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TECHNICAL NOTE 3070

EFFECTS OF PANEL FLEX~~ti ON NATURAL

FREQUENC= OF BOX BW

VIBRATION

By Bernard Budiansky and Robert W. IRmlich

Effects of local panel oscillations on bending and torsional vibra-
tions of box beams with flexible covers and webs are investigated. Theo-
retical analyses of simplified models are made h order to shed litit on
the mechanism of coupling between local and overall vibrations and-to
derive results than can be used to estkte
beams.

the coupling effects in box

INTRODUCTION

Local panel oscillations are often observed during vibration tests
of box beams. (See, for example, ref. 1.) On the other hand, existing
methods of analyses of bending and torsional vibrations of box beams
assume that the panels are rigid in bending out of their own planes, and,
consequently, the possible inertial effects of coupling between local and
overall beam vibrations are not considered by these methods. Thus, unless
these coupling effects are taken into account, the significance of labo-
ratory tests undertaken to veri~ such methods of box-beam vibration anal-
ysis may be obscured by the presence of panel vibration.

In the present paper the mechanism of coupling between panel and
beam vibrations is discussed. The results of theoretical &Jyses .of
simplified nmdels enibodyingthis mechanism are presented and discussion
is made of the use of these results to protide estimates of the effect
of panel flexibili~ on box-beam natural frequencies. Details of the
analyses are given in appendixes.
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SYMBOLS

General

coupling constants

modulus of elasticity

titegers

time

kinetic energy

potential energy

reference axes

~~= multiplier

Poisson’s ratio

densi@ of material

cross-sectional
Al = atl, ~

Bents

areas of menibersof bent;
= a$

thickness of bent perpendicular to its plane

coefficients of deflection shapes

moments of inertia of cross section of members of bent;

atl3
11 = —, ~-’:3

12

mass nmment of inertia of bent about its center of

L

reflectional spring stiffness

v

,_
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torsional spring stiffness

half-lengths of metiers

mass of bent,

(

4pA121 1

thicknesses of members of bent in plane of bent

mode shape of ith metier of bent

root-mean-square deflection of metiers of bent,
t

deflection of bent

maximum deflection of bent

hteral deflection of ith metier of bent

rotation of bent

maximum rotation of bent

(D coupled frequency for flexible bent elastically
restrained against rotation or deflection

% uncoupled frequency for rigid bent elastically

r

kD
restrained against deflection,

F

%n

uncoupled frequency for rigid bent elastically

restrained against rotation,
i
9

%

nth uncoupled frequency for member modes of bent that

~)]b 2 ,11bn
tend to couple with rotation of bent,

Z12 rPA1
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%

%bm

b

P

nth uncoupled frequency for member modes of bent that

tend to couple with deflection

Box Beams

Fourier coefficients

bulkhead spacing

of bent,

flexural stiffnesses of covers and.webs;

Et13
%= ~ %=

%3

12(1 - pz) 12(1 - V2)

half-widths of covers and webs

thiclmesses of covers and webs

nmde shape of ith cover or web of box beam

coupled frequency of box beam

uncoupled bending frequency of box beam

uncoupled torsional frequency of box beam

first uncoupled frequency for modes of covers and
webs that couple with beam torsion

first uncoupled frequency for modes of covers and
webs that couple with beam bending

DISCUSSION OF MODES OF VT6RMCION

.

.

.

In order to determine the essential features of coupling between
local panel distortion and overall box-beam vibrations, the simple models
shown in fi~e 1 are to be studied. h f“igure1(a), a rectangular
frame - or bent - having flexible metiers is mounted on a torsional spring

?
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attached to the corners; a similar bent is mounted on a reflectional
spring in figure l(b). The torsional and reflectional oscillations of
these bents are then smalogous to the motion of a thin transverse slice
of a box beam executing torsional and bending vibrations, respectively.
Further, the distortions of the menbers of the bents that are induced
by the overall oscillations are analogous to those which would take place,
between buJMeads, in the covers and shear webs of a box beam. The possi-
bili~ of a quantitative correlationbetween the characteristics of the
models and their box-beam proto~es is to be examined after the analysis
of the bents is discussed and the pertinent parameters are exposed.

The vibrational behavior of the elastically supported bents with
flexible members may be considered to consist of a coupling between two
*es of oscillations: cl) the vibration of the bent with its menibers
considered locally rigid and (2) the local tibration of the mertibersof
the bent when its overall motion is prevented by supports at the corners.
The various possible uncoupled modes of local vibration are determined
in appendix A; as shown in figure 2, these modes are classified into four
types, each type corresponding to a different conibinationof symmetrical
or antisymetrical motions of the metiers. However, not all these -&pes
of motion would tend to couple with the overall nmtion of the bents oscil-
lating on the springs shown in figure 1. It is evident that only for
motion of the type shown in figure 2(b) will the local inertia forces of
the menibersyield a resultant torsional force; consequently, only this
Qpe of local vibration would affect the torsional vibrations of the bent
as a whole. Similarly, only the modes of figure 2(d) provide resultant
vertical inertia forces, so just these modes couple with the reflectional
vibrations of the bent of figure l(b). The actual effects of coupling on
the frequencies of rotational and reflectional oscillations of the bents
are presented and discussed in the ensuing sections.

ROTATIONAL VTBFQTION OF RECTKKWIAR BENTS

WITHFIJKDZEMEMBERS

An exact solution is presented in appendix B for the coupled rota-
tional frequencies of vibration of the rectangdar bent shown in fig-
ure l(a). The exact results for the special case of a square bent with
all members identical are presented and discussed in detail. Results
based on an approximate solution, also derived in appendix B, are given
for rectangdar bents after the accuracy of these results is assessedby
a comparison of the approximate and exact results for the case of the
sqgare bent.

