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NATIONAL ADVISORY COMMITTEE FOR AE8ONAUTICS 

TECKNICAL NOTE 2869 

REFUCTION OF WEAK SHOCK WAVE FROM A 

BOUNDARY LAYER ALONG A FLAT PLATE. I1 - INTERACTION 

OF OBLIQUE SROCK WAVE WITH A LAMINAR BOUNDARY LAYER 

ANALYZED BY DIFFEBENTIAL-EQUATION METHOD 

By Yung-Huai Kuo 

SUMMARY 

By analogy with the boundary-layer concept, the flow produced by 
the interaction between a shock wave and a laminar boundary layer is 
subdivided into a viscous layer and a potential field. The assumptions 
that the compressibility effect in the inner layer is negligible and 
that the original flow in the outer layer is uniform lead to simple 
analytic solutions for the perturbed flow. The joining conditions at 
the interface between the layers determine an eigenvalue which gives 
the rate of decay and the character of the disturbances both upstream 
and downstream of the point of incidence. The final conclusions are 
in agreement with experiments. 

INTRODUCTION 

The present investigation is an independent study of the inter- 
action of an oblique shock with a laminar boundary layer in a compress- 
ible supersonic stream. In reference 1, where interaction of weak shock 
waves with both laminar and turbulent boundary layers was treated, the 
integrated momentum across the boundary layer was considered, rather 
than the balance among various dynamic effects at each point. This 
momentum-integral method is simple and, in certain respects, powerful 
and capable of yielding useful qualitative information such as the 
upstream pressure influence, pressure distribution, and the gowth of 
boundary-layer thickness due to the presence of a shock, but it fails 
in regard to what actually happens inside the boundary layer. In the 
present report a different approach has been adopted, with the inten- 
tion of filling the gap left by the previous investigation. The pur- 
pose will, on the whole, be complementary, so as to provide a physical 
picture for the understanding of this complex phenomenon, 



NACA 'J3J 2869 

Contrary to reference 1, the differential-equation method is 
employed here. According to available experimental observation, when 
an oblique shock is incident upon a laminar boundary layer the result- 
ant flow bears no resemblance to the flow predicted by potential theory. 
For if the viscous flow is absent the flow ahead of the shock will not 
be affected. Because of the presence of the boundary layer in which 
there is a subsonic layer, however, a sudden decrease of pressure at a 
point will immediately be transmitted forward by the inability of the 
subsonic layer to support an excess pressure rise. When the pressure 
is transmitted, the flow in the boundary layer will be retarded and the 
streamlines distorted. Since the outer field is supersonic, this change 
occurring in the viscous layer will affect the whole potential field. 
This is actually observed. For stronger shocks, the flow in the bound- 
ary layer generally will separate and will have backflow under the 
influence of an adverse pressure gradient. An adequate theory that is 
able to account for the observed effects cannot be formulated unless 
the boundary-layer hypothesis is abandoned entirely. One therefore is 
faced by a much more difficult mathematical problem. 

To restrict the scope and complexity of this study, let it be 
assumed first of all that the boundary is an insulated flat plate, and, 
secondly, that the incident shock is weak and its angle of incidence is 
such that regular reflection would be possible, were the flow friction- 
less, and, lastly, that the free-stream Mach number is not large. Under 
these assumptions, the angle of deflection of the flow in passing through 
the shock wave will be small, and the temperature variation between the 
free-stream condition and that of the plate will not be large. In fact, 
the study of a laminar boundary layer indicates that, for moderate Mach 
number, the temperature as well as the compressibility effects are unim- 
portant (reference 2). This must remain true even if the flow is not 
boundary-layer flow. Therefore, without loss of generality, it will be 

- assumed that the viscosity and thermal conductivity of the gas will be 
taken as constant and the Prandtl number is unity. 

In order to bring the interaction problem within the scope of prac- 
tical mathematical analysis, these simplifying hypotheses have to be 
made in the absence of a proper method of approximation, such as the 
boundary-layer theory. Broadly speaking, examination of schlieren 
photographs of the flow produced by the interaction between a shock and 
a laminar boundary layer will reveal that two characteristically dif- 
ferent outer and inner regions exist for sufficiently high Reynolds 
number. The outer field is characterized by its strong potential char- 
acter, whereas the region close to the wall is predominantly viscous, 
which is quite reminiscent of the boundary-layer flow. It appears 
natural, therefore, to assume a priori that the viscous effect is con- 
fined to a thin layer in the vicinity of the boundary and the outer main 
flow is potential. These two different flows are then in dynamical 
equilibrium. If one is disturbed, the other will be affected. Since 
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the outer field is supersonic, any local change will be felt in a much 
larger region than that in a subsonic field. 

After the flow field is separated into two regions, specific assump- 
tions regarding the structure of the viscous layer can be made. It is 
important to note that in the case of a compression incident wave, the 
overwhelming effect taking place in the viscous layer is the sudden 
decrease of the velocity or even reversal of flow (backf low). If back- 
flow sets in, the flow speed in the subsonic region will be very much 
reduced. As a result of this, the streamlines will be pushed outward 
and the flow compressed. On account of the displacement of streamlines, 
the subsonic region will become thicker, and the thickening of the sub- 
sonic region is a decisive factor that distinguishes the strong from 
weak interactions. The importance of this dimension (the thickness of 
the subsonic layer) has already been established by Tsien and Finston 
(reference 3) in the case of inviscid theory. 

The viscous layer, thus, must have two distinct sublayers, each 
displaying a different character. In the supersonic layer, the flow is 
characterized by large velocities and is not unlike that of an unsepa- 
rated boundary layer. Therefore, for this layer both viscous and inertia 
forces are imppbrtant. On the other hand, in the subsonic layer, espe- 
cially with backflow, the average speed will be very small. In this 
case, because of slow motion and moderate temperature change, the change 
of density is always a lower-order effect. In fact, the contribution 
due to compressibility is proportional to the square of Mach number, 
and, if the average Mach number in the subsonic region is small, the 
compressibility effect is, indeed, negligible. Because of this physical 
fact, the subsonic layer will be taken as incompressible. 

With these assumptions, the problem is finally solved by pertur- 
bation of weak incident waves. As a test of these assumptions, a simple 
flow with broken-line velocity profile is taken as the basic flow: In 
the incompressible layer, the velocity is a linear function of the dis- 
tance from the plate; in the compressible layer, it is constant. The 
density in the basic flow is constant in each layer but takes different 
values. Thus, at the interface where the two flows join, the velocity 
is continuous but density is discontinuous. For this case, a first-order 
solution consistent with these assumptions is completely determined. 

