 i
d
—%-%Xi=o (i = 2,4)
dx %)
S

where the Xi's define a mode shape corresponding to the natural fre-
quency given by

2 - M* EL; AW EL

= (A2)
Zlh' pAy 12}4' PAp

The following relationship between the frequency parameters A; and M
is obtained from equation (A2):

5& = El.fg 1/2 (A3)
A
since
éi = El (ak)
Ay tp
and

I_(ay
= (te) (a5)
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The general solutions of equations (Al) are

~
Xy = C4p sin xl%i+cigcos )‘1'{{?4’ Ci3 sinh)\l—l}il-+
Ci} cosh >\1% (i =1,3)
>.
Xi = C41 sin Ap 2= + Cyp cos Ny = + Cyx sinh Ay —— +
PR ) 5 12
Cilt cosh M %% (1 = 2,4) J

(46)

There are sixteen constants of integration which are determined by
the following sixteen boundary and continuity conditions at the ends of

the menmbers: ~

0] (i 1)3)

X1 (-11)

X; (1)

Il
I
It

Xi(22) = X3(-10) = 0 (1 = 2,4)

ax(n) _ ap(-12) _
ax ax

axp(tp) _aX3(-1) _
dx ax

o () au(-)
dx dx

axy (l2) axg(-1) _ o

dx ax L (A7)

) d2Xl(Zl) T d.2X2(-7,2)
ax? 27 a2
a%Xp(12) . a2xz(-11)

ax? 17 a2
Exz(n) | Px(-l)
ax2e dx2

a2, (12 a2%3 (-11)
_ " T, —m———I1 =0
2 ax? T

In

I Io 0
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Substitution of the expressions for Xj, equations (A6), into the

boundary and continuity conditions, equations (A7), yields sixteen linear
homogeneous equations. Setting the determinant of the coefficients of

the C's equal to zero and then expanding results in the following fre-
quency equation:

0= Eta.nh A + tan 7\1) + {2_>5/2 <tanh Ao + tan )2) cosh Ay cos N cosh Ay cos xz} X

- » .
(coth A - cot 7‘1) + :2—1)5/ (coth N - cot 7\2) sinh Ny sin Ay sinh N sin Mp X
L —

{coth N - cot 7\1) + (:2—1)5/2 (tanh N + tan )\2) sinh Ay sin A; cosh N cos )\Q}X
— 5/2 —

(sanh 2. + tan %) + %) (coth 2 - cot )| cosh Ny cos Ny sizh Ay sin N

(48)

where use is made of the relationships given in equations (A3), (Al),
and (A5).

Equation (A8) cen be satisfied by equating to zero any one of the
four braced factors; each one of these resulting equations is recognized
to be the frequency equation for a particular combination of symmetric
and antisymmetric vibrational motion of the members. The first two modes
of each type of oscillation are sketched in figure 2. The first of these
resulting frequency equations yields frequencies of modes in which each
member vibrates symmetrically (fig. 2(a)); the second, frequencies of
antisymmetrical member modes (fig. 2(b)); the third, frequencies for a
combination of antisymmetrical motion in the horizontal members and sym-
metrical motion in the vertical members (fig. 2(c)); and the fourth,
frequencies for modes in which the horizontal members perform symmetrical
vibrations and the vertical members antisymmetrical vibrations (fig. 2(d)).

The frequencies b, for the modes of figure 2(b) are obtained by
solving the eguation

|§oth N - cot 7\1) + (%)5/ . (cotn % - cot )\QEI sinh ) sin Ay sioh A, 8in A, = O (h9)
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2 2mb Zl [‘“
[K)Q) = The corresponding mode shapes obtained by

use of equations (A6) and (AT) are

A
X n = XBD = C’bnEin()\l)bn 'l—x' - S:Ln( l)bn Sinh(}\l)-b _X_}
1 sinh(xljbn n 7y

> (a10)
/- sin(N)y,_ x  sin(Pe)y_ y
LN "bn(@) sy, | 202 7 * mmprg) ™ 02ea 3,
-

In a similar manner the modes of figure 2(d) are found to Dbe

Xl = =X =C COS(?\ ) X . % COSh()\) X
n 3n dn 1lan 1q cosh(?xl)d 1) an 11
n

Ay 5 cos()q_) < sin()e)dn x
Xo, = -Xy, = dn(Ag) =in )den ( )dn = + _——Sinh()\z)d sinh(7‘2)d_n %

and the corresponding frequencies ay, are obtained from the sgolution
of the equation

[ta.nh N + tan 7\1) (t;)5/2( oth N - cot )\zilcosh A cos Ay sinh Ap sin Ny = O (A12)