.

a
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.

Square Bent

The coupled frequencies are found in appendix B to depend upon the
ratio of the frequencies %1 and m 2 where RI is the recoupled

$

.

frequen~ of the first tie of the tie sho~ h fi~e 2(b) ~d w is

the uncoupled rotational frequency of the bent with its metiers assumed
rigid. The variation of the coupled-frequencyratio m

Iv /
with %1 ~

is shown forthe first four coupled modes by the solid curves of fig-
ure 3(a). The horizontal dashed line corresponds to a value of LO eqyal
to ~ and the inclined dashed lines correspond to values of o equal

to the values ~1, %2, . . . of the frequencies of the uncoupled modes

of figure 2(b). The solid curves deviate from these dashed straight lines
because of coupli.ngbetween the two @pes of vibration.

The si@ficance of the curves giving the coupled frequencies may
be clarifiedby the corresponding amplitude-ratio curves of figure 3(b)
which give for each coupled mode the ratio of the linear displacement of
a corner of the bent to the root mean sqyare of the local deflections
(see appendix B). Tbis ratio constitutes a measure of the relative
amounts of overall rotation and meniberdeflection in a particular coupled
mode of vibration. The first coupled mode of tibration is seen to have

I
a var@ng significancedepending on the ~ue of %1 LD@ For low ~lues ‘

of this ratio - that is, for very flexible mmibers - the first coupled
mode is essentially a local vibrational mode with very little rotational P

motion of the bent; on the other hand, for ~gher ~tios of %1/~~ the

first coupled frequency corresponds to a mode in which the nmin component
is overall vibration, with the frequency d~ished somewhat (fig. 3(a))
from its uncoupled value by the presence of some local vibration. The
higher coupled modes also correspond to different types of motion, depending
on the relative values of local and overall stiffness. ‘15us,the second
coupled mode is essentially nmtion in the second uncoupled local member
mode (see fig. 2(b)) for very lowvshes of ~_J~ and is essentially

the first local mmiber mode (togetherwith a little overall rotation)

J
for high values of ~ W. Between these extremes, there is a range

Iof %1 ~ for which this second coupled nmde has substantial overall

rotational nmtion. Similar results are obtained for the third and for
higher coupled modes; each of these modes for either very low or high

/7
values of %1 is essentially motion in a particular local member

vibrational mode while, for a smalJ range of ~
/19

between these

extremes, the coupled mode has a significant anmu& of overall rotational
hmtion.
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It is evident from these results that there is no clear-cut answer
to the question: How is the rotational frequency of the bent affected
by the local meniberflexibili~ Depending on the value of WI U@, one

/
or another of the coupled modes of vibration is most nearly like-a pure
rotational mode, and, consequently, the freqyency of that particular mode
is the quantity of interest. For %1/I greater than about one, the

situation is fairly clear; the first cb~led mode consists mostly of
rotation, and its frequency is always less than that of the uncoupled
rotational oscillation.

J./
However, for ~ ~ less than uni~, the fre-

quency of the mode that is most like pure rotation is sometimes less than
and sometimes greater than the uncoupled rotational frequency. hdeed,
in the vicinity of values of ~

l-l?
where two of the amplitude-ratio

curves intersect, two coupled modes having substantial rotational com-
ponents occur; therefore (in a test, say), either one might conceivably
be taken for the rotational mode.

In view of the uncertainties for low values of ~
l-lv

, the remining

studies in this paper are limited to the situation when the local meniber

I
stiffness is large enough so that ~1 ~ is ~eater than about one.

This limitation is actually not very serious since - with application to
box beams in mind - very low values of ~1/~ do not generally corre-

spond to panel frequencies and overalJ torsional frequencies in the range
of greatest practical interest.

An approximti ener~ solution for the first coupled mode is carried
out in appendix B. This approxhation, based on only the overall vibra-
tional nntion and the first uncoupled member nmde, is much nmre simple
than the exact solution and yields the result that the first coupled fre-
quency of the sqme bent is given by the lower root of the following
equation:

pj-@Jq=-& (1)

Results from this approximate solution, as shown by the plotted points
in figure 3(a), are in practically perfect agreement with the exact
results for the first coupled mode.

——————. — ..— ———— -- _.— __ —- -..———
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.
Rectangular Bents

An approximate solution for the first coupled frequency of a rectan- .

milar bmt on a rotitioti spr~g, based on O- the first uncoupled local
iode of figure
in appendix B,

2(b)
that

coupled with-overall rotation, yields the re&iLt, found
this first coupled frequency is the lower root of

(2)

where C@ is a constant depending on the bent aspect ratio 21/22 and

on the ratio tl/t2 of the thicknesses of the horizontal and vertical

metiers. The variation of C$ with these parameters is shownby the

family of curves in figure 4. The magnitude of WI wybe detemed

from the curves of figure 5, which are based on the analysis of appendix A;
as before, ~ is the uncoupled rot.ationalfrequency. Curves of o1~
plotted against ~l/m@, as determined by equation (2), are shown in fig-

ure 6 for various values of the constsmt c
$“

Additional inertia.- The results found for the first coupled fre-
quency must be nmdified if there exists additional mqss, distinct from
that of the bent itself, that participates in the overa12 rotational
motion. Not only is the uncoupled rotational frequency Y affected

but also, as shown in appendix B, the coupling constant

/

C@ must be’

multipliedby the fraction 10 (10 + IA), where 10 is the mass moment

of inertia of the bent itself, and IA is the additional moment of
inertia of the extra mass. Thus, the effect of additional inertia is
to reduce the magnitude of the coupling constant, so that for a given
uncoupled frequency ~~ the effect of coupling between local and overall

oscillation is reduced-.

