NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2994

COLUMN STRENGTH OF H-SECTIONS AND SQUARE TUBES
IN POSTBUCKLING RANGE OF COMPONENT PLATES

By P. P. Bijlaard and G. P. Fisher

Cornell University

TECHNICAL NOTE 2994

$\therefore \quad$ COLUMN STRENGTH OF H-SECTIONS AND SQUARE TUBES
IN POSTBUCKLING RANGE OF COMPONENT PLATES
\therefore By P. P. Bijlaard and G. P. Fisher

SUMMARY

The column buckling stress in the range where the component plates have buckled is calculated by the method of split rigidities. For the elastic range simple formulas are derived which explicitly express the column buckling stress in terms of the Euler buckling stress of the column, the plate or local buckling stress, and the local buckling stress for a higher mode of buckling. For the plastic range a Johnson parabola is proposed which in the buckling-stress - slenderness diagram is tangent to the curve for the elastic column buckling stress in the postbuckling range. Also the case of initially crooked columns is considered.

Tests were carried out for a considerable range of slenderness ratios on three H-sections and two square tube sections. The experimental ultimate buckling stresses are in excellent agreement with those predicted by the theory.

INTRODUCTION

The theoretical investigation is primarily concerned with buckling phenomena in the elastic range. The influence of plasticity is taken care of by using an appropriate Johnson parabola.

In the elastic range columns with given cross section and with slenderness ratios for which the column buckling stress (the Euler stress $\sigma_{\mathbb{E}}$) is lower than the plate or local buckling stress $\sigma_{\text {crl }}$ fail by column buckling at the stress σ_{E} (fig. 1). If the slenderness ratio is smaller than that value $(L / r)_{\text {in }}$ in figure 1 at which $\sigma_{E}=\sigma_{\text {crl }}$, local buckling occurs at a stress $\sigma_{\text {crl }}$ independent of the slenderness ratio. It was shown in reference 1 that for the sections considered in this paper, that is, H-sections and square tubes, the interaction between column and local buckling is negligi ible.

In short columns after local buckling, the average compressive stress may still increase considerably above the critical plate buckling stress $\sigma_{\text {crl }}$ before the ultimate stress σ_{u} is reached. For very short columns where, also after the decrease of the rigidity of the column by plate buckling, no column buckling can occur, the ultimate stress σ_{u} will be equal to the crushing strength $\sigma_{c c}$ in figure 1 . For longer columns, but with a slenderness ratio smaller than ($L / r)_{\text {in }}$ in figure 1 , the ultimate stress is smaller than $\sigma_{c c}$ because the local
buckling of the component plate decreases the effective flexural rigidity of the column as a whole, so that the columns fail by column buckling at an average stress σ_{u} smaller than $\sigma_{c c}$.

As an example, a tube with square cross section is considered. At the critical stress $\sigma_{\text {crl }}$, the walls will buckle as plates which are simply supported at the unloaded edges (solid lines in fig. 2(a)). In the postbuckling range, the rigidity of the column against further compression will decrease. This is shown in figure 3, where the average stress $\sigma_{a v}$ is plotted against the unit shortening $\epsilon_{a v}$ of the column. The diagram $O A B$ shows that for average stresses higher than $\sigma_{\text {crl }}$ the modulus $d \sigma_{a v} / d \epsilon_{a v}=\tan \varphi_{1}$ against further compression is smaller than the elastic modulus $E=\tan \varphi_{0}$. For the present case, where the unloaded edges of the plates are free to translate in the lateral direction and are not held straight, it follows from reference 2 that tan $\varphi_{1}=0.41 \mathrm{E}$ (fig. 3). Assume that at an average stress $\sigma_{a v}=\sigma_{u}$ (fig. 3) the effective flexural rigidity of the column has become so small that it begins to buckle in the direction a (fig. 2(a)) as a column. This will generate bending stresses σ_{2} in the column (fig. 2(b)), that is, extra compressive stresses σ_{2} to the right and extra tensile stresses σ_{2} to the left of the axis. The extra compressive stresses to the right will cause deflecting forces $-t \sigma_{2}\left(\partial^{2} / \partial^{2}\right)$ per unit surface (measuring the coordinate x in the direction of the column axis), as indicated by arrows in figure 2(a), which tend to increase the plate deflections W_{l} by amounts w_{2}. The extra tensile stresses σ_{2} to the left cause deflecting forces that diminish the plate deflections w_{l}, as also indicated in figure 2(a). Hence the cross section will tend to assume the dashed form, superimposing deflections w_{2}, as sketched in figure $2(c)$, upon the deflections w_{1}.

In the plates $B C$ and $A D$ the extra stresses σ_{2} are higher than in the plates $A B$ and $D C$. Moreover, with respect to the extra deflections
$B C$ and $A D$ act as plates with widths b, while $A B$ and $D C$ act as plates with widths $A G=G B=D H=H C=b / 2$ (fig. $2(c)$). Hence $B C$ and $A D$ tend to bend out much more than $A B$ and DC, so that the former will be elastically restrained by the latter. If no initial deflections are present, an elastically restrained plate behaves as shown by the diagram ODE in figure 4. The critical stress $\sigma_{\text {cr2 }}$ is higher than $\sigma_{\text {crl }}$ from the diagram $O A B$ in figure 3, while the initial slope angle φ_{2} of the curve $D E$ is larger than φ_{1} in figure 3. However, in the present case there are initial deflections W_{1}. In case of initial deflections, instead of ODE, the diagram of $\sigma_{a v}$ against $\epsilon_{a v}$ of the elastically restrained plate has a shape as shown by the curve OF in figure 4, which is generally similar to the pertinent curve for a simply supported plate (refs. 3 and 4). The curve OF approximates the curve DE asymptotically. Hence, returning to figure 3 , with column buckling at an average stress σ_{u} the average stress $\sigma_{a v}$ in plate $B C$ tends to follow a curve CF, which is similar to part of the curve OF of figure 4 (for the appropriate initial deflection) that passes through C. Also diagram ODE from figure 4 is shown in figure 3 .

In plate $A D$, where during column buckling in the direction a (fig. 2(a)) the average stress decreases, $\sigma_{\text {av }}$ will tend to follow the dashed part CO of curve OF downward. Similar considerations as for the plates $B C$ and $A D$ apply for the parts of the plates $A B$ and $D C$ to the right and to the left of the line GH, respectively.

At point C (fig. 3) the curvature of a typical curve OF will tend to increase with increasing average stress $\sigma_{a v}$ (refs. 3 and 4). Hence the over-all rigidity of the plates, which governs column buckling and which is determined by the slope of curve OF, will be highest at incipient column buckling, where it is determined by the slope angle φ_{3} at point C. For with further buckling the effective modulus for the plates to the right of line GH in figure 2(c), as determined by curve CF, will decrease more than the effective modulus for the plate to the left, as determined by curve CO, increases. Consequently in the postbuckling range the ultimate stress which the column can sustain is the average stress at incipient column buckling.

Similar considerations apply for H-sections buckling in the direction perpendicular to the web. The correctness of these considerations was confirmed by the experiments, described later in this paper, which showed that after incipient buckling the average stress decreases monotonically. To emphasize this point the influence of initial crookedness of the column is considered in a separate section of this paper.

In the theoretical part of the paper the ultimate stress at incipient column buckling is calculated, taking account of the actual shapes of the deflection surfaces w_{1} and w_{2}. Since with incipient buckling the stresses σ_{2} and the deflections w_{2} are infinitely small they are called σ_{2}^{\prime} and w_{2}^{\prime}. Simple formulas are found by the method of split rigidities. Plastic deformation is taken into account by using a Johnson parabola, which in the buckling stress-slenderness diagram is tangent to the curve for the ultimate stress in the elastic region. The experimental results are in excellent agreement with the theory.

The present investigation was carried out at Cornell University under the sponsorship and with the financial assistance of the National Advisory Committee for Aeronautics. The theoretical part was carried out by Professor P. P. Bijlaard and the experimental part was carried out by Professor G. P. Fisher. The project was directed by Professor George Winter.

SYMBOLS

A area of cross section and constant in equation (103)
$A, B \quad$ constants in equations (127); $A=1.183, B=1.844$
$B=b^{1} / b$
$C^{C} C_{1}, C_{2}, C_{3}, C_{4}$
D
E modulus of elasticity
E_{1},eq postbuckling modulus
I moment of inertia
L column or plate length
M bending moment
N
flexural plate rigidity, in particular for walls of tubes
$N_{f} \quad$ flexural rigidity of flange of H-section
constants given by equations (56) and (57) for H-sections and by equations (138) for square tubes

V energy or work

X, Y, Z
coordinate axes
a
half wave length of plate buckling
b
plate width, in particular of flanges of H-sections and of walls of square tubes, and length of web
b^{\prime}
width of web of H-section
c constant in equation (104)
$j \quad$ constant in equation (104)
$k=\frac{84\left(40+\delta_{t} B^{3}\right)}{504+\gamma \delta_{t} B^{5}}$
$k_{f}=b^{2} t_{f} \sigma_{c r_{I}} / \pi^{2} N_{f}$
$\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}, \mathrm{k}_{4}, \mathrm{k}_{5}, \mathrm{k}_{6}$ constants given by equations (129)
$p, q, q_{1} \quad$ parameters in equation (63)
$r \quad$ radius of
$s=\left(\sigma_{c c}-\sigma_{u l}\right) /(L / r)_{1}{ }^{2}$
t plate thickness in general and wall thickness of tubes in particular
w plate deflection
w_{1} plate deflection by local buckling
$W_{2}{ }^{\prime} \quad$ infinitely small plate deflection from second mode of plate buckling superimposed at incipient column buckling
$x, y \quad$ coordinates
$\dot{\alpha}=\sigma_{\text {cr2 }} / \sigma_{\text {crl }}$

