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TECHNICAL NOTE 2873

THE EFFECT OF LONGITUDINAL STIFFENERS LOCATED ON ONE SIDE
OF A PLATE ON THE COMPRESSIVE BUCKLING STRESS
OF THE PLATE-STIFFENER COMBINATION

By Paul Seide

SUMMARY

The problem of buckling under uniform compression of flat, simply
supported, rectangular plates with equally spaced longitudinal stiffeners
on one side of the plate is investigated. TFor the case of a plate with
one, two, or infinitely many stiffeners, the analysis yields expressions
for the effective moment of inertia of the stiffeners that can be used
in cgnjunction with the buckling charts previously presented in NACA
TN 1825. o :

INTRODUCTION

The buckling of stiffened plates is a subject which has received much
attention in the literature on aircraft structures. With few exceptioms,
the solutions presented are idealized and are valid only for stiffened
plates for which the center of gravity of each stiffener cross section
lies in the middle surface of the plate or for which the stiffeners are
hypothetically connected to the plate in such a manner that sliding of
the stiffener along the plate surface is permitted. Although these solu-
tions clearly establish the relationship between the buckling stress of
the plate stiffener combination and the flexural stiffness of the stiffener,
they do not determine the effective flexural stiffness provided by stif-
feners in the usual aircraft application, that is, when they are riveted
to one side of the plate.

Timoshenko suggested (ref. 1) that the stiffness of a one-sided
stiffener might be taken into account by replacing the moment of inertia
of the stiffener about its center of gravity by an effective moment of
inertis and using this value in the solutions valid for stiffeners with
their centers of gravity located in the plate middle surface. 1In several
illustrative examples he took this effective moment of inertia as the
moment of inertia of the stiffener cross section ebout the plane of con-
tact with the plate. That this method of correction is arbitrary and
not generally applicable to all plate stiffener proportions, however, can
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be readily seen. If the stiffeners are very large compared to the plate,
the attached plate can have very little effect on the bending of each
stiffener about an axls passing through the center of gravity of the
stiffener cross section. On the other hand, stiffeners that are very
small compared to the plate would appear to be forced to bend about the
plate middle surface. The effective moment of inertia of a given stiff-
ener can therefore vary between the moment of inertia taken about the
center of gravity of the stiffener cross section and the moment of inertia
taken sbout the plate middle surface depending upon the proportions of
the attached plate. For Z-stiffeners of the proportions encountered in
aircraft construction, the ratio of the moments of inertia based on these
two limiting positions for the assumed neutral axis of bending is greater
than 2,5 to 1. Because the effective moment of inertia chosen to repre-
sént a given stiffener strongly influences the calculated buckling stress
of the plate stiffener combination, 1t is therefore desirable that any
arbitrariness in its calculation be eliminated.

Investigations of plates with stiffeners on one side have been made
and verify the dependence of the effective moment of inertia of the stiff-
ener on the relative dimensions of the plate and stiffener. These solu-
tions, however, are generally lim%ted to special cases, The bending of
an infinitely wide plate with a longitudinal stiffener on one side is
investigated in references 2 to 4. In reference 2, Timoshenko and
Goodier neglect the flexural stiffness of the plate and consider loads
applied only to the stiffener; an extension is made in reference 3 by
Smith, Heebink, and Norris to include the plate flexural stiffness; both
plate flexural stiffness and loads applied to the plate are considered
by Odgvist in reference k., Shear buckling of a finite-width plate with
& centrally located longitudinal stiffener on one side is investigated
by Chwalla and Novek in reference 5. Good accuracy would be expected in
their analysis only when the plate is relatively wide. Cox and Riddell
(ref. 6) give an expression based on an effective-width concept for the
effective stiffener stiffness for compressive buckling of a finite width
plate with a centrally located longitudinal stiffener on one side. The
stability of plates with closely spaced longitudinal and transverse stiff-
eners is investigated approximately by Freyer in reference 7. A very
accurate set of differential equations for the same problem is developed
by Pfluger in reference 8. These differential equations contain terms
which reflect the consideration of changes of geometry of the plate
beyond those considered in the elementary theory of bending and buckling
of flat plates. The contribution of these terms is shown to be insignif-
icant, however, in the practical range of stiffened-plate comstruction,

The references cited indicate that some studies have been made of
the buckling behavior of plates with one stiffener or with many closely
spaced stiffeners. No materlal appeared to be available for the cases
that fall between these extremes. In the present paper, a unified analy-
sis 1s made of the buckling behavior under uniform compression of a flat,
rectangular, simply supported plate with one, two, three, or infinitely



NACA TN 2873 3

many longitudinal stiffeners located on one side of the plate. The
esgential feature of the results of this analysis is that the effective
moment of inertia of one-sided stiffeners on plates of arbitrary dimen-
sions can be written in terms of a simple correction to the moment of
inertia of the stiffeners about their own centers of gravity. This
effective moment of inertia can then be used in conjunction with the
buckling charts of the type previously presented in reference 9. The
‘anslysis leading to this result is given in the appendixes.

The material presented herein was submitted to the University of
Virginia in partial fulfillment of the requirements for a masters degree.

SYMBOIS

Ag stiffener area

a plate length

an Fourier coefficients in bending deflection function

b plate width, Na

Et3
D plate flexural stiffness, 5 .
lQZl -4 5

d bay width

B Young's modulus for plate and stiffeners

Fy shear force per unit length applied at ith contact line
for plates with one, two, or three stiffeners

P shear force per unit length applied at any contact line
for infinitely many stiffeners

Fim coefficients of shear forces for plates with one, two,
or three stiffeners

Fo! coefficients of shear forces for plates with infinitely
many stiffeners

J,s integers

i integer denoting contact line or bay

k number denoting location of contact line with respect to

plate center line
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moment of inertia of stiffener cross section, taken about
axis parallel to plane of plate and passing through
center of gravity of stiffener cross section.

effective moment of Inertia of stiffener

integer denoting number of buckle half-waves in longi-
tudinal direction

number of bays

additional forces per unit width in plane of plate
middle surface in ith bay

integers denoting mode of buckling

additional load in ith stiffener

integers denoting number of buckle half-waves in trans-
verse direction

plate thickness
total potential energy of stiffened plate
middle-surface displacement

additional displacements in plane of plate middle surface
in x- and y-directions in ith bay, respectively

additional displacements in x-direction at center of
gravity of cross section of ith stiffener

strain energy

potential energy

bending deflection, normal to plane of plate
distances along coordinate axes (see fig. 1)

modal coefficient appearing in expression for effective
moment of inertia of stiffeners

distance normal to plane of plate between plate middle
surface and center of gravity of stiffener cross section

additional dlrect and shear strains in plane of plate
middle surface in ith bay
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€g ’ additional direct strains at center of gravity of cross
i section of ith stiffener
LT PYLEY modal coefficients appearing in criterion for buckling
symretrical about longitudinal center line of plate
MysN557g with three stiffeners
T Poisson's ratio for plate material

D
[
]

5.
o[z Aoyt
a/d 72D a/d
2..
d“o.,t
6, = m ‘, 2x ,.m
a/d €D é7d

Bx uniform longitudinal compressive stress

d;z'o'r t
X buckling-stress parameter

%D
Eég buckle aspect ratio
a/d aspect ratio of each bay
ET .
aﬁg- flexural-stiffness ratio (called ¥ in ref. 9)
EI

dgff effective-flexural-stiffness ratio

area ratio
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Subscripts:

N number of bays
P plate

S stiffeners

RESULTS AND DISCUSSION
Statement of the Problem

The problem that is investigated in the present paper is the
determination of the buckling stress of a flat, simply supported,
rectangular plate with one, two, three, or an infinite number of longi-
tudinal stiffeners on one side. The stiffeners are equally spaced, are
each of the same cross section, and have a Young's modulus equal to that
of the plate. (See fig. 1l.) The plate is loaded by uniform compressive
forces per unit width th on its transverse edges and the end load on

each stiffener is a compressive force GAg.

Assumptions and Limitations of Analysis
The assumptions and limitations of the analysis are as follows:

_ (1) Bach stiffener is assumed to be continuously and rigidly con-
nected to the plate along a straight line (the contact line) in the
plate middle surface. This condition may be visualized by supposing
the stiffener to be extended to the contact line by a rod of infini-
tesimal area. (See fig. 2.) The effects of rivet spacing and of rivet
flexibility are thus excluded from the analysis.

(2) Each stiffener is assumed to have zero flexural stiffness for
bending parallel to the plane of the plate and zero torsional stiffness.

(3) Small-deflection theory for bending of elastic plates and
elementary beam theory for bending of the stiffeners are used. The
analysis is thus limited to a general instability of the plate-stiffener
combination and excludes such effects as local buckling of stiffeners,
cross-gsectional distortions, and shear deformations of the stiffeners,
all of which decrease the effective moment of inertia of the stiffener.