DEFLECTIONAL VIBRATION OF RECTANGULAR BENTS

WITH FLECIBLE MEMBERS

The fundamental coupled frequency for a rectangular bent elastically
restrained against deflection (fig. l(b)), obtained in appendix C by an

.

.

.

.
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approximate energy solution that takes into account only overalJ
deflection plus the effect of the first uncoupled nwiber bending
mode (fig. ?(d)), is given by the lower root of the eqyation

The uncoupled

bent with its

p)’-j~’-]=~~ ‘3)

bent reflectional frequency ~ is the frequency of the

metiers considered rigid; the fundamental uncoupled meniber
frequency WI corresponding to the first mode of figure 2(d) can be

found from the curves of figure 7 determined in the saalyses of appen-
dix A. Values of the co~lhg cons-t CD are given by the curves of

figure 8. The first coupled frequency u as given by the lower root of
equation (3) may be found from the frequency-ratio curves of figure 6.

For the sake of completeness, an exact solution for all the coupled
frequencies is also derived in appendix C. Calculations based on this
more refined analysis for the case of a sqmre bent indicate that, as in
the torsional-vibration case, the accuracy of the approximate solution
is adeqyate for the first coupled mode.

Additional mass.- If there is mass MA on the reflectional spring

in addition to the mass M of the bent, the uncoupled reflectional fre-
quency ~ must be taken as that frequency corresponding to the total

mass (Mplus MA), and the coupling constant is changed to ~’ = ~ ~.
M+MA

The curves of figure 6 then apply with these modifications.

APPLICATION TO BOX BEAMS

The effect of local cover and web vibration on the bendhg and tor-
sional.frequencies of box beams could, in principle, be determinedly
analyses that are analogous to those that have been carried out for the
simplified bent models. Such analyses would have to combine the dynam-
ical effects of overall modes with thos,eof the local plate bending modes
that tend to couple. However, a full-fledged calcuhtion of thds type
would tend to become quite complex for any particular box beam, since
very many types of plate tibration are possible and are complicated by
the presence of bulkheads, stiffeners, cover attachment, taper, and so

— — . ———-. .. . . .——.— — — .–.———
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.
forth. Furthermore, the possibili~ exists that the local vibration
would tend b couple together the various overall modes of bending and
torsion. The construction of charts that would cover all possible prac-
tical ranges of box-beam conibinationsis thus clearly out of the question.

However, the results obtained for the simplified nmdels may be used,
together with engineering judgment, to provide rational estimates of the
effect of psnel flexibili~ on box-beam tibration. For example, if the
bulkhead spacing is not very small, the stiffener areas not too large,
the taper not extreme, and the cross section not very different from
that of an integral rectangular bent, a reasonable procedure to find
the corrected first torsional frequency would be as follows:

(a) Calculate the first uncoupled torsional frequency by whatever
is deemed the nmst appropriate method and call it

v“

(b) Choose a spanwisestation that appears to have representative
cross-sectional properties, and idealize these properties to fit the
configuration of figure 1.

ures
(c) For the idealized cross section taken of unit length, use fig-
b and 5 to calculate Cd and ~,.

r -L

(d) ~~v, if WI ~ LC@,use fi~e 6 to estimate the coupled

frequency m.

Similarly, the effect of coupling for the higher modes of torsional oscil-
lation mightbe estimtedby letting ~ assume the role of the frequency

of the particular uncoupled higher mode under consideration. In the same
way, the effect of panel flexibili~ on a bending mode would be found by

gett~ %1 and CD from figures 7 and 8 and using figure 6 with ~

equal to the uncoupled frequency of the bending nmde under consideration.
Since, as shown for the bents, additional masses tend to reduce the
coupling, the presence of such masses on the box beam should be con-
sidered by modifying the coupling constant in a fashion indicated for
the bents.

It is evident that the procedure outlined is somewhat crude; never-
theless, it could probablybe used quite successfully to guide the design
of box beams in such a way as to prevent significant panel vibrational
coupling, at least for the first few bending and torsional modes.

h order to refine the procedure somewhat (without going too far),
a little modification of the procedtie might be desirable to take into
account the effect of bulkheads in restraining the plate oscillation
and, hence in raising the local uncoupled frequency. For this purpose,

r,

,
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figures 9 to 12, to be used in conjunction with the results for local
frequencies of bents in figures 5 and 7, have been prepared. Figure 9

m :::
plate

presents values of the ratio , where (%J

bent
plate’

corresponding to a system of webs and covers clamped at the bulkheads,
is the frequency of the first local mode that couples with box-beam
torsion; [%) is the frequency of the analogous mode of bent oscil-

1 bent
lation, given in figure 5. The same ratio is presented for covers and
webs simply supported at the bulkheads in figure 10. Figures 11 and 12
give similar results for the frequency of the first nmde that couples
with box-beam bending; from these figures, together with the results of
figure 7 for

(Wl)bent
, values of (%)

1 plate
can be obtained. These

results, exact for simple support and approximate for clamped edges, are
@venby the analyses con&ined inappendix D. It maybe remsrked that

221
the results in the limiting case of infinite bulkhead spacing, ~ = O,

correspond, except for the factor n> to t~s.

The results for the plates with clamped support
would be more appropriate when a low mde of overall
being considered,because in this case the plates on

for the bent.

at the bulkheads
osciJJ_ationis
either side of a

buJ&head would usually tend to deflect in the same direction. However,
for a high mode of overall vibration, when the spacing of nodal lines
is comparable to that of the bulkheads, the covers and webs would tend
to deflect antisymnetricallywith respect to a bulkhead, so that the
simple-support condition would constitute a closer approximation to the
actual restraint condition.