$\alpha_{1}, \alpha_{2}, \alpha_{1}{ }^{\prime}, \alpha_{2}{ }^{\prime}$	coefficients defined by equations (86) and (88)
β	ratio between half wave length a and plate width $\mathrm{b}, \mathrm{a} / \mathrm{b}$
β^{\prime}	given by equation (43) for H-section and by equation (131) for square tubes, $w_{2 m} / W_{1 m}$
γ	constant given by equation (30)
δ	stretching of plate in postbuckling range
$\delta_{t}=t_{W} / t_{f}$	
ϵ	plate shortening per unit length
θ	coefficient of restraint given by equation (85)
$\lambda=\pi / a=\pi / b$	
μ	constant given by equation (110)
ρ	radius of curvature of column axis at incipient column buckling
σ	normal stress
$\sigma_{c c}$	crushing strength
$\sigma_{\text {cy }}$	yield stress in compression (0.2-percent offset)
$\varphi_{0}, \varphi_{1}, \varphi_{2}, \varphi_{3}$	slope angles
$\psi=A_{f} / \mathrm{A}$	
,	infinitely small when applied to w and σ
()	uniformly distributed
Subscripts:	
a	asymmetric
av	average

```
    b bending or flexural
    c column
    cc crushing
    clear clear inside dimension
    cr critical
    d
    E
    e
    eq
    f
    h
    i
    in interaction
    k
    2
    m
    O
    out
    r
    S
u
ul
ult
up
w
web
```

```
x
    in X-direction
    in Y-direction
    at local buckling, or in postbuckling range
    at second mode of plate buckling superimposed at
    incipient column buckling
```


THEORETICAL INVESTIGATION

Ultimate Strength of Columns with H-Shaped Cross Sections

Survey of distortions and stress distribution.- First the modes of distortion of a cross section are considered in the postbuckling range, before as well as after column buckling. This distortion, which may be assumed to vary sinusoidally in the X-direction (fig. 5(a)), will involve deflecting forces $-t \sigma_{x} \partial^{2} w / \partial x^{2}$ per unit surface acting transversely on flanges and web, where σ_{x} includes the membrane stresses caused by finite deflections in the postbuckling range. The deflecting forces are held in equilibrium by restraining forces caused by transverse shearing stresses in the component plates. Since these restraining forces do not include the influence of the membrane stresses, they are proportional to the deflections. They may be expressed in terms of the local buckling stress $\sigma_{\text {crl }}$ of the cross section and of the local buckling stress σ_{cr} ? for the mode of buckling of the cross section which is superimposed with incipient column buckling. In order to be able to take account more accurately of the form of the deflection surfaces of the plates, the deflecting and restraining forces are not compared directly, but the work done by these forces is compared.

This leads to two equations referring to the postbuckling range before and after incipient column buckling, respectively. These two equations have general validity and hence they apply for square tubes as well. After the variables in these equations have been expressed in terms of the maximum deflections and of the abscissas of the pertinent points of the cross section, the equations lead to an explicit formula for the ultimate stress in the elastic range.

An H-section of effective length L is considered (fig. 5(a)). Its cross section is given in figure $5(\mathrm{~b})$. With equal effective length for buckling in the Y- and Z-directions, for the H-sections considered and used in the tests column buckling will occur in a direction perpendicular to the plane of the web.

At the local buckling stress $\sigma_{\text {crl }}$ the cross section at the crest of the local buckling waves in the X-direction will distort as shown in figure 5(b). The stress $\sigma_{\text {crl }}$ and the half wave length a of local buckling follow from the theory of buckling of plate assemblies (refs. 5 and 6) and the pertinent tables (ref. 7) and graphs (ref. 8). The local buckling stress may be expressed as

$$
\begin{equation*}
\sigma_{c r l}=k_{f} \frac{\pi^{2} N_{f}}{b^{2} t_{f}} \tag{1}
\end{equation*}
$$

where \mathbb{N}_{f} is the flexural rigidity of the flanges and b and t_{f} are indicated in figure 5(b).

With further increase of the compressive force the deflections $W_{l f}$ and $W_{l w}$ of the cross section will increase until at a certain load the flexural rigidity of the column as a whole has become so small that it will fail by column buckling. At this load the stress distribution in the flanges, just before column buckling, is given in figure 5(c). The maximum stress σ_{m} occurs at the line of intersection of flanges and web, which remains straight. (From ref. 1, interaction between column and local buckling can be neglected.) In other points of the flanges (and in the web) the compressive stress σ_{l} is less than σ_{m} because of the superimposed membrane tensile stresses owing to the deflections $W_{\text {lf }}\left(\right.$ and $\left.W_{l w}\right)$. All these stresses refer to the stresses σ_{x} in the midale plane of the plates, so that they do not contain the plate bending stresses caused by the deflections $W_{l f}$ and $w_{l w}$.

With incipient column buckling infinitely small stresses σ_{2}^{\prime} are superimposed upon the stresses σ_{1} in the flanges. If no additional deflections of the flanges would accompany the column buckling, these extra stresses σ_{2}^{\prime} would show a linear distribution (fig. 5(e)). Assuming column buckling in the direction of the arrow a in figure $5(d)$, with a radius of curvature ρ of the column, the extra stresses at the free edges of the flanges would be Eb/p (fig. 5(e)).

However, the extra compressive stresses $\sigma_{2}{ }^{\prime}$ in the right flange will cause extra deflecting forces. These will increase the flange deflection by an infinitely small amount $w_{2}{ }^{\prime}$ (fig. 5(d)), with the same wave length in the X-direction as that of $W_{1 f}$. At the same time
the extra tensile stresses $\sigma_{2}{ }^{\prime}$ in the left flange decrease its deflection by an infinitely small amount W_{2} '. Since W_{2} ' is infinitely small with respect to $W_{1 f}$, it is evident that with equal bending stresses σ_{2} ' in the right and left flange, the extra deflections w_{2} ' of both flanges are equal. Moreover, the extra deflections w_{2} cause a change in the deflecting forces due to the original compressive stresses σ_{1}. This will again increase W_{2} ' for the right and left flange by equal amounts. Hence the deflections W_{2} ' caused by column buckling are symmetrical with respect to the intersection 0 of flange and web (figs. 5(d) and 5(f)). Thus also the membrane tensile stresses caused by the extra deflections W_{2} ' of the right flange are equal to the membrane compressive stresses caused by the extra deflections W_{2} ' of the left flange. These membrane stresses diminish the column bending stresses Ey/ p in the right and left flange by equal amounts, so that the remaining extra compressive stresses $\sigma_{2}{ }^{\prime}$ in the right flange are equal to the remaining extra tensile stresses σ_{2} ' in the left flange, as was assumed above.

The extra deflection W_{2} ' of the flange, being symmetrical with respect to point 0 (fig. 5(f)), is practically similar to the deflection of a flange clamped at one unloaded side and free at the other which buckles in pure compression. The buckling stress of such a flange is, from reference 9,

$$
\begin{equation*}
\sigma_{\mathrm{cr} 2}=\left[\left(\frac{1}{\beta^{2}}\right)+0.57+0.125 \beta^{2}\right] \frac{\pi^{2} \mathrm{~N}_{f}}{\mathrm{~b}^{2} \mathrm{t}_{\mathrm{f}}} \tag{2}
\end{equation*}
$$

where $\beta=a / b$ and a is the half wave length of buckles. In the present case this half wave length is the same as that of the original local buckles which occurred at the local buckling stress $\sigma_{\text {crl }}$ from equation (1). This similarity will be used in calculating the restraining forces caused by the extra deflections w_{2} '.

The extra deflections W_{2} ' of the flanges do not involve any rotation in the line of intersection 0 of web and flanges. Moreover, since with incipient column buckling the extra stresses $\sigma_{2}{ }^{\prime}$ are symmetrical with respect to 0 , there will not occur any extra stresses σ_{2}^{\prime} in the
web, so that they do not cause extra deflecting forces there. However, extra deflecting forces will work on elements of the web owing to the curvature $1 / \rho$ of the column, with a half wave length equal to the column length L. But since the web has buckled in many small half waves, the deflecting forces by this curvature $1 / \rho$ will tend to increase the deflection of one half wave and to decrease that of the adjacent ones, so that they will not affect the average deflections of the web buckling mode ${ }^{W_{l w}}$ (figs. 5(b) and 5(d)).

Derivation of energy equations by method of split rigidities.- To determine the average buckling stress $\sigma_{a v}$ of the column the method of split rigidities will be used. The principles of this method were explained in earlier papers, of which some of the earliest and latest are given as references 1, 4, 10, ll, and 12.

With this method equations are established that express the equilibrium between the deflecting and resisting actions during buckling, as explained in a generalized form in reference 1, pages 19 and 20. If the deflecting forces $-t \sigma_{x}\left(\partial^{2} W / \partial x^{2}\right) d x$ dy caused by the compressive forces $t \sigma_{x} d x d y$ acting on elements $t d x d y$ have to be compared for two different modes of deflection for which their distributions in the Y-direction are different (in the X-direction, as sketched in fig. 5(a), all modes and deflecting forces have the same sine distribution), not the deflecting forces themselves, but their influences on the considered deflection have to be compared.

In reference l these influences, expressed by the coefficients \varnothing and γ, affected only the decrease of the column or plate buckling stress by the interaction with plate or column buckling, respectively, which itself was a small fraction of the actual buckling stress (compare eqs. (74) and (75) of ref. 1). Therefore these influences could sufficiently accurately be estimated by simple means.

In the present case more intricate modes of deflection occur, especially in the case of square tubes. Moreover the influence of the actual form of the different modes is here somewhat larger than in the case of reference l. Therefore a more rigorous method will be used in determining the relative influences of differently distributed deflecting forces; they will be determined by comparing the work done by them during the pertinent deflections, as was proposed in reference 4.

