
C9
N
o
cm

—..

I

. +

.

II

NATIONAL ADVISORY COMMITTEE ,2

FOR AERONAUTICS

TECHNICAL NOTE 2873

THE EFFECT OF LONGITUDINAL

OF A

STIFFENERS LOCATED

I

.. —-

ON ONE SIDE

PLATE ON THE COMPRESSIVE BUCKLING STRESS

OF THE PLATE -STIFFENER COMBINATION

By Paul Seide

Langley Aeronautical Laboratory
Langley Field, Va.

v
Washington

January 1953

. .

— . _ .— .. . . . ,----- ... .... . .——— .- . . ---- . . . . . . . . . . .

https://ntrs.nasa.gov/search.jsp?R=19930083733 2020-06-17T20:00:54+00:00Z



IECH LIBRARYKAFB,NM

lZ

m

.

lll!llll
NMION~ ADVISORY COMMITTEE FOR AERONAUTIC DLlb5784

TECHNICAL NOTE 2873

THE EFFECT OF LONGITUDINAL STIFFENERS LCEMED ON ONE SIDE

OF A PLATE ON THE COMPRESSIVE BUCKLING STRESS

OF TEE PLATE—STH’FENER COMBINATION

By Paul Seide

SUMMARY

The problem of buckling under unifomn
supported, rectangular plates with equally
on one side of the plate is investigated.

compression of flat, simply
spaced longitudinal stiffeners
For the case of a plate with—

one, two, or infinitely many stiffeners, the analysis yields &pressi-ons
for the effective moment of inertia of the stiffeners that can be used
in conjunction with the buckling charts previously presented in NACA
TN 1825. .

INTRODUCTION

The buckling of stiffened plates is a subject which h= received much—
attention in the literature on aircraft structures. With few”exceptions,
the solutions presented are idealized and are valid only for stiffened
plates for which the center of fgavity of each stiffener cross section
lies in the middle surface of the plate or for which the stiffeners are
hypothetically connectedto the plate in such a manner that sliding of
the stiffener along the plate surface is permitted. Although these solu-
tions clearly establish the relationship between the buckling stress of
the plate stiffener conibinationand the flexural stiffness of the stiffener,
they do not determine the effective flexural stiffness provided by stif-
feners in the usual aircraft application, that is, when they are riveted
to one side of the plate.

Timoshenko suggested (ref. 1) that the stiffness of a one-sided
stiffener might be taken into account by replacing the moment of inertia
of the stiffener about its center of gravity by an effective nmnent of
inertia and using this value in the solutions valid for stiffeners with
their centers of ~avity located in the plate middle surface. In s@veraJ-
illustrative examples he took this effective nmment of inertia as the
moment of inertia of the stiffener cross section about the plane of con-
tact with the plate. That this method of correction is arbitrary and
not generally applicable to all plate stiffener proportions, however, can

.
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2 NACA TN 2873

be readily seen. If the stiffeners are very large compared to the plate, .
the attached plate can have very little effect on the bending of each
stiffener ah-outan axis passing through the center of gravity of the I
stiffener cross section. On the other hand, stiffeners that me very
small compared to the plate would appear to be forced to bend about the
@ate middle surface. The effective moment of inertia of a given stiff-
ener can therefore vary between the moment of inertia taken about the
center of gravity of the stiffener cross section and the moment of inertia
taken about the plate middle surface depending upon the proportions of
the attached plate. For Z-stiffeners of the proportions encountered in
aircraft construction, the ratio of the moments of inertia based on these
two limiting positions for the assumed neutral axis of bending is greater
than 2.5 to 1. Because the effective moment of inertia chosen to repre-
sent a given stiffener strongly influences the calculated buckling stress
of the plate stiffener cotiination, it is therefore desirable that any
arbitrariness in its calculation be eliminated.

Investigations of plates with stiffeners on one side have bean made
and verify the dependence of the effective moment of inertia of the stiff-
ener on the relative dimensions of the plate and stiffener. These solu-
tions, however, are generally l~~ted to special cases. The bending of
an infinitely wide plate with a longitudinal stiffener on one side is
investigated in references 2 to 4. In reference 2, Timoshenko and
G-oodierneglect the flexural stiffness of the plate and consider loads
applied only to the stiffener; an etiension is made in reference 3 by
Smith, Heebink, and Norris to include the plate flexwral stiffness; both .
plate flemxral stiffness and loads applied to the plate are considered
by Odqvist in reference 4. Shear buckling of a finite-width plate with
a centrally located longitudinal stiffener on one side is investigated .

by Chwalla and Novak in reference 5. Good accuracy would be expected in
their analysis only when the plate is relatively wide. Cox and Riddel.1
(ref. 6) give an expression based on an effective-width concept for the
effective stiffener stiffness for compressive buckling of a finite width .

plate with a centrally located longitudinal stiffener on one side. The
stability of plates with closely spaced longitudinal and transverse stiff-
eners is investigated approximately by ltreyerin reference 7. A very
accurate set of differential equations for the same problem is developed
by Pfluger in reference 8. These differential equations contain terms
which reflect the consideration of changes of geometry of the plate
beyond those considered in the elementary theory of bending and buckling
of flat plates. The cohtribtiion of these terms is shown to be insignif-
icant, however, in the practical range of stiffened-plate construction.

The references cited indicate that some studies have been made of
the buckling behsvior of plates with one stiffeper or with many closely
spaced stiffeners. No material appeared to be available for the cases
that fall between these extremes. In the present paper, a unified analy- ‘
sis is made of the buckling behavior under uniform compression of a flat, I

rectangular, simply supported plate with one, two, three, or infinitely ,4
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u longitudinal stiffeners locat,edon one side of the plate. The
essentisl feature of the results of this analysis is that the effective
moment of inertia of one-sided stiffeners on plates pf arbitrary dimen-
sions can be written in terms of a simple correction to the moment of
inertia of the stiffeners aboti their own centers of gravity. This
effective moment of inertia can then be used in conjunction with the
buckling charts of the type previously presented in reference 9. The
‘snalysisleading to this result is given in the appendixes.

AS

a

an

b

The material presented herein was submitted to
Virginia in partial fulfillment of the requirements
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moment of inertia of stiffener cross section, taken about
.—

ds parallel to plane of plate and passing through
center of gravity of stiffener cross section.

effective moment of inertia of stiffener

integer denoting number of buckle half-waves in longi-
tudinal direction

number of bays

additional forces per unit width in plane of plate
middle surface in ith bay

integers denoting mode of buckling

additional load in ith stiffener

integers denoting nunber of buckle half-waves in trans-
vei%e direction

plate thickness

total potential energy of stiffened plate

middle-surface displacement

additional displacements in plane of plate middle
in x- and y-directions in ith bay, respectively

additional displacements in x-direction at center

surface

of
gravity of cross

strain ener~

potential energy

section of ith stiffener

bending deflection, normal to plane of plate

distances along coordinate axes (see fig. 1)

modal coefficient appearing in expression-for effective
mcment of inertia of stiffeners

distance normal to plane of plate between plate middle
surface and center of gravity of stiffener cross section

additional direct and shear strains in plane of plate
middle surface in ith bay

.!