(%) An artifical boundary condition is introduced into the analysis;
that is, points in the transverse edges of the plate are taken to be free
to move transversely before buckling occurs but are completely restrained
from further movement after buckling. Any other boundary conditions would
needlessly complicate the analysis. The longitudinal edges of the plate
are taken to be free from middle-surface forces both before and after
buckling.
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Summary of Analysis

The stability criterions for compressive buckling of longitudinally
stiffened plates with deflection of the stiffeners, derived in appendix A,
with the exception of the criterion for buckling symmetricel about the
longitudinal center line of a plate with three stiffeners, can be
expressed as follows:

3 [2-
o L (a/e) 1/‘1 Oxt . 2
Elg, 1 EAgZg _ 72\ m 2D 4“0, t (a/d) Ag

-+

P gy ls P sin 63 sih 6p w0 \m/
Ny T% 5 5
1 _ 2
ng ngq
cos T cos 61 cos - cosh 6o
(1)
where “~
4%, ¢
6, = n||-L 9% _m
a/d ) a/d
> (2)
2-
6, - m (/&0xt .
a/d 7°D a/d
(m=1, 2,3 ... 0)

and ZNq is a modal coefficient. This modal coefficient is a function

of the buckle aspect ratio aéé, the number of bays N, and the mode of
buckling indicated by q as in the following table:

Number Number of Mode of buckling
of bays, stiffeners, qa about longitudinal
N N-1 , center line of plate
2 1 1 Symmetrical
1 Symmetrical
3 2
2 Antisymmetrical
4 3 2 Antisymmetrical
w eo g=0 Symmetrical
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a/d
The variation of ZNq_ with the buckle aspect ratio —]{1— is shown in
teble I and in figure 3. Poisson's ratio p was taken as 1/3 in the
calculation of these values.

The criterion for buckling symmetrical about the longitudinal
center line of a plate with three stiffeners is given by

Ag 2

g, L+n g EAgZs %oyt (ﬁ)g As
(1010 32)(2 15 59) - (0 52)
2 4t 3 dt b a¢
- —_
i (a/d)3 d O’x‘t AS
@\ %°D Els 1+ns 5% EAs'ise_
6; 6o (1+T'2 —>( T3 3¢/ " \Ms 3
-“%_-cos 61 g-cosh 6% N
5 N
” 5 L (a /d>3 Aot
d UXt(E&) A_S_ e\ 2D )
6, Chy
-‘%2—+cosh 62 ‘12—-2'—+cos e
2
Ag -2
'[] m——
6 at EAgzs | _ o (3)

e 2o 2)- (2T wena
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d
vhere T to ng are modal coefficients and are functions of Eé—.

The variation of T to g with 2ég is given in table II and is
shown graphically in figure L.

When buckling symmetrical about the longitudinal center line of a
plate with one, two, or infinitely many longitudinal stiffeners on one
slde is investigated, the buckling charts of reference 9 may be used.

In place of the flexural-stiffness ratio %% these charts are entered

2

with values of the effective-flexural-stiffness ratio

_2
Elerr _ Blg 1 EAgzg
dD D Ag dD
1+ =
e g4

(4)

where EIeff/dD is calculated with the proper value of the modal coef-
ficient ZNq obtained from table I or fram figure 3 of the present

paper. Thus, if the buckling-stress parameter for a certain plate-
stiffener combination is desired, the chart of reference 9 for the
appropriate area ratio and number of stiffeners is entered with
EIeff/dD and the given value of the plate-bay aspect ratio to obtain

the buckling-stress parameter. In this procedure, the value of m used

in reading ZNq from figure 3 of the present paper must correspond to
the value of m 1in the region of the charts of reference 9 from which

the buckling-stress parameter is read. 1In the charts of reference 9, the

value of m 1in the region to the left of the first dashed-line curve
is 1 and the value of m 1in the region to the right of that curve is 2;
m would increase in value by 1 in the region to the right of each
succeeding dashed-line curve.

When buckling symmetrical about the longitudinal center line of a
plate with three stiffeners on one side is investigated, equation (3)
must be solved by trial and error for the value of the buckling-stress
parameter corresponding to a given value of m. Different values of m
are tried until & minimum value of the buckling-stress parameter is
obtained.

Investigation of the antisymmetrical modes of buckling for plates
with two or three stiffeners involves a trial-and-error solution of
equation (1) for the buckling-stress parameter for given physical
dimensions of plate and stiffeners.
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For each case the criterion for buckling with nodes at each

stiffener

o

ot _ (g, e/d\ (5)
x2d afd m

should be checked since this criterion defines the highest buckling-
stress parameter obtainable in conjunction with an assumption of zero
torsional stiffness for the stiffeners.

CONCLUDING REMARKS

The buckling under uniform compression of flat, simply supported,
rectangular plates with equally spaced longitudinal stiffeners each of
the same cross section and a Young's modulus equal to that of the plate
is investigated. The effect of one-sided plecement of stiffeners on the
plate is incorporated in a simple expression for the effective moment of
inertia of the stiffeners. For a plate with one, two, or infinitely many
stiffeners, the effective moment of inertia can be used in conjunction
with buckling charts of the type previously presented in NACA TN 1825.
For a plate with three stiffeners, a new stability criterion is derived.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., June 16, 1952.
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APPENDIX A

STABILITY ANALYSIS OF PLATES WITH ONE-SIDED STIFFENERS

Determination of Stress Distribution in the Buckled Plate

Consider the bending of a plate with stiffeners attached so that
sliding of the plate and stiffeners is permitted. Middle-surface dis-
placements u in the plate along each contact line exist and in each

stiffener there exist contact-line displacements ug + Zg %H, vwhere ug
X

i1s the displacement at the center of gravity of the stiffener cross sec-

dw

ox

sections of the stiffener being assumed to remain plane and perpen-

dicular to the deformed axis of the stiffener. In general, u and
ow

ug + ES Sx are unequal and there would exist relative displacements of
X

tion and ES represents the displacement due to bending, the cross

corresponding points of the plate and stiffeners. (In the present

problem, for example, if the stiffeners were permitted to slide along
the sheet, u and ug would be equal but relative displacements due

to bending, of magnitude zg %H, would exist) Since in an actual plate
x

these relative displacements are not permitted, a system of shear forces,
which produce additional deformations to cancel out the relative dis-
placements, are induced in the structure. The system of shear forces
consists of forces applied to the plate middle surface at each contact
line and equal but opposite forces applied to the corresponding stiffener
at each contact line. The effect of these forces on the buckling stress
of a stiffened plate loaded in edge compression is investigated in the
present paper.

Prior to buckling, the stiffened plate considered herein is uni-
formly compressed, the longitudinal direct stress in both the plate and
stiffener being equal to -'x; all other stresses in the plate are equal

to zero. When the stiffened plate buckles, however, self-equilibrating
shear forces are induced at each contact line within the structure, as
demonstrated previously, and the stress distribution within the plate
changes although the applied edge stresses remain constant. The addi-
tlonal stresses in the structure must be investigated before the buckling
stress of the stiffened plate can be determined.
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Within each bay of the plate the additional middle-surface forces
are continuous and in equilibrium, that is, for the ith bay

~
ain . ONyy 1_,
ox dy
>~ (A1)
anyi anyi
+ =0
oy ox J

and are related to the middle-surface strains in the ith bay by

I

ex; = Fe(Mxy ~ My )

1
= = - uN A2
€y EtCNyi H xi) > (A2)
_2(1 + ) N
Xy, Et ! y

Strains are related to middle-surface displacements by the expressions

du, A

6 = e—

X dx
ovy

Eyi = 8;—' > (A3)
_ouy  Ovy

7xyi - oy ' ox

W

From the boundary conditions given in the section entitled
"Assumptions and Limitations of Analysis,” normal and tangential middle-
surface forces must vanish along the longitudinal edges of the plate and
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normal middle-~surface forces and tangential displacements must vanish

along the transverse edges of the plate; that is, at y = %%,

Ny = Ny = 0 (Aka)
Nd
at y ==
Nyl = nyl =0 | (Alb)
eand, at x =0 and x = g,
in =Vvi =0 (1=1,2 ...N) (Ake)

In addition, the following conditions must be satisfied along each con-
tact line:

~
Ny, -N =F
Xy T Wiy 1
=N
Y T Wi .
S (45)
B Tl BN (1=1,2,. .. (N-1))
Vi T Vi
o/

vhere F; 1s the shear force per unit length induced at the ith contact

line after buckling. These conditions state that at each contact line
the difference of the shears in adjacent bays is equal to the applied
shear load, that middle-surface forces normal to the longitudinal edges

of adjacent bays are continuous, and that middle-surface displacements
are continuous.