First, the postbuckling stage of the plate-buckling process is considered (fig. 5(b)). At the critical stress $\sigma_{\text {crl }}$ known from equation (l) flanges and web begin to buckle. With increased load further
buckling occurs. This induces membrane stresses, so that the compressive stress $\sigma_{\text {lf }}$ in the flanges will vary in the Y-direction (fig. 5(c)). The flange deflection $W_{l f} \sin (\pi x / a)$ causes deflecting forces

$$
\begin{align*}
D_{l} & =-t_{f} \sigma_{l f} \frac{\partial^{2}}{\partial x^{2}} w_{l f} \sin \left(\frac{\pi}{a} x\right) d x d y \\
& =\frac{\pi^{2}}{a^{2}} t_{f} \sigma_{l f^{W}} W_{l f} \sin \left(\frac{\pi}{a} x\right) d x d y \tag{3}
\end{align*}
$$

A difficulty in determining the work done by these deflecting forces during buckling seems to be that during this process $\sigma_{l f}$ changes, so that the deflecting forces at a certain point do not increase linearly with the deflection. This difficulty may be solved, however, by observing that the resulting deformation of the flange will be the same as if the deflecting forces had increased linearly with the deflections $W_{l f} \sin (\pi x / a)$ and hence, at any point, $\sigma_{l f}$ had been equal to its final value after the deflection $W_{\text {If }} \sin (\pi x / a)$ (figs. 6(a) and 6(b)). This is evident because in that case the resulting deflection and the internal work would be the same as in the actual case. Hence the total work during the deflection $\mathrm{w}_{1 f} \sin (\pi x / a)$ exerted by the deflecting forces, for example, on a length of the right flange equal to the half wave length a of buckles, is

$$
\begin{align*}
\left(V_{l d f}\right)_{h} & =\frac{1}{2} \int_{0}^{a} \int_{0}^{b} D_{1} W_{l f} \sin \left(\frac{\pi}{a} x\right) \\
& =\frac{1}{2} \frac{\pi^{2}}{a^{2}} t_{f} \int_{0}^{a} \int_{0}^{b} \sigma_{1 f^{W}}{ }_{l f}{ }^{2} \sin ^{2}\left(\frac{\pi}{a} x\right) d x d y \\
& =\frac{1}{2} \frac{\pi^{2}}{2 a} t_{f} \int_{0}^{b} \sigma_{1 f^{W}}{ }^{\mathrm{W}}{ }^{2} d y \\
& =\frac{1}{2} C_{1} t_{f} \int_{0}^{b} \sigma_{1 f^{W}} W_{1 f}^{2} d y \tag{4}
\end{align*}
$$

where the subscript h indicates half wave length and where C_{l} is a constant.

In all cases that have to be considered the deflecting forces and deflections vary sinusoidally in the X-direction with the same half wave length a. Hence it is sufficient to consider the work done on an element of unit length in the X-direction at the crest of the waves only. From equation (3) the deflecting force exerted on an element dy of such a strip may be denoted as $C t_{f} \sigma_{l f^{W}}{ }_{l f} d y$, where $C=\pi^{2} / a^{2}$ is a constant. The total work during the deflection ${ }^{W} l f$ is then

$$
\begin{equation*}
V_{l d f}=\frac{1}{2} C t_{f} \int_{0}^{b} \sigma_{l f^{W} l f^{2}} d y \tag{5}
\end{equation*}
$$

analogous to equation (4).
The same explanation applies to the web, if also the work by membrane stresses σ_{y} in the Y_{W}-direction (fig. 5(b)) is considered. This work can be calculated by assuming a total equivalent stress ($\sigma_{\text {lw }}$) eq in the X-direction, which includes the influence of these membrane stresses σ_{y}. In the flange these stresses σ_{y} are practically zero. Hence for the entire cross section the work of the deflecting forces is

$$
\begin{equation*}
\mathrm{v}_{\mathrm{ld}}=\frac{1}{2} \mathrm{c} \oint \mathrm{t}\left(\sigma_{1}\right)_{\mathrm{eq}} \mathrm{w}_{1}^{2} \mathrm{dy}_{1} \tag{6}
\end{equation*}
$$

where the sign \oint means that the integral has to be extended along the entire cross section of the column (so that, in considering the web, t is the thickness t_{W} of the web, and y_{1} is the coordinate y_{W}). In calculating the work $V_{1 d}$, the influence of the membrane stresses was taken into account in determining the deflecting forces.. Hence the work $\mathrm{V}_{l d}$ is transformed exclusively into bending energy of the plate, that is, without any stretching energy. In the considered initial stage of postbuckling the shape of the deflection surface may be assumed to remain similar to that at incipient buckling. It was shown in reference 4 that, in the case of a compressed plate that is simply supported at the unloaded edges, such an assumption leads to practically exact results. Hence the required bending energy for the finite deflections involved is determined by the same equations that apply for the infinitely small deflections occurring at incipient buckling. Analogous to equation (6), at incipient buckling the work done by the deflecting
forces, and hence the bending energy required for the deflections w_{1}, may be expressed as

$$
\begin{equation*}
\mathrm{v}_{\mathrm{lb}}=\frac{1}{2} C \sigma_{\mathrm{crl}} \oint_{\mathrm{tw}_{1}}^{2} d \mathrm{y}_{\mathrm{l}} \tag{7}
\end{equation*}
$$

where σ_{crl} is the local buckling stress from equation (1). As explained above, this same equation obtains for the finite deflections considered here. Hence $V_{l d}$ from equation 6 should be equal to $V_{l b}$ from equation (7), so that

$$
\begin{equation*}
\oint_{\mathrm{t}\left(\sigma_{1}\right) \mathrm{eq}} \mathrm{w}_{1}^{2} \mathrm{dy}_{1}=\sigma_{\mathrm{crl}} \oint_{\mathrm{tw}_{1}}^{2} \mathrm{dy}_{1} \tag{8}
\end{equation*}
$$

The subsequent column buckling will be considered next. As explained above, it induces extra flange deflections W_{2} ' and no extra web deflections. The deflections $\mathrm{w}_{2}{ }^{\prime}$ are symmetrical with respect to the plane of the web and are similar to those of a compressed flange with one unloaded side clamped and the other free, as illustrated in figure 5(f), for which the critical stress $\sigma_{\text {cr2 }}$ is given by equation (2). Analogcus to equation (7) the flexural energy required for the deflections $W_{2}{ }^{\prime}$ may be expressed as

$$
\begin{equation*}
v_{2 b}=\frac{1}{2} \operatorname{co} \sigma_{c r 2} \oint t\left(w_{2}^{\prime}\right)^{2} d y_{1} \tag{9}
\end{equation*}
$$

This integral extends over the flanges only, since for the web $W_{2}^{\prime}=0$.
The best way to explain how the work done by the deflecting forces during the actual deflection W_{2}^{\prime} of the flanges is calculated seems to be to show first how the total deflecting forces acting on the flanges develop - or may be assumed to develop - with increasing crest deflections $W_{\text {lf }}$ and W_{2} '. Figure 6(a) shows how the compressive stress (averaged over the flange thickness) at a certain point of the right flange develops. As stated above, during the deflection ${ }^{W}{ }_{l f}$ it may be assumed to remain constant. Hence at the crest of the waves it develops a deflecting force which increases linearly with ${ }_{\text {w }}$ lf with
a final value $C_{f} \sigma_{l f}{ }^{W}{ }_{l f}$, as indicated in figures $5(\mathrm{~d})$ and 6(b). The column buckling stresses σ_{2}^{\prime} as well as the extra deflections w_{2}^{\prime} are proportional to the infinitely small column deflections, so that $\sigma_{2}{ }^{\prime}$ increases linearly with $w_{2}{ }^{\prime}$ (fig. 6(a)). The deflections $w_{2}{ }^{\prime}$ with the same half wave length a as ${ }^{W}$ lf cause an increase of the deflecting forces by the stresses $\sigma_{1 f}$ of a final amount ${C t_{f} \sigma_{l f} W_{2}}^{\prime}$ (fig. 5(d)), increasing linearly with w_{2}^{\prime} (fig. 6(b)). The extra stresses $\sigma_{2}{ }^{\prime}$ increase the deflecting forces by an amount $C t_{f} \sigma_{2}{ }^{\prime}\left(w_{l f}+w_{2}{ }^{\prime}\right)$ (figs. 5(d) and 6(b)). The part $\mathrm{Ct}_{f} \sigma_{2}{ }^{\prime} \mathrm{w}_{\text {lf }}$ increases linearly with w_{2} ', while the part $\mathrm{Ct}_{\mathrm{f}} \mathrm{\sigma}_{2}{ }^{\prime} \mathrm{w}_{2}$ ' increases proportionally to $\left(\mathrm{w}_{2}{ }^{\prime}\right)^{2}$ (fig. 6(b)). Since both σ_{2}^{\prime} and W_{2}^{\prime} are infinitely small, this last term may be neglected with respect to the first one.