The effect of bullheads (or nodal lines) is not only to raise the
plate frequency but also, in all likelihood, to reduce the coupling
(even at the raised frequency) below that given by figure 6. Conse-
quently, conservative estimates would most likely be found for the reduc-
tion of frequency from the uncoupled value when the coupling constants
of figures 4 and 8 are used.

When the box beam has a substantial amount of longitudinal stiffening,
idealization of its cross section into the configuration of figure 1 may
not be adequate. The coupling constant Cfj Or cD could still be esti-

mated by “smearing out“ the stiffeners into an equivalent srea thiclmess
and then using figures 4 and 8. This procedure seems reasonable since
the coupling effeet is essentially an inertial one. On the other hand,
it would not be appropriate to use this equivalent-thiclmessprocedure
in conjunction with the charts for finding local frequencies, since these
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frequencies depend on both the inertia and-stiffness characteristics of
.

the stiffeners. Co~eWently, %1 or WI should be estimated in the

best way lmown to the analyst, possibly by use of simple energy solutions. ‘
The coupled frequencies can thenbe estimated from figure 6.

CONCLUDING REMARKS

The vibrational behavior of bents with flexible menbers, mounted on
either reflectional or rotational springs, has been analyzed in detail
in order to shed light on the mechanism of coupling between overall box-
beam oscillation and local panel vibration. The results obtained for the
bents canbe used to guide the estimation of these coupling effects in
box beams when the uncoupled local frequency is higher than the uncoupled
overall frequenq under consideration. Charts giving plate frequencies
for a variety of configurations and bulkhead restraint conditions are
presented as aids in such estimates.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Vs., Noveniber27, 1953.
.

.
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A2PENDIX A

13

.

UNCOUPLED VIBRATION OF

Vibration of the msnibersof
corners (fig. 1), is governed by

dk%—.

d4xi—-
~4

MEMBERsoFm~m

a rectangular bent, supported at its
the differential equations

7

A14
—Xi=o (i = 1,3)
214

I

(Al)

%4
Vxi=o

(i = 2,4)
12

where the Xi’s define a tie shape corresponding to the natural fre-
quency givenby

(M)

The following relationship between the frequency parameters l~an.a~

is obtained from equation (A2):

since

and.

(A3)

(A4)

(A5)

..— _.——.- _ —————— —.— ——— ..————— -—- —--
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The

the
the

general solutions of equations (Al) sre
.

Xi=cflsinxl:+%cmhl :+%3si~~l&

1

.

Ci4 cosh Al ~ (i = 1,3)

(A6)

Ci4 cosh h2 ~ (i = 2,4)
)

There are sixteen constants of integration which are determined by
following sixteen boundary and continuity conditions at the ends of
mdbers:

Xi(zl) = xi(-21) =

xi(22) = xi(-z2) =

axl(21) - ax2(-22)

ax ax

—ar&ax@ ) ax3 -11)

ax3 (21) - ax4(-z2)
ax ax

%(22) %(-71)—-
(3X ax

0

0

= 0

=0

=0

. 0

d%l(ll) -12 d?X2(-Z2) .0

11 d &2

12 d%2(z2) _ 11 d%3(-@ . 0

~2 &2

~1 d2x3(zl) - 12 d2-x4(-z2) .0

-2 *2

(i = 1,3:

(i = 2,4,

.

(A7)

—
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%hstitution of the expressions for Xi, eqyations (A6), into the

boundary and continui~ conditions, equations (AT), yields sixteen linear
homogeneous equations. Setting the determinant of the coefficients
the C’s eqwl to zero smd then expanding results in the following
quency equation:

of
fre-

}

%x

{[
(Coth co-t,,) +(y/2$oth 1)- cotA2 Sinh

where use is made of the relationships given in eqpations (A3), (A&),
and (A5).

Equation (A8) can be satisfied by equating to zero any one of the
four braced factors; each one of these resulting eqpations is recognized
to be the frequency equation for a particular combination of symmetric
and antisynmetric vibrational motion of the menibers. The first two modes
of each me of oscillation are sketched in figure 2. The first of these
resulting frequency equations yields fre~encies of nmdes in which each
menibervibrates symmetricsdly (fig. 2(a)); the second, frequencies of
antisymmetricalmetier nmdes (fig. 2(b)); the third, frequencies for a
conibinationof antisymmetricalmotion in the horizontal maibers and sym-
metrical motion in the vertical metiers (fig. 2(c)); and the fourth,
frequencies for modes in which the horizontal menibersperform symmetrical.
vibrations and the vertical maibers antisynmetrical.vibrations (fig. 2(d)).

The frequencies ~n for the modes of figure 2(b) are obtainedby

solving the equation
.—.—

,’

—

.—— ... —_—..—_____ .—c. ___
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‘lnodeshapes obtained by

L

In a similar mnner the modes of figure 2(d) are foupd to be

(Ale)

(All)

and the corresponding frequencies ~n are obtained from the solution

of the equation

—

~)] 2 %212 ~ ~d.es of the
for

r
Aldn ‘ ~ ‘“E

these two types of modes are used to prepare
%1 ad fi~e 7 for ~1-

fundamental frequencies for

the curves of figure 7 for

.
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COUPLED ROTATIONAL VTBRAT’IONOF FLEXIBLE RECTANGULAR BENTS

In this appendix coupled frequencies are found for the rectangular
bent of figure l(a). This bent has flexible metiers and is elastically
restrained against rotation by a torsional spring which is attached to
the corners of the bent by means of rigid massless members. First, an
exact frequency equation is obtained from the solution of the differen-
tial equations of nmtion. Another exact solution is obtainedby utilizing
the Rsyleigh-Ritz n&hod, in which the superposition of all the uncoupled
modes of figure 2(b) is used to represent a coupled mode shape of the
menibers. ltromthis second exact solution, an approximate solution is
obtained for the fundamental coupled frequency by using only the first
uncoupled mode of figure 2(b) to represent the coupled mode shape of
the metiers.