In the case of weak shock, excellent agreement with experiments has 
been achieved for the pressure distribution on the plate. It confirms 
the conjecture that separation of the flow as well as backf low always 
occur. Because of the occurrence of backflow, transition downstream of 
the point of incidence is unavoidable in the viscous layer. There are 
strong experimental evidences but detailed investigations are yet to 
be conducted. In the outer field, on the other hand, it is predicted 
that in the place of the regularly reflected shock there is a strong 
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expansion, and farther downstream a train of strong compression waves 
must exist, eventually forming an envelope. Therefore, downstream of 
the point of incidence a second shock must occur. This deduction is 
also confirmed by experiments. 

Lastly, the importance of nonlinear effect is discussed. 

This study was conducted at the Graduate School of Aeronautical 
Engineering, Cornell University, under the sponsorship and with the 
financial assistance of the National Advisory Committee for Aeronautics. 
The author wishes to acknowledge the efficient assistance of Mr.  Nelson 
H. Kemp. 

SYMBOLS 

A constant 

a' speed of sound 

C17 C2, C3, C4, C5, C6 constants 

D constant 

d constant 

d/dt convective derivative 

F,G scalar functions 

fl'gl defined by equations (43 ) and (&I), respectively 

H nondimensional enthalpy 

(2 312) 
=1/3 37 Bessel function of first kind with imaginary argument 

J1/3 Bessel function of first kind with real argument 
I 

K1,K2,K3,K4 constants 
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Bessel function of second kind with imaginary argument 

length of plate from leading edge to point of incidence 

Mach number 

dilatation 

P pressure 

p2, p3 constants 

P nondimensional pressure 

P ' pressure 

R Reynolds number ( u ~ L / v ~ )  112 

nondimensional temperature 

temperature 

s,t defined by equations ( ~ 4 )  

U velocity 

UJV nondimensional velocity components 

ul,V" velocity components 

V(l) constants u ,  



nondimensional Cartesian coordinates 

coordinates 

defined by equation ( ~ 4 )  

defined by equation (30) 

p = JL 
P 1  defined by equation (43) 

P2 defined by equation ( ~ 1 5 )  

r (4 gamma function 

7 r a t i o  of specif ic  heats 

Laplacian operator 

deflection of flow (equation ( ~ 6 )  ) 

flow-deflection angle 

7 defined by equation (31) 
TV 

7 defined by equation ( ~ 6 )  

~ ( 7 1 )  defined by equation ( ~ 5 )  

X e igenvalue 

'v, f ree-stream kinematic viscosity 

P nondimensional density 

P ' density 



density at y = 0 

defined by equation ( ~ 7 )  

nondimensional velocity potential 

stream function 

w angle between velocity and shock 

Subscripts: 

C complementary 

solution in compressible layer 

solution in incompressible layer 

value on plate 

particular 

due to step wave 

at separation point 

due to transmitted wave 

partial derivative with respect to x 

partial derivative with respect to y 

in region 1, before shock (see fig. 1) 

in region 2, behind shock (see fig. 1) 

in region 3 (see fig. 1) * 

free stream 



I I parallel to oblique shock wave 

-,I- perpendicular to oblique shock wave 

Superscripts: 

(0 1 zeroth order 

(1 1 first order 

( 2  1 second order 

(3 1 third order 

STATEMENT OF PROBIEM AND BASIC ASSUMPTIONS 

Let there be a laminar boundary layer in a compressible viscous 
fluid along an insulated flat plate immersed in a steady uniform super- 
sonic stream, and let an oblique shock be incident upon the plate. When 
the steady condition is established, the flow in the neighborhood exhibits 
a character which is entirely different from the original flow. 

From all indications, this flow does not obey the boundary-layer 
approximation; nevertheless, for simplicity for future analysis, the 
concept of boundary layer, or viscous layer, will be retained. Namely, 
the whole flow field is visualized as consisting of inviscid and viscous 
flow in equilibrium with each other. The possibility of existence of 
such a demarcation line will be assumed at this moment. The solutions 
obtained are consistent with the assumption, as will be seen later, so 
that the theory is self-consistent at least. Naturally, its further 
justification rests upon experimental evidence. 

The main feature in the viscous layer is that, in the case of a 
compression wave in the inviscid outer flow, backflow generally exists. 
For this reason, terms in the equations of motion which are unimportant 
according to'boundary-layer approximation become decisive as the sup- 
posed large-order terms vanish. Therefore, the pressure gradients along 
both directions have to be considered. To simplify the mathematical 
process, some minor effects, such as the variation of the viscosity 
coefficient and thermal conductivity with temperature, will be neg- 
lected and the Prandtl number will be taken equal to 1. For moderate 
Mach numbers, less than 3, say, this neglect, according to boundary- 
layer investigations, will have little effect on the major character- 
istics of the flow. 

The inviscid flow generally is rotational, as it involves shocks. 
This is particularly true in the case of a local supersonic zone over 



a curved surface, For a purely supersonic flow, if the shock is 
slightly curved, the vorticity generated behind the shock is of high 
order and can be neglected, The perturbed flow in the outer region can 
then be regarded as irrotational. 

As the region which is influenced by the presence of the shock, 
according to experimental observations, is confined to an area about 
the point of incidence, with a dimension only a fraction of the length 
of the plate, a point which lies at a distance about the length of the 
plate from the point of incidence will be considered as at infinity, 
Consequently, the boundary-layer flow will be replaced by a "shear flow" 
extending to both positive and negative infinities. This approximation 
fs justified if the derivative along the flow is much larger in the 
perturbed flow than that in the original flow. For large Reynolds num- 
ber, this condition can always be satisfied. 

METHOD OF SOLUTION 

The flow is supposed to be two dimensional and steady and the fluid 
is compressible. If the flow field can be subdivided into viscous and 
nonviscaus regions, the flow in the viscous layer satisfies in dimension- 
less variables the system: 

and in the case of perfect gas 

p = ( 7 ~ ' )  -'pT 
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Here the subscripts denote partial differentiations with respect to the 
Cartesian coordinate x or y indicated; the Laplacian operator A, 
the convective derivative d/dt , the nondimensional enthalpy H, and 
the dilatation n are defined by 

Furthermore, the velocity components u' and v', the pressure p', 
the density p', the temperature T' , and the coordinates x' and y' 
are nondimensionalized as follows: 
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where U,, pw, and v,  are free-stream velocity, density, and kinematic 

viscosity, and L is the length of the plate from the leadiw edge to . 

stand for, respectively, the ratio of specific heats, the free-stream 
Mach number, and the Reynolds number. 

On the other hand, the inviscid flow in the outer region is assumed 
to be irrotational and, consequently, is determined by a nondimensional 
velocity potential cp (x,y) satisfying the equation 

where the sound speed a' is given in terms of the velocity components 
u' and v' by the relation 

By the assumption that these two different flows are in equilibrium with 
each other, the flow determined from equation (9) must join smoothly with 
that given by the system of equations (1) to (5) subject to the boundary 
conditions 

when y = 0 and 

when y = w. 