With deflecting forces D and deflections w the total work done by the deflecting forces is $\int_{0}^{w} D$ dw. Hence it is given by the hatched area of the diagram for the deflecting forces in figure 6(b), so that for an element of the right flange at the crest of the wave and of unit length in the X-direction this work is

$$
\begin{equation*}
V_{d r}=\frac{1}{2} C t_{f} \int_{0}^{b} \sigma_{l f}\left(w_{l f}+w_{2}\right)^{2} d y+\frac{1}{2} C t_{f} \int_{0}^{b} \sigma_{2}^{\prime} w_{l f} w_{2}{ }^{\prime} d y \tag{10}
\end{equation*}
$$

In the left flange, the extra stresses σ_{2}^{\prime}. (fig. 5(e)) are opposite to the stresses $\sigma_{l f}$ (fig. $5(c)$) and W_{2}^{\prime} is opposite to $W_{l f}$ (fig. 5(d)), so that the stresses vary with the deflection as indicated in figure 6(c). After reaching a value $\mathrm{Ct}_{f}{ }^{\sigma_{l f}}{ }^{W}{ }_{l f}$ just before column buckling, with a deflection ${ }^{W}$ lf, the deflecting force caused by the stresses $\sigma_{\text {lf }}$ will decrease by an amount $\mathrm{Ct}_{f} \sigma_{1 f_{2}}{ }^{\prime}$ (figs. 5(d) and 6(d)). The extra tensile stresses $\sigma_{2}{ }^{\prime}$ decrease the deflecting force by an amount $C t_{f} \sigma_{2}{ }^{\prime}\left(W_{l f}-W_{2}{ }^{\prime}\right)$. For similar reasons as given for the right flange, $C t_{f} \sigma_{l f} W_{2}$ ' and $C t_{f} \sigma_{2}{ }^{\prime} W_{1}$ decrease here linearly with the deflection, while the term $\mathrm{Ct}_{f} \sigma_{2}{ }^{\prime} \mathrm{w}_{2}$ ' may be neglected. Hence from figure 6(d) the
total work done by the deflecting forces, as given by the hatched area, is (fig. 5(d))

$$
\begin{equation*}
V_{d l}=\frac{1}{2} C t_{f} \int_{0}^{b} \sigma_{l f}\left(w_{l f}-w_{2}\right)^{2} d y^{\prime}+\frac{1}{2} C t_{f} \int_{0}^{b} \sigma_{2}^{\prime} w_{l f^{\prime}} w_{2}^{\prime} d y^{\prime} \tag{11}
\end{equation*}
$$

During incipient buckling the web does not undergo extra deflections w_{2} ', so that the total work for the web is (fig. 5(d))

$$
\begin{equation*}
v_{d w}=\frac{2}{2} C t_{w} \int_{0}^{b}{ }^{b^{\prime} / 2}\left(\sigma_{l w}\right)_{e q} w_{l w}^{2} d y_{W} \tag{12}
\end{equation*}
$$

Here $\left(\sigma_{\text {lw }}\right)_{\text {eq }}$ is inserted instead of $\sigma_{l w}$ to take account of membrane stresses σ_{y} in the web. Hence, for the entire section, the total work by the deflecting forces is

$$
\begin{align*}
\mathrm{V}_{\mathrm{d}} & =2 \mathrm{~V}_{\mathrm{dr}}+2 \mathrm{~V}_{\mathrm{d} l}+\mathrm{V}_{\mathrm{dw}} \\
& =\frac{1}{2} \mathrm{c} \oint \mathrm{t}\left[\left(\sigma_{1}\right)_{e} \mathrm{w}_{1}^{2} d y_{1}+\sigma_{1}\left(\mathrm{w}_{2}^{\prime}\right)^{2} \mathrm{dy}_{1}+\sigma_{2}^{\prime} \mathrm{w}_{1} \mathrm{w}_{2}^{\prime} \mathrm{dy}_{1}\right] \tag{13}
\end{align*}
$$

where \oint, t, and y_{1} have the same meaning as in equation (6).
As stated above, the bending energy required for the deflections W_{l} and w_{2} ' is given by V_{lb} and $\mathrm{V}_{2 \mathrm{~b}}$ from equations (7) and (9). It could be argued that in the present case the extra energy required for the extra deflections W_{2} ' may differ from $V_{2 b}$ in equation (9) because the stresses which were caused by the deflections W_{l} may do some work during the extra deflections w_{2} '. Indeed, in the right flange, where $W_{2}{ }^{\prime}$ is of the same sign as W_{1}, some stress components may do work during the extra deflections $w_{2}{ }^{\prime}$. But in the left flange $w_{2}{ }^{\prime}$ has a direction opposite to W_{l}, so that the same stress components will do
there an equal and opposite amount of work. Hence the total work done by these stresses is zero, so that indeed V_{d} from equation (13) must be equal to the sum of $V_{l b}$ and $V_{2 b}$ from equations (7) and (9). This yields

$$
\begin{align*}
& \left.\oint_{t}\left(\sigma_{1}\right)_{e q}{ }_{w_{1}}^{2} d y_{1}+\oint_{t \sigma_{1}\left(w_{2}\right.}\right)^{2} d y_{1}+\oint_{t \sigma_{2} w_{1} w_{2}} d y_{1}= \\
& \sigma_{\mathrm{crl}} \oint_{\mathrm{tw}}^{1} \tag{14}\\
& 2 \\
& d y_{1}
\end{align*}+\sigma_{\mathrm{cr} 2} \oint_{\left.\mathrm{t}\left(\mathrm{w}_{2}\right)^{\prime}\right)^{2} d y_{1}}
$$

Subtracting equation (8) from equation (14) leads to the following basic condition:

$$
\begin{equation*}
\oint t \sigma_{1}\left(w_{2}^{\prime}\right)^{2} d y_{1}+\oint t \sigma_{2}{ }^{\prime} w_{1} w_{2}^{\prime} d y_{1}=\sigma_{c r 2} \oint t\left(w_{2}\right)^{2} d y_{1} \tag{15}
\end{equation*}
$$

Derivations of formulas for stresses σ_{1} and σ_{2}^{\prime}.- The variables in equations (8) and (15) may be expressed in terms of the maximum deflections ${ }^{W}{ }_{1 m}$ and $W_{2 m}{ }^{\prime}$ (fig. 5(d)) and the abscissas of the pertinent points to which they refer. The stress $\sigma_{l f}$ in the flanges differs from σ_{m} at $y=0$ because of the stretching of the flange in the X-direction by its deflection $W_{l f}$. Although the flanges are rotationally restrained by the web, during local buckling they practically do not bend in the Y-direction, as is substantiated by tests, so that the deflection $W_{\text {lf }}$ (fig. 5(b)) may be expressed as

$$
\begin{equation*}
\mathrm{w}_{1}=\mathrm{w}_{l f} \sin \left(\frac{\pi}{a} x\right) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
{ }^{w_{l f}}=w_{l m} \frac{\mathrm{y}}{\mathrm{~b}} \tag{17}
\end{equation*}
$$

Hence for a half wave length the dilatation is

$$
\begin{align*}
8 & =\frac{1}{2} \int_{0}^{a}\left(\frac{\partial w}{\partial x}\right)^{2} d x \\
& =\frac{1}{2} \int_{0}^{a} \frac{\pi^{2}}{a^{2}} w f^{2} \cos ^{2} \frac{\pi}{a} x \\
& =\frac{\pi^{2}}{4 a} w_{1 f^{2}}^{2} \tag{18}
\end{align*}
$$

so that the stress $\sigma_{\text {lf }}$ at any point of the flanges (fig. 5(c)) is

$$
\begin{align*}
\sigma_{l f} & =\sigma_{m}-\frac{E \delta}{a} \\
& =\sigma_{m}-\frac{\pi^{2} E}{4 a^{2}} w_{1 f} f^{2} \tag{19}
\end{align*}
$$

In the same way the compressive stress in the web is

$$
\begin{equation*}
\sigma_{l w}=\sigma_{m}-\frac{\pi^{2} E}{4 a^{2}} w_{l w}^{2} \tag{20}
\end{equation*}
$$

Both equations (19) and (20) neglect the influence of membrane stresses σ_{y} and assume that σ_{1} does not vary in the X-direction. For the flanges the membrane stresses σ_{y} are indeed negligible. Moreover it was shown in reference 4 that for a web plate which is simply supported and held straight at the unloaded edges the above assumption leads to exact results. Hence it may be assumed that for the present case also equation (20) is sufficiently accurate.

However, to calculate the total work, the membrane stresses σ_{y} in the web should be taken into account. At the unloaded edges $y_{w}= \pm b^{1} / 2$
of the web the membrane stresses σ_{y} vanish. According to reference 2 for such a case, if the plate is simply supported at the unloaded edges, in the postbuckling range the stiffness against further compression is 0.41 times that before buckling, which may be expressed by the formula

$$
\begin{equation*}
\sigma_{\mathrm{av}}=\sigma_{\mathrm{cr}}+0.41 \mathrm{E}\left(\epsilon_{\mathrm{x}}-\epsilon_{\mathrm{cr}}\right) \tag{21}
\end{equation*}
$$

where $\sigma_{\text {av }}$ is the average compressive stress $\sigma_{x}, \sigma_{c r}$ is the critical stress, ϵ_{X} is the shortening of the plate per unit length, and $\epsilon_{c r}=\sigma_{c r} / E$. Since at the unloaded edges the plate does not bend, $\epsilon_{\mathrm{x}}=\sigma_{\mathrm{m}} / E$, where σ_{m} is the maximum edge compressive stress (fig. 7). Insertion in equation (21) gives

$$
\begin{equation*}
\sigma_{\mathrm{av}}=\sigma_{\mathrm{cr}}+0.41\left(\sigma_{\mathrm{m}}-\sigma_{\mathrm{cr}}\right) \tag{22}
\end{equation*}
$$

It was shown in reference 4 that for membrane stresses σ_{x} with a distribution (fig. 7)

$$
\begin{equation*}
\sigma_{\mathrm{xm}}=\sigma_{\mathrm{om}} \cos ^{2} \frac{\pi}{\mathrm{~b}} \mathrm{y}_{\mathrm{w}} \tag{23}
\end{equation*}
$$

their effect upon the buckling deflections of the plate is equivalent to that of uniformly distributed stresses

$$
\begin{equation*}
\bar{\sigma}_{\mathrm{x}, \mathrm{eq}}=0.75 \sigma_{\mathrm{om}} \tag{24}
\end{equation*}
$$