2
2 2w, 1= [35
for ()1) = ——— \|Z=. Values of the fundamental frequencies for
dni ty E

these two types of modes are used to prepare the curves of figure 5 for
wp, and figure T for uy;-
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APPENDIX B

COUPLED ROTATIONAT, VIBRATION OF FLEXIBLE RECTANGULAR BENTS

In this appendix coupled frequencies are found for the rectangular
bent of figure 1(a). This bent has flexible members and is elastically
restrained agalnst rotation by a torsional spring which is attached to
the corners of the bent by means of rigid massless members. First, an
exact frequency equation is obtained from the solution of the differen-
tial equations of motion. Another exact solution is obtained by utilizing
the Rayleigh-Ritz method, in which the superposition of all the uncoupled
modes of figure 2(b) is used to represent a coupled mode shape of the
members. From this second exact solution, an approximate solution is
obtalned for the fundamental coupled frequency by using only the first
uncoupled mode of figure 2(b) to represent the coupled mode shape of
the members.

Solution of the Differential Equations of Motion

The differential equations of motion for the members of the bent
shown in figure 1(a) are

g 323 )
ET + pAy —= =10 (1 =1,3)
1 Bxh 1 dt2 L
(1)
2
Elp ahii +php I _ o (1 =2,4)
ox d3t2

~

In these equations, w4y 1s the total lateral deflection of the ith mem-
ber and 1s given by

Wy = 24 + 6x (B2)

where © is the overall rotation and 24 i1s the deflection relative to
the center line of the undeformed member.
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The spring moment is given as follows in terms of the product of
the moment of inertis and the angular acceleration of the bent as a whole
plus the sum of the moments of the local inertia forces caused by deforma-
tion of the members:

1 1
a2g 1 32, 2 32z
-k¢e I +pAlf x_ldx+pA2f X ax +
at? -1 ot -lp  dt°

z]_ 8223 lo 827,)_!_
pAy x — dx + phAo x dx (B3)
-7 ot -lp 32

where the moment of inertia Iy 1is given by

2 3
- 3|(12 1,22 1% _13
Ig = bpay 1y (ll) R ” *33 (B4)

During a natural mode of vibration, the elastically restrained bent and
each of its members perform simple harmonic motion of the same phase a.nd
frequency. Substitution of the expressions for harmonic motion,

8(t) = 6g sin wt

Zi(x:t) = Xi(x) sin wt (i = 1:2:3)11')

into the equations of motion (Bl) and (B3) yields

ﬂ
d)'l—Xi ‘Vlh- 11"]_1*'
- = X1 = =5 %8 (1=1,3)
at 111‘ n
- (B5)
3 4 )
atx U
_i_.‘%.xi=%.xeo (1 = 2,4)
axt 1 1o J
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and
11
Io(mf‘mz)GO“PAleIZl (X1+X3 -DAQ“’Qf X2+X4)
(B6)

in which the coupled frequency o and the uncoupled rotational fre-
quency w¢, obtained with the assumption of rigid members, are given by

Wll‘ EL _ ‘1‘2lL EL,
4 pAl 2h DAQ

(B7)

and

The frequency parameters ¥ and VYo of equation (BT) are related by

the expression
l
_hft /2 (B8)
AT

Modes of the type shown in figures 2(a), 2(c), and 2(d) make the
integrals of equation (B6) vanish and thus they do not couple with
overall rotation of the bent. However, the antisymmetric modes of fig-
ure 2(b) couple with rotation of the bent and the shapes of the resulting
coupled modes, in general, differ from those of the uncoupled modes. The
general solutions of equations (B5), which yield these coupled antisym-
metric member modes, are

X1

X
X5 = Op sin ¥y o=+ C13 sinhxpl;‘—l-xeo

> (B9)

)
Il

Ry

X X
Coq sin Yo 75 + Coz sinh ¥y %" X0¢

S
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where 8p, obtained from equation (B6) after substitution of expres-
sions (B9), (B8), (B4), and (Ak), is given by

00 = - gz (sin ¥, - ¥y cos uyl)cll + (wl cosh ¥ - sizh W1)013 +
1°1
£1\2
(%-2-> Ksin Yo - ¥p cOS qrg)cal + (qu cosh ¥ - sinh qu)cggl (B10)
in which

1

2 5, 2 2
" 4, Taly , taflp (ﬁ) \" tal
=] +2+ =43+ == - =) + ==
7 5375 5 35\n) [\o ) Tt

The four constants of integration Cyv5 013, Coy, and 023 are
determined by the following four boundary and continuity conditions:

W
Xl(zl) =0
Xg(-lg) =0
xy (1) dXp(-12) _ o S (B11)
ax dx
p P o PRtn)
ax2 ax? )

Substitution of the expressions for X;, equations (B9), into the boundary

-and continuity conditions, equations (B11), yields four linear homogeneous
equations. Setting the determinent of the coefficients Cy-, 013, 021’
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and 025 equal to zero, expanding the determinant, and solving the
resulting frequency equation for the frequency ratio a>¢2/a.)2 yields

B, ek
(%g_)a_ = (zl)ta:zlte123...{2()\1)1)1\1;?;;@2+%+%%+%%%ﬂ|{\cﬂh(ﬁ1}h%-wt(“l)bl\l%)+
@ a3

(2" oty B - b, {gj} {-u iy [ o
(8 6 G ot 5 b [ bl -
(B - (2 T ol (2wl 5 b i -

Y B om0, (o oty E} (m2)
where
o _ .,
(}\l)bl\ @-]__. = ~4"]_
_ g (B13)
()‘e)bl \ay.%l' =¥
J

and W4 is the fundemental uncoupled frequency for the modes of fig-

ure 2(b). The exact frequency equation (B12) for the bent of figure 1(a)
yields all the coupled frequencies ® in terms of the uncoupled member
frequency ap; (obtained from fig. 5), the umcoupled rotational fre-

quency  ay, and the parameters 11/l end t1 [to.

For a square bent with members of uniform thickness, the ratios 1 /1,
t1/to, and ()\1) b1 /(?\g)bl have the value of unity; the fundamental uncoupled

member frequency dyy, obtained from the solution of equation (A9), has the

value

2 |E
112 \o&y
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Then, the exact frequency equation (B12) for coupled frequency
fg 2
@) -

reduces to
S2s <coth . ,l - cot ﬁ,l ) (314)
Bﬂ‘l

Equation (Bl}) has been solved for the first four coupled frequencies;
these results were used to prepare the solid fregquency-ratio curves of

figure 3(a).

The ratio of linear displacement of the corners of the square bent
to the root-mean-square deflection of the members relative to their
center lines is given by

. fe (515)

T4 %(cotEﬂ .a_)?_ - coth®x ;ii) + . ?_i_(cot £ \% - coth = “w,'%_)

e
[

The ratios given by equation (B15) are presented for the first four
exact coupled modes in figure 3(b).

Rayleigh-Ritz Method

Application of the Rayleigh-Ritz method, in which the mode shapes
in the expressions for maximum potential and kinetic energies are repre-
sented by the superposition of all the uncoupled modes of figure 2(b),
yields a frequency equation that contains en infinite number of terms,
each term giving the effect of a particular uncoupled mode on the coupled
frequency.

During a coupled mode of vibration, the meximum potential energy is
glven by the expression -
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i faex, 2 o (a%x, 2
7, \ax ax

2 2
11 [a2x 12 (a2
1 ] 1 i)
5 EIy ]: (d_x2> dx + 5 Elp f <dx2> ax (B16)

11

and the maximum kinetic energy is given by

al
T = % A0 f le + x8)% + (129 ]dx +
—Zl

12 p—
% pASUF [12 (X2 + x00)2 + (lleo)ﬂ& +

1 —
1 2 2
5 pAy0P [Zl L(—)(5 + x80)< + (deo)jd.x +

) [

pAsuf f_ : lzxu + x00)% + (zleo)ﬂdx (B17)

where the Xj's define the coupled mode shape of the members, g 1is

the amplitude of overall rotation of the bent, and  dis the coupled
frequency.

Equation (B1l7) for maximum kinetic energy, with the use of equa-
tion (B4), becomes

1 2
T = % WPIp0ge + % oAy af f (X12 + X32)dx + %— pAsu’ f (X22 + Xug)dx +
"'7'1 "‘12

pA10P8 f Zl x(Xl + x3)dx + pAPo, f 12 x(X2 + XLL)d.x (B18)
-1 -1,
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The last two integrals of equation (B18) are identical to those of equa-
tion (B6) and, as in that case, vanish for all member modes except anti-
symmetric modes of the type shown in figure 2(b). Thus, in the applica-
tion of the Rayleigh-Ritz method, a coupled mode shape of the members may
be completely expressed by superposing all the uncoupled modes of fig-
ure 2(b) given by equation (A10) as follows:

sin )y, |
o s b et g
(819)
. ap\2 sin(')\l)bn ] x Bin(7‘2)bn x
X=Xy = ml,i;;... cbn(A—z) s:Lni)Q)bn sin ()‘Q)bn s + Binh(7\2)bn Sinh(}‘Q)bn 2]

-

The coefficients Cp, will be determined by the minimization process
of the Rayleigh-Ritz method.