.

.
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es additional direct strains at
i section of ith stiffener

center of gravity of cross

lll)~2)~3Y m~l coefficients appearing in criterion for buckling

~4>~5}?6
symmetrical about longitudinal center line of plate
with three stiffeners

P PoissohTs ratio for plate material

‘44’’-*)
,,=.f!!(/’+*)
iix uniform longitudinal compressive stress

v’
32 + az=—

&? a?

.

~4.v4_a4 +2 ah +_
ax4 a2ay2 ay4

d!2i5xt
n%D

buckling-stress parameter

&
m

buckle aspect ratio

a/d aspect ratio of each key

flexural-stiffhessratio (called 7 in ref. 9)

‘leff
dD

effective-flexural-stiffhessratio

area ratio
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6 NACA TN 2873

Subscripts:

N

P.

s

number of bays

plate

stiffeners

KESUITS AND DISCUSSION

Statement of the Problem

The problem that is investigated in the present paper is the
determination of the buckling stress of a flat, simply supported,
rectangular plate with one, two, three, or an infinite nunber of longi-
tudinal stiffeners on one side. The stiffeners are equally spaced, are
each of the same cross section, and have a Youngfs modulus equal to that
of the plate. (See fig. 1.) The plate is loaded by uniform compressive
forces per unit width Gxt on its transverse edges and the end load on

each stiffener is a compressive force :&.

Assumptions and Limitations of Analysis

The assumptions and limitations of the analysis are as follows:

(1) Each stiffener is assumed to be continuously and rigidly con-
nected to the plate along a straight line (the contact line) in the
plate middle surface. This condition may be visualized by supposing
the stiffener to be extended to the contact line by a rod of infini-
tesimal area. (See fig. 2.) The effects of rivet spacing and of rivet
flexibility are thus excluded fram the analysis.

.

.

(2) Each stiffeners assumed to have zero flexural stiffness for
bending parallel to the plane of the plate and zero torsional stiffness.

(3) small-deflectiontheory for bending of elastic plates and
elementary beam theory for bending of the stiffeners are used. The
analysis is thus limited to a general instability of the plate-stiffener
combination and excludes such effects as local buckling of stiffeners,
cross-sectional distortions,‘andshear deformations of the stiffeners,
all of which decrease the effective moment of inertia of the stiffener.

(4) An artifical boundary condition is-intrcx@ced into the analysis;
that is, points in the transverse edges of the plate are taken to be free
to move tmnsversely before buckling occurs but are completely restrained . .
frod further movement after buckling. Any other boundary conditi~ns would
needlessly complicate the analysis. The longitudinal edges of the plate
are taken to be free from middle-surface forces both before and after ,,
buckling.

——— .-. —..- —.. ..—
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Sumlary of Analysis

The stability criterions for compressive buckling of longitudinally
stiffened plates with deflection of the stiffeners, derived in appendix A,
with the exception of the criterion for buckling symmetrical about the
longitudinal
expressed as

center line of a plate with three stiffeners, can be
follows:

where

and ~q is a maid

of the buckle aspect

% -
e2

Cos ~-COS el Cos ~-cosh e2

(1)

(2)

J
(m=l,2,3, .”. .m)

coefficient. This modal coefficient is a function

a/d the number of baysratio
T’

N, and the mode

EIs+ 1 EA&2
r Asim

l+%q~

buckling indicated by q as in the following table:

of

Number Number of M@e of buckling
of bays, stiffeners, q about longitudinal

N N-1 center line of plate

2 1 1 Symmetrical

1 Symmetrical
3 2

2 Antisymmetrical

4 3 2 Antisymmetrical

m m ;=() Symmetrical

..——— ..- —.—— _— —. -— —
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a~d
The variation of ~q with the buckle aspect ratio ~ iS shown in

table I and in figure 3. Poisson~s ratio v was taken as 1/3 in the
calculation of these values.

The criterion for
center line of a plate

buckling symmetrical about the
with three stiffeners

1+

is given
longitudinal

()d26xt &
2

#D m

E&s2

@-
~-cos t91 1-$- cosh i32

—2

(3)

(m=l,2, . ..~)

.

—— — ...— — -—



2Z

.

NACATN 2a73 9

where to q6
71

a/d
are mcxialcoefficients and are functions of —.

m

a/d
The variation of ql to q6 with ~ is given in table II and is

shown graphically in figure 4.

When buckling symmetrical about the longitudinal center line of a
plate with one, two, or infinitely many longitudinal stiffeners on one
side is investigated, the buckling charts of reference 9 may be used.

In place of the flexural-stiffiessratio ‘~, these charts are entered

with values of the effective-flexural-stiffhessratio

(4) ‘

where EIeff/dD is calculated with the proper value of the medal coef-

ficient ~q obtained from table I or from figure 3 of the present

paper. Thus, if the buckling-stress parameter for a certain plate-
stiffener combination is desired, the chart of reference 9 for the
appropriate area ratio and number of stiffeners is entered with

‘leff/~ and the given value of the plate-bay aspect ratio to obtain

the buckling-stress parameter. In this procedure, the value of m used
in reading ~q from figure 3 of the present paper must correspond to

the value of m in the region of the charts of reference 9 from which
the buckling-stress parameter is read. In the charts of reference 9, the
value of m in the region to the left of the first dashed-line curve
is 1 and the value of m in the region to the right of that curve is 2;
m would increase in value by 1 in the region to the right of each
succeeding dashed-line curve.

When buckling symmetrical about the longitudinal center line of a
plate with three stiffeners on one side is investigated, equation (3)
must be solved by trial and error for the value of the buckling-stress
parameter corresponding to a given value of m. Different values of m
are tried until a minimum value of the buckling-stress parameter is
obtained.

Investigation of the antisymmetrical modes of buckling for plates
with two or three stiffeners involves a trial-and-error solution of
equation (1) for the buckling-stress parameter for given physical
dimensions of plate and stiffeners.

— -z —.—.—— - ..—.-—. — — ~— .-



10 NACA TN 2873

For each case the criterion for buckling with nodes at each
stiffener

(5)

should be checked since this criterion defines the highest buckl.ing-
stress parameter obtainable in conjunction with an assumption of zero
torsional stiffness for the stiffeners.

CONCLUDING REMARKS

The buckling under uniform compression of flat, simply supported,
rectangular plates with equally spaced longitudinal stiffeners each of
the same cross section and a Young~s modulus equal to that of the plate
is investigated. The effect of one-sided placement of stiffeners on the
plate is incorporated in a simple expression for the effective mament of
inertia of the stiffeners. For a plate with one, two, or infinitely many
stiffeners, the effective moment of inertia can be used in conjunction
with buckling charts of the type previously presented inNACA TN 1825.
For a plate with three stiffeners, a new stability criterion is derived.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Vs., June 16, 1952. .