The additional forces and displacements along the centroidal axis
of the stiffeners due to the shear forces induced after buckling are
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found from the equations of equilibrium of shear force and internal
load to be

e A

= Fy (i=112, ... (W-1)) (46)

and the load-strain relationships are found to be

P
ssi=$ (i=1,2 ... (N-1)) (A7)
where
dllS
s < o (a8)

with the conditions that each load P; must vanish at the ends of the
corresponding stiffener.

The appropriate expressions for the shear force at each contact
line are now assumed to be

mnx (i

Fj = Fip cos —= =12, ... (N-1)) (A9)

where m 1is an integer. (It will be seen subsequently that this result
is consistent with the assumption of sinusoidal buckling with m half-
waves in the longitudinal direction and that this type of buckling
actually occurs.) The forces and displacements in the plate and in the
stiffeners due to a single shear force of the form of equation (A9),
located anywhere in the plate, are derived in appendix B. The middle-
surface forces and displacements at any point in the plate due to all
the shear forces are obtained by superposing the individusl forces and
displacements at the point due to each of the shear forces.

Thus far in the discussion the shear forces induced by contact-
line restraint have been considered arbitrary. They can be related,
however, to the bending deflections of the plate middle surface by
conditions of continuity of plate and stiffener at each contact line.
When buckling occurs, the addition displacements at each contact line

in the plate due to the induced shear forces are (ui)y—(i N\q and the
| -
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contact-line displacements in the stiffeners are ug, * ES<%¥)y=( "g)d
In order for points in the plate and stiffeners to remain together, these
two displacements must be equal at every point in the contact line. Then

Ua, + Fol = AlO
81 S(EE)}m( _ N)d (ui)F(i - g_)d (A10)

An appropriate expression for the bending deflections of the stiffened
plate 1is

w=sin£1§m—c§:ansin~l—12£(l%+l) (A11)

n=1

When equation (Al1l) and the displacements in the plate and stiffeners
in terms of the coefficients F;, of the shear forces are substituted

into equation (A10), a sufficient number of equations is obtained to
give the coefficients Fy, 1in terms of the coefficients a, of the

deflection function. In general, these equations are of the form

o0

-] .
{; (813 + ccijm)FJm = EAS'z'S(m-a—’t)B D> &, sin EN’E (a12)

51

where 813 is the Kronecker delta (Bij =1 if i = j; 513 =0 if
14 j) end ayyp = ajjy and is given by the results of appendix B.

Determination of Stability Criterions

With the distribution of middle-surface forces and displacements
in the buckled plate known in terms of the Fourier coefficients of the
deflection function, the principle of minimum potential energy may be
used to find the compressive buckling stress of the plate. The deflec-
tion function given by equation (All) and the forces, strains, and
displacements in terms of the coefficients of equation (All) are substi-
tuted into the potential-energy expression for the structure. The

- - C e e o rr—— R - — T T e s T T T
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potential energy is then minimized with respect to each of the coef-
ficients a,. A set of simultaneous equations is obtained from which

stability criterions can be determined.

The potential energy of an elastic body is defined as the difference
between the strain energy of the body and the potential energy of applied
edge loads. At the onset of instability the structure has potential
energy due to the applied end loads which remains constant while the
plate bends and need not be taken into consideration. After buckling the
plate acquires additional strain energy which can be expressed as the
sum of the strain energy of bending of the plate and the strain energy
of deformations in the plane of the plate middle surface (ref. 10) as

a 34 5 2 \2 2 .2
0 _1~T2_d ox dy dx° dy=?

a (1-%a _. L& pe -Na
glfo f(i(-;—l)d “xtry W T ;j;f((i-i)-l)d (NXiGXi ¥

2

N, €. + N, 7 dx dy A13)
i ¥y o XX (

The first term on the right-hand side of equation (Al3) represents the
strain energy of bending of the plate. The second term represents the
strain energy arising from displacement of the middle-surface compressive
forces, which remain constant as bending takes place, by additional
stretching of the plate middle surface after buckling. The third term
represents the strain energy due to stretching of the plate middle sur-
face by the middle-surface forces that arise after buckling.

The additional potential energy of the compressive forces applied
along the transverse edges of the plate is

1_1f k t[ui) - (), ]dy ! _f f ma \ox) %

(ALk)




The first term on the right-hand eide of equation (Al4) ia the work done by the edge loads in
moving through displacements due to the shear forces induced after buckling. The second term
representa work done by the edge loads in moving through displacements due to bending. The form
of this term 1s consistent with the assumpticn in small-deflectlon bending theory that the plate
middle surface undergcoes no stretching due to bending.

Similarly, the additional straln energy of the stiffeners is

v Lz_l Elg "ar’aew\ T dx + & N‘_l'z— ™ dx S O Ageg, dx (A15)
- —_— oW + € - O AqE
S {32 Jo (ax ) 2 {3 »/0 1758y 1=-1Jo 51

(B

_ - -
l%_l % P ﬂ;-y[‘a&_&mn g+'§ﬁ_f(1 a)d goeluy - (u) —|a_-
efive " Taide TR 1Y (1-f-2)a T L =0l

TAUNCEES =SS (RIS = T G

Zg

£Lge NI VOWN

1T



The potentisl-energy expression (eq. (Al7)) can be considerably simplified by transforming
some of the terms in the equation. Consider, for instance, the term representing the work done
after buckling by the compressive forces applied to the plate in moving through displecements

B (i-E)a
due to the induced shear forces - tb 2 JF 2 Gebl(ugy, o =
f=1Y(1-E-1)a () xea

. e p(1-Ba 3uy
can slso be expressed as [; Oyt Syou dx dy which is the equlvalent of
. J \i ox

1
fan
ja
full
<
-
o1]

.

—_ . s
Llj ay. 'nle term
)xnol v

i-—-
f f Oy Gxi dx dy and cancels the term representing the additional strain energy
i=1

in the plate arising from displacement of the constant middle-surface compressive forces after

- - a
buckling. B8imilarly, the term E o. - - Ej G
) i s [(usi )x-:-a (uSi )x=‘;l Feneese i=1 j(; GxASGSi =

1=1

The term representing the strain energy of stretching of the plate middle surface by the
middle~-surface forcea that arlse after buckling can be transformed to a much simpler expression
by integrating the term by parts to obtain

t 1=1j:;»la f(gl-;-)d) (Tesfxs * Byyfyg * By )82 40 = =3 :/_—'—:J.f [H‘Hui)m ) (nini)“;Idy '

by a

P | e Oy )J‘”‘ el E““i“i’v-@—g)a ‘ (“”i““v-(i-g-lﬂ“‘ *

gt
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The first, second, fourth, and fifth integrals on the right-hand side
of equation (Al8) vanish by virtue of the conditions at the plate edges
(egs. (A4)), the equations of continuity along each contact line

(egs. (A5)), and the equations of equilibrium of middle-surface forces
within each bay (eqs. (Al)). The third integral, however, has a value
and can be rewritten as

But nyN is zero at y = %% and nyl is zeroat y =-%% 80 that

the first and third integrals on the right-hand side of equation (Al9)
vanish. PFurthermore, when the conditions of equations (A5) are con-
sidered, the second integral can be rewritten as

N-1

% Zfo Fi(ui)y=(i_ g)d ax (A20)

i=1

which is the transformed additionsal strain energy of deformation of the
plate middle surface. This result could also have been obtalned by use

of the law of conservation of energy; that is, internal energy equals
external work.

In a similar manner, the followlng transformation can be obtained:

N-1 N-1

a8 a

1 __1

b5 [ me, ek S [Crng, o =
i=1voO i=1J O
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Equations (A20) and (A21) may be combined to yield

N-1
i Ez:b/\a Fi [(u1) M. - Us.|dx (A22)
2ia3Jdo y=(1-)a = 51

which, from the relationship given in equation (A10), cean be written as

13 [ wa( ) ax (a23)
2¢3do 1 S(ax y=(i-%)d

The simplified potential-energy expression is then

a P 2 2 \2 2 2
2Jo ox Jy dx> 8y2

= a 2 N-1 = a
SN RCR N I

Substitution of the bending deflections w given by equation (All)
and the shear forces F; given by equation (A9) into equation (A2k4)

yields
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2 EAgZg Fim i
i zz: a, sin 2 (A25)

The third term on the right-hand side of equation (A25) is the contri-
bution to the potential energy of the structure of stretching of the _
plate and stiffeners by the shear forces induced after buckling. If Zg

were equal to zero, that is, if the center of gravity of each stiffener
cross section were at the middle surface of the plate, equation (A25)
would reduce to equation (A3) of reference 9.