Substitution of the expressions for X3i from equations (Bl9) into
equations (B16) and (B18) yields

ET <= h sin?(N)y,
v 5 erp b )

ET 4 % Bin?-()\l).bn sina()e)
Zg(%a?l‘) ml%... (cbn)a E}Q)‘bg sin2(7\2)bn ) sinha()eb):n

sin?
" sin?2(N), [ s122(%)
pAezamz(‘%) n-l%--- (%) “ina()‘?)bnE- Bmz(@b:;l )

sin
hﬂﬂlllzmeeo i %on E°B<7‘l)bn + -B(ﬂ- cosh()\l)% +
bn

n=1,2,... (7\1)bn 1nh()

2 o A1\ Oy ®in(M)y, sin(ho)y
ll‘91"2122!13290(—52;) n-:l%-” ()\gibn Bin(}‘e-—)bn cos (72)1)“ * _——ainh()e)bn cosh()\a)bgl

-
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Substitution of the uncoupled-frequency expressions

of - 3f

BM) b;lu ETy
-

into equations (B20) and using tHe relations (A3), (At), and (A5) yields
the expression

and

Yphq 1 20R = Cop
2V - 1) =L 0g?(mf - of) - 220 ST ~leos (M) +

To T n=1,2,... (M),
sin()\]_)b ] sin(A
———————— cosh(N\] -—) —————=|cos (N2 +
sinh(?\l)bn ( )bi 1\t2 sin()\g)bn ( )bn
sin (7\2)bn ] 7 PAY 11 -
2 2 _
sinh()\g)bn c()Sh()‘z)bn T oo n=1%,_, (Cbn) (%n
w2) Sine(Kl)bnj C 3 s1n2(N)y, Sin2(7‘2)bn
-— aly -
sinh?2 ()‘l) b 2 | t2> 5ine ()\2 sinhe( )\2) by,
(B21)

which, according to the Rayleigh-Ritz procedure, is minimized with
respect to 8pg and cbn as follows:

B%OEI%(V - Tﬂ = 0

242 . sin (A
_ (%2 _ a?)eo _ l%_l__ Z _ibn_. -E)s()\l)bn + % cosh()\l)bgl +

0=15%... (M)y,

1/2 8in(A1) sin(Ae)y,,
n :3) E@)% 20y, + :ﬁ °°5h(xe>bg} (822)




acbnl:
gin?
EPA]_I]_( 5 we) J‘,,: ) sin (?\l)bn‘—‘ . . o) % sin (?‘l)bn L (?‘E)bn‘llc}b )
1o . L Sinhe(}‘llb_l \te) e1?(ng)y L Emz(@)‘bﬂu .
L n n n
47172028 J_ ‘_ sin{AL —‘
kohy 1200 ) c-s(?\l)bn ( )bn Coshh‘l)bn +
I0(7‘1)bn ]\L sinh (),
1/2 #n(aly, [ sin(he)
taf L B bos M)y, + 58 cosh(hg), (n=1,2 . . .) (823)
u\te)  sin(de), B sinh(Ao)y,
Solving equation (B23) for Cp, ond substituting the resulting expression for Op, dinto

equation (B22) yields the exact frequency equation

fr-1- o e et o]+ 2 ot -t}

+—-—-+

ERCH

wl u—r

which contains en infinite nunber of terms, each term representing the coupling effect of a par-
ticular uncoupled member mode on the coupled frequency o in gueetion. An approximete solution

)

(B2
\Tln-l,e, rl)b] [C-’bn _‘H'.m _-oucha().l).b;‘l+z—il(\§§) Euaa}\ebn-uche)-g)hgj} .

92

0Lo¢ ML VOVN



for the fundemental coupled frequency may be obtained by reglecting the effect of all but the
first uncoupled member mcde. The resulting frequency equation that takes into account only the
firat term of the summation in eguation (B2:) is given by

[fﬁ ]E"’l - 1| = Cg (B25)

{ ﬁo‘th('n\l + cot hl)‘b—l }—E-F—l)lla roth(}.a).bl + cot O‘E)'b::n

EaN-¥) )

G¢ -
1o et s fron - A B ]

Equation (B26) is used to prepare the curvea of figure 4 which show the variaticn of C¢ with

where

11/12 and tl/tg. The frequency ratio aydw, given by the lower root of equation (B25), is
plotted in figure 6 for varicus values of C¢. For the case of the uniform square bent for

which C¢ = ;ig, this variestion of the frequency ratic is given by the plotted points of

fligure 3(a).