As the disturbances are initiated by the incident shock, it is 
expected that they are small if the incident wave is weak. From experi- 
ence, this is at least the case in the field irpstream of the point of 
incidence. If the shock strength is characterized by the flow-deflection 
angle c ,  then for small values of s the solutions are expanded in 
powers of s: 



By substf tuting the quantities defined in equations (10) into the system 
of equations (1) to ( 5 ) ,  there results the following system of equations, 
aeeordfng to the powers of s; namely, for the zero order, 



where 

for the first order, 



where 
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and for the second order, 
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where 

In the case of the potential flow, if the velocity potential is 
expanded as 

there will occur, similarly, equations for the first- and second-order 
quantities. These are: For the first order 

and for the second order 

where j3 = !/$ - 1. 

FIRST-ORDER SOLUTION - UPSTREAM, x < 0 

Let the point of incidence be chosen as the origin of the Cartesian 
coordinates. Then, negative x will be called upstream, and positive x, 
downstream, of the point of incidence. The various regions will be num- 
bered by 1, 2, and 3 as shown in figure 1 in which 0s indicates shock 
and OM, the limiting Mach line of region 2. 



As it has been assumed that the basic flow is a laminar boundary- 
layer flow of a Blasius type, such as considered by Von ~ & d n  and Tsien 
(reference 2 ) and by Ehmons and Brainerd (references 4 and 5 ), system (11) 
simply reduces to the well-known Prandtl boundary-layer equations, whose 
solution has already been found in these references. 

Since the basic flow is a boundary-layer flow with constant pres- 

sure p(o), system (13) can be simplified. From experiments it has been 
established that the space variation of the perturbed quantities is much 
more rapid than that of the unperturbed quantities. By the boundary- 
layer approximation, the ratio of the partial derivatives a/&: a/& 
is 1:R. For large Reynolds number, the x-derivatives of the basic 

flow, as well as v(o), which is of the order R-'~ can be neglected in 

comparison with the y-derivatives. That is, u ('I and p ('I are func- 
tions of y only. This approximation is confirmed by experiments and, 
as a matter of fact, it is customarily used in the pressure measurements, 
because the wave is shifted forward and back relative to a fixed pressure 
orifice to measure the pressure distribution before and behind the wave, 

In the case of unit Prandtl number, H(O) is a constant. Then, by 

dropping terms such as V(~)U~(') and ux(0)u(l), system (13) becomes 



Incompressible Layer 

It is noted that the coefficients of system (20) depend on the 

basic velocity profile u(O) (y ) . Since u(O) (y ) cannot be expressed 
by simple functions, in order to simplify the analytical work further 
simplifications are necessary. 

First of all, in the case of insulated plate, the temperature and, 
hence, the density in the basic flow will have a vanishing gradient on 
the plate. This makes the variation of the density in the viscous layer 
much smaller than that of the velocity. When the flow is subject to an 
adverse pressure gradient, the flow will be further retarded. When the 
backflow occurs, the average speed will be very low and, consequently, 
the representative average Mach number will be small. Under this condi- 
tion, the change of density is less important than that of the pressure. 
A layer where this approximation is valid is called an "incompressible 
layer" and the dominant effects will be pressure and frictional forces. 

Of course, it is difficult to define the thickness of this layer 
beforehand. Generally, it would correspond to the subsonic portion of 
the viscous layer. In the basic flow, the sonic boundary can be exactly 
calculated. When the flow is perturbed, it is unknown, but certainly 
will be thicker, for the flow is subject to an adverse pressure gra- 
dient. Owing to this fact and also for mathematical expediency, the 
thickness will be taken in accordance with the way the velocity profile 

u(~)(y) is represented. This will become clear below and the thickness 
defined turns out to be nearly half the original boundary-layer thickness. 

Because of the assumption that density is constant and assumes the 

value po ('1 on the plate, system (20) simplifies to 
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Thus, the veloci t ies ,  pressure, and temperature can be dea l t  with inde- 
pendently. For the veloci t ies ,  the f irst  three equations yield by 

elimination of p ( l ) :  

After the veloci t ies  are known, the temperature w i l l  be given by the 
energy equation. In the present problem, however, temperature i s  not 
an interest ing quantity and w i l l  subsequently not be mentioned. To 

solve equations (22), l e t  a stream function ) ( l ) ( x , y )  be introduced 
.by the relat ions 

From equations (22 ) I# then s a t i s f i e s  the equation 

By neglecting the compressibility effect  i n  the inner layer, the 

basic velocity prof i le  u(O1(y) becomes the Blasius profi le .  The vari-  
able coefficients of equation (23 ), f o r  small values of y, w i l l  be 
power se r i e s  i n  y. However, it has been recognized t h a t  i n  the case 
of Blasius prof i le  the velocity a t t a ins  the free-stream value f a i r l y  
rapidly and the i n i t i a l  portion is  nearly l inear .  Consequently, it w i l l  
not involve serious e r ror  t o  replace the continuous profi le  by a broken- 
l i n e  one, so tha t  the i n i t i a l  par t  is proportional t o  y and the 
remaining part ,  constant with the free-stream value unity, If the skin 
f r i c t i o n  agrees with the exact value, the velocity prof i le  can then be 
defined as  

U(O)(Y) = ay when 0 5  y s  ~;i 
u(')(y) = 1 when y l<  y < = m  I 
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If the velocity is continuous at y = yl, then y = am' which is about 
1 

half the boundary-layer thickness, namely yl - 3.  If the incompressible 

layer is defined as the interval 0  y = < yl, then equation (23 ) becomes 

'V where a = po ( 0  )& 

To solve equation ( 2 5 ) ,  it is natural to assume the form 

for region lwhere x < 0 .  This assumes a special form of compression 
waves induced in the potential field; that is, the solution of equa- 
tion ( 1 8 )  

where A is a constant to be determined. This is entirely in agreement 
with the conclusions reached in reference 1. Substituting equations ( 2 6 )  
in equation (25 ) and simultaneously putting 

there results 

The general solution of this equation is 



2 0 

where 
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2 312 C1 and C2 a re  constants, and I1 7 - ( ) and K (2 $I2) denote the 

3 
1 3  
3 

Bessel functions of the first and second kind with imaginary argument. 
. With z known, the solution of equation (28) i s  

Y = C3 cos ~7 + C4 s i n  TY + 

sin ~'lS'l (COS r1)z(7) dq - 'OS SS (sin  r r l ) z ( ~ )  d l  (28a) 
T T 

'lo 70 

with T = ( ) I 3  On the p la te  y = 0 and u ( l )  = v ( l )  = 0; hence 

I ( 0  ) = I ' (0 ) = 0. For large Reynolds number and small values of X, 
y = 0 corresponds approximately t o  q = 0. The boundary conditions 
thus require C3 = C 4  = 0. Moreover, a t  y = yl, 7 w i l l  be large, 

and since -rvl = Xyl< 1, the integrals  LS ,I/2 f o S  '13/2) dn I 
s i n  3 

w i l l  diverge l ike  d~ as  q approaches inf in i ty .  Therefore, 

C2 = 0. The solution i n  the incompressible layer can then be read as 
follows 

= 2 ksin TT L'l ( coa 'l )K-,(; '13/2) drl - 
3 
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Thereby the velocity components are 