It may be assumed that equation (23) gives the distribution of the membrane stresses $\sigma_{x m}$ also in the present case. Moreover, let the influence of all membrane stresses $\sigma_{x m}$ and $\sigma_{y m}$ be equivalent to that of equally distributed stresses

$$
\begin{equation*}
\sigma_{\mathrm{x}, \mathrm{eq}}=\alpha \sigma_{\mathrm{om}} \tag{25}
\end{equation*}
$$

Hence, according to the reasoning advanced in reference 4, the total equivalent compressive stress $\sigma_{\mathrm{x}}=\sigma_{\mathrm{m}}-\alpha \sigma_{o m}$ must be equal to the critical stress, or

$$
\begin{equation*}
\sigma_{\mathrm{m}}-\alpha \sigma_{\mathrm{om}}=\sigma_{\mathrm{cr}} \tag{26}
\end{equation*}
$$

so that

$$
\begin{equation*}
\alpha=\frac{\sigma_{\mathrm{m}}-\sigma_{\mathrm{cr}}}{\sigma_{\mathrm{om}}} \tag{27}
\end{equation*}
$$

Observing that with the stress distribution from equation (23) $\sigma_{\text {om }}=2\left(\sigma_{m}-\sigma_{\text {av }}\right)$ in figure 7 and using equation (22), it follows from equations (25) and (27) that

$$
\begin{equation*}
\sigma_{x, e q}=0.848 \sigma_{o m} \tag{28}
\end{equation*}
$$

From equation (24) the equivalent stress $\bar{\sigma}_{\mathrm{x} \text {, eq }}$ for membrane stresses σ_{xm} only is $0.75 \sigma_{\mathrm{om}}$, so that the membrane stresses $\sigma_{y m}$ may be taken into account, in calculating the total work, by assuming equivalent membrane stresses

$$
\begin{equation*}
\left(\sigma_{\mathrm{xm}}\right)_{\mathrm{eq}}=\frac{0.848}{0.750} \sigma_{\mathrm{xm}}=\gamma \sigma_{\mathrm{xm}} \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=1.13 \tag{30}
\end{equation*}
$$

Hence in calculating the total work the stresses in the web should be assumed as

$$
\begin{equation*}
\left(\sigma_{1 w}\right)_{e q}=\sigma_{m}-\gamma \frac{\pi^{2} E}{4 a^{2}} w_{l w}^{2} \tag{31}
\end{equation*}
$$

instead of $\sigma_{l w}$ from equation (20).

For a column deflection in the direction a (fig. 5(d)), with a radius of curvature ρ the bending stresses in a nondistorted section would be Ey/p. However, the excess flange deflections $\mathrm{w}_{2}{ }^{\prime}$ (fig. 5(d)) generate excess membrane stresses $\sigma_{\mathrm{xm}}{ }^{\prime}$. Analogous to equation (19) and considering that W_{2} ' is infinitely small, this leads to actual stresses (fig. 5(e)):

$$
\begin{equation*}
\sigma_{2}^{\prime}=\frac{E}{\rho} y-\frac{\pi^{2} E}{4 a^{2}}\left[\left(w_{l f}+w_{2}^{\prime}\right)^{2}-w_{1 f^{2}}\right]=\frac{E}{\rho} y-\frac{\pi^{2} E}{2 a^{2}} w_{l f^{w}} w_{2}^{\prime} \tag{32}
\end{equation*}
$$

As shown in the section entitled "Survey of distortions and stress distribution," the column deflection does not introduce any excess stresses in the web, so that for the web $\sigma_{2}{ }^{\prime}=0$.

Derivation of formulas for deflections.- After formulas for the stresses σ_{1} and $\sigma_{2}{ }^{\prime}$ have been derived, the deflections w_{1} and w_{2} have yet to be expressed in terms of the maximum deflections $\mathrm{w}_{1 \mathrm{~m}}$ and 'W2m' (fig. 5(d)) and of the abscissas of the pertinent points considered. The flange deflection $W_{l f}$ is given by equation (17). The web is bent by moments M_{y} exerted by the flanges and may sufficiently accurately be assumed to bend parabolically in the Y_{W}-direction. Hence from figure 5(d) at the crest of the waves the maximum web deflection is

$$
\begin{equation*}
w_{0}=\frac{b^{\prime} w_{1 m}}{4 b} \tag{33}
\end{equation*}
$$

so that the web deflection

$$
\begin{equation*}
\mathrm{w}_{1 \mathrm{w}}=\mathrm{w}_{0}\left[1-\frac{4 \mathrm{y}_{\mathrm{w}}^{2}}{\left(\mathrm{~b}^{\prime}\right)^{2}}\right]=\frac{\mathrm{b}^{\prime} \mathrm{w}_{1 \mathrm{~m}}}{4 \mathrm{~b}}\left[1-\frac{4 \mathrm{y}_{\mathrm{w}}^{2}}{\left(\mathrm{~b}^{\prime}\right)^{2}}\right] \tag{34}
\end{equation*}
$$

The flange deflection $W_{2}{ }^{\prime}$ is similar to that of a fully clamped flange. Analogous to equation (15b) of reference l it will be assumed as

$$
\begin{equation*}
w_{2}{ }^{\prime}=w_{2 m} \cdot \frac{y^{4}-4 b y^{3}+6 b^{2} y^{2}}{3 b^{4}} \tag{35}
\end{equation*}
$$

As explained above, for the web $\mathrm{w}_{2}{ }^{\prime}=0$.

Energy equations.- Equations (17), (19), (31), (32), (34), and (35) express all variables of the basic equations (8) and (15) in terms of the maximum deflections $W_{l m}$ and $W_{2 m}$ ', the maximum stress σ_{m}, the half wave length a of local buckling, the plate and web widths b and b^{\prime}, and the coordinates y and y_{W} (figs. 5(c), 5(d), and 5(e)). Using equations (17), (19), (31), and (34), equation (8) yields

$$
\begin{align*}
& 4 \frac{w_{l m}}{b^{2}} t_{f}\left(\sigma_{m} \int_{0}^{b} y^{2} d y-\frac{\pi^{2} E}{4 a^{2}} \frac{w_{1 m}^{2}}{b^{2}} \int_{0}^{b} y^{4} d y\right)+ \\
& 2\left(\frac{b^{\prime}}{4 b}\right)^{2}{ }_{W_{l m}}{ }^{2} t_{w}\left\{\sigma_{m} \int_{0}^{b^{\prime} / 2}\left[1-\frac{4}{\left(b^{\prime}\right)^{2}} y_{w}^{2}\right]^{2} d y_{w}-\right. \\
& \left.\gamma \frac{\pi^{2} E}{4 a^{2}}\left(\frac{b^{\prime}}{4 b}\right)^{2}{ }^{w_{l m}}{ }^{2} \int_{0}^{b^{\prime} / 2}\left[1-\frac{4}{\left(b^{\prime}\right)^{2}} y_{w}^{2}\right]^{4} d y_{w}\right\}=4 \frac{w_{l m}}{b^{2}} t_{f} \sigma_{c r l} \int_{0}^{b} y^{2} d y+ \\
& 2\left(\frac{b^{\prime}}{4 b}\right)^{2}{ }^{w_{l m}}{ }^{2} t_{w} \sigma_{c r l} \int_{0}^{b^{\prime} / 2}\left[1-\frac{4}{\left(b^{\prime}\right)^{2}} y_{w}^{2}\right]^{2} d y_{w} \tag{36}
\end{align*}
$$

The terms referring to the four flanges and those referring to the web may be recognized by the factors t_{f} and t_{W}, respectively. After integration the above equation leads to the result

$$
\begin{equation*}
\frac{\pi^{2} \mathrm{E}}{\mathrm{a}^{2}} \mathrm{w}_{\mathrm{lm}}^{2}=\mathrm{k}\left(\sigma_{\mathrm{m}}-\sigma_{\mathrm{crl}}\right) \tag{37}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{w}_{l \mathrm{~m}}=\frac{\mathrm{a}}{\pi}\left[\overline{\mathrm{~K}}\left(\sigma_{\mathrm{m}}-\sigma_{\mathrm{crl}}\right)\right]^{1 / 2} \tag{38}
\end{equation*}
$$

where

$$
\begin{equation*}
k=\frac{84\left(40+\delta_{t} B^{3}\right)}{504+\gamma \delta_{t} B^{5}} \tag{39}
\end{equation*}
$$

and

$$
\begin{align*}
B & =b^{\prime} / b \tag{40}\\
\delta_{t} & =t_{W} / t_{f} \tag{41}
\end{align*}
$$

All terms of equation (15) vanish as far as they refer to the web, so that it is sufficient to consider this equation for one flange only. Using equations (17), (19), (32), and (35), equation (15) transforms into

$$
\begin{align*}
& \frac{\left(w_{2 m}\right)^{\prime}}{9 b^{8}}\left[\sigma_{m} \int_{0}^{b}\left(y^{4}-4 b y^{3}+6 b^{2} y^{2}\right)^{2} d y-\right. \\
& \left.\frac{\pi^{2} E}{4 a^{2}} \frac{w^{2} 1 m^{2}}{b^{2}} \int_{0}^{b} y^{2}\left(y^{4}-4 b y^{3}+6 b^{2} y^{2}\right)^{2} d y\right]+ \\
& \frac{w_{l m}}{b} \frac{w_{2 m}}{3 b^{4}}\left[\frac{E}{\rho} \int_{0}^{b} y^{2}\left(y^{4}-4 b y^{3}+6 b^{2} y^{2}\right) d y-\right. \\
& \left.\frac{\pi^{2} E}{2 a^{2}} \frac{w^{2} l m}{b} \frac{w_{2 m^{\prime}}^{\prime}}{3 b^{4}} \int_{0}^{b} y^{2}\left(y^{4}-4 b y^{3}+6 b^{2} y^{2}\right)^{2} d y\right]= \\
& \frac{\left(w_{2} m^{\prime}\right)^{2}}{9 b^{8}} \sigma_{c r 2} \int_{0}^{b}\left(y^{4}-4 b y^{3}+6 b^{2} y^{2}\right)^{2} d y \tag{42}
\end{align*}
$$