If the rotational spring of figure 1{a) supports a rigid maes in addition to the mass of
the flexible bent, thias rigid mass having a moment of inertia Ip will edd a term

to the expressicn for maximm kinetic energy. Repeating the derivatlon with this modification
yilelde the approximate frequency equatlon

0LO¢ NI, VOVN

Le
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SR R

where

and
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APPENDIX C

COUPLED DEFLECTIONAL VIBRATION OF FLEXIBLE RECTANGULAR BENTS

A frequency analysis is now made for the flexible rectangular bent
of figure 1(b), which is mounted on a deflectional spring attached to
the corners of the bent by means of diagonal rigid massless members. As
was done in appendix B for flexible bents on rotational springs, both
exact and approximate frequency equations are obtained.

Solution of the Differential Equations of Motion

The differential equations of motion for each of the menmbers of the
bent shown in figure 1(b) are

} 2 A
EIl.a_EJ:.;.pAl?_EJ;.;.ﬁ =0
ox 32 at?
L 32
EIo ;2 + php 22 =0
ox Jt
" ) L (c1)
J
EIl - +pAl 23—d—2£ =0
ox M2 at?
o 32
EIQ——-?+QA2-—-:+-=O
ox ot )

vwhere Y dis the overall deflection of the bent and 2z is the local
lateral deflection of the ith member.

The oversll inertia force (mass times acceleration of the bent as a
whole) and the locsel inertia forces resulting from deformation of the
horizontal members are related to the spring force as follows:

11 32 11 3%y
kY = M Egg + phy J[\ L ax - pAi‘jF —2 ax (c2)
at -11 ot -11 3t




30 NACA TN 3070

where the mass of the bent 1s given by

M = leAlZl(l v 2 12) (c3)
Tt 1y

During a natural mode of vibration
Y(t) = Yo sin ot
zi(x,t) = X (x) sin ot (i =1,2,3,4)

and equations (Cl) and (C2) upon substitution of these expressions become

dl‘xl xq* X, A
& TnporTox o
Iy
ax 1o
(Ck)
dh'XE Xl’+ Xl)'l' T
—2 - = %3 = - — Y,
n n b
dx 51 [
du)(h X2)+
TR
dx 17
J
and
M(aJD2 032 o - pAjo” f Xy - X3 =0 (c5)

where the uncoupled deflectional frequency is given by

o _ ¥

™
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the coupled frequency is given by

y X
3 (,D2= X EIl= 'XEEEIZ (C6)
1t PRl ot P2

and the Pfrequency parsmeters of equation (C6) are related by the expression

i/2
}l = .Z_]-.(E_a_> / (e7)
X2 1o tl

An exsmination of equation (C5) shows that, in this case, only mem-
ber modes of the type shown in figure 2(d) couple with deflection of the
bent. The general solutions of equations (Ckt), which yield coupled modes
of this type, are

\
X X
Xl = -XB = 012 [e{0]:] Xl 7::[__ + Cl)-l- cosh Xl "Z—‘ - YO

al
L (c8)

X
2

Xp = -Xy

X
Coq sin — + Coz sinh
21 Xp T3 X2
where from equations (C5)

Yo = (c9)

Setting equal to zero the determinant of the cpefficients of the four
linear homogeneous equations that are obtained by substituting the expres-
sions for X;, equations (08), into the boundary and continuity condi-

tions, equations (Bll), yields the following frequency equation:




B b mm(hg), 2 tea(h), |22+ (7 \5/2|:anh(?~1)d.\l§ #oa(ny)y [ Q—H‘; (e)ag| 2= - eotle),, ‘[mz_‘
\ D vl

ey Vg = ooy Ak 1oy |

@ -

o s (c11)

where ®gy is the fundemental uncoupled frequency for the modes of figure 2(d).

All the coupled frequencies o for the bent of figure 1(b) may be found from equation (C10)

in terms of the uncoupled menber frequency gy (obtained from fig. 7), the uncoupled deflec-
tional frequency ap, and the parameters 11/lp &nd 1 /ftp.

During & coupled mode of vibratlon, the mexdmum potential energy 1s given by

v) 2
kDY02+%EIlf2]]:(d2xl)dx+-EIgf ( )dx+

By, (0 -
Y- l]_ \d_x“ \CU{"/

vV =

PO

-

2¢

(c10)

QL0OE WL VOVN
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and the maximum kinetic energy is given by

11 2 12
T=%pAlw2f (YO+X1)dx+%pA2w2

(T2 + X22)d_x +
..Zl

...'L2

11 22}
ot [ - ot [ a3

where X3 defines the coupled mode shape of the ith member, Yo 1s

the amplitude of overall deflection of the bent, and w is the coupled
frequency.