Minimization of equation (A25) with respect to the coefficients ap

yields
2 .
- 1._2(a/c1)2 dgaxt(a/d>2 .
§e\ m w2p \ m i

2= 2 N-1

ET d o, t{a/d) A 2 :
% S _ X (a/ ) S| > ay sin I gip D

W 4B \m/ A T I N N

= 2 N§-1
g-EASZS E L Fim sin rud +
N~ da <52 (= Eay N
a S
F 0
9 im }E: a, sin B85 - ¢ (a26)
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When each coefficient Fim 18 determined iﬁ terms of the coef-

ficients ap of the deflection function by the analysis of the pre-

ceding section and is substituted into equations (A26), the equations
may then be manipulated to yield stability criterions for the stiffened
plate. Since the expressions for Fjy differ for plates with different

numbers of stiffeners, separate analyses are made in the following sec-
tions for a plate with one, two, three, or infinitely many stiffeners.

At this point it can be seen that the assumption of sinusoidal
buckling in the longitudinal direction is justified. If sinusoidal
buckling had not been assumed and an infinite number of longitudinal
sine terms had been taken in equation (All) for the deflection function
(and, correspondingly, an infinite number of cosine terms in eqs. (A9)
for the shear forces induced at each contact line), the terms corre-
sponding to each sinusoidal component in the longitudinal direction would
uncouple when the potential-energy expression was minimized and there
would be obtained a different set of equations (A426) for each value of m.
This uncoupling occurs only for the particular boundary condition chosen
in the present paper; that i1s, points in the transverse edges of the
plate are free to move in the y-direction before buckling occurs but are
campletely restrained from further movement after buckling.

Plate with one stiffener.- For a plate with one stiffener there is
only one shear force induced in the plate - the one along the center
line:

Fl = Flm cos II% (A27)

The middle-surface displacements in the plate at the contact line
due to this shear force are found from the appropriate equations for
bay 1 and bay 2 derived in appendix B (egs. (Bl3) or (Blk)), with ¥y
and k set equal to zero and b replaced by 24, as

a\e Fim mx
(ul)yzo = Z2l(ﬁ;) mat °° (A28)

where
2
2myd 2(mnd 2
7oy = 1 (3 - 1)1 + u)cosh s~ t 2(1 +n) (—E_) +5 -+ s
o sinn 207, 2mad a
a a

(A29)
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and the displacements in the stiffener at the contact line are, from
equations (A10) and (B24),

[oe]
= [ow _ (a2 Fim mIX |, mu s E nx mix
uSl + Zs(ax>y_o = (mﬂ) g cos S + = 2g — a, sin 5 cos =

(430)

The condition that these two displacements are equal can then be written
as

(1 + Zp] A-ﬁ)-—fl—m— = i a, sin 4% (A31)
At/ s a3, = - 2
(%) magis
from which
. > _ ey sin 3X
1m = n-1 (A32)

The substitution of equation (A32) into equations (A26), with N
equal to 2, then yields

2
2 2= 2
d"o,t/a/d
l+lr2(?ﬁ) - X(_/_) ar+
4 m gep \m
EI EAgZs 625t fa/a\2 Ag | <&
s, 1 s _ x(a/)_S§ ay sin IX gin BT = @
Ag  ap xop VO dt | =1 2 2
1+ Zpy —
21 3%

(A33)

(r=1,2, .. . )

Equations (A33) are practically identical with equations (Ak) of
reference 9 for N = 2, when those equations are divided by mh, the only
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difference being that the flexural-stiffness ratio (called ¥ in ref. 9)

of equations (Al) is replaced in equations (A33) by an effective-
flexural-gtiffness ratio

Elope _ Elg

-2
. 1 EAszg
@  a

(A34)
ap
1+ 2p) §%_

The criterions for buckling under uniform compression of a simply sup-

ported plate with one stiffener can therefore be written immediately
from the results of reference 9 as follows:

For buckling of the plate with deflection of the stiffener,

2-
, (a/d)3 Tagk
7 ) = 2
EIS . 1 EASZS - 1(2 m 1[2]) . d Uxt/a/d) A_S (A35)
dp A D tanh 6, tan 6 2p \m / dt
1+ 2y = 2 _ 1 D
dt 65 61
where
o
d oyt
8y = n||5 (A36a)
a/d 3/4
o
d o,t
6p = x|[-L + -2 (A36b)
a/d\y A afd
and, for buckling of the plate with a node at the'stiffener,
2~ 2
ao,t
( + g2 ¥ d) | (437)
2y \efdF
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where p 1is the number of half-waves in the transverse direction in
each bay. The lowest values of the buckling-stress parameter given by
equation (A37) are obtained when P is set equal to 1.

Plate with two stiffeners.- For a plate with two stiffeners, two
shear forces are induced in the plate:

Along the contact line at y =-12,

_ mix
FT. = Flm cos - (A38a)
and, along the contact line at y = %, ,
- ickio'd
F, = Fy cos = (A38b)

The middle-surface displacements in the plate at each contact line
due to these shear forces are obtained as follows: The shear force TFy

alone produces displacements ul' along the contact line y = -g— which

mey be obtained from the appropriate equation for bay 1 and bay 2 of

appendix B (eqs. (Bl3) or (Bl4)), with k =-%, v =_% 12_3, and b
replaced by 34, as

2 F
(0, B e e
2

and displacements us' along the contact line y = % which may be

obtained from the displacement equation for bay 2 (eq. (Blk4)), with

k =-%—., y = %%, and b replaced by 3d, as

(), g " M (o - mg con B o
¥=3
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where )
((3 - )1+ u)(cosh 311;:126_ + cosh % - &:ﬂd sinh de) +
<|5- 2 +u2+2(1+ﬂ)2(%ﬂ)ﬂcoshg§- L
2
(1 v 02 B i 2L 5 - 2 0+ )2(E)
Z31 = 1 mxd - -/
boe ginh 312“6' + 2";_‘1
(Akos)
and
(" ~
(3 - w1+ u)(cosh 301 _ cosh ?J;—ﬁ - 2“:“1 sinh %‘1) +
2
< l:S -2+ p2 4201 + u)e(mel->:|cosh m%d + &
2 t
i ki i St b iy )| N
Gy = L A ,
3 Loa 3myd

Similarly, the shear force F, produces displacements u;" along the

contact line

and displacements

=_a
y==5

Pl

(ulu)y=-§ - %(min)z(%l - Z32)§TZ:' cos

along the contact line y =

1/7a1\2 . \Fom
= §(n%f) (233_ + Z32)E%ﬁ cos

(Akob)

n% (Ak1a)

(Y=Y

mnx - ,
. (AL1b) |
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e

The total displacements u; along each contact line are obtained by
adding the displacements u;' and uy" due to each of the forces and
are

2 F F
() g - [+ 20 (1 250 B on 3 e

2 F F
(uQ)Y=% } %(%) (Z31 - Z32)}§:T—ll*:;1 * <Z3l * Z32)E% cos BXX  (Ah2p)

The displacements in each stiffener at the contact line are

( )__d_ (mzt) EAScos a + Py zsg.ansin 3 cvos_a-

(Ak3a)

2 Fop X . WK = i on mx
= -(i) —— co8 max + == ZS an gin an cos ——
mn/ EAg a a =1 3 a

(AL3D)

The conditions that the contact-line displacements in the plate and
in the stiffeners are equal can be written as

F A F 2
E_-l- —%(2314' Z32):.—ﬂ————mﬂ %‘m ~ +—%—(Z31— Z32)§ -mﬂgn——L:— = ;- a.n sin P’3£
(?) Ehszs () EAgzg ™"

e e ——— R [
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Ag  TFip Ag S i 20
3(Z51- Z32)gs — 3 — E* (231 + 239) 2 :l . gl in %
(%?) Bhs?s EAsZs
(Alhv)
from which the following relations are obtained:

Fim _1 1 - ns 2nxn
__T._E———A-Enzﬂ-an(sin?+sin 3)+
(F)msts 125 38

115 D% _ gip Zox
5 i nZ_]_ an(sin 3 sin 3 ) (Ak5a)
1+ Z32 E
Fon _1 1 = nn 2nx
=5 i g;; an<sin ?; + sin —3—) -

% -1 Z an(sin %-“ - sin g‘é—“) (AL5D)

Substitution of equations (AL5) into equations (A26), with N
equal to 3, then ylelds the following groups of equations:

For buckling symmetrical about the plate center line and with deflection
of the stiffeners,

(a6s+l 8'65+5) =0

(Akba)

(r=0, l, 2,...00)
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2
27 /827 3%t 2
5\ (e/a\"| _ __;ﬁ_éaéé> -
[“ fox + ) (m)J S,
- 2 2= 2 o
+ = - == a - a =0
dD Ay ap 2p \m/ at| £=5 (%6s+1 = 6s+5)
1+ Z31 it
(AL6D)
(r=0, l, 2, o . .oo)

for buckling antisymmetrical about the plate center line and with deflec-
tion of the stiffeners,

TS

- 2 2= 2 ©
Elg 1 . PBAgzg" 4 Uxt(a/d) As _
@ * A3 a2y \m a;(a6s+e‘ass+u)-°
1+ Z32 E
(AkTa)
(r = o, 1, 2, ©)
ANEVAAS ® e a\2 j
xv[a
1+(ar+§)(m)] el
EI z d“a,t 2
S . 1 EAgzg X /a/d) Ag zz: ( fas2 - u) =0
dp Ag dD 2p \m/ dt| gz \ o8+ B+
L+ Z5p =
(A4TDp)
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and, for buckling with a node at each stiffener, .