(sin ~ 7 j )  L' -q112 (sin -T'q )Kl(g -q312) d je" 
3 

(33 

v ('1 = - i n  r-q) Lq 0 s  r 7312) d-q - 
3 

(cos TV) -q1I2 (sin r-q )K~ - 
3 J 

On the other hand, the pressure can be obtained by integration of 
the first of equations (21) and is, by the form of solution, 

where the constant of integration vanishes by the condition at negative 

infinity. Substituting u and v'l) from equation (33) and d i n g  
use of equation (281, a straightforward reduction yields 

(sin 7-q) JIv (sin ~7 )K& $12) d j  } e h  
5 
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On the plate y = 7 = 0 this reduces to 

Compressible Layer 

In the compressible layer, because of the forward momentum of the 
potential flow outside, the velocity is everywhere positive and differs 
from the basic flow by a small amount in order to support the pressure 
rise. As the velocity is high, both compressibility and viscous effects 
will become important. Under this condition, the problem is considerably 

simplified by taking a uniform basic flow, namely u (01 = p(") = 1, as 
discussed above. Accordingly, equations (20) reduce to 

where 

The elimination of p(l) from the first two equations gives 



After differentiating the first and the second of equations (35) with 
respect to x and y, respectively, an addition yields 

moreover, by definition 

A substitution of & and in the energy equation leads to 

Equations (36) and (37) form a system of linear partial differential 
equations for u and v with constant coefficients. The solu- 
tions, if carried out, are expressible in terms of trigonometric and 
exponential f'unctions. According to the arguments of these functions, 
they fall into two groups: One varies slowly and is "potential-like"; 
while the other varies rapidly and, therefore, is '%oundary-layer-like." 
The latter group consists of two exponentials whose arguments differ by 

a term of 0 . Hence, for large Reynolds nurriber, the latter two expo- 
nentials will degenerate into one. It was found that this form of solu- 
tion can be obtained by solving a mch simpler problem, namely, by 

assuming ~ ( l )  = 0. This assumption appears to be nothing but a method 
of approximating the solution of equations (36) and (37) in the case of 
large Reynolds number. 

If H(~) is taken to be zero, then instead of equation (37) there 
is in its place 



by elimination of p and T ( ~ ) .  To solve the system (36) and (38), 

two sca la r  functions F(') and G a re  introduced through the - 
r e l a t i ons  

The equivalent system, then, is  as follows: 

According t o  the form of the  po t en t i a l  solution,  it w i l l  again be 
assumed t h a t  

By the  condition t h a t  G (') is f i n i t e  a t  i n f i n i t y ,  the  solut ion is shown 
t o  be 

C2 .-oy 
g1 = C cos Xy + C4 s i n  Xy + - 3 hJi (41 

where C2, C3, and C4 a re  constants of in tegrat ion and 
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By substituting gl from equation (41) in the second of equations (40) 

the solution for fl was found to be 

fl = c3 sin ~y - ~4 cos ~y + c5e -'lXy + c6e PIXy + 

where 

The velocity components for y > y by equation (39), are given by 1' 
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by redefining the constants C. It is noticed that the first group of 
exponentials varies with both x and y with a slope proportional 
to X, which, according to experimental evidence for this type of flow, 
is a small number; that is, the variation with x is relatively slow. 
On the other hand, the second exponential varies with y with deriva- 

tive proportional to o, which is of 0 For large Reynolds num- 
ber, it appears that o could be thousands of tfmes larger than X. 
Therefore, in the case of large Reynolds number where the viscous layer 
is thin, the first group of terms changes only slightly while the second 
exponential drops to zero. Applying the boundary-lwer concept, the 
potential-like terms will be taken as constant and equal to the boundary 

" value of the potential solution. Consequently, the solution can be 
written as 

7 

with 

It is seen that when o(y - yl) becomes large, this solution joins the 

potential solution at y = 0 and the constants C5 and C6 will be 

considered as eliminated. f3y means of this approximate solution the 

pressure p (l) is shown to be 

where 
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Eigenvalues X 

In the last two sections, the velocity and pressure have been cal- 
culated by entirely different methods of approximation in two different 
layers. For the incompressible layer, the nonslip conditions are sat- 
isfied on the plate, whereas in the compressible layer, the velocity 
agrees with the potential flow at infinity. The complete solution is 
then left with three undetermined constants C1, C2, and A and with 

an arbitrary parameter X. To determine these constants, it is assumed 
that the two solutions (33) and (34) and (44) and (45) must join at the 
interface y = yl. Now, because of the simplification made in connection 

with equation (44), the conditions at the interface are to be stated as 
follows for y = yl: 

where the subscripts c and i indicate, respectively, solutions of 
compressible and incompressible layers. The u velocity profile thus 
will have a discontinuity in slope. This could be ilnproved by dropping 

f l  \ 

the assumption H'I' = 0. However, as pressure depends only on the 
velocity and its second derivatives, an error in shear can produce only 
minor contributions and can be ignored. By substituting the solutions 
in equations (46 ), there results the following system of equations : 
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where U(l)? V(l), and P (l) are defined by 

In order that linear system (47) will admit a nontrivial solution for 
C1, C2, and A, it is both necessary and sufficient that the determinant 



NACA TN 2869 29 

vanish. This equation serves to determine all proper values of A. 
After . X  has been determined, the constants C1 and C2 corresponding 

to this X can be solved for in terms of A, namely 

where the constant A remains to be determined. 

To solve determinantal equation (48) analytically even for this 
simplest case does not seem to be possible. The procedure from here on 
is essentially numerical. For the present purpose, the numerical solu- 
tion will be carried out, based on the approximation that vl will be 

taken mathematically as infinity and -rql, small. Accordingly, the 

integrals in u(~), V ,  and P(') will have an infinite upper limit 
and cos rql 1 and sin Tql * Xyl. Furthermore, for large values 

2 312 
of q1 the Bessel function K1 

-314 -3 q1 
e will be 

3 
very small and can, therefore, be neglected. Equation (48) is finally 
expressed explicitly in terms of the parameters R, P, and a. To 

retain terms up to the order O(R-516), the determinantal equation 
becomes 

where r = ~(+)/~~/3* 

For M = 2, R = 774., and a = 0.332, there are two pairs of posi- 
tive and negative roots. The negative roots would make the perturbation 
infinite at negative infinity, which is contrary to assumption. Therefore, 
negative roots are not admitted. For the pair of positive roots, one 
is roughly 20 times the other which is 0.0467. For large Reynolds num- 

ber, these would correspond to X1 a j3 -312R112 h;! E P 
3 /bR-1/4 



3 0 NACA TM 2869 

In region 1, x i s  negative. The disturbance with a logarithmic r a t e  
of decay A w i l l  quickly disappear. The observed disturbance m u s t  
have a decay r a t e  equal t o  h Z .  