Solution of the Differential Equations of Motion

The differential eqyations of nmtion for the metiers of the bent
shown in figure l(a) we

a+z~ a2wi_ o
EI1 — (i = 1,3)

axk + ‘A1 atp

i

(Bl)

E12 ‘z
apwi o

--&.pA2-= (i = 2,4)
ax4 at2

In these equations, wi is the total lateral deflection of the ith mem-

ber and is givenby

w~ = Zi + ex (B2)

where 0 is the overall rotation and zi is the deflection relative to

the center line of the undeformed member.

—

— —. —.—.— .—___ ——— -—. ..— ——— ————.—
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The spring moment is given as follows in terms of the product of
the moment of inertia and the angular acceleration of the bent as a whole
plus the sum of the mments of the locsl inertia forces caused by deforma-
tion of the metiers:

J
q a2z3

J
22 azzk ~

pA1 x —dx+pA2 x—
-21 at2 -12 &2

where the moment of inertia ~ is given by

(B3)

(B4 )

During a natural mode of vibration, the elastic.ddy restrained bent and
each of its menibersperform s@le harmonic motion of the ssme phase and
frequency. Substitution of the expressions for harmonic motion,

e(t) = (30 Sin(ot

Zi(x)t) = XJX) sin u-t

into the equations of motion (Bl) and (B3) yields

(i = 1,2,3,4)

(i = 1,3)

(i = 2,4)1(B5)

.
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.

.

and

(%
10 -

in which the coupled frequency m and the uncoupled rotational fre-

w=w y> obtained with the assmption of rigid metiers, are given by

and

The frequency pumeters *1 and *2 of equation (B7) are related by

the expression

*1 ()h !2
1/2

—= ——

*2 %tl

(B8)

Modes of the type shown in figures 2(a), 2(c), and 2(d) make the
integrals of equation (B6) vanish and thus they do not couple with
overall rotation of the bent. However, the antisynmetric modes of fig-
ure 2(b) couple wtth rotation of the bent and the shapes of the resulting
coupled modes, in general, differ from those of the uncoupled modes. The
general solutions of equations (B5), which yield these coupled antisym-
metric metier modes, are

x2.x4=c~sin*2 2+C23Siti*23-
22 12

xeo
I

(B9)

.—.— — —
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where eo, obtained from equation

sions (B9), (B8), (B4), and (A4),

f-

NACA TN 3070

(B6) titer mibstitution of expres-

iS given by

J

in which

Q=
1

The four

determinedly

constants of integration ~, C13> Cz, a C23 ‘e

the following four boundary and continuity conditions:

X1(2J = o

X2(-22) = o

ml(zl) q(-z2)
=0

ax-aX

d2xl(h) - 12

!

d2x&@,= o

*’- & &

(Bu)

Substitution of the expressions for Xi, equtions (B9), into the boundary

and continui~ conditions, equations (B~), yields four linesr homogeneous
equations. Setting the determinantt of the coefficients Cll, C139 c~>

.
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and C23 eqxal to zero, expanding the determinant, and solving the

resulting freqyency equation for the frequency ratio @/a? yields

(B12)

where

W WI is the fundamental uncoupled freqmncy for the modes of fig-

ure 2(b). The exact frequency equation (B12) for the bent of figure 1(a)
yields ail.the coupled frequencies u) in terms of the uncou@ed meniber
frequency %1 (obtained from fig. 5), the uncoupled rotational fre-

quency W, and the parameters 21/72 and tl/t2.

‘d (@,,/(@b,‘Ve
frequency ~1, obtained

For a squsre bent with menibersof uniform thiclmess, the ratios 11/22,

t&l,

metier

vslue

the value of uni~; the fundamental unco&led

from the solution of eqyation (A9), has the

<,

— -— -— .-— —..—. .—
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Then, the exact frequency equation (B12) for coupled frequency o
reduces to

Equation (B14) has been solved for the first
these results were used to prepare the solid
figure 3(a).

The ratio of linear displacement
to the root-mean-squsre deflection of
center lines is given by

of the

(B14)

four coupled frequencies;
frequency-ratio curves of

corners of the square bent
the menhers relative to their

The ratios given by equation (B15) are presented for the first four
exact coupled modes in figure 3(b).

Raylei@-Ritz Method

Application of the Rayleigh-Ritz method, in which the mode shapes
in the expressions for maximum potential and kinetic ener@es are repre-
sentedby the superposition of all the uncoupled modes of figure 2(b),
yields a frequency equation that contains an infinite nuniberof terms,
each term giving the effect of a particular uncoupled mode on the coupled
frequency.

- a coupled mode of vibration, the msximum potential ener~ is
given by the expression

.
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.

and the msximum kinetic energy is given by

T=

where the Xi’s

the amplitude of
frequency.

~ pA1& J21@xeo)2+ (220.)3-+
-21

21
: pA1a?