After integration and with the aid of equation (37) this equation results in

$$
\begin{equation*}
\beta^{\prime}=\frac{W_{2 m}^{\prime}}{W_{1 m}}=\frac{0.2254 \mathrm{~Eb} / \rho}{0.12874 \mathrm{k}\left(\sigma_{\mathrm{m}}-\sigma_{\mathrm{crl}}\right)+0.2568\left(\sigma_{\mathrm{cr} 2}-\sigma_{\mathrm{m}}\right)} \tag{43}
\end{equation*}
$$

Calculation of postbuckling column modulus and of ultimate strength.The internal bending moment M_{c} in the column is practically given by the total bending moment in the flanges so that

$$
\begin{equation*}
M_{c}=4 t_{f} \int_{0}^{b} \sigma_{2}^{\prime} y d y \tag{44}
\end{equation*}
$$

Inserting equation (32), in which $w_{1 f}$ and w_{2} ' are given by equations (17) and (35), and using equations (37) and (43), equation (44) yields

$$
\begin{equation*}
M_{c}=4 b^{2} t_{f}\left[\frac{E b}{3 p}-\frac{71}{630} k\left(\sigma_{m}-\sigma_{c r l}\right) \beta^{\prime}\right] \tag{45}
\end{equation*}
$$

If the column had a constant equivalent postbuckling modulus E_{1},eq the internal moment would be

$$
\begin{equation*}
M_{c}=\frac{E_{1, e q^{I}}}{\rho}=\frac{4}{3} b^{3} t_{f} \frac{E_{1, e q}}{\rho} \tag{46}
\end{equation*}
$$

By equating the right-hand members in equations (45) and (46) and using equation (43) the equivalent postbuckling modulus is obtained

$$
\begin{equation*}
\mathrm{E}_{1, \mathrm{eq}}=\frac{0.20456 \mathrm{k}\left(\sigma_{\mathrm{m}}-\sigma_{\mathrm{crl}}\right)+\left(\sigma_{\mathrm{cr} 2}-\sigma_{\mathrm{m}}\right)}{0.50132 \mathrm{k}\left(\sigma_{\mathrm{m}}-\sigma_{\mathrm{cr} 1}\right)+\left(\sigma_{\mathrm{cr} 2}-\sigma_{\mathrm{m}}\right)} \mathrm{E} \tag{47}
\end{equation*}
$$

In order to express E_{1}, eq in terms of the ultimate stress σ_{u}, that is, the average stress σ_{x} at incipient column buckling, it is observed that the total compressive force in a flange may be written as

$$
\begin{equation*}
t_{f} b \sigma_{u f}=t_{f} \int_{0}^{b} \sigma_{l f} d y \tag{48}
\end{equation*}
$$

where $\sigma_{u f}$ is the average stress in the flanges at incipient column buckling. Substituting $\sigma_{l f}$ from equation (19) and $W_{l f}$ from equation (17) and using equation (37), equation (48) transforms into

$$
\begin{equation*}
\sigma_{u f}=\frac{1}{12}\left[(12-k) \sigma_{m}+k \sigma_{c r l}\right] \tag{49}
\end{equation*}
$$

The compressive force in the web is

$$
\begin{equation*}
t_{W} b^{\prime} \sigma_{u W}=2 t_{w} \int_{0}^{b^{\prime} / 2} \sigma_{l w} d y_{w} \tag{50}
\end{equation*}
$$

Using equations (20), (34), (37), and (40), this gives the average stress in the web,

$$
\begin{equation*}
\sigma_{u w}=\left(1-\frac{k B^{2}}{120}\right) \sigma_{m}+\frac{\mathrm{kB}^{2}}{120} \sigma_{\mathrm{crl}} \tag{51}
\end{equation*}
$$

The ultimate stress σ_{u} for the entire section follows from the condition

$$
\begin{equation*}
A \sigma_{u}=4 A_{f} \sigma_{u f}+A_{W} \sigma_{u w} \tag{52}
\end{equation*}
$$

where A is the total cross section, A_{f} is the cross section of one flange, and A_{W} is the cross section of the web. With equations (49) and (51) and with the notation

$$
\begin{equation*}
\psi=\mathrm{A}_{f} / \mathrm{A} \tag{53}
\end{equation*}
$$

this leads to the relation

$$
\begin{equation*}
\sigma_{m}=\frac{\sigma_{u}-\left[\frac{k^{2}}{120}+\frac{k}{3}\left(1-\frac{B^{2}}{10}\right) \psi\right] \sigma_{c r l}}{\left(1-\frac{\mathrm{kB}^{2}}{120}\right)-\frac{\mathrm{k}}{3}\left(1-\frac{\mathrm{B}^{2}}{10}\right) \psi} \tag{54}
\end{equation*}
$$

Inserting this in equation (47) one obtains

$$
\begin{equation*}
\frac{E_{l, e q}}{E}=\frac{P\left(\sigma_{u}-\sigma_{c r l}\right)+\left(\sigma_{c r 2}-\sigma_{c r l}\right)}{Q\left(\sigma_{u}-\sigma_{c r l}\right)+\left(\sigma_{c r 2}-\sigma_{c r l}\right)} \tag{55}
\end{equation*}
$$

where

$$
\begin{align*}
& P=\frac{0.20456 k-1}{\left(1-\frac{k B^{2}}{120}\right)-\frac{k}{3}\left(1-\frac{B^{2}}{10}\right) \psi} \tag{56}\\
& Q=\frac{0.50132 k-1}{\left(1-\frac{k B^{2}}{120}\right)-\frac{k}{3}\left(1-\frac{B^{2}}{10}\right) \psi} \tag{57}
\end{align*}
$$

From the definition of E_{1},eq it follows that the ultimate stress

$$
\begin{equation*}
\sigma_{u}=\frac{\pi^{2} E_{1, e q}}{(L / r)^{2}} \tag{58}
\end{equation*}
$$

Substituting this in equation (55) and observing that the Euler stress

$$
\begin{equation*}
\sigma_{E}=\frac{\pi^{2} E}{(L / r)^{2}} \tag{59}
\end{equation*}
$$

from equation (55)

$$
\begin{equation*}
\sigma_{u}=\left(\frac{Q+1-\alpha}{2 Q} \sigma_{c r l}+\frac{P}{2 Q} \sigma_{E}\right)\left(1+\left\{1-\frac{4 Q(P+1-\alpha)}{\left[(Q+1-\alpha) \sigma_{\mathrm{cr} 1}+P \sigma_{E}\right]^{2}} \sigma_{E} \sigma_{c r 1}\right\}^{1 / 2}\right) \tag{60}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\sigma_{\mathrm{cr} 2} / \sigma_{\mathrm{crl}} \tag{61}
\end{equation*}
$$

Column buckling in plastic range.- Equation (60) is valid only if plastic deformations do not occur anywhere in the postbuckling range before column buckling. In figure 8 the elastic ultimate stress σ_{u} is sketched in the buckling-stress - slenderness diagram. It is proposed to define the column buckling stress $\sigma_{u p}$ in the plastic range (that is, in the case when in the postbuckling stage the local stress at some points of the column is in the plastic range) by a Johnson parabola, as given by the curve $\sigma_{u p}$ in figure 8. Hence it is given by the formula

$$
\begin{equation*}
\sigma_{u p}=\sigma_{c c}-s(L / r)^{2} \tag{62}
\end{equation*}
$$

where $\sigma_{c c}$ is the crushing strength for short columns, where only plate buckling and no column buckling can occur, and where s is determined as follows:

It appeared that, for all sections considered and tested, the expression in the second parentheses in equation (60) is practically independent of σ_{E} and thus of L / r. Hence equation (60) and the corresponding curve for σ_{u} become a hyperbola

$$
\begin{equation*}
\sigma_{u}=p+q_{1} \sigma_{E}=p+\frac{q}{(L / r)^{2}} \tag{63}
\end{equation*}
$$

where p, q, and q_{l} are parameters determined by approximating equation (60) by a hyperbola. From equation (59),

$$
\begin{equation*}
q=q_{I} \sigma_{E}(L / r)^{2}=q_{I} \pi^{2} E \tag{64}
\end{equation*}
$$

At the tangent point between the curves for σ_{u} and $\sigma_{u p}$, with coordinates $L / r=(L / r)_{I}$ and $\sigma=\sigma_{u l}$ (fig. 8),

$$
\begin{align*}
& \sigma_{u p}=\sigma_{u} \tag{65}\\
& \frac{d \sigma_{u p}}{d(L / r)}=\frac{d \sigma_{u}}{d(L / r)}
\end{align*}
$$

Using equations (62), (63), and (64), one finds from equations (65)

$$
\begin{gather*}
\sigma_{u I}=\frac{1}{2}\left(\sigma_{c c}+p\right) \tag{66}\\
\left(\frac{L}{r}\right)_{I}=\pi \sqrt{\frac{2 q_{1} E}{\sigma_{c c}-p}} \tag{67}\\
\sigma_{u p}=\sigma_{c c}-\frac{\left(\sigma_{c c}-p\right)^{2}}{4 q}\left(\frac{L}{r}\right)^{2}=\sigma_{c c}-\frac{\left(\sigma_{c c}-p\right)^{2}}{4 q_{1} \sigma_{E}} \tag{68}
\end{gather*}
$$

Since the actual curve for σ_{u} according to equation (60) is not exactly a hyperbola, the best way to draw a continuous curve for σ_{u} and $\sigma_{u p}$ is first to calculate $\sigma_{u l}$ from equation (66). Then from the curve for σ_{u} the value of $(L / r)_{1}$ for $\sigma_{u}=\sigma_{u l}$ can be read. This gives the curve for the Johnson parabola as

$$
\begin{equation*}
\sigma_{u p}=\sigma_{c c}-\left(\sigma_{c c}-\sigma_{u l}\right)\left[\frac{L / r}{(L / r)_{l}}\right]^{2} \tag{68a}
\end{equation*}
$$

It may happen that the slenderness $(L / r)_{1}$ is larger than the interaction slenderness $(\mathrm{L} / \mathrm{r})_{\text {in }}$ in figure 8. This is illustrated in figure 9. In such a case the ultimate load is determined by σ_{crl} and by $\sigma_{u p}$ from equation (68) only, and not by the curve for σ_{u}.