Substitution of expression (C3) for mass M into equation (C13)
yields

1 Ar2 sl one? 5 (x:2 4 2.2 1 oo, 2
T = 1 oPrg? + L oay f—'Ll(Xl +X3)dx+2pA2m2/:12(X2 +m)u+
51
pA10°Y f ] (Xl - X3)d_x (C1k)
-1

A coupled mode shapé of the members is expressed by superposing all the
uncoupled modes of figure 2(d) given by equations (All) as follows:

~
i % cos (?\1) dn Do .
e ge 2 oM i any, RNy
L (015)
_ g\ <) ap | %, 209 x
2 n=£;§;... cdn<35) sin()e)dn sin(2e)q, = Binh(%e)dn S (*E)dn oA
S

Application of the Rayleigh-Ritz method, as in appendix B, yields
the frequency equation



(), - )]

ERIES
1+l:}'gn-l’2,“. IPRY —IE[/—C%\Q _] ﬂ_ PR YA 12/1:1\3!— PR o
, 2 [ooe? (1), - cnen® @e)djj

i1 l@l}dﬂ IK_—;;*) j (LLB_OC (M)g, * socm (Al)dﬂ e o

.....

in which sach term of the infinite swmation represents ths LuuyJ.J.u.h_i, effect of a particular
uncoupled menber mode participating in the motion. An approximete solution for the fundamental
coupled frequency is obteined by considering, in equetion (C16), only the effect of the first

uncoupled member mode es follows:
2 g, 2
2 -9 KTl) - 1| = Cp (c1T)

[ 2)a, - ton(n) |

where

o —é u Eﬁl)d;lg {E‘"ce (%1) a t sech? (M)‘il ¥ %C%YEBCQ (7‘2)&1 - csen® (}‘a)dﬂ}

(c18)

Values of Cp, obtained from equation (Cl8), are given in figure 8 for various values of 17/1p

[y
As s

and t)/tp. The frequency ratio CD/CDD , glven by the lower root of equation (C1T), is plotted
ageinst ma_l/a:g in figure 6 for various velues of Cp.

(c16)

NL VOVN

-
{4

0Lo!
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If the deflectional spring of figure 1(b) supports a rigid mass My
in addition to the mass of the flexible bent, a term

1

must be added to the expression for maximum kinetic energy. Repeating
the derivation with this modification yields the approximate frequency

equation
2 2
wp' %y Iy
(m> E\KQ 1| = Cp (c19)
where
2 kp M 2
! = =
((DD ) M+Mp M+ My “D
and
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APPENDIX D

UNCOUPLED PLATE FREQUENCIES

The cover and web combinations of figure 13 that have either clamped
or simple support conditions at the bulkheads are analyzed for the funda-
mental uncoupled frequencies of modes of the type that tend to couple with
overall beam torsion or bending.

Covers and Webs Clamped at Bulkheads
In this section the cover and web combination of figure 13, assumed
to be clamped at the bulkhead edges y = 0 and y = b, is analyzed by
an approximate energy method.

For a natural mode of vibration the maximm potential energy V
and maximm kinetic energy T are given by the expressions

> (D1)

o=
™
[}
>
ép
&
+
o=
C\\?d

where the W;'s define the mode shapes and ® 1is the natural frequency.

Modes that couple with beam torsion.- An approximate solution for the
fundamental uncoupled frequency of cover and web modes that tend to couple
with beam torsion is found by using the following approximation for the
mode shape:
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> (D2)

Wo = Wy

il
)
~
o~

1
o'
S’

no
4
42
E

These expressions satisfy the conditions of zero deflection and zero
slope on the edges y =0 and y =b and zero deflection on the edges
x = £1; for the covers and x = tlp for the webs. The continuity

condition

- =0
dx ox

which upon substitution of the expressions (D2) becomes

©

> w1 -2 S mg)®eo (D3)

n=1,2,... 2 1=1,53,...

is satisfied in the energy expression by means of Legrangian multipliers.