According t o  t h i s  solution, the dependence of the distance inf lu-  
enced by pressure disturbance on the h c h  number and Reynolds number can 
be discussed. By the form of the f i rs t -order  solution, the pressure 
decays exponentially from the point of incidence. For a given value 
of E ,  when -X2X = d, d being a constant, the pressure disturbance 

would have dropped t o  a cer tain fract ion of i t s  i n i t i a l  value. Thus, 
-X = d/XZ would serve as a measure of the distance reached by the pres- 

sure. Therefore, by varying M and R, the distance X'/L w i l l  change 

according t o  the l a w  P -3/4R-3/4. Namely, by increasing both Mach n u -  
ber and Reynolds number, the distance reached by pressure disturbances 
w i l l  decrease. This r e s u l t  i s  quantitatively different  from that arrived 

a t  i n  reference 1, which is  P 1 2 R 1 2 .  By comparison there is  an 
increase of both compressibility and viscous e f fec ts  i n  the new resul t .  
This shows how gross an er ror  can be made if the boundary-layer approxi- 
mation is  applied. It is surprising a lso  tha t  the upstream pressure 
propagation depends only on M and R but, t o  the f i r s t  order a t  leas t ,  
is independent of the shock strength. This seems t o  be i n  agreement with 
experiment (reference 6 ) . 

It can be shown from equations (33) and (34) tha t  fo r  a rb i t ra ry  

(1) values of A the pressure p (xSep,0) a t  the point of separation 

where y, = 0 is proportional t o  P -1/zR-l/2 

FIRST-ORDER SOLUTION - DOWNSTREAM x > 0 

As i n  the upstream f irs t -order  solution, one must s t a r t  with the 
potent ial  solution. In order t o  determine the flow i n  region 2, the 

interact ion between the incoming wave 
1' 

and the shock must be 

considered. 

Potent ial  Solution 

In equation (27) the incoming wave i s  given by 
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When this train of waves hits the shock, the shock will be slightly 
modified according to Rankine-Hugoniot conditions. The velocity poten- 
tial in region 2 with these conditions satisfied is shown to be (appen- 
dixes A and B ) 

That is, to the first order, the flow in region 2 is simply a super- 
position of a step wave upon the transmitted wave. Since the conditions 
are prescribed on the shock OS, they are uniquely defined in region 2, 
terminated only by the extreme Mach line OM. 

To continue this solution into region 3, two possibilities present 
themselves. It may be either continuous or discontinuous there. If it' 
were continuous on OM, there would be a discontinuity in pressure at 
the point of incidence. In the case of inviscid flow, this, of course, 
would be admissible. But, by the condition that the viscous layer will 
join smoothly with the potential field, this would make the velocity ,- \ 
u "'(x,~) discontinuous at the origin x = 0. Hence, the first possi- 
bility must be discarded. IT the solution is discontinuous at OM, and 

the pressure as well as the velocity u are continuous at the origin, 
then the discontinuity must correspond to an expansion. This, of course, 
is what has been observed. 

Assuming that the pressure returns to the value just in front of the 
shock, a simple calculation shows that the turn of the flow through a 
Prandtl-Meyer expansion has to be 

where 1~(1)(0) and 2~(1)(0) are, respectively, the velocity u (1 
- 

just before and after the shock. By means of solutions ( 2 7 )  and (51), 
the turn required is E. Now the direction of the flow before the expan- 
sion is E (1 - PA); therefore the total inclination of the velocity 
vector at OM is 

A solution in region 3 subject to these conditions is found to be 
(appendix B ) : 
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The velocity i n  region 3 can then be given by 

Were the perturbation velocity t o  remain f i n i t e  a t  inf ini ty ,  X would 
have t o  be negative i n  region 3, as x - py h 0. 

Viscous Solutions 

As potent ial  solution (52 ) i n  region 3 is a superposition of two 
d i f fe rent  types of waves, namely, s tep waves and transmitted waves, it 
i s  expected tha t  the viscous solution w i l l  a lso be composed of two d i f -  
fe rent  par ts ,  each associated with a special  wave i n  the external f ie ld .  
Since the or igin and character of the disturbances are  different ,  they 
can best  be discussed separately as  the following: 

In view of the f a c t  that  the s tep waves are  opposite i n  sign, they 
do not change the pressure but give r i s e  to  a uniform v e r t i c a l  velocity 
i n  +he potent ial  f ie ld .  The flow i n  the viscous layer due to  t h i s  uni- 
form deflection may vary rapidly i n  the y-direction but cer tainly not 
i n  the x-direction because of the constancy of pressure. The main 
e f fec t  of the s tep waves, f i r s t  of a l l ,  then, is  t o  produce a constant 
deflection along the edge of the viscous layer. If the veloci t ies  due 

t o  s tep waves are  us and vs ('I, the problem should be solved 

subject t o  the boundary conditions: 

when y = 0 

%(I )  = 0, v S ( l )  = 2 a t  outer edge of viscous layer } ( 5 3 )  

> when x = 0, Y = 0 

It must be borne i n  mind tha t  generally the flow i n  region 1 has 
been separated, with a considerable region of backflow i n  the neighbor- 
hood of the point of incidence; the resul tant  flow i n  the incompressible 

layer must be small. If us and v, a re  considered as additional 
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perturbations due to  the s tep waves, the problem can then be simplified 
by neglecting the ine r t i a  forces i n  the neighborhood of the plate.  The 

perturbation stream f'unction $s then sa t i s f i e s  

i n  the incompressible layer 0 1 y 5 Y 1  * 

As the objective here i s  t o  demonstrate approximately the effect  
of the s tep waves on the viscous layer, only simple solutions w i l l  be 
considered. A simple solution tha t  s a t i s f i e s  both the f irst  and th i rd  
of conditions (53) i s  clear ly 

< fo r  y i n  0 < y = yl, where D i s  a constant. The veloci t ies  a re  

thereby 

Accordingly, the pressure, or the pressure gradients, .in the incompress- 

ib l e  layer due t o  the s tep waves is of the order R-l and fo r  the pres- 
ent approximation w i l l  be neglected. 

In  the compressible layer where the viscous e f fec t  is  not as impor- 
tan t  as  the compressibility effect,  a flow tha t  does not associate with 
a pressure r i s e  can e i ther  be a uniform f i e l d  or  the one with a ve r t i ca l  
velocity varying l inearly as y. According t o  equation (37 ), the f o l -  
lowing, with the second of equations (53) sa t i s f ied ,  i s  a solution f o r  
y1 6 y < y2, y2 being defined as the outer edge of the compressible 

layer : 
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The fact that equation (57) is a solution shows the importance of both 
the compressibility and the viscosity in this layer, which allow the 

independent variation of p and T('). TIE joining condition at 
the interface gives the constant D a value -6y1b2. 