L+ 2L - d—i%’;’—t(%@)z a3p = O (a48)

Equations (Al6) to (A48) are similar to those into which equations (AlL) of
reference 9 for N = 3 separate. The differences between the equations
of the present paper and those of reference 9 are that, instead of the
flexural-stiffness ratio 7, equations (AL6) contain an effective-
flexural-stiffness ratio

- 2
BT ET EAqz
eff - S + 1 S45 (AHQ)
@ @ Ag ~ '
and equations (A47) contain an effective-flexural-stiffness ratio
ET EI p |
ad D Ay @ .
1 + Z32 (—]_-'E

The stability criterions can be written immedistely from the results of
reference 9 as follows:

For buckling symmetrical about the plate center line with deflection of
the stiffeners,

(&/d) d 0' t
-2 2.
Elg 1 EAgZg” _ e 72D L4 “xt(a/d>2, s
dD Ags ap sin 64 sinh 65 g2p ‘I dt
1+ Z3l'_f —_— =
d 8, 8o
%—5 - cos 91 _1/25 - cosh 62

(A51)
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for buckling antisymmetrical about the plate center line with deflection
of the stiffeners,

5 } (a/df‘/d%xt .
EIS + 1 E.ASzS _ ;12- m J‘[2D + d Uxt(a/d) A__S.

dp dD sinh O sin n dt
1 + Z32 A_S. T_2. _9_1. “2])
dt j 2 _ 61
%; + cosh 65 %? + cos 64
(A52)
and, for buckling with a node at each stiffener,
o
4ot 2
X m 2 a/d
=(F-+0p A53
2o o) (#53)

(P=1’ 2,. . -m)

Plate with three stiffeners.- For a plate with three stiffeners,
three shear forces must be considered:

Along the contact line y = -4,

nx
Fy = Fy, cos — (ASka)
along the contact line y = 0O,
. mrx
F2 = FaIl cos T (A5l|'b)
and, along the contact line y =4,
F3 = Fgp cos IZX (A5k4c)

The middle-surface displacements in the plate at each contact line
are obtalned from the displacement equations for bay 1 and bay 2 derived
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in appendix B (egs. (B13) and (BI4)) by the procedure indicated in the
preceding section as

2 ’ F F F
- lm
(), o= () E(xlm # o)Al gy BB LG %)E_%ZICOB e

(A558a)
Fm
(u2 (m:t) *3m Fat * i 522 mat * >‘3m Eat[°%® 2 (4550)
o, F F F
_ 1 1m om . 1 3m msex
(U.3)y=d = (I—l% E(le - A ETE + X3.m. E-Tt- + é-(klm + sz.)ﬁ co8 T
(A55¢)
where
(" Yimnd 2mnd _ 2mnd o o 2mnd A
TR IT
(3 -p)(1+ u)(cosh z = ) -
2
<[5-2n+p2+20 + u)Q(I%"-@-):lcosh —-a’:‘d - >
2
2(l+p)2%sinh2%ﬁ+ 5 - 2u + pl + 6(1+u)2(2’é‘-‘l)
Mp = 1 mrd —
hoe sinh hn;“d + hn:rd
(A568)
~ “
(3 - w)(1 + p.)(cosh l%ﬁ"' - cosh % - g‘;ﬂ sinh 2";“‘1) +
5 ,
|5 - +pPro+ u)e(m-%d):lcosh' 2o >
, 2
2(1+u)21%‘=sinh@;ﬂ- I:s_ a1+u2+6(1+u)2(mﬂ?d):| |
1 . '
Mo = i o5 -

inh bmnd  hmnd
a a

(A56b)
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( )
(3-u)(l+u)(coshiﬁﬂ-¥sinhm%ﬁ)+[5-2p.+p2+

<
2
h(1 + u)g(m’td)]cosh l-'ig—d -1+ w)? n;;@ sinh 3‘2&’@
An = & Dxd - >
3m ™y a sinn mnd l}m:td hmam
(A56c)
2
1 md (3 - p)(1 + p)cosh == hm’fd + 8(1 + u) (Md) +5- 21 +p°
)')-l-m = =
4 a sinh ltn:ta + hlg.:rd

(A564)

The displacements in the stiffeners are

n=1
(AS5Ta)
ow _ (a 2 Fop mx |, omr s N n mx
usa+zs($)y=o“(ﬁ?€ EASCOBT+?ZS§% sin 5 cos
(A5Tb)

2F
= Bw) (a Z 3n=n micx
Zaf =2 = = ———-COS—+—-Z a j_n._._cos__._.
S(Bx y=a ) S a

(A57c)

+
S3
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The conditions that the contact-line displacements in the plate and in
the stiffeners are equal then can be written as

dt 3 . dt 3 _
B ) EAgZg () mag7g
A F 2
%(le _ )‘Zm)a% _ 3 Z a, sin o (A58a)
(5 eagis =3 '
a

A F A F
7‘3ma% %m - +(1+x4m)-£ _amm3+
(?) EAgzg EAsZs(—a“)
A Fap =

E + %(xm + sz)g—ﬂ———— = i a.n sin 1331 (A58¢c)
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from which are obtained

Fim =% 1+).1,m2—§' zia‘néﬂnn—ﬁ*ﬂin%)—
ute (o e ) el

1 nyx 3oxn
A_ﬁ nz—]_ a.n(sin T sin Tﬂ (A592)

l+x2mdt =
Fon lﬁ% - P 3nx
3 - =- 2n=lan<sm%-+smT)+
(o (oo ) )
1+Am§% zilansmg_g (A59b)
o ) )
T3 =-%- l"'th‘;__% ian<sin%+sin—r)+
(Vo | (1any 28)e vy 28) - 2o, 28)
2A.3m§% 2ilane.inn—z"-+
(ormg)lrmgg)-2bmz)
l+;m2_in2:lan(sin£‘}+—“-sin%"-) (A59¢c)
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After equations (A59) are substituted into equations (A26) the
following groups of equations are obtained:

For buckling symmetrical about the longitudinal center line of the plate,

o (o ey - ool

2

R G e - R

s . )
db 5~
(l + Ay 2‘%)(1 + Myn '2%) - 2(}3'11 %)
L) 1S (e - o) -
ot e .
-a —0  (aboa)
(1 * Mg Q_g)(l ‘g g% (*3m ﬁi)z B L5 (%843 ~ %8s45)

(r=0,1,2, .. .w)

2
b o Y] - Sty -

1 ().m My %)‘2_% EAsasz
dan

+ -

(1 + M 3%)(1 + My 3—18;) - 2(’“31:13?3

%3t (a
d?;_( I/ud) at Z (%8s+1 ~ 28s+7) *

=0  (a60b)
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{l:l T amd d:g;t (ﬁ):} 8r+3 ©

Eﬁ_ , l]_m ; Mim \/53-3!,1) EASEsa )
(l + Mp g%)(l + th.§%> - 2(k3m g%)

20'
dﬁ2; (m) dt:| > (e (28843 = 28s45) "

Mp - A
(120 = M) it - _
2 @ & (®8s+1 = ®8s+7) = ©

(l + le,gg)(L4-th_§%) - 26@%1%%)

(r=0,1,2, ..