Substitution of the functions (D2) into the energy integrals (D1)
yields the following energy expression:

N
1’ :g: Zlm 2 A
630 ————E(V -T) = Fooan(2) 4 50#(—— - =) legp~ +
Dbt n=153,... b, T

1 3 ) 3 N lom 2 . 1o L 4 o
G L o) =) - @)

(D4 )
in which
PN
11F 1t P2
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i _ [t >
Do\t

N th_21/2
N Lo\t

and

The minimization of (V - T), subject to the continuity condition
(D3), is performed by the Lagrangian multiplier method by minimizing
the following function F with respect to a; and by:

l 3 0 (o]
F=630 2 (V-1 -~y >  may(-1)"- > mby(-1)"
‘Dibﬂh m=1,2,... 23 m=1,2, .o

where ¢ i1s the Lagrangian multiplier. When this minimization is per-
formed and the resulting expressions for ay and by are substituted

into the condition (D3), the following frequency equation is obtained:

2 2
0= %: 2m - -
m=1,2,...
b, g fm ) Ll)
o +21I-(ﬂb> + 50ll-<ﬁb) (ﬁ

7o X

3 2
%G%) 1,2 2 . b b ®3)
m= von
T a2 AN }2)
+ 21l-<ﬂb ) + 50lt< ) (

By use of equation (2) of section 6.495 in reference 2, the fre-
quency equation (D5) may be put into the following closed form:

2 2 2 2

1 2 21 1 2 21 ( 7

On —= —2) .= - 3[25L —_—
a\ld + 3( ) coth \ld] + 3( ) 2\ld] 3( cot +
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where

L
21

N
t1\2  Lhs(21
o - xll*(?%) - ('b—l>

Equation (D6) is solved by triel to find the lowest root ()\l)b
1

which determines the fundamental frequency W - The ratio of this fre-

quency to the corresponding frequency of.vibration obtained from fig-
ure 5 for the members of the analogous bent is given by the curves of
figure 9 for various values of 11/lp, t1/to, and 21 /b.

Modes that couple with beam bending.- An approximate solution for
the fundamental uncoupled frequency of cover and web modes that tend to

couple with beam bending is found by using the following spproximation
for the mode shape:

o h

L -
. . 3 - (D7)

SESCISUER A

)

These expressions satisfy all the edge conditions of the problem except
the condition of continuity

m-1
[s2]

> mam(-l)__ Ao} i by (-1)™ = 0 (D8)

II1=1,3,-.. 7’2 m=l’2)ono

which must be taken into account in the energy expression by means of the
Lagrangian multiplier method.
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Proceeding with the energy method, as in the previous section,
yields the frequency equation

2 2 2 21,)2
oL a2y 5(2R 2, 52", 1 - 328 2 52
0 = g\ldl + 3(—b—-) tanh \ldl + 3<T + 6:2- d.la 3 5 tan dl 3 5

3 ! 2 l 2 I 2 . 2
A I 2 }(ﬂ) +h Iz 24 (ﬂ) L yle2 - 3(&1) ot 2 2. 3(.2'2-.)
(tz) cl2 1< + 5 ) ¢°© m ey’ 3 5 c12 ey 5 © T 9, o
(

D9)

in which the parameters d, and c¢; are defined as before. The solu-
tion of equation (D9) by trial for the lowest root (}1)d1 yields values

of the frequency ay,; which are used to prepare the curves of figure 11.
1

These curves show the ratio of this plate frequency to the frequency
obtained from figure T for the corresponding member mode in the bent
having the dimensions of the beam cross section.

Covers and Webs Simply Supported at Bulkheads

In this section the cover and web combination of figure 13 is assumed
to be simply supported at the bulkhead edges y = 0 and y = b. The
deflection of any one of the covers or webs during a natural mode of
vibration is identical to a corresponding buckled shape under a compres-
sive load on its simply supported sides. It is shown in reference 3 that
this anslogy between mode shape and buckle pattern may be used to £ind
the frequency of a particular mode of vibration from the corresponding
buckling load by use of the relations

HD K 1D, K

= = (D10)
Pt )3 22 P2 3,22

where X3 and K, are buckling coefficients for the covers and webs,
respectively, that define the critical compressive load

N, = K1ﬂ2]231 _ Kzﬂeze (p11)
by, ki1
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The relations (D10) are used in the following two sections to find
the fundamental frequency for modes that tend to couple with beam torsion
and then for modes that tend to couple with beam bending.