.
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APPENDIX A

IL

STABILITY ANALYSIS OF

Determination of Stress

Consider the bending of a

PLMTES lZETHONE-SIDED STIFFENERS

Distribution in the Buckled Plate

plate with stiffeners attached so that
sliding of the plate and stiffeners is permitted. Middle-surface dis-
placements u in the plate along each contact line exist and in each

stiffener there exist contact-line displacements - aw
‘s + ‘s = ‘he= %

is the displacement at the center of gravity of the stiffener cross sec-

tion and ‘~ *ax represents the displacement due to bending, the cross
.

sections of the stiffener being assumed to remain plane and perpen-
dicular to the deformed da of the stiffener. In general, u and

-&
‘s +‘s ax

are unequal and there would exist relative

(
corresponding points of the plate and stiffeners. In

problem, for example, if the stiffeners were permitted

displacements of

the present

to slide along
the sheet, U and us would be equal but relative displacements due

to bending, of magnitude
awES

)s’ ‘Ould‘dst“
Since in an actual plate

these relative displacements are not permitted, a system of shear forces,
which praluce additional deformations to cancel out the relative dis-
placements, are induced in the structure. The system of shear forces
consists of forces applied to the plate middle surface at each contact
line and equal but opposite forces applied to the corresponding stiffener
at each contact line. The effect of these forces on the buckling stress
of a stiffened plate loaded in edge compression is investigated in the
present paper.

Prior to buckling, the stiffened plate considered herein is uni-
formly compressed, the longitudinal direct stress in both the plate and
stiffener being equal to -6X; all other stresses in the plate are equal

to zero. When the stiffened plate buckles, however, self-equilibrating
shear forces are induced at each contact line within the structure, as
demonstrated previously, and the stress distribution within the plate
changes although the applied edge stresses remain constant. The addi-
tional stresses in the structure must be investigated before the buckling
stress of the stiffened plate can be determined.
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,

Within each bay of the plate the additional middle-surface forces
are continuous and in equilibrium, that is, for the ith bay

bNxi bN=i

ax ‘T=o

a%~+a%i (-)

—=

ay ax 1

and are related to the middle-surface strains in the ith bay by

.&N - l.myi‘‘~ Et(xi . )1

(Al)

(A2)

.

.

Strains are related to middle-surface

aui
eq=~

avl

‘Yi ‘ ~

aui
%Yi = q

displacements by the expressions

(JL3)

From the boundary conditions given in the section entitled
“Assumptions and Limitations of Analysis,” normal and tangential middl~
surface forces must vanish along the longitudinal edges of the plate and

.

—.— ——— —.
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normal’middle-surface forces and tangential displacements must vanish

along the transverse edges of the plate; that is, at y = ‘~
2’

NY= = I?wN = O

and, atx=Oandx =a,

Nxi =Vi.cl (i=l,2, . ..N)

(Aka)

(A4b)

(Ak-c)

In addition, the following conditions must be satisfied along each con-
tact line:

NxYi-N -1+1

1

= Fi

.
% ‘NYi+li

,~

(As)

.Ui “%+1 (i=l,2, ...(1))))
.

.
‘i = ‘i+l

where Fi is the shear force per unit length induced at the ith contact

line after buckling. These conditions state that at each contact line
the difference of the shears in adjacent bays is equal to the applied
shear load, that middle-surface forces normal to the longitudinal edges
of adjacent bays are continuous, and that middle-surface displacaents
are continuous.

The additional forces and displacements along the centroidal axis
of the stiffeners due to the shear forces induced after buckling are

. — -.-—.-–. -—— — -———.- —.. .— —— —--
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found fram the equations of equilibrium of shear force and internal
load to be

(i=l,2, ...(1))))

and the load-strain relationships are found to be

‘i~~ .— (i=l,2, ...(1))))
i ASE

where

(A6)

(A7)

(A8)

with the conditions that each load Pi must vanish at the ends of the

corresponding stiffener.

The appropriate expressions for the shear force at each contact
line are now assumed to be

Fi = Fti COS ‘+ (i=l,2, ...(1)))) (A9)

where m is an integer. (It will be seen subsequently that this result
is consistent with the assumption of sinusoidal buckling with m half-
waves in the longitudinal direction and that this type of buckling
actually occurs.) The forces and displacements in the plate and in the
stiffeners due to a single shear force of the fom of equation (A9),
located anywhere in the plate, are derived in appendix B. The middle.
surface forces and displacements at any point in the plate due to all
the shear forces are obtained by superposing the individual forces and
displacements at the point due to each of the shear forces.

Thus far in the discussion the shear forces induced by contact-
line restraint have been considered arbitrary. They can be related,
however, to the bending deflections of the plate middle surface by
conditions of continuity of plate and stiffener at each contact line.
When buckling occurs, the addition displacements at each contact line
in the plate due to the induced shear forces are

‘ui)y=(~-;)d ‘d ‘he

I

.



NACAm 2873 15
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contact-line displacements in the stiffeners are
()

- aw

‘i + ‘s ‘Y=(i-%
In order for points in the plate and stiffeners to remain together, these
two displacements must be equal at every point in the contact line. Then

()aw%i + % y
y=(i :). = W=(i- !$)d-—

(Ale)

(i=l,2, ...(1))))

An appropriate expression for the bending deflections of the stiffened
plate is,

(All)

When equation (All) and the displacements in the plate and stiffeners
in terms of the coefficients Fti of the shear forces are substituted

into equation (AIO), a sufficient number of equations is obtained to
give the coefficients Fti in terms of the coefficients ~ of the

deflection function. In general, these equations are of the form

2(-1

)bjJ + aijm ‘jm =
j=l

)xEf@fj(y3 “ an sin *
n=l

(A12)

(i=l,2, . ..~)

where bij is the Kronecker delta (bij = 1 if i = j; 5ij = O if

i # j) ‘d %jm = ajm and is given by the results of appendix B.

Determination of Stability Criterions

With the distribution of middle-surface forces and displacements
in the buckled plate known in terms of the Fourier coefficients of the
deflection function, the principle of minimum potential energ may be
used to find the compressive buckling stre”ssof the plate. The deflec-
tion function given by equation (All) and the forces, strains, and
displacements in terms of the coefficients of equation (All) are substi-
tuted into the potential-energy expression for the structure. The

-. — .—— .——— —— —-—.-.



16 NACA ‘IN2873

potential energy is then minimized with respect to each of the coef-
ficients ~. A set of simultaneous equations is obtained from which

stability criterions can be determined.

The potential energy of an elastic bdy is defined as the difference
between the strain energy of the body and the potential energy of applied
edge loads. At the onset of instability the structure has potential
ener~ due to the applied end loads which remains constant while the
plate bends and need not be taken into consideration. After buckling the
plate acquires additional strain energy which can be expressed as the
sum of the strain energy of bending of the plate and the strain energy
of deformations in the plane of the plate middle surface (ref. 10) as

‘+w’2+2(1-4ka%
L 2

●

dxdy -

,J

.

(A13)
.

The first term on the right-hand side of equation (A13) represents the
strain ener~ of bending of the plate. The second term represents the
strain energy arising from displacement of the middle-surface compressive
forces, which remain constant as bending takes place, by additional
stretching of the plate middle surface after buckling. The third term
represents the strain ener~ due to stretching of the plate middle sur-
face by the middle-surface forces that arise after buckling.