2
(0 20m )+ 200 29) - 26 )

d°o.t fa/a)2 P
A@%z%ww+

dt EAgZg® &
S fogs -ty = 0
(1“%2‘%)(1”1@2—5)_2(%2_5)2 3% (°8s+1 = ®8s+7)

(r=0,1, 2

37

(A60c)

. )

(aé0d)

c e w)
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for buckhling antisymmetrical about the longitudinal center line of the
plate,

2

2 -
B i R 0

- 2= 2 o
EAgzg d“oxt a/d\" Ag _
¥ - Ag dp 12; <m > at SZ:(-—) (2gg+2 ~ a8s+6) =0

(A6la)

e (o 2] Bl

- 2 Do
S 1 S xt fa/d Z _
aD - ( ) it | 45 (a8s+2 - 3gge6) = ©
1l + >.2m ==

and, for buckling with a node along each stiffener,

ooy el e

A comparison of equations (A60) and (A6l) with equations “(A4) of
reference 9 indicates that equations (A6l) differ from the corresponding
equations (ALk) only by the substitution of an effective-flexural-
stiffness ratio
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-2
Elerr _ Elg 1 EAgzg
D "D T, kg @ (863)
2m g4

for the flexural-stiffness ratio y. Equations (A60), however, differ
radically from the corresponding equations (Ak) of reference 9 in that
those equations containing deflection-function coefficients of the form
88441 and 388+7 are not independent of those containing deflection-

function coefficients of the form a and a . A single criterion
8s+3 8s+5

for buckling symmetrical about the longitudinal center line of the plate
is thus obtained rather than two criterions corresponding to those of
reference 9. Application of the method of solution of reference 11 and
the results of reference 9 ylelds the following criterions:

7

For buckling symmetrical about the longitudinal center line of the plate,

g, e (apteowo s mge @

_ m D _
dD 2 apo sin @ sinh @
Ag Ag Ag 1 2
(+ 2 ) M z2) - 2ban ) i 7
’ \/—_ - cos 61 ‘J?E - cosh 9o
3 [a%.t
Mm + My 3m>A—s 4 fa/d ~
daﬁxt(ﬁ)z o | L ( 7t B3 EAgZg® (m ) 2p i
«p \m/ dtf|la As Ag 2 dp sinh 65 sin @
Ag sinh 9 sin 6y
(+ a0+ 52) - 20 52) " &
",—-25+ cosh 6 "I—2§+cos 91
2
)"lm - Xj‘un
ot a/a) 5| (e mle o (46
«2p ‘B dat ag n ASz a |
(1 * M _t)(l * Mg Et') . 2(*3m a?)
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for buckling antisymmetrical about the longitudinal center line of the , |
plate, : '

3 |32=
d 4o, t .
. L(EL) x

= m 2= 2
Hs 1 EAgig o 4 Uxt(ﬁ/ d) B (a6s)
* dom g 6, 0y |

and, for buckling with a longitudinal node at each stiffener,

2~ 2
d.O"t_ 2 a/d — ©
]:; _(a% + D _L) (p=1,2, .. .x) (a66)

It is noted that, when 2zg is equal to zero, equation (A6k4) yields

the two stability criterions for symmetrical buckling given in refer-
ence 9, that is, equations (AT) of that reference for §-= % and % = %.

Plate with infinitely many stiffeners.- As the number of stiffeners
is increased the work involved in obtaining stability criterions becomes
greater and the stabllity criterions become very miuch more complex. A
complete investigation of all the possible modes of buckling of a plate
with infinitely many stiffeners is therefore out of the question. The
investigations in this section are limited to that mode of buckling in
which the deflected shape of each bay of the plate is identical with
that of the others, since the numerical results of reference 9 indicate
that this mode of buckling is predominant for a plate with infinitely
many stiffeners. The deflected shape of the plate in the transverse
direction is considered to be of the form shown in figure 5(a), sym-
metrical about the center line of each bay and horizontal tangents at
each stiffener. The equation of the deflection surface can then be
expressed as

o ,
W = sin;ggE E an cos QEﬁy (A67)
n=0

The shear forces induced after buckling are identical at each contact
line and are distributed between adjacent bays of the plate as shown in
figure 5(b), half of the force being applied to one bay and the other
half to the adjacent bay.
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Only part of the buckled plate, the part between the center line
of one bay and the center line of an adjacent bay, need be considered
since the deflected shape is periodic. - The potential energy of this
part of the plate can be written as

a 2 2 V2 2 .2

(%Z')y:o ax (A68)

where F_ is the shear force induced after buckling.

If F is teken in the form

o0

F_=TF_' cos 923 (469)

the displacements um' in the plate at the contact line are derived in
appendix B (see eq. (B20)) as

(3 - w)sinh — ~ (1 + p)— '
(um') - = Z : = M 2 m cos X (A70)

=0 cosh
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and the displacements us' in the stiffener at the contact line are

a

. iy -
ug® + zs(gw)y . = -(ﬁ%) ﬁfg cosg IXX ;? Zg zég cos —55 (ATL)

The condition that these two displacements are equal yields

o)
F.! Zan

n=0

m = (AT2)
d
(mx)3 Z 1 +p (3 - w)sinh == mﬂ - (1 +0)EE a mﬂd AS
=) EAsZs 1+
b " cosh EEQ -1 a dt
a

Substitution of equations (A67) and (AT72) into the potential-energy
expression (eq. (A68)) and minimization of the resultant expression with
respect to the deflectlon-function coefficients a_ then yields

n
the equations

2

1+ hra(éég)2 (l + Bro) = dizgté%éi)z a,. +

=2
EIS + 1 E.A3ZS

mﬂd mxd dD
14 (3 = u)BiI]h (l + IJ-) a mid AS

h cosh EEE -1 a dt

2
d t d A Lo
ﬂg;){(ar/ﬂ)-d%ZOaD=O (r=0,1,2, ... (AT3)
n=

vhere B8,, is the Kronecker delta (BrO =1 if r=0 and 8,,=0
if r £ 0).
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When the method of reference 11 is used to manipulate equa-
tions (A73) and the results of reference 9 are used, the following

stabllity criterion is obtained:

- 2
EIS . 1 EA.SzS _
dD msrd nxd dp
l+l+u(3—“)81nhT—(l+u)Tmn’dﬁS_
4 cosh Eﬂg -1 & 4t
a
L (a/d)3 d.e'axt .
2\m /| a<G. t 2
Ll N

cot % 91 coth —% 62

6y 6o

This equation is, except for the flexural-stiffness ratio 7 being
replaced by an effective-flexural-stiffness ratio

2
Elepr _Elg | 1 EAs?s
dp dp mnd mnd dD
14 Lte (3'”)511311_5_' (l+”)TmﬁdA_S_
b cosh mid -1 & av
a
(AT5)

identical to equation (A7) of reference 9 for i‘% equal to zero.

The terms in the deflection function that yleld the stability
criterion for buckling with longitudinal nodes along each stiffener
have not been included in the investigation of plates with infinitely
many stiffeners. This criterion should be considered, however, and is

glven as before by

2- 2
t
d Ox = <am + p2 En@) (p = l, 2, e o o m) (A76)
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APPENDIX B

MIDDLE-SURFACE FORCES AND DISPLACEMENTS DUE TO SHEAR FORCES
APPLIED ALONG A LONGITUDINAL LINE IN THE PLATE

Plate of Finite Width

Consider a plate subjected to an arbitrarily placed middle-surface
shearing force of the form

mix
F = Fy cos —— (B1)

along the line y =k %. (See fig. 6.) This force divides the plate

into two bays. Within each bay of the plate, middle-surface forces and
displacements are continuous and are related by equations (Al) to (A3).
At the line of application of the shear force, however, middle-surface
shear forces are discontinuous and forces and displacements of the two
bays are related by equations (A5). It is convenient to introduce a
force function ¢J for each bay, such that

o) )
d ¢Jm
Y T T2
Jm dy
2
o9
% im = % 4 (82)
o
* (vj = l: 2)
- 62¢Jm
XY 3m T 3 oy
u
and
v, =0 (3=1, 2) (83)
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These force functions satisfy the equations of equilibrium in each bay
(egs. (Al)) and ensure the compatibility of the strains derived from
the middle-surface forces. Suitable stress functions for the present
problem are )

miy miy mity oy | .. mux
¢jm = (A,jm + —a— Bjm)BiDhT + (C,jm + —a—.— DJm)COBh —a— 8ln T (B)-l-)

From equations (B2) and the stress-strain relations given by equa-
tions (A2) and (A3), the following expressions for the forces and dis-
placements In each bay can be obtained:

For the forces,

_ -, muy . mry
ijm = (A;]m + 2Djm + —a— Bjm)Blnh —a— +

2 -
(Cgm + 283 + B Dy )oosn B |(BT)" 10 X (5
= msy myy
Nyjm = - (Ajm + T Bjm>ﬂinh T +
m 2\ m
(ij + mT:ty Djm)cosh _:Z (I—na—) sin %tx_ ‘ (B5Db)
miy
ny,jm = - (Ajm + Dy + - Bjm)cosh -

cos — (B5c)
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and, for the displacements,

Etug, = - El + p)(AJm + =2 Bjm) + ZDJ;|sinh =L+

El + p)(CJm + n? D'jm) + ?.ngcosh m{%{}%ﬂ cos % (Béea)

BtV = - [El + p)(AJm + Egl Bjm) - (1 - u)DJ;]cosh EEZ +

El 1) (Cgn + T Dy) - (1 - “)Ban]mh ?}DQ—“ sin 22

(B6D)

Rigid body displacements are left out of the expressions for Uim and
Vim since they do not influence the solution of the elasticity problem.