Application to test columns with H-section.- The formulas for σ_{u} and $\sigma_{u p}$ were used to calculate the ultimate stress of the $75 \mathrm{~S}-\mathrm{T} 6$ aluminumalloy H-sections used in the tests, of which the pertinent data are given in table 1. The dimensions b and b^{\prime} in the table refer to distances center to center of the plates, as indicated in figure 10. Factors k_{f} in equation (1) for $\sigma_{\text {crl }}$ were found from figure 2 of reference 8. The critical stress $\sigma_{\text {cr2 }}$ for the mode of plate buckling which is superimposed during column buckling is given by equation (2) in which $\beta=a / b$ refers to the half wave length of local buckling before column buckling. This half wave length was determined for the "L"-series columns on page 44 of reference 1 and was found to be equal to twice the web width, which in the present paper is denoted as b^{\prime}, so that $a / b^{\prime}=2$. The same ratio a / b^{\prime} is found for the "J"- and "K"-series columns. Since for all series $b^{\prime} / \mathrm{b}=1.24$, the ratio $\beta=\mathrm{a} / \mathrm{b}$ in equation (2) is $\left(\mathrm{a} / \mathrm{b}^{\prime}\right)\left(\mathrm{b}^{\prime} / \mathrm{b}\right)=2.48$. Hence from equation (2)

$$
\begin{equation*}
\sigma_{\mathrm{cr} 2}=1.50 \frac{\pi^{2} \mathrm{~N}_{\mathrm{f}}}{\mathrm{~b}^{2} \mathrm{t}_{\mathrm{f}}} \tag{69}
\end{equation*}
$$

so that the ratio $\alpha=\sigma_{\text {cr2 }} / \sigma_{\mathrm{crl}}$, or, from equations (1) and (69), $\alpha=1.50 / \mathrm{k}_{\mathrm{f}}$, may be calculated. The crushing strength σ_{cc} in tabie 1 was found from figure 18(b) of reference 13, using the average yield stress $\sigma_{c y}=83,000$ psi of the column material. Constants P and Q in equation (60) are functions of the cross-sectional dimensions only and may be calculated from equations (56) and (57).

Using the values of table 1 in equation (60) one finds the following expressions for σ_{u} : For "J"-series columns

$$
\begin{equation*}
\sigma_{u}=\left(22,650+0.0846 \sigma_{E}\right)\left[1+\sqrt{1+\frac{248,000 \sigma_{E}}{\left(212,000+0.792 \sigma_{E}\right)^{2}}}\right] \text { psi } \tag{70}
\end{equation*}
$$

for " K "-series columns

$$
\begin{equation*}
\sigma_{u}=\left(12,150+0.0846 \sigma_{E}\right)\left[1+\sqrt{1+\frac{165,000 \sigma_{E}}{\left(113,500+0.792 \sigma_{E}\right)^{2}}}\right] \text { psi } \tag{71}
\end{equation*}
$$

and for "L"-series columns

$$
\begin{equation*}
\sigma_{u}=\left(8,080+0.0845 \sigma_{E}\right)\left[1+\sqrt{1+\frac{77,000 \sigma_{E}}{\left(74,300+0.776 \sigma_{E}\right)^{2}}}\right] \mathrm{psi} \tag{72}
\end{equation*}
$$

Curves for σ_{u} are given in figure 11 by the unbroken lines.
Equations (70), (71), and (72), in which the terms in the square brackets are practically constant, may be written sufficiently accurately as follows:

For the "J" series

$$
\begin{equation*}
\sigma_{u}=\left(47,100+0.176 \sigma_{\mathrm{E}}\right) \mathrm{psi} \tag{73}
\end{equation*}
$$

for the " K " series

$$
\begin{equation*}
\sigma_{u}=\left(26,200+0.183 \sigma_{\mathrm{E}}\right) \mathrm{psi} \tag{74}
\end{equation*}
$$

and for the "L" series

$$
\begin{equation*}
\sigma_{u}=\left(17,100+0.179 \sigma_{\mathrm{E}}\right) \mathrm{psi} \tag{75}
\end{equation*}
$$

so that, in equations (66), (67), (68), and (68a), for the "J" series

$$
\begin{gathered}
\mathrm{p}=47,100 \mathrm{psi} \\
\mathrm{q}_{1}=0.176
\end{gathered}
$$

for the " K " series

$$
\begin{gathered}
p=26,200 \mathrm{psi} \\
q_{I}=0.183
\end{gathered}
$$

and for the "L" series

$$
\begin{gathered}
\mathrm{p}=17,100 \mathrm{psi} \\
\mathrm{q}_{1}=0.179
\end{gathered}
$$

Hence from equations (66), (68), and (68a) and table l, for the "J" series

$$
\begin{align*}
\sigma_{u p} & =\left[60,500-\left(254 \times 10^{6} / \sigma_{E}\right)\right] \mathrm{psi} \\
& =\left[60,500-2.46(\mathrm{~L} / \mathrm{r})^{2}\right] \mathrm{psi} \tag{76}
\end{align*}
$$

for the " K " series

$$
\begin{gather*}
\sigma_{u l}=39,350 \mathrm{psi} \tag{77}\\
\sigma_{u p}=\left[52,500-8 \cdot 73(\mathrm{~L} / \mathrm{r})^{2}\right] \mathrm{psi} \tag{78}
\end{gather*}
$$

and for the "L" series

$$
\begin{gather*}
\sigma_{u l}=31,800 \mathrm{psi} \tag{79}\\
\sigma_{u p}=\left[46,600-11.75(\mathrm{~L} / \mathrm{r})^{2}\right] \mathrm{psi} \tag{80}
\end{gather*}
$$

This is shown graphically by the unbroken curves in figure ll. The graph for the "J" series has the shape sketched in figure 9, so that only $\sigma_{\text {crl }}$ and $\sigma_{u p}$ are governing here. This may be understood in such a way that, although the local buckling stress $\sigma_{\text {crl }}$ is still in the elastic range, in the postbuckling region plastic deformation occurs before column buckling.

Similar curves have been calculated by using the clear distances $\mathrm{b}_{\text {clear }}$ and $\mathrm{b}_{\text {clear' }}$ of the cross sections, as indicated in figure 10. They are given by the dotted curves in figure 11.

Ultimate Strength of Tubes with Square Cross Section

Energy equations by method of split rigidities.- The cross section of a square tube will deform by plate buckling, as shown in figure l2(a) for the crest of the waves. The plate deflections w_{l} will cause a distribution of the compressive stresses σ_{1} as indicated in figure 12(b). When the compressive force and the deflections w_{l} increase, a situation will be reached where the tube will buckle as a column. If no extra plate deflections would occur, incipient column buckling would cause bending stresses Ey'/, where ρ is the radius of curvature of the column deflection. However, the bending stresses σ_{2}^{\prime} (figs. $12(\mathrm{~d})$ and $12(\mathrm{e})$) will cause extra plate deflections as indicated in figure l2(c) by wa' (a for asymmetrical) for plate $A B$ and by $w_{2 s}$ ' (s for symmetrical) for plate BC. The deflections $\mathrm{w}_{2 a}{ }^{\prime}$ and $\mathrm{W}_{2 s}{ }^{\prime}$ cause decreases of bending stress, as indicated in figures $12(\mathrm{~d})$ and $12(\mathrm{e})$. At the corners, where $w_{2 a}{ }^{\prime}=w_{2 s}{ }^{\prime}=0$, the bending stresses remain $\mathrm{Eb} /(2 p)$. The infinitely small extra plate deflections $W_{2}{ }^{\prime}$ occurring with incipient column buckling are sketched separately in figure l2(f).

Using exactly the same reasoning as given for H-sections, one arrives again at the result that the average column buckling stress σ_{u} is determined by the two equations (8) and (15). Since here in all plates membrane stresses $\sigma_{y m}$ also arise, equivalent stresses $\left(\sigma_{1}\right)$ eq and $\left(\sigma_{2}{ }^{\prime}\right)$ eq have to be used throughout instead of the actual stresses σ_{1} and σ_{2}^{\prime}. In the present case all wall thicknesses are equal, so that equations (8) and (15) become

$$
\begin{gather*}
\oint\left(\sigma_{1}\right)_{e q} w_{1}^{2} d y_{1}=\sigma_{\mathrm{crl}} \oint_{\mathrm{w}_{1}}^{2} d y_{1} \tag{81}\\
\oint\left(\sigma_{1}\right)_{\mathrm{eq}}\left(\mathrm{w}_{2}{ }^{\prime}\right)^{2} d y_{1}+\oint\left(\sigma_{2}^{\prime}\right)_{e q} w_{1} w_{2}^{\prime} d y_{1}=\sigma_{\mathrm{cr} 2} \oint\left(w_{2}^{\prime}\right)^{2} d y_{1} \tag{82}
\end{gather*}
$$

The stresses σ_{1} and σ_{2}^{\prime} and the deflections w_{1} and w_{2} ' are indicated in figure 12.