Thus, it is seen that the deflection of the flow due to step-waves, 
though it contributes no pressure, induces a forward velocity in the 
incompressible layer. Since it increases linearly with x, the back- 
flow should be expected to be reduced in the downstream direction. Of 
course, the possibility exists that an additional pressure ml&t also 
enter if the inertia forces, though small, were not negleckd. Never- 
theless, it can be safely stated that the pressure is always of the 
secondary importance in this case and hence the above conclusions will 
remain valid. 

On the other hand, the perturbation velocities ut ('1 and v 
t 

due to the transmitted wave, according to equation (52 ), are subject to 
boundary conditions 

when y = 0 

vt 
(l)=-p&XX when y = c ~  

when x = 0, y > I  = 0 

To solve this problem, the viscous layer is again subdivided into incom- 
pressible and compressible layers. Since the boundary conditions and 

the differential equations are the same, ut (l) and vt will have 

the same forms as those given in equations (33) and (44), with eigen- - 
value X satisfying equation (48). Now if the perturbation is required 
to vanish at positive infinity, A, should be negative. But were X 
negative, solutions (33 ) and (44 ) would be highly oscillatory, as the 
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arguments of both Bessel and the exponential functions involve a fac- 
to r  fi. That i s ,  the  solution of the incompressible layer  would 

involve J1(gJ- - y3I2) and tha t  of the compressible layer would 
2 

have cos v% y and s i n  6 y. For large Reynolds number, these types 
of solutions f o r  a steady laminar flow must be rejected as  impossible. 
By the same reason, complex roots are  excluded. The only al ternat ive is  
t o  accept the posit ive X. 

If X i s  positive, it follows tha t  the velocity u t ( l )  and pres- 

sure p t ( l )  w i l l  continue t o  increase u n t i l  the process of l inearizat ion 

breaks down. This would imply t h a t  i n  the potent ial  f i e l d  the t r a i n  of 
compression waves, immediately following the expansion, w i l l  g r o w  expo- 
nent ial ly  with x. The flow direction as  well  as  the curvature of the 
streamlines w i l l  a l so  increase sharply. For such a flow, it i s  well- 
known tha t  the Mach waves w i l l  converge and form an envelope. There- 
fore,  i n  region 3 a shock eventually must be developed. On the other 

(1 hand, i n  the viscous f i e ld ,  as ut + us for  any constant y w i l l  

increase with x, backflow, though s l igh t ly  reduced by the s tep waves, 
w i l l  become stronger i n  the downstream direction. Now, it has been well- 
established t h a t  the laminar velocity profi le  with a point of inf lect ion 
i s  highly unstable. As the pressure continues t o  grow a t  a Reynolds num- 
ber generally above the c r i t i c a l  value, t ransi t ion must occur a f t e r  a 
c r i t i c a l  pressure gradient i s  reached. The flow from there on cannot 
be theoret ical ly  studied without considering unsteady flow. 

It i s  therefore concluded tha t  i n  the case of an incident compres- 
sion shock, l a m i n a r  flow is  not possible fo r  the whole viscous layer 
and t rans i t ion  always occurs. This appears t o  be i n  complete agreement 
with the present available experimental observations. 

Character of Flow After Transition 

Although the flow from a cer tain point on is unknown, the in t e r -  
es t ing f a c t  is, however, t ha t  the flow up t o  the point of t rans i t ion  i s  
very insensit ive t o  what happens beyond the point of t ransi t ion.  In 
the previous sections, the problem has been reduced t o  depend only on 
one constant A on which the quantitative behavior, but not the char- 
acter  of the flow, depends. A quite similar conclusion has also been 
reached i n  reference 1 and seems t o  be an experimental f ac t  (refer- 
ence 7 ) .  I n  one of h i s  experiments, Liepmann'introduced an expansion 
wave immediately a f t e r  the incident shock, and the observed upstream 
flow f i e l d  was pract ical ly  unchanged. Therefore, i n  order t o  account 
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fo r  the observed pressure distribution, say it is  suf f ic ien t  just  t o  
take approximately the e f fec t  of the flow downstream of the point of 
t ransi t ion.  

Assume tha t  the second shock starts a t  the edge of the viscous 
layer and, by l inear  theory, has the same strength e.  Inasmuch as  the 
direct ion of the flow on OM i s  constant and equal t o  6 ( 2  - PA), if 
the flow a f t e r  the shock TR (f ig .  2 ) is  pa ra l l e l  t o  the plate ,  the 
direct ion i n  front  of the shock a t  large distance must be E. This con- 

-1 di t ion  gives A = P . Moreover, as . the  velocity vector i s  turning away 
from the plate ,  the pressure continues t o  r i s e  and w i l l  be stopped only 
by t ransi t ion.  In tha t  event, the sudden increase of shear of the vis-  
cous layer w i l l  thicken the viscous layer. This thickening w i l l  make 
the flow expand and consequently a drop of pressure w i l l  ensue. After 
th i s ,  the streamlines w i l l  gradually leve l  off and the reattachment of 
the pa r t i a l ly  turbulent layer, i f  not yet  accomplished pr ior  t o  the 
t rans i t ion  point, w i l l  be cer tain t o  follow. If the point of t rans i t ion  
3s chosen t o  coincide with the point where v = 0 along the boundary 
streamline, the location is  then determined by hxl = log,2. 

For values of x greater than xl, the flow i n  the immediate 

neighborhood of t ransi t ion would have a greater influence than t h a t  f a r  
downstream where the flow i s  more uniform. Since the flow i n  the tran- 
s i t i o n  region is  of a boundary-layer type, namely, the backflow ceases 
t o  be a factor ,  it can again be approximately represented by the inte-  
grated effects ,  such as the momentum and pressure. If the flows before 
and a f t e r  the point of t rans i t ion  have the same pressure and t o t a l  
momentum, the dynamical equilibrium can then be maintained. According 
t o  the solution given i n  reference 1, the pressure dis t r ibut ion i n  the 
trans i t i o n  region i s  approximately 

where X1 and X2 are negative constants, being functions of M 

and R and K1 and K2 are  integration constants. By the conditions 

tha t  a t  x = xl the pressure and i ts  derivative are  continuous, K1 

and K2 can then be determined. 