JK (1x3 + Xeo)z + 2290)2 ax +
-21

(B16)

(B17)

define the coupled mode shape of the members, (30 is

overall rotation of the bent, and u is the coupled

Equation (B17) for
tion (1%.),becomes

21
pA@30

H
xxl-l-

-21

maximum kinetic energy, with the use of equa-

21

J(
X12 -I-X32)dx -I-~pA@ ~22 (X22 + X42)dx +

-21 -22

x3)d.x+ P&’J~o J: X(X2+ Z)ti (B18)

— .—— —_ —_ —__— —_ .— ———— —
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The last two integrals of equation (B18) are identical to those of equa-

.

tion (B6) and, as in that case, vanish for all aer modes except anti-
symmetric modes of the type shown in figure 2(b). Thus, tithe applica- -
tion of the Rayleigh-Ritz method, a coupled mode shape of the menibersmay
be completely expressedby superposing all the uncoupled modes of fig-
ure 2(b) given by equation (A1.0)as follows:

r [
s~ (h)b”

X1.X3= %nSti(xl)bn~- 1‘“(h)bn~
“=1,2,... sti(&”

...—. — _- ——

The coefficients C& tillbe dete?nninedby the minimization process

of the Rsyleigh-Ritz method.

Substitution of the expressions for Xi from equations (B19) into

equations (B16) @ (B18) fields

P (B20)
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Substitution of the uncoupled-frequency expressions

and

into eqpations
the expression

(B20) mdusingtlie relations (A3), (A4), and (A5) yields

.

4PA1ZI%%0 m %n
$(V-T)=~002(a &@- ~

z

{[

—-

()‘1 bn
cos(~l)bn +

n=l,2,...

‘h (~)bn 1}Cosh(%)bn‘w(k)bn

—

-

+

(BZL)
which, according to the Rayleigh-Ritz”procedure, “isminimized,with
respect to QO and Cbn as follows:

——.—. ..- .—— ——— -. ——— -.-.-———
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I
ru
m

_ 2PA1Z1

(
{[ 1

sin2 (Al)bn

[ 1}
sin2(h)bn~‘in2(k)~)1-sinh2(hlbn

Q
%np -

~+5@~sti2(k?)bn ‘sm2(k)bn ‘n-

4PA~Z~~0

{[

‘h (fi)bn
cos(hl)bn + 1coah(~flbn +

%@)bn - ‘m (Al)bn

--0

(Q J W ‘h ~l)bn

[

sin (k)bn
OEI (k)bn + sifi(k)% 1}Cosh(h+n(n = 1)2, . ..) (~3)

1~ tp sin (~~n

EMving equation

equation (B22) yields

(7323)for Cbn and substituting the remlttig expression for C& into

the exact frequency equation

which contaim an infinite ntier of

titular uncoupled meniber tie on the

w

term, each term representing the coupling effect of a par- s

coupled frequency m in question. An approz3mate solution
o

.



.

for the fundamental. coupled frequency may be obtained by neglecting the effect of all. but the
E

ftist uncoupled metier de. The resulting frequency equation that takes into accomt only the
~

first - of the sumation in equation (I@) is given by

Q

where

Equation (B26) is uae~ to prepare the curves of figwe k which show the variation of C$ with

21/2’ and tl/t2.
/m@

The frequency ratio m , given by the lower root of equation (B’7), is

plotted in figure 6 for various v~ues of C@. For the case of the umiform square bent for

which C$ = ~, this variation of the frequency ratio is given by the plotted points

‘n-’

figure 3(a).

If the rotational spring of figura 1(a) supports a rigid mass in addition to the
the flexible bent, this rigid mass hating a nmmnt of inertia 1A will add a term

$ IA&02

of

mass of

to the expression for msximm kinetic energy. Repeating the derivation with this modification
yields the approxtmti frequency equation

N’
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where

and

NACA TN 3070

(B27)

.

.

.
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AEmNmx c

COUPLED DEFLEC’I’IONALVIBRNTION OF FLEXIBLE RECTANGULAR BENTS

A frequency analysis is now made for the flexible rectangibr bent
of figure l(b), which is nmunteilon a reflectional spring attached to
the corners of the bent by me- of diagonal rigid massless metiers. As
was done in appen&xB for flexible bents on rotational springs, both
exact and approximate frequency equtions are obtained.

Solution of the Differential Equations of Motion

The differential equations of motion for each of the members of the
bent shown in figure l(b) are

$Z1 +
EI~ —

~4

a4z2
E12 —+

&4

a4z3
EI~ —-l-

&4

$4
E12 —

~k +

()a2zl+d2y o
pA1— — =

&2 ~t2

$Z2
p~==o

()

a2Z3 d% . ()
pAl —-—

at2 dt2

i
az~ o

pA2 — =

at2 I

(cl)

J

where Y is the overall deflection of the bent and zi is the local

lateral deflection of the ith maiber.

The overaJJ.inertia force (mass thes acceleration of the bent as a
whole) and
horizontal

the locsl inertia forces resulting from defomnation of the
members are related to the spring force as follows:

(C2)

—-..—.——— . _-— —.. - —..—— .——c -.—— --—
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where the mass of the bent is given by

( ::)M= 4pA121 1 + (fJ3)

During a natural mode of vibration

Y(t) =Yo sin at

Zi(x,t) = xi(x) sin m (i = 1,2,3,4)

and equations (Cl) and (C2) upon substitution of these expressions become

4d Xl X14 X14
>

—.—
~4 ~14 ‘1 = T ‘0

21

d!X2 x/$ x
—-—
~4 42=0

22

>

d4x3 X14 X14
—-—
-4 4X3’ --J%

11

d% X24
—- —
~4 4X4’0

12
J

.