The additional potential ener~ of the compressive forces applied
along the transverse edges of the plate is

(A1.4)

.“

.— ~— —–————— -- -
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The first temn on the ri@t-hsnd side of equation (Alk) is the work done by the edge ldLs in

moving through displacements due to the shear forces induced after buckling. The second temn E

r=epreaenta work done by the edge loads in moving through displacements due to bending. The form

of this term is consistent with the assuruption in small-deflection bending theory that the plate i
middle surface undergoes no stretching due to bending.

3

Similarly, the additional strain energy of the stiffeners is
w

and the additional potential energy of the end leads on the stiffeners is

I

The

u

t

I

total potential ener~ of the stiffened plate is then

(A17)

I



‘JThepotential-energy expression (eq, (A17)) can be considerably simplified by transforming

.scme of the terms In the equation. Consider, for instance, the term representing the work done G

after buckling by the ccmpreaaive forces applied to the plate in meting through displacemantm

due to the induced Bhear forces - that is, $ ~::):)d %t~%)x=a - (%)xm~dy. ThiB term

“ &~a~~-~~~,d~xt<:4 whi~isthee~u~~al~tofcan also be expressed as

a
()
i-;d

&~ J ~ t6 dx dy and cancels the tem

(i-; -l)d
x xi representing the additional etrati energy

middle-surface cmnpressive forces afterin the plate arising frmu displacement of the constant

buckling. Similarly, the term
X’*~%i)x=a -(uSi)x=J c=ce~

The term representing the strain energy of stretching of the plate

middle-surface forces that arise after buckling can be transformed to a

by integrating the term by wrts to obtain -

mi~dle surface by the

much shpler expression

.

.
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The first, second, fourth, and fifth integrals on the right-hand side
of equation (&L8) vanish by virtue of the conditions at the plate edges
(eqs. (A4)), the equations of continuity along each contact line
(eqs. (A~)), and the equations of equilibrium of middle-surface forces
within each bay (eqs. (Al)). The third integral, however, has a value
and can be rewritten as

L —

dx=

dx-

()y.i.:d

(A19)

But NWN is zero at y =% ~d NW is zero at y =-~ so that
1

the first and third integrals on the right-hand side of equation (A19)
vanish. Furthermore, when the conditions of equations (A~) are con-
sidered, the second integ~l can be rewritten as

(A20)

which is the transformed additional strain energ of deformation of the
plate middle surface. This result could also have been obtained by use
of the law of conservation of ener~; that is, internal energy equals
external work.

In a similar manner, the following

N-1 a

i z-fPiG~i dx .-;
i=l o

transformation can be obtained:

N-1 a

X-J Fiusi b (A21)
i=l o

\

— .—— .——,— — -————



20 NACA TN 2873

Equations (A20) and (A21) may be combined to yield

~~ ‘i[ui)y=(i+)d-%]til-a
2

(A22)

which, frcm the relationship given in equation (A1O), can be written as

(A23)

The simplified potential-energy expression is then

T

a
Nd

u=:
JJ {

: (17%)2+ 2(1 -p)
o -—

2
[-r%l}-dy+

.

.
,

L

Substitution of
and the shear forces

yields

the bending deflections w
Fi given by equation (A9)

given by equation (All)
into equation (A24)

I

..— —



NACA TN 2873

8a3 ~ .

m4#T?dD

21

- 2 N-1
2 EAszs

z
Fti

Rm

‘=’ (%r%% = an ‘h %

(A25)

The thifi term on the right-hand side of equation (A25) is the contri-
bution to the potential energy of the structure of stretching of the
plate and stiffeners by the shear forces induced after buckling. If ES

were equal to zero, that is, if the center of gravity of each stiffener
cross section were at the middle surface of the plate, equation (A25)
would reduce to equation (A3) of,reference 9.

Minimization of equation (A25) with respect to the coefficients ~

yields

(A26)

(r=lj2, . ..m)

-.——-—.— .—.. — .—
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When each coefficient Fti is determined in terms of the coef- “
ficients ~ of the deflection function by the analysis of the pre-

ceding section and is substituted into equations (A26), the equations
may then be manipulated to yield stability criterions for the stiffened
plate. Since the expressions for Fti differ for plates with different

numbers of stiffeners, separate analyses are made in the following sec-
tions for a plate with one, two, three, or infinitely many stiffeners.

At this point it can be seen that the assumption of sinusoidal
buckling in the longitudinal direction is justified. If sinusoidal
buckling had not been assum&d and an infinite number of longitudinal
sine terms had been taken in equation (All) for the deflection function
(and, correspondingly,an infinite number of cosine terms in eqs. (A9j
for the shear forces induced at each contact line), the terms corre-
sponding to each sinusoidal component in the longitudinal direction would
uncouple when the potential-energy expression was minimized and there
would be obtaind a different set of equations (A26) for each value of m.
This uncoupling occurs only for the particular boundary condition chosen
in the present paper; that is, points in the transverse edges of the
plate are free to move in the y-direction before buckling occurs but are
completely restrained from further movement after buckling.

Plate with one stiffener.- For a plate with one stiffener there is
only one shear force induced in the plate - the one along the center
line:

Fl = FM COS ‘~

The middle-surface displacements in the

(A27) ~

plate at the contact line
due to this shear force are found from the appropriate equations for
bay 1 and bay 2 derived in appendix B (eqs. (B13) or (Blk)), with y
and k set equal to zero a@ b replaced by 2d, as

2 Fh

()
mllx

‘1 )y=()=~J2 ~ Cosy (A28)

,,
where

.

.—.—— -—- ————-. .
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and the displacements in the stiffener at the contact line are, from
equations (AIO) and (1324),

‘s, + ‘S(g)ya= -(2?$ Cos y + y ~,

The condition that these two displacements are
as

z~:1~‘in y Cos *

(A30)

equal can then be written

from which

Flm .

(%+%%

(A31)

(A32)

The substitutim of equation (A32) into equations (A26), with IV
equal to 2, then yields

(A33)

(r=lj 2,...@)

Equations (A33) are practically identical tith equations (A4) of

reference 9 for N = 2, when those equations are divided l$y m4, the only

. . . ..-.— -—..—.—.— —— — --— —— —-—— -–-
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difference being that the flexural-stiffness ratio (called 7 in ref. 9) -
of equations (A4) is replaced in equations (A33) by an effective-
flexural-stiffness ratio .

‘leff EIs + El&’
— =—
m dD ~+;l~ dll

(A34)

The criterions for buckling under uniform compression of a simply sup-
ported plate with one stiffener can therefore be written immediately
from the results of reference 9 as follows:

For buckling of the plate with deflection of the stiffener,

EIS 1 EA~zs2
=

z+ AS dD
1+Z21=

3 d2&#

( )/
4 a/d.— —
I? m n?D ‘26xtad2AS(L)

‘#Dm
(A35)

ztanh ep tan e~

82 @l

where

6,=4JE7

and, for buckling of the plate with a node at the ’stiffener,

d26xt

( )

2
2 a/d

x= *+P y

.