It must be emphasized again tha t  the conditions s ta ted  i n  t h i s  sec- 
t ion  are  tentative.  No obvious reasons beyond the ones outlined a t  the 
beginning of the section can be given a t  t h i s  moment. 
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NUMERICAL EXAMPLES 

As a numerical example, the case of M = 2 and R = 774 is  pre- 
sented. F i r s t ,  the determinantal equation (50) is solved numerically 
f o r  only one Mach number 2 but a t  different Reynolds numbers. The 
r e su l t s  a re  shown i n  figure 3. A t  t h i s  Reynolds number, h is  0.0467. 
The velocity u(x,y) and the surface pressure p(x,0) f o r  t h i s  X are  
calculated. It i s  seen that  f o r  the shock strength of c = -lo, the 
boundary layer f irst  separates a t  x = 1.106 ( f ig .  4(a)  ) and, subse- 

sep 
quently, backflow se t s  in. When the shock strength i s  increased t o  
c = -3O, say, the separation occurs a t  a much ea r l i e r  s ta t ion,  namely 
a t  xseD = -22.4. The region of backllow i s  proportionally wider 

( f ig .  41b ) ). However, if the s tep waves are  taken into account, then 
i n  the case of c = -lo there would be no separation (dashed curve i n  
f ig .  4(a) f o r  yl = 3 and y2 = 9); whereas i n  the case of e = -3O 

the flow a t  the same location remains separated but tf;e backflow has 
been very much reduced (dashed curve i n  f ig .  4 (b )). These resu l t s  show 
quite the same character is t ics  as the experimental measurements by 
Ackeret, Feldman, and Rott (reference 8)  of the velocity dis t r ibut ion 
over a curved plate.  

The pressure dis t r ibut ions over the p la te  fo r  these cases are  shown 
i n  f i~ur , e  5. For the weaker shock e = -lo, surprisingly good agreement 
with experiment (reference 6)  is  obtained. This very f a c t  seems t o  
Jus t i fy  the present assumptions regarding the structure of the viscous 
layer. In the case of stronger shock, for  example, 6 = -3O, there is ,  
however, a d i s t inc t  difference between theory and experiment. Theoreti- 
cal ly ,  the pressure would s t i l l  decay exponentially upstream but would 
begin with a larger  amplitude. Experimentally, it was found, strangely 
enough, tha t ,  over a considerable range of the upstream disturbed region, 
the pressure f i r s t  decreases very slowly and then decays more or  l e s s  
exponentially. This "pressure bump" seems t o  be character is t ic  of the 
pressure d is t r ibut ion  i n  the case of interaction between stronger shocks 
and the laminar boundary layer. This bumpy character i n  the pressure 
distribution, by a l l  evidences, mt be at t r ibuted t o  the nonlinear 
e f fec t  of the flow. This w i l l  be exhibited i n  the following section. 

APPRAISAL OF HIGJB3-ORDER EFFECTS 

It has been shown that ,  if there i s  no backflow i n  region 1, the 
pressure disturbances w i l l  decay exponentially. When the shock strength 
increases, however, the pressure i n  the disturbed region becomes much 
higher and drops much more slowly than tha t  predicted by the theory. 
This appears t o  be due to  the f a c t  that when backflow develops, there 
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will be an underestimate of the perturbed velocity and, consequently, 
a much lower pressure. 

To estimate the effect due to higher-order terms, a second-order 
solution is found and is given in appendix C. According to the second- 
order solution, the correction terms for wall pressure would be 

In view of the fact that there is an overestimation of the first-order 
-1 

pressure by the condition A = j3 , the correction term is expected to 
be negative for small values of x and positive far upstream. Then 

P1 > 0 and P2 < 0. Since e increases faster than x2 and eXX, 

when x is positive, the correction would be negatively large far down- 
stream. It has been pointed out previously that the iteration process 
fails for positive values of x; this solution shows further that it 
diverges oscillatorily. In order that the solution will behave properly, 
it will have to be carried to an odd order, such as one or three. To 
third order, the correction for wall pressure would be 

If PI = 0.75, P2 = -1.83, and Pg = 1, the wall-pressure distribution 

for E = -3O would resemble the curve as shown in figure 6, which does 
exhibit the same character as measured by experiments. This, of course, 
cannot be considered as conclusive evidence, but at least it shows that 
higher-order terms such as given above do have the possibility of 
accounting for the observed behavior of the wall-pressure distribution. 
It is very important that this step be carried out. 

DISCUSS I O N  

This study being intended as an exploratory study, the numerical 
results obtained are not expected to be exact, but only accurate enough 
to insure the conclusions. As far as the first-order solution is con- 
cerned, the entire problem depends on the determination of one param- 
eter X, which was calculated on the basis of two main approximations: 

(a) the contribution of the integral is negligible 
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and (b) Xyl is small such that terms of order ( x ~ ~ ) ~  and higher can 

be neglected* The subsequent solution for h. satisfies this criterion. 
The question remains, however, whether Xy = n(1) is also a solution 

l 

or not. If Xyl = n(l), the integrals "" ": -r 9 K$($ "I2) d7 
would require a more elaborate evaluation. The possibility exists and 
is worth testing. 

As from the outset the boundary-layer approximation is rejected, 
it is of interest to examine the character of the perturbed flow in the 
light of boundary-layer theory. According to the boundary-layer approxi- 

mation, if the velocity u1 = o(u,) and a/hl = O(L-l), then the 
. . 

velocity v' = O(U~R-') and a/&' = o(L-'R). Now, from the character 

1 314) of the solution for perturbed flow in the present theory, d/hl = O(L- R 

and a/&' = o(L-'R~/~) By comparison, the derivatives for the perturbed 
flow are much larger than the corresponding derivatives of boundary-layer 

theory. Moreover, f'rom the equation of continuity the ratio v (1 lju(1) - 

of the perturbed velocities is 0(R-ll2). As in the vicinity of the 

wall u u o  v(') is much larger than the vertical component in 

the boundary layer. Since in this case a/&' < a/&' and v(l) < u('), 
a set of equations analogous to those for the boundary-layer flow can be 
deduced as long as backflow does not take place. Therefore, for expan- 
sion and even weak compression incident waves, a much simpler problem 
would be feasible. 

Finally, it might also be noted that, owing to the asswnption that 
the flow far away from the plate is inviscid and irrotational, there is 
introduced a sharp discontinuity in higher derivatives at the demarcation 
line between the two flow fields. Because of the presence of shock, how- 
ever, a first-order discontinuity is also expected, because, by the 
assumption of frictionless flow at large distance, a smooth transition 
from small shock thickness at large distance to a larger one at the 
vicinity of the wall is precluded. The viscous-layer concept then " 
idealizes the situation by taking the shock as a discontinuity in the 
outer field but conti~Suous in the viscous flow. The effect of this is 
exhibited in a discontinuity in slope of the streamlines, This picture 
is entirely in agreement with the observed flow patterns. 

According to the numerical example, the step waves tend to weaken 
the backflow downstream of the point of incidence but are unable to make 
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the flow reattach if the separation has occurred upstream of the point 
of incidence. This may very well be due to the poor approximation 
inherent in the Stokes flow which may underestimate the rate of change 
in the y-direction. If a more exact solution is given, reattachment of 
the separated flow might be accomplished in the laminar regime. This 
point should be considered as open. 