(C4)

and

M(oq)2- a?)yo - pAy#
~: (xl - X3)-=() (C5)

where the uncoupled reflectional frequency is given by

kD
%2=X
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the coupled frequency is given by

G
X14 EI1. X24 %=—

—=:~~14 PAI

31

(c6)

and the frequency parameters of eqyation (c6) are related by the expression

(fJ7)

An examination of equation (C5) shows that, in this case, only mem-
ber modes of the ~d showq in figure 2(d) couple with deflection of the
bent. The general solutions of equations (@), which yield coupled modes
of this type, are

where from

(C9)

Settimg equal to zero the determinant of the coefficients of the four
linesr homogeneous equations that are obtainedby substituting the expres-
sions for Xi, equations (c8), into the boundary and continui~ condi-

tions, equations (Bll)j yields the following frequency equation:

,

—. ——— .—— .— .. —.——. .—--—–———



in which

(Cll)

where WI is the fundamntel uncou@ed frequency for the mode~ of figure 2(d).

Ml the coupled frequencies m for the bent of fi~e l(b) may be found from e~ation (C1O)

in term of the uncoupled member frequency ~1 (obtained from fig. 7), the uncoupled deflec-

-tional frequency Q, md the pwemeters l@2 ard t&.

Rqyleigh-Ritz Method

During a coupled mde of tibration, the m.zdmum potentiel energy is given

!2
w

(Clzl) g

1
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and the maximum kinetic energy is given by

33

where Xi defines the coupled mode shape of the

the amplitude of overall deflection of the bent,
frequency.

Substitution of
yields

expression (C3) for mass M

ith member, YO is

and u is the

into equation

1(
12

T=~a?MY02+~,A1& 1(
x“ +‘1 .1’ + x3’)dx + * p@ -z’

-71

A coupled mode shap~ of the menibersis expressedby superposing

coupled

(C13)

q’)ax -1-

(C14)

all the

uncoupled nmdes of figure 2(d) @ven by equations (AIL) as follows:

!- (C15)

Application of the Rayleigh-Ritz
the frequency equation

J

method, as in appendix B, yields

-. .——.



in which each term of the infinite a-tlon represents the coqpling effect of a particular

uncoupld m9nber mrxia participating In the rmtion. An approximate solution for the fundamental

coupled frequency is obtalnecl by considering, in equation (c16), only the effect of the first

uncoupled member tie as follows:

(C17)

where

Values of @, obtained frcm equation (c18), are

and t@’. The fre~ency ratio m q, given by/

-tit w@ in figure 6 for varioua tiuea of ~.

given in figure 8

the lower root of

Q
for varloua values of 11/12 ~

equation (C17), is plotted 3
0

, ,
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If the reflectional spring of figure l(b) supports a rigid mass MA

in addition to the mass of the flexible bent, a term

1 M&Yo25A

must be added to the expression for maximum kinetic ener~. Repeating
the derivation with this modification yields the approximate frequency
eqmtion

where

()
2 kD M

~’ =— =—
M+MA M+MA

~2

and

%“+%
M+MA

(C19)

_u— —_ .——. .. —. —_. ..— .—— —- —.- ..—
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APPENDIX D

UNCOUPLED PLATE FREQUENCIES

The cover and web conibinationsof figure 13 that have either clamped
or simple support conditions at the bulkheads are analyzed for the funda-
mental uncoupled fre~ncies of modes of the me that tend to couple with
overall beam torsion or bending.

Covers and Webs Clamped at Bulkheads

b this section the cover and web conibinationof figure 13, assumed
to be clsmped at the bulkhead edges y = O and y = b, is analyzed by
an approximate energy method.

and

v=

T=

For a natural nmde of vibration the msximum potential energy V
maximum kinetic energy T sxe given by the expressions

where the Wi ts define the mode shapes and m is the natural frequency. .

Modes that couple with beam torsion.- An approximate solution for the
I?udsmental uncoupled frequency of cover and web modes that tend to couple

.

with besm torsion is found by using the following approxhation for the
mode shape:
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(D’)

These expressions satis~ the conditions of zero deflection and zero
slope on the edges y = O and y = b and zero deflection on the edges
x= i21 for the covers and x = tz’ for the webs. The continuity

condition

which upon substitution of the expressions (D2) becomes

.=,~. . ● %n(-l)m.222=1$%(-w-
Y 9***

(D3)

is satisfied in the energy expression by mesas of La.grangianmultipliers.

Substitution of the functioqs (D2) into the energy inte~sls (Dl)
yields the following energy expression:

Q3
630@(v-T) =

$_ma, ,.. .

in which

. ____ . .——-_———— —. __——— —.. ~ —..——.—
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and

D1

()

t~ 3
—-— —
D2 tp

U z~ tp ~lz—=

-()J2 tiq

The minimization of (V - T), subject to the continuity condition
(D3), is performed by the Lagrangian multiplier method by
the following function F with respect to ~ and ~:

minimizing

F = 630
713

—(V-T)-7

[

s ms.&l)m - Q y mm(a):
‘~byc4 m=l,2,... 72 m=l,2,...

—

where 7 is the Iagrangian multiplier. When this ndnimization is per-
formed and the resulting expressions for ~ and ~ are m.instituted

into the condition (D3), the following frequency equation is obtained:

() r22 tl 3——
21 t2 m=l,2,...

(D5)

~use of equation (2) of section 6.495 in reference 2, -thefre-
quency equation (D5) may be put into the following closed form:

“=#=w’””m-#=wFw
—

+

1

(l%)
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where

39

Eqpation (D6) is solved by trial to find the lowest root
()‘1 b,

A

which determines the fundamental frequency ~l. The ratio of this fre-

quency to the corresponding frequency of.vibration obtained from fig-
ure 5 for the menibersof the analogous bent is given by the curves of
figure 9 for various values of 11/12, t~/t2, and 2l@ .