.— — -.

(A36a)

(A36b)

(A37)

(P=l, *,. ..m) ‘

——
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where p is the number of half-waves in the transverse direction in
each bay. The lowest values of the buckling-stress parameter given by
equation (A37) are obtained when p is set equal to 1.

Plate with two stiffeners.- For a plate with two stiffeners, two
shear forces are induced in the plate:

Along the contact line at y =-$

and, along the contact line at y = ~,

F2 = F~ COS ‘=
a

(A38a)

(A38b)

The tiddle-surface displacements in the plate at each contact line
due to these shear forces are obtained as follows: The shear force F1

alone produces displacements U1’ along the contact line y = -~ Which

may be obtained from the appropriate equation for bay 1 and bay 2 of

appendix B (eqs. (B13) or (B14)), with k

replaced by 3d, as

()‘1’ y=-; ‘ $(.%)2(’31+ ‘32)2 Cos?
(A39a)

and displacements

obtained frcm the

k=-~j ––,
y=;;

%?’ along the contact line y = ~ which may be
c

displacement equation for bay 2 (eq. (B14)), with

and b replaced by 3d, as

(’+2) lapz
L) (

Fh1’=
31- %) Ea% Cos ==

y=$ 2 a

.

(A39b)

. . .. . ..-. ——— —— --.———-- —.———— -—--———.—. ——— — —-
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where
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.

(3 - V)(1 + P)(’””h%+ C“”h=- ~ “i~~)+

[ ( )]~-@+ ~2+2(1+ ~)2@2c”Shmfida a

. .

[

(3-k) (l+ P)(cosh%-cosh ~-~

[ ( )]5- @+ p2+2(l+p)2 m-2 coshm~+
a a

(AkOa)

,

)sinh~+

(A40b)

Similarly, the shear force F2 prcd.ucesdisplacements UI° along the

I contact line y =-~

and displacements U2” along the contact line y = ~

(%)11 .la2 z”%
()(

‘.” q
Y=$ 2 mm 31 + ‘32)~dt a

(Akla)

(A41b) -

—— _.. —— _—
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The total displacements

adding the displacements

are

27

/

Ui along each contact line are obtained by

%’ and ui” due to each of the forces and

The displacements

L A

in each stiffener at the contact line are

(A42a)

(A42b)

(A43a)

‘s2 + Wy=$= -(S $ Cos y + : % g an sti~ co. y

(A43b)

The conditions that the contact-line displacements in the plate and
in the stiffeners are equal can be written as

(Ah)

.

#—— —— — ———————.. ..
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Lz( As Fb

[ 1

%L(Z + Z32)=
Fa

2 31- ‘32)~

(Yf%

‘1+2 31
2s (%7%%
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from which the following relations are obtained:

(A45a)

Substitution of equations (A45) into equations (A26), with IV
equal to 3, then yields

For buckling symmetrical
of the stiffeners,

the following groups of equati&8:

about the plate center line and with deflection

r

I

(

(r=0,1,2, .e. m)

—
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(A46b)

(r=0,1,2, . ..~)

for buckling antisynmetrical about the plate center line and with deflec-
tion of the stiffeners,

{[ ‘+ Fr+H$7J2

L

“[EIS 1 E@
. T+ &dD

l+z32~
L

d

(A47a)

(r=0,1j2, . ..m)

2

( )}

I

.!@E*
Y(% “ a6r+4 -

2-
2% m

01
Jaw!?

~~ m. ~ ~ (a~s+2 - a68+4}= 0

A

(A47b)

(r=0,1,2, . ..m)

..— ————— .. .—. ..—...—
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and, for buckling with

r

{[

1+

L

NACA TN 2873

a node at each stiffener,
.

2

( )]
~2a& (L)]

d>uxt ~ d 2
.—

m #?D m
~p=o (A48)

J (p=i, z,...~)

Equatiom (A46) to (A48) are similar to those into which equations (A4) of
reference 9 for N = 3 separate. The differences between the equations
of the present paper and those of reference 9 are that, instead of the
flexural-stiffness ratio 7, equations (A46) contain an effective-
flexural-stiffness ratio

EIeff
— =
m

and equations (A47) contain

*eff— =
dD

an effective-flexural-stiffness ratio

EI$T 1 E@
dD+ A.sdIl

l+z32~

The stability criterions can be written immediately
reference 9 as follows:

(A49)

(Ax)
.

from the results of

For buckling symmetrical about the plate center line with deflection of
the stiffeners,

EIs

dD
+ 1

l+Z As
31 z

E@
m

3 d2~xt

( )/
4 a/d
X2 m

SC2D=
sin el Sinh 62

e~ 62

d2Zxt a& 2 AS
+—

()fi2D m ‘z

(A51)

—.— ——— ——— __— —
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for buckling antisymmetrical about the plate center line with deflection
of the stiffeners,

lu~

zE-
+ 1

Asl+Z32~

E&
dD

e. e.

AS

z

V3~ + cosh e2 V3
F

+ Cos el

(A52)

and, for buckling with a node at each stiffener,

d26xt

( )
~=&+p2# (A53)

(P=l,2, . ..m)

Plate with three stiffeners.- For a plate with three stiffeners,
three shear forces must be considered:

Along the contact line y = -d,

along the contact line y = O,,,

F2 = Fh COS ‘~

and, along the contact line y = d,

F3 . F@ COS ‘+

The middle-surface displacements in the
are obtained from the displacement equations

plate at each
for bay 1 and

(A54a)

(A54b)

(A54c)

contact line
bay 2 derived

.—— —.. ..— _ .— -— — ————_________
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in appendix B (eqs. (B13) and (B14)) by the procedure indicated in the
preceding section as

(A55a)

()
2

()[

Fh Fa
‘~ Edt— + ‘h Edt 1

%~osZ!!zz‘2y=o = = — + ‘3mEdt a
(A55b)

( 3)
u = a2

y=d ()z
—

r )]5-@+ V2+2(l+V)2~~2cosh %-

2ml-cd+5
a

-~+v2 +6(1

(A55c)

)Sim &d :
a

(A56a)

“

.

—— .
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L d
L3=p!!$ ~mhcd + 4mird—.

a a

(A56c)

The displacements

(A5&)

stiffeners are

us
()

- &? _%2%cos=+
1 ‘Zsaxy=. d= L) Ells a

. (A57b)

(A57c)

_. ..-. ——.- .- —— - —- —---- ...—.. .——. — .—-— -—— —-— -—— --— -— -———.
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The conditions that the contact-line displacements in the plate and in
the stiffeners are equal then can be written as

“

(A58a)

,

(A58b) ‘

— —

(Afj8c)

—. — — —. .-
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from which are obtained

1.-—
2

x%(1’” 3-

% n=l

*l” IuI— *i”_
4 4 )

l+xa=

(A59c)

———...—..—. —— —
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After equations(A59) are substituted into equations (A.26)the
following groups of equations are obtained:

For buckling symmetrical about the longitudinal center line of the plate,

( )]a%xt @ 2
$~ In a8r+1 +

r

(r=o, 1,2, . ..c0)

{[ l+(*+H’Efj2-~%$2%.+i’-( )}

.