Modesg that couple with beam torsion.- The motion of each cover or
web for modes that tend to couple with beam torsion is antisymmetric
about its own center line (x =0 in fig. 13). The compressive buckling
loads for buckle patterns of this type are given in reference 4. Substi-
tution of the relations (D10) into the buckling criterion presented in
this reference yields the following frequency equations:

For the covers,

a12 + 612 + el(al coth %% - By cot %%) = 0 (D12)
and, for the webs,
2 a2 Bo)
' + B22 3 62612 coth -E- - 52 cot —2—) =0 (D:LS)
where
2
o 2 by
as =2 \M° 5 (1 =1,2)
. 2
jt2 411
Bi=2\‘)\12_.r.?_ (i:l,2)

aﬁ:)‘lll'Dl _ M D

and € and €s are restraint coefficients. Each of these restralnt

coefficients depends upon the relative stiffness of the plate in question
to that of the adjoining restraining plate as follows:

-

o - H2(n)

ER (o)

- 481(212)
2

€2
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where S and Sz are the stiffnesses per unit length, as defined in
reference 5, of the half-covers and half-webs, respectively. Since the
covers and webs restrain each other on the line of attachment

3
2 _ _(f2\(a (D15)
€1 t1/\k2
may be obtained from equations (D14). Eliminating €3 and €y from

equations (D12) and (D13) by use of equation (D15) yields the frequency
equation

2 27\ 2 o1\2 | 07\ 2
0= \/)\12 + -ﬂr‘?(-e%) coth|M® + %2-(—1?) - [ N2 - Ef-(—b% cot\l; - {E(Tl-) +
81\2 |, 2 1 2 7'1)2 wn 22ho2 L, a2 211)2
<‘_b—2'> 7\1 %—2—+—)-T—b— co 1—1- ] 't_2-+1I-T

2 2
t 22l 22 o tq 22l
\JME I Ll T-) cot T]-_- 1’ .t_g. -\ (D]_6)

Values of the fundamental frequency 'oy, given by equation (D16)

are found by use of the tables of stiffness factors in reference 5
together with equation (D10) whenever values of stiffness factors are

in the range of the tables; otherwise, equation (D16) is solved by trial
for ()ﬂ)bl. The results are given by the curves of figure 10.

Modes that couple wifh beam bending.- Values of the fundamental fre-
quency @y for modes that tend to couple with beam bending are obtained

from the tebles of stiffness factors in reference 5 together with equa-
tion (D10) whenever values of stiffness factors are in the range of the
tables. For values of stiffness factors outside the range of the tables,
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the following frequency equation, obtained as in the preceding section
from buckling criterions presented in reference 4, is solved for (ll)dl:

o- ot S et 00 - € - 2"

t 2 1 t 17\2

The resulting values of frequency are given by the frequency-ratio curves
. of figure 12.
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(b) Elastically restrained against deflection.

Figure 1l.- Elastically restrained rectangular bents with flexible members.
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(a) Modes of horizontal and (b) Modes of horizontal and verti-
vertical members symmetric. cel members antisymmetric.

(c) Modes of horizontal members (d) Modes of horizontal members
antisymmetric and vertical symmetric and vertical mem-
members symmetric. bers antisymmetric.

Figure 2.~ Types of uncoupled member modes for rectangular bent supported
at the corners.
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Figure 3.~ Frequencies and amplitudes of coupled modes for uniform square

bent elastically restrained against rotation.
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Figure L.~ Coupling constant C¢ for flexible rectangular bent elastically
restrained against rotation.
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Figure 5.- Fundamental uncoupled member frequency Wy for modes of the
type that couple with rotation of the bent.



X

NACA TN 3070 kg

2
O I 2 3 4 )
ﬁ and _a_)ﬂ

Figure 6.- Ratio of fundemental coupled frequency to uncoupled frequency
of overall osciliation for rectangular bents.
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Figure T.- Fundamental uncoupled member frequency g for modes of the
type that couple with deflection of the bent.
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Figure 8.- Coupling constant Cp for flexible rectangular bent elastically
restrained against deflection.
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Figure 9.~ Frequency (‘”’ol) Lete of first local plate mode that couples
p

with box-beam torsion. Covers and webs clamped at bulkheads.




52 NACA TN 3070

t
4 : T
2.0
[ ] 3
b
lo
0]
4
58
1.0
> (“by) plate % 5
T 2 o)
( bl)benf I,
—t.o
I
0]
a

2 —’\ﬂ//
/
o I]_l
I
0] 5 1.O 1.5 2.0 2.5 30
21,
b

i .-
Figure 10.- Frequency (wbl)plate of first local plate mode that couples
with box-beam torsion. Covers and webs simply supported at bulkheads.
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Figure 11.- Frequency (ay of first local plate mode that couples
1 plate

with box-beam bending. Covers and webs clamped at bulkheads.
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Figure 12.- Frequency of first local plate mode that couples

(a)dl)plate
with box-beam bending. Covers and webs simply supported at bulkheads.
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Figure 13.- Coordinate system for local plate vibrations.
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