It is seen that the forces and displacements already satisfy some
of the boundary conditions that are imposed. The displacements in the
y-direction and the normal forces vanish at the edges (x = 0 and x = a).

The conditions at the line of application ( = k%) of the shear force

(eas. (A5)) yield the following conditions that must be satisfied by the
unknown coefficients of the stress functions:

kmnb kmrb kmnb kmrb
(Agn - Alm)cosh 5ot (]32[l1 - Blm)( 5, COosh —5— + sinh —— )+
2
Imnb kmnb ik do] mrb _ 7 a
(C2m - Clm)sinh o + (D2m - Dlm)( Pa sinh ——é-g— + cosh E‘) = (H) Fm

(BTa)
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.. Ymrnd ks kmnb
(Aem - Alm)slnh + (B2m - Blm) o ginh o ~+
Janstb ¥mrb kb _
(sz - Clm)cosh 5 + (ng - Dlm)_g’a‘ cosh = - 0 (BTb)
kmsth kmrch kmstb 2 kmxb
(Azm—Alm)sinh—z—a—+(B2m-Blm)(2a ginh o +l+pcosh )+
kmnb kmrnb kmnb 2 kmrb\ _
(Cem-Clm)cosh - +(D2m-Dlm)( 5o cosh S sinh )_o
(BTc)
kmnb - kmnb kmrnb _ 1 -¢ kmnb
(Aem - Alm)cosh 5 (Ban Blm)( e cosh o o ginh oy ) +
kmrtb kmstb kncb 1 -p kmrb\ _
(Can-clm)sinh o +(D2m-Dlm)< e eimh =52 - cosh 5= )_o
(BT4)

From equations (B7) the following equations can be obtained:

2
Sl +pfl -y kmxb  kmxb kmsb\/ a
- A = (l +u cosh o = sinh —a )(mn) Fn (B8a)

1 +p kmnb/ a
Bo - Bl == Tt stnh () (B8b)
1 +ufl -4 ¥mnxb | kmib kmib\/ a
Cop - Cim =~ inh h 2
2n = "lm 7773 (1+p 2a 22 23)( ) Fu (380)
Doy - Dyp = =52 cosn (2 (884)

[N ENSEIPREPE ISR Sl st o - - B
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Four more equations from which the coefficients of the force functions
can be determined are obtained from the conditions at the edges y = b

2
of the plate; that is, the middle-surface forces normal and tangential
to these edges vanish. Then

A, sinh B%D 4 g WD g5y IAD | o cogp BXD 4 p, WAD .o mNbD _
2m 28 2m 2q 2a 2m 2a em o 2a
(B%a)
A, cosh gﬁh + B2m<22b cosh g:b + sinh %fh) +
Cpy sizh n%b + D&n(gb sinh Zb + cosh g-?i) =0 (B9b)
A, sinh BTb _ g BIb gypy Wb _ o ooy Bb y p  mab g mab _ g
Im * 2a 1m 2g 28 1m 2a 1m 2q 2a
(B9c)
. A osh Wb _ g (mub ooy BAb gy MEbY _
Im “%°% o lm(2a op | T" o
C1p sinh 220 o Dlm(z‘%b sizh Z-2 + cosh 2’12:—1’) =0 (B94)

from which are obtained

~ 5 ~
() om i

AL

kmnh mxb mxb kmxb
e Eosh(Z + k)g + cosh(2 - k)g + 2 cosh Ea:l + T

l1-p 2 mab _ o . )i 2 Imsb
14—uE%nh( +k)2a sinh( 1d23 + sum,&i S

2
_l+pra _
A?.‘m + Ay = L (mx) o mxb mxb (B10a)
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2 4+ x)Bob _ )anb
cosh(2 + )2a + cosh(2 k)2a +
‘ 3 -4 kmrb ~ Wonxb kmsth
2 cosh + sinh ——
1+ 2g, 2a 28
2
1l +usa
+ B = - —_ F
Bgm 1m b (mﬁ) - ‘mxtb - mnb
sinh —/ + —=
a
(B1Ob)
M ~
l-p mrh mib
cosh(2 + k)—— + cosh(2 - k)—/2 -
1+ I-LI: ( )2a c ( )za
kmnb kmnb mnb
2 cosh + sinh(2 + k)— -
4 2a 2a ( )23,
\.
sinh(2 - k)BED _ o gipy kmab| .
( Vo o
2
h(@) cosh@
Lemeyo L7 % J
C + C =.:. — F
2m 1m m
4 sinh mxb + mxb
a a
(B1Oc)

sinh(2 + k)F2C - sinh(2 - K)FZ0 -

23-—gsinhkmﬁb_hlnmbcosh1mﬂb
2 1 +p 2a 2a 2a
l+4y
Doy + Dy = (&.) F
m o \mt) Tm mnb  mnb
sinh-a——T

(BLOQ)
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Solution of equations (B8) and (Bl0) then yields
M )
l-p mxth Jviibiqe] mrb 2
2 — k - |2(1 - ondby -
(1+u+>2a coshea (1 k)(za)
QL= #lginy Kob |, lorb cosh(2 - k)20 _ >
1+ 2a
1-¥ sinh(2 - k)mﬂ—b
2 1+p 2g
l+pusa _ J
A = CEE) m b
. sinh myb _ mx
a a
(Blla)
3-p cosh T _
1 +yu 2a
5 2(1 - k)ggﬁ sinh 5%§9 + cosh(2 - k)%gg
B = - ew) E
= 5 — n
sinh nmnb - mnh
a a
(B11lb)
- )
r mnb 2 1l -p kmnb
2 - - - -
(1 k)(2a ) T lcosn X
< (2 L-p, k)mﬂb gipn ub >
1+ 2a 2a
1 -u mab  kmyxb mxb
h(2 - x)BTR _ HD ginn(2 - x)EIR
5 S cosh( )23 55 © ( )23
c. —_LtH a.) P ~
Im =~ mr m
4 sinh me + m:t_a_b

(Bllc)
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and

mnb

1sin.‘r1—+fl-m—b
a

a

51
mih mwb
2(1 - k)— cosh —— -
( )2a cosh —~
3= B ginn KD gypnn(o - k)20
1+p 2g 2a
*m myb  mxb (5114)
sinh —— - —
a a
( N
2
1 - u)mnb kmzb mxb
k-2 cosh -2l+k(—)_
( 1+p/2a 2a [( "z
<i-u sinh kmnb | lausb cosh(2 + k)m——b + >
l+n 2a 2a
l-u : mnb
3 m Binh(2 + k)—gg—
- J
sinh mnb _ mxth
a a
(B12a)
3-¥ cosh I o1 4 k)P gipn KO
l1+p 2a
cosh(2 + k)2t
2a
F
m
gipp 0, mrb
a a
(B12b)
(> )
o \
mib\” _ 1 -p kmxnb
[2(1 +\k)(5—> 3 ;lcosh Tt
1l-u mrtb ( 1-u
osh(2 + k)— + (2 -
Tvp o ( )2a 1+ e
nnb kb |, kmib o " \mrb .
k)—ea sinh St o sinh(2 + k)—2a |
= 2 (Bl2c)
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mxb

kmnb 3-p . kmrb
1+p/a \2 sinh(2+k)—-;-2(1+k)cosh > -1+usmh—2-a—
L (mﬂ) T mxb mxb (B124)
sinh ——-——

Of particular interest are the displacements in the x-direction of

the plate middle surface. These displacements are determined for bay 1
by substituting equations (Bll) into equation (Bba) to obtain

u]EB

1
ginn BB . @b
a a

o|®
}
F_
8
+
[¢]
8
=2
n>
|
|
]
NG
13
4

(3 -1)(1 +n) cosh(2 +

E - 28+ u2 +2(1 + u)z(l - k) (l - gy—)(-—b-)flcoah(z—y- + }:)nl""——b +
E- 2w+ p2 21+ w21 - 1)1+ 2y)(z :Icosh(%y- - b,
(L + u)2gaib|z—b2; - k)sinh(2 + %’- - k)g.%b - (?bz- + k)sinh(Q - bﬂ - k)g‘—fl] -