I

(

.

(r=0,1,2, . ..c0)
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().~-).~~) -pmm~z~

( ‘9)( 22“-‘(a’ m‘(a8s+’-a8s+7)=0“tic)l+k~=l+x~

(r=0,1,2, . ..m)

{[
1+ (’r-+~)’($~—

2

(L)

1

d*UXt a & 2

- ‘~” m %+5 -

L( 1+

(’M;‘%5 ‘ E@ “

( )(%‘+4)-2(4)m‘(%s+’-‘s+7)=0l+%. Qt .
(r = O, 1, 2,

(A6M)

. . . m)

— .— —.- — .—. .— —–——. —.z —— .-z ___ ——. .
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for buchling antisynmetrical about the longitudinal center line of the
plate,

J

(A61a)

(r=0,1,2, .o. rn)

and, for buckling with a node along

J

(A61b)

(.=0, 1,2, . ..W)

each stiffener,

L J( -p= 1, 2, . . . m)

A comparison of equations (A60) and (A61) with equationa ‘(.4)of
reference 9 indicates that equations (A61) differ from the corresponding
equations (Ah) only by the substitution of an effective-flexural-
stiffness ratio

———— _——..——
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EIeff EIs + 1 EA&2— =—
im all As dD

l+xa=
(A63)

for the flexural-stiffnessratio y. Equations (A60), however, differ
radically from the corresponding equations (A4) of reference 9 in that
those equations containing deflection-function coefficients of the form

a8s+1
and a8s+7 are not independent of those containing deflection-

function coefficients of the form a
8s+3 ‘d a8s+5”

A single criterion

for buckling symmetrical about the longitudinal center line of the plate
is thus obtained mther than two criterions corresponding to those of
reference 9. Application of the methcxlof solution of reference 11 and
the results of reference 9 yields the following criterions:

/

For buckling symmetrical about the longitudinal center line of the plate,

%%2
al

-
191 e’

.

lr

][

As EIs
.—
al! m

()d~%t&-12 As

Y?D”z -

J

+ ( 4l+h+?s+f22 g

( )(l+~g ‘ ‘G?)-4%4’
E&
al

12

Af!EF_-
Sinhez y
02

— -_

(A6k)

—.— -. ——.— —=. —— .— —. —
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for buckling antisymmetrical
plate,

WA TN 2873

about the longitudinal center line of the (

3 d26xt

()/
4&—
X2 m Y(2D

tanh 92 tan el

.

e9 e,
L L

and, for buckling with a longitudinal ntie at

d2~xt

(
111+—.

Y?D a/d

It is noted that, when

)P2412 (P =
m

each stiffener,

1,2, . ..W) (A66)

ZS is equal to zero, equation (A64) yields

the two stability criterions for symmetrical buckling given in refer-
qence 9, that is, equations (A7) of that reference for — = ~ q
N 4

and — = -.
N :

Plate with infinitely mny stiffeners.-As the number of stiffeners
is increased the work involved in obtaining stability criterions becomes
greater and the stability criterions become very much more complex. A
complete investigation of all the possible modes of buckling of a plate
with infinitely many stiffeners is therefore out of the question. The
investigations in this section are limited to that male of buckling in
which the deflected shape of each bay of the plate is identical with
that of the others, since the numerical results of reference 9 indicate
that this mode of buckling is predominant for a plate with infinitely
many stiffeners. The deflected shape of the plate in the tmnsverse
direction is considered to be of the foti shown in figure 5(a), sym-
metrical about the center line of each bay and horizontal tangents at
each stiffener. The eqgation of the deflection surface can then be
expressed as

co

x 2nlIyW.sin’=z
a

an cos —
n=o d

(A67)

The shear forces induced after buckling are identical at each contact
line and are distributed between adjacent bays of the plate as shown in
figure 5(b), half of the force being applied to one bay and the other
half to the adjacent bay.

—- —
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Only part of the buckled plate, the part between the center line
of one bay and the center line of an adjacent bay, need be considered
since the-deflected shape is pericdic. ‘-Thepot&ial ener~
part of the plate can be written as

- -

of this

2

dx

where F@ is the shear force induced after buckling.

If ‘m is taken in the form

‘m = Fmt COS ‘:

(A68)

(A69)

the displacements ~’ in the plate at the contact line are derived in

appendix B (see eq. (B20)) as

~ + ~ (3 - P)sim ‘+ - (1 + I.l)m+

(%)
a Fm’t

4
— — COS ~ (A70)

~=o ‘ —
cosh ‘~ -1

mm Et

——— —— ——-— ——. —.———
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and the displacements us’ in the stiffener at the contact line are

us
()

- awV+ZSG
y.~

The condition that

a 2 Fmt

L) – cosmmc:m~-=-—
%a a~~~Cos~ a

(A71) -

these two displacements are equal yields

(A72)

a

Substitution of equations (A67) and (A7’2)into the potential-energy
expression (eq. (A68)) and minimization of the resultant expression with
respect to the deflection-functio”ncoefficients an then yields

the equations

[

1+

[-

EIS ~

al

2

()](
~r2 a/d 2

()

}

d2Gxt a/d 2
7 l+~fi)’~~ ar+

.

1 E@

~+1+~ (3 - P)siti‘: - (1 + P)% mfidAs m

4
——

mfid a dtcosh — - 1
a

(A73) .

J

where bro is the Kronecker

if r#O).

(delta bfl=lifr=O and bfi=O

—— ..- —.—— --
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n

*

,

When the method of reference 11 is used to manipulate equa-
tions (A73) and the results of reference 9 are used, the following
stability criterion is obtained:

(A74)

‘1
e,

This equation is, except for the flexural-stifYness ratio 7 being
replaced by an effective-flexural-stiffhessratio

‘eff %S + 1 E@
—= —
dllm

,+l+p (3 - P)sinh m+- (1 + P)~md As m
——-.

identical to equation

The tenus in the

4
cosh --1

a dt
a

(A7) of reference 9 for # equal to zero.

deflection fwction that yield the stability

(A75)

criterion for buckling with longitudinal nodes along each stiffener
have not been included in the investigation of plates with infinitely
many stiffeners. This criterion should be considered, however, and is
given as before by

d2&t

(

2
m

)

+p,&— =— (P=u 2,...@) (A76)
fi2D a~d m

——. - -.—— —- .—. .... ..
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APPENDIX B

MIDDLE-SURFACE“FORCESAND DISPLACEMENTSDUE TO SHEARFORCES

APPLIED ALONGA LONGITUDINALLINE IN THE PLATE

Plate of Finite Width.