Modes that couple with besm bending.- An approximate solution for
the fundamental uncoupled frequency of cover and web modes that tend to
couple with beam bending is found by using the follotig approximation

,’
for the mode shape:

(D7)

These expressions satisfy all the edge conditions of the problem except
the condttion of continui~

m-1m

x ma&l)~ + z ~ mbm(-l)m = o
m=l,3,... 22 m=l,2,...

(D8)

which must
Lagrmgian

be taken into account in the energy expression by means of the
multiplier method.

—-. ... —__ _ — —————— — .— ——— .— .— ..— ——
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Proceeding with
yields the fre~ency

NACA TN 3070

the energy methoil, as in the previous section,
eqxsrbion

(apl=w=+r=%ll=w’ ?Fq
(m)

in which the psmmeters dl and c1 are defined as before. The solu-

tion of equation (D9) by trial for the lowest root
()‘1 d~ yields values

of the frequency ql which are used to prepare the curves of figure Il.

These curves show the ratio of this plate frequency to the frequency
obtained from figure 7 for the corresponiHngmenibermode in the bent
having the dimensions of the beam cross section.

Covers and Webs Shply Supported at Bulkheads
.

In this section the cover and web cdination of figure 13 is assumed
to be simply supported at the bulkhead edges y . 0 and y = b. The
deflection of any one of the covers or webs during a natural mode of
vibration is identical to a correspondingbuckled shape under a compres-
sive load on its simply supported sides. It is shown in reference 3 that
this analogy between mode shape and buckle pattern msy be used to find
the frequency of a particular mode of vibration from the corresponding
buckltng load by use of the relations

(D1O)

where K1 and ~ are buckling coefficients for the covers and webs,

respectively, that define the criticsl compressive load

(Dll)

.
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The relations (D1O) are used in the following two sections to find
the fundamental frequency for modes that tend to couple with beam torsion
snd then for modes that tend to couple with beam bending.

Modes that couple with besm torsion.- The motion of each cover or
web for modes that tend to couple with beam torsion is antisymmetric
about its own center line (x = O in fig. 13). The compressive buckling
loads for buckle patterns of this type are given in reference 4. Substi-
tution of the relations (D1O) into the buckling criterion presented in
this reference yields the

For the covers,

L@ i- pf +

and, for the webs,

a# + p#’+

following frequency eqmtions:

(
al )P1elalcoth F-~lcot — =0

2’

where

(i = 1,2)

(i = 1,2)

(D12)

(D13)

D1 ~4D2
—= ——
ptl 724 Pt2

coefficients. Each of these restraintand El smd ~ are restraint

coefficients depends upon the relative stiffness of the plate in question
to that of the adjoining restraining plate as follows:

.,=!5(.3)%
4S~(2Z2)

E2 =
?2

1

(D14)

. ._ _— —— ..—————-. —— —— —.—-. .- .. —— --——.— - ..—...— .
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where S1 and S2 are the stiffnesses per unit length, as defined in
reference ~, of the ImU-covers and half-webs, respectively. Since the
covers and webs restrain each other on the line of attachment

S1 = -s2

and the ratio of restraint coefficients

E2 ()()
~2 tl 3

—=- ——
q 21 $

(D15)

maybe obtained

equations (D12)
equation

from equations (D14). Elimbating q and ~2 from
and (D13) by use of equation (D15) yields the frequency

—

+

—

Values of the fundamental frequency ‘%1 given by equation (D16)

we found by use of the t~les of stiffhess factors in reference 5
together with equation (D1O) whenever values of stiffness factors are
in the range of the tables; otherwise, equation (D16) is solveclby trial
for (Al)bl. The results me given by the curves of figure 10.

Modes that couple tith besm .beq. - Values of the fundamental fre-
quency ~1 for modes that tend to couple with besm bending are obtained

from the tsbles of stiffness factors in reference 5 together with equa-
tion (D1O) whenever vshes of stiffness factors are in the range of the
tables. For values of stiffness factors outside the range of the tables,
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the following
from buckling

o=

43

frequency equation, obtained as in the preceding section
criterions presented in

1-

+

reference 4, is solved for
(~l)d~

..

L

The resulting values of freqmncy are given by the frequency-ratio curves
of figure 12.

. . . —._ _ —. —--–——— .——-— —.- .–.
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(a) Modes of horizontal and
vertical meniberssymmetric.

I

;
I I
I
I
I

I
I
I I

I I
I

(c) Modes of horizontal menbers
antisymetric and vertical
metiers symmetric.

(b)

I
I

Modes of horizontal and verti-
cal members antisymetric.

--—— ———— ———

I
1

- - — — —- — —— -—

I
I

(d) Modes of horizontal metiers
symmetric and vertical mem-
bers antisymmetric.

Figure 2.- Types of uncoupled maiber mades for rectangular bent supported
at the corners. .
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Figure 3.- IWequencies and amplitudes of coupled nmdes for uniform square
bent elastically restrained against rotation.
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Figure 4.- Coupling constant c@ for flexible rectanguhr bent elastically

restrained a@nst rotation.
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Figure 5.- Rmdamental uncoupled metier frequency WI for modes of the

type that couple with rotation of the bent.
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Figure 7.- Fundamental

_@_pethat

CD

‘
5

t[

~

.:

1.0

1.5

20

uncoupled metier freqyency %1 for modes of the

couple with deflection of the bent.
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Figure 8.- Coupling constant ~
restrained
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.

for flexible rectangular bent elastically

against deflection.
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Figure Il.- Frequency
()‘1 plate

of first local plate mode that couples

with box-beam ben&lng. Covers and webs clamped at bulkheads.
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Figure 12.- Frequency
()‘1 plate

of first local plate mode that couples

with box-beam bending. Covers W webs simply supported at bulkheads.
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Figure 13.- Coordinate system for local plate vibrations.
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