(3-w)(1 + u)mé“;‘—b ( - % - k)sinh(?bl + k)g:—b - (2 + % - k)sinh(%! - k)gﬂ}},u

ﬁ (3 -p)(1 + p)l:cosh(z + % - k)mnza__b - cosh(2 - -? - k)"c‘a—' +

mxh
sinh - Y

5- 21 +p2 +2(1 + u)2(1 - k)(l - &)(%)ﬂcosh(%r— + k)g‘—jﬂl -
520 + u2 + 2(1 + p.)2(1 - k)(l + thy)(ma%b-)flcosh(—ebl - k)nzl%b- +
(l+p.)2m-2%b- (—2—3"-- k)einh(2+ﬁ- )mzz_b_'_ (-a—y-+k)sinh<2--2—y--k)m2a—b -

b

G- 00+ - 2 orm(® )z

R o

=}
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and for bay 2 by substituting equations (Bl2) into equation (B6a) to
obtain

a a

=[—1  _Js3- AL - B, m
U (gj_nh’l“ﬁ+mﬂ (3 p)(l+p)l}os?1(2+b+k)2a +cosh(2 b+k)28.:|+

) 2
[5 a1+u2+2(1+u)2(1+k)l+ E‘%b:l
)]t

‘l*”a‘““"[“km(eﬁﬂ)ea (- <-b+k>mﬂ+

E 21+ p? +2(l+p)2(l+k)

a?I?,

p=:3
om w2l g a2 - el g
ﬁ (3-u)(1 +p) cosh(2 + %- + k)g‘-%b - coah(z % + k)z‘—fl’:l -
sinh =22 - 22

E- a4+ p2 + 201 + p)2(1 + k)(l + ﬁ)(mﬂ)ﬂcogh(ﬁ + k)g%b- +

l: 2+ p2 4201 4 p.)2(1 + k)(l %)(g‘%b)ﬂcosh(% - )g‘%b +

(3-nr)1+ P)g‘—?i (2 + —2.;!- + k)sinh(zy + ‘k)&b +

(2 - 2—,;"- + k) sinh(% - k)%ﬂ}j % ;—n z—: cos m%.cx (Bll.h)
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Plate With Infinitely Many Stiffeners

For the assumed buckling configuration of a plate with infinitely
many stiffeners, a separate derivation of the middle-surface forces and
displacements must be made. It 1s apparent from considerations of
symmetry that only one-half of a bay of the plate need be considered and
that the conditlons that must be satisfied at the edges of this half-bay
are given by

df\
L t = = =
Nky =V O at y 5

N, ! = L at y =0 (B15)

xy 2 r
vt =0 at y=0
-
The shear force F_, may be expressed as
F, = Fp' cos E§§ (B16)

and the appropriate force function for the half-bay is given by

v 1 Y o nry ) A ny mx
gt = [gAm + = Bm.)sinh — + (Cm + — Dnl)cosh —>~8in — (B17)

which is similar to equation (Bk). Expressions similar to equations (B5)
and (B6) are obtained for middle-surface forces and displacements in the
plate. The substitution of these expressions into equations (Bl5) yields

\ (L +wag' - (1 -wDy' =0 (B18a)

Ayt 4Dt = (1)2 I’ (B18b)

m
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mxd mnd mnd 1 -y mrd
Am'cosh——+Bm( cosh-2—a—-l+usinh§a—)+

matd myd mrnd. l-p mxnd
' ginh — + D '(-——- inh — - h ——) 0 B18
Cn 2a m\5g ° 2a 1+p Co8t > (B18c)

Ap' cosh my;@_ + Byt (m:r cosh &I é'a_ + sinh m?ga—'m> +

md, mnd mnd md \ _
Cp' sinh i Dm'(é—a_ sinh Se T cosh -2?-) =0 (B184)

The solution of these equations for Aj', B;', Cp', and D,' ylelds

JEEETIEI (B192)
A‘m )+ misc m )
1+p mnd./ a )
By' =-—3— coth 7 (mn) Fy' (B19p)
1 - mid _ mnd
I -
Cyt = l;;p. + W a “a (nf,}) Pyt (B19¢)

Dy’ = “(‘%)2 RO (B19)

The displacements along the line of application of the force, which
are of particular interest, are then given by

msd, mnd
1+u(3-u)inh - @ +p)—= _ F

(um') -0 mrx Et 8
y=0 b cosh m_:'_d -1
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Forces and Displacements in the Stiffeners

To each stiffener, forces per unit length of the form
F; = Fypy co8 % (1=1,2,...(N-1)) (B21)

are applied. From equations (A6), the force in the stiffener is related
to the applied shear force by

. :

d_x.:"_-.= imc:os% (i=l,2,...(N—l)) (B22)
in which case

Pi=%1?imsin% (1=1,2, ... (N-1)) (B23)

Constants of integration vanish since each load P; must vanish at the

ends of*the stiffeners. Displacements in the stiffeners are then
obtained from the forces by the use of equations (A8) and (A9), which
yield

2F
ug; = —(ﬁ%) E%g-cos E§§ (i=21,2, ... (N-1)) (B2L)

Constants of integration are omitted since they represent rigid body
motions and have no effect on the problem.
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TAELE I

VARTATION OF Zy, WITH BUCKLE ASPECT RATIO

-1

Zxg
a/a N=2 N =3 N=1U = w
m
qa=1 qg=1 q=2 q=2 §F=0
© 0.500 0.667 0.222 0.375 0. 889
31.416 .505 .672 .228 .381 .892
15.706 .520 .689 .2Lu7 4ol .898
10.472 .545 .T16 .276 437 .909
7.85k4 .579 .55 .318 Rival .92k
6.283 .622 . 799 .370 .532 .94l
5.236 .673 .853 432 .596 .968
4. 488 .T33 .913 .502 .668 . 996
3.927 . 799 .973 5Tk .T48 1.029
3.491 .872 1.047 .667 .832 1.065
3.142 .950 1.119 . 759 .921 1.105
2.513 1,162 1.303 1.007 1.153 1.222
2,094 1.390 1.486 1.269 1.389 1.360
1.795 1.621 1.668 1.535 1.620 1.517
1.571 1.850 1.851 1.796 1.845 1.691
1.257 2.293 2.231 2.292 2.278 2,078
1.047 2.721 2.636 2.755 2.708 2.505
.785 3.578 3.498 3.631 3.570 3.418
.628 4 451 4,403 4. 493 4, hhg k.353
.524 5.335 5.308 5.320 5.334 5.280
.393 7.111 T.104 T7.118 7.111 T7.097
.314 8. 889 8. 889 8. 889 8. 889 8. 886
.209 13.333 13.333 13.333 13.333 13.333
L157 17.778 17.778 17.778 17.778 17.778
. 000 o o © L o
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TABLE IT
VARTIATION WITH BUCKLE ASPECT RATIO OF 7 FUNCTIONS FOR
BUCKLING SYMMETRICAL ABOUT THE LONGITUDINAL CENTER
LINE OF A PLATE WITH THREE STIFFENERS
a/d
'é' T o N3 N 5 | Tg
® 0.021 0.500 0.250 0.354 0.729 0.125
31.416 .031 .519 .260 .353 .T137 .129
15. 706 .079 .572 .289 .351 . 782 J1h1
10.472 .149 657 .337 .348 .845 .160
7.854 .22 .T70 .10oo .343 .928 .185
6.283 .351 .899 A7 .336 1.023 .212
5.236 72 1.039 .559 .327 1.12 .2ho
4.488 . 600 1.181 .651 .316 1.23. .265
3.927 . 729 1.317 .Th2 .301 1.331 .287
3.401 .854 1,442 .834 .283 1.h421 .304
3.142 .976 1.553 .925 .263 1.502 .31k
2.513 1.238 1.771 1.112 .203 1.64L .329
2.094 1.505 1.926 1.361 .138 1.782 .283
1.795 1.739 2.055 1.574 .076 1.890 241
1.571 1.903 2.181 1.789 .022 2.007 .196
1.257 2.396 2.461 2.223 -.053 2.289 .119
1.047 2.876 2. 806 2.668 -.089 2.698 .069
7185 3.665 3.592 3.556 -, 091 3.481 .018
.628 k.514 4,458 b, Ll -.063 4,388 .006
.52k 5.372 5.335 5.333 -.037 5.297 .001
.393 7.121 7.111 7.111 -.010 7.101 .000
.31% 8.891 8.889 8.889 .000 8. 887 .000
.209 13.333 13.333 13.333 .000 13.333 .000
157 17.778 17.778 17.778 .000 17.7718 | .000
.000 o w o .000 o .000
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Ox

Figure l.- Compressed plate with equal and equally spaced longitudinal
stiffeners on one side.
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Figure 2.- Hypothetical extension of stiffeners to contact line.
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Figure 3.- Functions appearing in expression for ei'fective flexural
atiffness of stiffeners.
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njo
o

(2) Shape of deflection surface in y-direction.

(b) Shear forces at contact line.

Figure 5.- Conditions assumed for plate with infinitely many stiffeners.
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Figure 6.- Shear force applied along a longitudinal line within the plate.
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