Consider a plate subjected to
shearing force of the form

F=Fm

along the line y = k ~. (See fig.

an arbitrarily placed middle-surface

InJlxCos —
a

(Bl)

6.) ‘lKisforce divides the platec
into two tays. Within each bay of the plate, middle-surface forces and
displacements are continuous and are related by equations (Al) to (A3).
At the line of application of the shear force, however, middle-surface
shear forces are discontinuous and forces and displacements of the two
bays are related by equations (A5). It is convenient to introduce a
force function @j for each bay, such that

a2@jm
Nx =—

jm
ay2 .

a2@jm
NYjm ‘~

a2@jm
%Yjm -—

= axay

and

v4@jm= o (j=l, 2)

.

(B2)

(j = 1, 2)

(B3)

— —.— ———
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. These force functions satisfy the equations of equilibrium in each bay
(eqs. (Al)) and ensure the compatibility of the strains derived from
the middle-surface forces. Suitable stress functions for the present

. problem are ‘

$ Ii )‘x BJm Shh. a

‘jm + a (
m~

)1
w stim~

jm = ‘+ cjm+~Djmcosh~ a
(B4)

From equations (B2) and the stress-strain relations given by equa-
tions (A2) and (A3), the following expressions for the forces and dis-
placements in each bay can be obtained:

For the forces,

N
‘jm =

.

N (- ‘jm + )
w+‘~ Bjm Sillh ~

Yjm =

1-

( ) 102
w~ mny mx

Cjm+ ~ jm cosh~ ~ sin

[
( ) m3cy+‘~ Bjm cosh ~NWjm = - Ajm + Djm +

(
‘~ D

) ]()

2
Cjm + ‘jm + ~ jm Sinh !S?x ga a

mcxsin —
a

(B5a)

C08 hll-cx
-F

(B5b)

(B5c)

Q

— — .——.—.—— .— —._.—_ ————..—. .—
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and, for the displacements,

Etu~m =

EtvJm =

Rigid body

‘jm since

It iS

NACA TN 2873

.
.,

d

L

h ) -(1 - P)Bj;(1 + k) cj~ + ~ ‘jm

.

d

(B6b)

displacements are left out of the expressions for u~and-

they do not influence the solution of the elasticity problem.

seen that the forces and displacements already satisfy same
of the boundary conditions that are imposed. The displacements in the
y-directim and the normal forces vanish at the edges (x = O and x = a).

(
The conditions at the line of application y = Q–) of the shear force

(eqs. (A5)) yield the following conditions that mu~t be satisfied by the
unknown coefficients of the stress functions:

km- Ah)cosh = + (Bh - ‘b)(= coshh~ )
+Sinha +

(Ca - C~sinh%&+ (Dh- ‘lm)(= ‘i**+ cOsh*) ‘(%)2 ‘m

.

u (B7a),

. —— ——-- — ——— .— — --.
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( ~ +(Da - D~& cosh ‘~ = OCb) cosh ‘fib (B7b)
c2Dl-

(B7c)

From equations (B7) the following equations can be obtained:

.

2#

(

1+~1-v
)( )

cosh ‘fib + ‘fib s~ = &
‘2m-Alm=Y— l+V 2a2a 2a mfi

(B7d)

Fm (B8a)

(B8d)

..-— -—.-—- —— ‘—
----- .—. _ ———-. -— -- .—— — —.--.
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Four more equations from which the coefficients of the force functions

can be determined are obtained frma the conditions at the edges y = $

of the plate; that is, the middle-surface forces normal and tangential=
to these edges vanish. Then

.

.

‘2msinh ‘~ + B l?@ siti mfib+ c mfibcosh mfib– 0
% 2m& 2a~

cosh & +D~ —
2a 2a

(B9a)

‘an (cosh&+Bb& ~
)

cosh@+sinh@ +
2a

c~ Sinh
(

nurb‘&+Dh — mfib

2a
Sinh —

2a )
+cosh& =0 (B9b)

‘lm sinhm&- B&&nh~-Cbco*h &+ Dti.&’cosh&=O

(B9c)

. ‘lm (coshm~- Bn~cosh&+sinh& -
)

c~ Sinh
(

mfib‘&+D~— nmbSinh — mfib
2a )

+ cosh — =
2a 2a

o

from which are obtained

[
().4&2 si&&+

.

(B?d)

{[ 1}
a coah(2+ k)&+ cosh(2- k)=+ 2 cosh= +

[[
1

IJ
=&inh(2+k)=&- sinh(2- k)%+ 2 Sti=

%+%m=wa2Fm 1+’
(BIOa)

mrb n.nb
sild --y

a

—— ——. —.—
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[

cosh(2 + k)% + cosh(2 . k)& +

1

23-Vco~h&+4ysM -b
1+~

——

~ + Bh ‘-~&)2 Fm

2a

Mb ‘+mfibSinh — —
a a

(BIOb)

\

1

[
= cosh(2
l+y

1
2 cosh -

2a

+

+

.-

k)~ + cosh(2 - k)% -

L% sinh(2 + k)&.-

sinh(2 - k)m& - 2si#Q& .

(B1OC)

{

sinh(2 + k)m~ - sinh(2 - k)”& -

4kmb

1

~osh lomrb2tismk?Q?_____ —

l+ Pa2F
1+~ %

)

2a 2a
D~+DM=~(fi m

mfib mfib
sinh ———

a a

(BUM)

—..- -—...—_ ..._.____ __. . —... — — ———..—
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Solution of

l+~a
L)

2

‘lm=—— 4

NACA TN 2873

equations (I?8)and (B1O) then yields

\
Y

.

1

1

Sim lamb + kmrb-v
L+# 2a2a

cosh(2 - k)& -

L- ~ s~(2 - k)&
L+I.L

mfib ~b
sinh ———

a a

(Blla)

{

3-V ~08hImll’tb—-
l+p 2a

2(1 - k)m~ Siti kmfib J~ +cosh(2 - k)m~

~ . .~~+)2 Fm
mfib mfib

Sinh — +—
a a

(Bllb)

1- cosh(2 - k)~ -
l+K

‘~ sinh(2 - k)&’

u mb + nmb
Sinh — —

a a

.

.

.

.
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,

.

-{

2(1 - k)m: cosh = -

3- V~iti lamb
2 l+p 2a

1

sinh(2 - k)m;

l+pa ~
L)

Dh=r — m (Blld)
mfib mfib

. sillh———
a a

and

a a

(B12a)

2 1
cosh(2 + k)m&

l+pa F
‘2m (m)‘-T= m mfib+ nurb

Sinh — —
a a

J

(B12b)

[

~(l+k)&~-&]cosh&+ ‘

1

(
~ cosh(2 + k)m; + 2 ~ - >
l+p 1+11

)
km&sinh&+ @@ sinh(2 + k)m~ “

l+pa2F
(m)

2a
ca =-T% ~ 4 (B12c)

Sinh=+=
a a

_ _ -—=. --——_.-— ———— —— _.—
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lamb 3-v~tikmfib
2 sinh(2+ k)m&-2(l+k)cosh ~-—

Da = ~(fi
)

Fm
1+ p m (B12d) “

mfib mfib
Sinh —-—

a a .