COWCLUS IONS 

The following conclusions are drawn from an analysis by the 
differential-equation method of the interaction of an oblique shock 
wave with a laminar boundary layer along a flat plate: 

1. The pressure perturbation decays exponentially forward of the 
point of incidence and the distance of pressure propagation varies with 

different Mach and Reynolds numbers as fl-3'4R-3'4 (where P is {z, 
M is Mach number, and R is Reynolds number and very slowly with the 

shock strength. 

2. If the shock strength is strong enough, separation of the flow 
always occurs. For given Mach and Reynolds numbers, the separation point 
depends strongly on the shock strength. 

3. The pressure at the point of separation varies with Mach and 

Reynolds numbers as P -14-112 

4. In the viscous layer, laminar flow is not possible everywhere, 
no matter whether the incident shock is strong or weak. In the distance 
of about two or three boundary-layer thicknesses, transition would occur. 

5. The curvature of the streamlines after the shock is positive and 
the Mach waves in the potential field must coalesce to form a shock which 
approaches asymptoticaUy the regularly reflected shock in the inviscid 

' 

fluid. As its position depends on the point of transition, the exact 
location cannot be predicted by the present theory. 

6. From the calculated pressure distribution over the wall, it is 
definitely proved that the observed overcompression of the wall pres- 
sure is a consequence of the positive curvature of the streamlines and 
the expansion is associated with transition. 

7. The observed "bump" in the pressure distribution in region 1 for 
strong shocks is definitely a nonlinear effect and is an indirect conse- 
quence of separation. 

Cornell University 
Ithaca, N. Y., January 11, 1952 



PERTURBATION OF AN OBLIQUE SHOCK 

Let l u l l '  lU1' pl, and pl denote, respectively,  the p a r a l l e l  

and normal ve loc i t i es  with respect  t o  an oblique shock, the  pressure 
and density i n  f r o n t  of the shock, and, by replacing 1 b y  2 ,  the corre-  
sponding quan t i t i es  behind the  shock. These variables are  re la ted  t o  
each other by the Rankine-Hugoniot conditions: 

I f  the  flow i n  f r o n t  of shock i s  given, equations ( ~1 )  yie ld  the f o l -  
lowing solutions : 



where al i s  the speed of sound i n  f ront  of the shock. If a, and Urn 

are  the speed of sound and velocity a t  in f in i ty ,  then al can be 

expressed i n  terms of veloci t ies  by the relation: 

2 7 - 1  2 2) 2 7 - 1  2 al + ( u 1  + v1 = a, + - 
2 2 Urn 

Furthermore, i f  m is the angle between the velocity (ul,vl) and the 

shock, it is easy t o  show tha t  the Cartesian components before and a f t e r  
the shock are  related by 

( 2 V2 = V1 - - u1 cos o, s i n  m - V1 s i n  m) 
y + l  

2 with ql = ul 2 + V12* 

In the case of weak shock, the shock angle m can be expanded i n  
terms of ~ i l e  deflection angle E. Then cos m and s i n  03 are  shown 
t o  be 

COS 03 = 
M 483 - 



Mow since the velocity components ul an6 vl can be expanded: 

If cu has the expansion: 

= m(0) + EW(l) + EZcu(2) + e e e 

and cu (O) is defined by equations (A&), then a straightforward reduction 
gives 

where 
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APPENDIX B 

POTENTIAL FLOW I N  REGION 2 

If t he  flow i n  region 2 i s  i r ro t a t i ona l ,  there e x i s t s  a poten- 
t i a l  ~ ( x , ~ )  and, if the shock conditions a r e  s a t i s f i e d ,  it must 

2 
possess the  expansion: 

For the  f i r s t - o rde r  solut ion of the shock conditions, namely, on a l i n e  
x + py = 0, 

Now on the shock 

(11 = Ae2h 

(11 = - p A e 2 k  

If the perturbed shock angle i s  

w(l) = s e x ( x - ~ ~  1 

t he  so lu t ion  2rp(1) must be 

~ ( l )  = L(x + py) + t e  X(X-PY 
2 P 



NACA TN 2869 45 

Substituting cu (1-1 and 2cp (l) in equation ( ~ 2  ), the two equations 

yield uniquely 

The solution in region 2 is thus a superposition of the transmitted 

waves e x(~-") and a uniform step wave x + Py introduced by external 
agency. 

Since this solution will terminate on the Mach line OM, the solu- 
tion in region 3 will be found by the condition that on x - fly = 0, 

By this condition, the Prandtl-Meyer flow requires a deflection 

Solution ( ~ 3  ) gives 69 = 6. Consequently, the initial direction of the 
flow in region 3, to the first order, is 



APPrnIx C 

SECOND-ORDEB SOrnOH 

Potential Ff eld 

If the first-order potential is of the form: 

it can be shown that the second-order equation (19) admits a solution 
which reduces, at the edge of viscous layer y = 0, to 

where B and C are arbitrary constants and the term - (7 + m4A2 2XX e 
48 

is derived from the particular integral - (7+1)'2A2 2~(x-~y)~ The 
48 

Ye 

reason that both e 2XX and eXX are included in the complementary part 
of the solution is that the solution in region 2, according to equa- 
tion (A6 ) , contains both solutions. 

Incompressible Layer 

Assuming that, to the second order, the density in the inner layer 
remains constant, the system of equations (15 ) simplifies to 
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where the second-order stream flunetion 9 (' ) is dif ined as 

By substituting $(I) into the right-hand side of equation (CZ ), the 
particular integral can be found; this is 

." 
'OS '' In (sin ?T)Z(~) 

?(2~~)2/3 O 

where the function ~ ( 6 )  stands for 
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with 

and the variables: 

( ~ 7 )  

The general solution, consequently, can be written as  

q,(2) = q,' (2 ) (c8 

where the complementary in tegra l  $C(2), by the f i rs t -order  solution, 
w i l l  be given by 



Since the form of $(l)(q) is known, and, furthermore, $(')(0) = $(l)'(o) = 0. 

the solution I s  detemined with two arbitrary constants C3 and C q .  

With $(2 ) determined, the second-order pressure p(' ) (x,~) on the 
plak can be written, SMlrtPly ,  as 

where 

and P1 and P2 take the same fom as the symbol P for the first-order 

pressure p (1). 

Compressible Layer 

In the compressible layer, p(o) = u(O) = T(O) = 1. Again, if 

H(~) = 0, equations (15) become 

I 



Similarly, by introducing F (2)  and G ( 2 )  through the relations 

there result the following equations: 

The solutions F ( 2 )  and G(2) can be written in an analogous 
manner. That is: 

Here FC ( 2 )  and GC ( 2 )  are known from the first-order solution and 

F ~ ( ~  ) and ) are given as follows: 
? 
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where the constants K are defined by 



and the constants K and p2  stand for 

The second-order solution now involves six arbitrary constants and, by 
the conditions at the interface, all but one can be determined. 
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(b) E = -3O;  M = 2; R = 774. 

Figure 4.- Concluded. 
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