Of particular interest are the displacements in the x-direction of
the plate middle surface. These displacements are determined for bay 1
by substituting equations (Bll) into equation (E&) to obtain

r (~-*+P2+ 2(l+P)2(l-k)l
L

r (~-@+p2+ 2(l+p)2(l-k)l
L

+

‘p%++++%++%(3- K)(1+ V)* - k)s~(% ‘)%%]}+

Sinh “+1-y {m’ ‘3-

[
5-@+v2+2(l+

[
5-@+w2+2(l+

L

(1.L)2(1-k) 1-

I&(l - k)(l +

m+++‘4:-
W%q-(%-k)%+

1

.

(B13) 0
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and for bay 2 by substituting equations (B12) into equation (B6a) to
obtain

*

“

—-——— .—. —
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Plate With Infinitely Many Stiffeners

For the assumed buckling configuration of a plate with infinitely
many stiffeners, a separate derivation of the middle-surface forces and
displacements must be made. It is apparent from considerations of
symmetry that only one-half of a bay of the plate need be considered and
that the conditions that must be satisfied at the edges of this half-bay
are given by

1
st =Vl = ()‘w at y.$

F=
‘KY’ = T aty=O

The shear force F. may be expressed as

Fm = Fn’ COS ‘~

.

and the appropriate force function for the half-bay is given by

(B15)

(B16)

which is similar to ewation (Bk).. . Expressions similar to equations (B5)
and (B6) are obtained for middle-surface forces and displace&nts in the-
plate. The substitution of these expressions into equations (B15) yields

, (1 + I.L)~’ - (1 - V)Dm’ = O (B18a)

(B18b)

.

.

.

,

.
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,“

.

( )cm’s~&+Dm’&sinh& +Coshm =02a

The solution of these equations for &’,

Fmi

(Bl&i)

%’ Y cm’Y and Dm’ yields

(B19a)

.,

L)
2

l+pa F,Dm~=— —
4 m

The disphcements along the line of application of the force, which
are of particular interest, are then given by

~+p(3-wnh9-(l+@$
(%I )

a Fml
t

4
——cos —~=o = —

cosh --1
mm Et a

a

(B20)

/

----- ———. .. —-.. ..— — .—.— —— .-. .—. .—. _—— ——— . .- —– –-. --
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Forces and Displacements

NACATN 2873

in the Stiffeners

To each stiffener, forces per unit length of the form
I

Fi = Fm COS ~ (i=l,2, ...(1)))) (B21)

are applied. From equations (A6), the force in the stiffener is related
to the applied shear force by

&Pi—= Fm COS ~ (i=l,2, . ..(Q)Q)
h

in which case

Pi=&Fm sin ~ (i=l,2, ...(1))))

Constants of integration

ends of”the stiffeners.
obtained from the forces
yield

2 Fti

()
usi=_~—

Ells

(B22)

(B23)

vanish since each load Pi must vanish at the

Displacements in the stiffeners are then
by the use of equations (A8) and (A9), which

Cos IMx (i=l,2, ...(1))))
a

(B24)

Constants of integration
motions and have no effect on the problem.

are omitted since they represent rigid bdy .,

.— —
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TABLE I “

VARIATION OF ZNq WITH BUCKLEASl?hCT RATIO

[JV1=—

%q

a/d I?=2 N= 3 N=4 N=m
m

!I1= ql= q=z qz.= +=0

0.500 0.667 0.222 0.375 0.889
31:416 .505 .672 .228 .381 .892
15.706 .520 .689 .247 .401 .898
10.472 .545 .716 .276 .437

● 909
7.854

● 579 ● 755 .318 .471 .924
6.283 .622

● 799 .370 .532 .94’4
5.236 .673 .853 .432 .596 ;%&
4.488 .733 .913 .502 .668
3.927 . ● 799 ● 973 .574 .748 1.029
3.491 .872 1.047 .667 .832 I.065
3.142 .950 1.llg .759 .ga 1.105
2.513 1.162 1.303 1.007 1.153 1.222
2.094 1.39 1.486 1.269 1.389 I.360
1.795 1.621 1.668 1.535 L 620 1.517
1.571 1.850 1.851 1.796 1.845 I.691
1.257 2.293 2.231 2.292 2.278
1.047

2.078
2.721 2.636 2.755 2.708 2.505

.785 3.578 3.498 3.631 3.570 3.418

.628 4.451 4.403 4.493 4.449 4.353

.524 5.335 5.308 5.320 5.334 5.280
● 393 7.111 7.104 7.118 7.111 ;.:$&
.314 8.889 8.889 8.889 8.889
.209 13.333 13.333 13.333 13.333 13:333
.157 17.778 17.778 17.778 17.778 17.778
.000 m m m m m

.

.
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TABLE II

VARIATION WITH BUCKLEASPECT RATIO OF q FUNCTIONSFOR

BUCKLINGSYMMETRICAL ABOUTTHE LONGITUDINALCENTER

LINE OF APIMPEWITH~ STIFFENED.

&

m ~~ %2 ~3 ~k 75 ~ 76

0.021 0.500 0.250 .0.35A 0.729 0.E?5
31;416 .031 .519 .260 .353 .737 .129
15.706 .079 .572 .289 .351 .782 .141
10.472 .149 .657 .337 ;:$ .845 .160
7.854 .242 .770 .400 .928 .185
6.283 .351 .899 .475 .336 1.023 .212
5.236 .472 1.039 .559 .327 1.E .240
4.488 .600 1.181 .651 .316 1.23.; .265
3.927 .729 1.317 .742 .301 1.331 .287
3.491 .854 1.442 .834 .283 1.421 .304
3.142 .976 1.553 .925 .263 L 502 .314
2.513 1.238 1.T1 1.112 .203 1.644 .329
2.094 1.505 1.926 L 361 .138 1.782 .283
1.795 1.739 2.055 1.574 .076 1.890 .2kl
1.571 1.903 2.181 L 789 .022 2.007 .~96
1.257 2.396 2.46I. 2.223 -.053 2.289 .119
1.047 2.876 2.806 2.668 ~.089 2.69~ .069

.785 3.665 3.592 3.556 -.091 3.481 .018

.628 4.514 4.458 4.444 -.063 4.388 .006

.524 5.372 5.335 5.333 -.037 5.297 .001
● 393 7.El 7.11.1 7.111 -.010 7.101 .000
.314 8.891 8.889 8.889 .000 8.887 .000
.209 13.333 13.333 13.333 .000 13.333 .000
.157 17.778 17.778 17.778 .000 17.778. .000
.000 m m m .000 m .000

,

..—. --- —-—.. .———-—-— —-—— --— -—
——
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5X —-----.—.—-----.--.-— --— ------—-----—— 3=j$E
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Figure 1.- Compressed

@

plate with equal and equally spaced longitudinal
atiffeners on one side.
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Figure 2.- Hypothetical extension of stiffeners to contact line.
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appearing in criterion for symmetrical buckling of

plate with three atiffenera.
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(a) Shape of deflection surface in

.

y-direction.

------ ------ ----

=ss!=

(b) Shear forces at contact line.

Figure 5.- Conditions assumed for plate with infinitely many stiffeners.
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Bay

.

.

Figure 6.- Shear force applied

.

x

along a longitudinal line within the plate.
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