Derivation of formulas for stresses.- Obviously, σ_{crl} in equation (81) is the plate-buckling stress for the tube. Since the webs do not restrain each other, this is from reference 14

$$
\begin{equation*}
\sigma_{\mathrm{crl}}=4 \frac{\pi^{2} \mathbb{N}}{\mathrm{~b}^{2} \mathrm{t}} \tag{83}
\end{equation*}
$$

where N is the flexural rigidity of the plates.
Similarly as for H-sections, $\sigma_{\text {cr2 }}$ is the compressive stress required for buckling in the mode determined by the extra deflections W_{2} ', as sketched for the tube in figure $12(f)$. Furthermore $\sigma_{\text {cr2 }}$ has to be calculated for the same half wave length a as that of the original plate buckling as sketched in figure $12(\mathrm{a})$, that is, for $\mathrm{a}=\mathrm{b}$.

The mode of buckling in figure $12(f)$ is similar to that of a column with a cross section as given in figure $12(\mathrm{~g})$, of which the narrower plates are simply supported at G and H. Formulas for the buckling stress of such columns were derived in reference 5. Calculating the buckling stress from these formulas it was found in equation (106) of reference 1 that

$$
\sigma_{2}=4.84 \mathrm{E}(\mathrm{t} / \mathrm{b})^{2}=5.34 \frac{\pi^{2} \mathrm{~N}}{\mathrm{~b}^{2} \mathrm{t}}
$$

if a Poisson's ratio of 0.3 is assumed. However, this is the critical stress for the optimum half wave length of buckling, while $\sigma_{\text {cr2 }}$ has to be calculated for a half wave length $a=b$. The buckling condition for this case is given by equation (49) of reference 5

$$
\begin{equation*}
\alpha_{1} \tanh \left(\alpha_{1} \frac{b}{2}\right)+\alpha_{2} \tan \left(\alpha_{2} \frac{b}{2}\right)+\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right) \theta=0 \tag{84}
\end{equation*}
$$

Where θ is given by equation (48) of reference 5. In the present case the thicknesses of the buckling plate $B C$ and the restraining plates $G B$ and HC are equal, so that, in equation (48) of reference 5, $h=h^{\prime}$. Hence

$$
\begin{equation*}
\theta=\frac{\alpha_{1}^{\prime} \operatorname{coth} \alpha_{1}^{\prime} b^{\prime}-\alpha_{2}^{\prime} \cot \alpha_{2}^{\prime} b^{\prime}}{\left(\alpha_{1}^{\prime}\right)^{2}+\left(\alpha_{2}^{\prime}\right)^{2}} \tag{85}
\end{equation*}
$$

The width b^{\prime} of the restraining plates $G B$ and $H C$ is equal to $b / 2$. Furthermore, from the equations below equation (61) in reference 5, in the elastic range and with the present notations

$$
\begin{equation*}
\alpha_{1,2}=\sqrt{ \pm \lambda^{2}+\lambda \sqrt{t \sigma_{c r 2} / \mathbb{N}}} \tag{86}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=\frac{\pi}{a}=\frac{\pi}{b} \tag{87}
\end{equation*}
$$

and ${ }^{1}$

$$
\begin{equation*}
\alpha_{1,2^{\prime}}=\sqrt{ \pm \lambda^{2}+\lambda \sqrt{t^{\prime} \sigma_{\mathrm{cr} 2} / N^{\prime}}} \tag{88}
\end{equation*}
$$

Since here $t^{\prime}=t$,

$$
\begin{equation*}
\alpha_{1,2^{\prime}}=\alpha_{1,2} \tag{89}
\end{equation*}
$$

Hence, using equation (85), equation (84) becomes

$$
\begin{equation*}
\alpha_{1} \cdot \tanh \left(\alpha_{1} \frac{b}{2}\right)+\alpha_{2} \tan \left(\alpha_{2} \frac{b}{2}\right)=\alpha_{2} \cot \left(\alpha_{2} \frac{b}{2}\right)-\alpha_{1} \operatorname{coth}\left(\alpha_{1} \frac{\mathrm{~b}}{2}\right) \tag{90}
\end{equation*}
$$

By trial and error it follows from this equation that

$$
\begin{equation*}
\sigma_{\mathrm{cr} 2}=5.75 \frac{\pi^{2} \mathrm{~N}}{\mathrm{~b}^{2} \mathrm{t}} \tag{91}
\end{equation*}
$$

The same result is obtained by using the tables of reference 7 , which are based on the same equations, but the above equations will also be used to find the equations for $W_{2 s}$ ' and $W_{2 a}{ }^{\prime}$.
${ }^{1}$ Because of a printing error in reference 5 two of the primes in the present equation (88) were omitted.

The variables $\sigma_{1}, \sigma_{2}^{\prime}, w_{1}$, and w_{2}^{\prime} in equations (81) and (82) may be expressed in terms of the maximum deflections $w_{1 m}$ and $w_{2 m}{ }^{\prime}$ and the abscissas of the pertinent points to which they refer (fig. 12(c)). In the same way as was found in equations (19) and (20) for H-sections, the stresses σ_{1} (fig. l2(b)) are

$$
\begin{equation*}
\sigma_{1}=\sigma_{m}-\frac{\pi^{2} \mathrm{E}}{4 \mathrm{~b}^{2}} \mathrm{w}_{1}^{2} \tag{92}
\end{equation*}
$$

since here the half wave length $a=b$. As far as the influence of the membrane stresses σ_{y} is concerned, the plates are here in the same condition as the web of an H-section, so that, analogous to equation (31) and with $\mathrm{a}=\mathrm{b}$, the equivalent stress $\left(\sigma_{1}\right)$ eq to be used in equations (81) and (82) is

$$
\begin{equation*}
\left(\sigma_{1}\right)_{e q}=\sigma_{m}-\gamma \frac{\pi^{2} E}{4 b^{2}} w_{1}^{2} \tag{93}
\end{equation*}
$$

where $\gamma=1.13$ from equation (30). Analogous to equation (32), for the plates $A B$ and $C D$ (fig. 12(c)), with $a=b$ (fig. l2(d))

$$
\begin{equation*}
\sigma_{2 a^{\prime}}=\frac{E}{\rho} y^{\prime}-\frac{\pi^{2} E}{2 b^{2}} w_{1} w_{2 a}{ }^{\prime} \tag{94}
\end{equation*}
$$

For the plates $B C$ and $D A, y^{\prime}=b / 2$, so that (figs. $12(c)$ and $12(e)$)

$$
\begin{equation*}
\sigma_{2 s}^{\prime}=\frac{E b}{2 p}-\frac{\pi^{2} E}{2 b^{2}} W_{1} W_{2 s} \tag{95}
\end{equation*}
$$

As far as the membrane stresses σ_{y} are concerned, the plates $B C$ and $D A$ are in about the same condition as in case of the initial deflections W_{1}, so that, in determining the total work done, they can be taken into account by using in equation (82) equivalent stresses

$$
\begin{equation*}
\left(\sigma_{2 s^{\prime}}\right)_{e q}=\frac{\mathrm{Eb}}{2 \rho}-\gamma \frac{\pi^{2} \mathrm{E}}{2 b^{2}} \mathrm{w}_{1} \mathrm{w}_{2 \mathrm{~s}}{ }^{\prime} \tag{96}
\end{equation*}
$$

The plates $A B$ and $C D$ are in a different position. From equation (94) in the X-direction the deflection $W_{2 a}$ ' causes extra membrane tensile stresses

$$
\begin{equation*}
\sigma_{x m}^{\prime}=\frac{\pi^{2} E}{2 b^{2}} w_{1} w_{2 a^{\prime}}{ }^{\prime} \tag{97}
\end{equation*}
$$

where w_{1} and $w_{2 a}$ ' are the deflections at the crest of the waves (at $\mathrm{x}=0$ in fig. $13(\mathrm{a})$). These stresses $\sigma_{\mathrm{xm}}{ }^{\prime}$ are zero for $\mathrm{y}^{\prime}=0$ and $y^{\prime}= \pm b / 2$, where ${ }^{W} 2 a^{\prime}$ and W_{1} are zero, respectively. From reference 4 the deflection W_{1} may be assumed to have the same shape as with incipient buckling, so that

$$
\begin{equation*}
w_{1}=w_{1 m} \cos \frac{\pi}{b} x \cos \frac{\pi}{b} y^{\prime} \tag{98}
\end{equation*}
$$

and at $\mathrm{x}=0$

$$
\begin{equation*}
\mathrm{w}_{1}=\mathrm{w}_{1 \mathrm{~m}} \cos \frac{\pi}{\mathrm{~b}} \mathrm{y}^{\prime} \tag{98a}
\end{equation*}
$$

At point K (fig. $13(a)$) for $x=0$ and $y^{\prime}=b / 4$, from equation (98a) $\mathrm{w}_{1}=0.7 \mathrm{lw}_{1 \mathrm{~m}}$. Denoting $\mathrm{w}_{2 \mathrm{a}}{ }^{\prime}$ at this point as $\mathrm{w}_{2 a k}$ ', from equation (97)

$$
\begin{equation*}
\left(\sigma_{x m}^{\prime}\right)_{y^{\prime}=\mathrm{b} / 4}=0.355 \frac{\pi^{2}}{\mathrm{~b}^{2}} E w^{\mathrm{lm}} \mathrm{w}^{\mathrm{W}} 2 \mathrm{ak}{ }^{\prime} \tag{99}
\end{equation*}
$$

The extra membrane stresses $\sigma_{y m}{ }^{\prime}$ caused by the extra deflections $\mathrm{W}_{2 \mathrm{a}}$ ' have relatively little influence. The equivalent membrane stresses $\sigma_{\mathrm{xm}}{ }^{\prime}$ may be approximated as follows. If at $\mathrm{y}^{\prime}=0$ and $y^{\prime}= \pm b / 2$ no displacement in the Y^{\prime}-direction were possible, the increase $W^{2 a k}$ ' of the deflection $0.21 w_{1 m}$ of a strip at $x=0$ with
respect to the straight line $G_{1} B$ would cause a dilation of that strip, which, from equation (18), is

$$
\delta=\frac{\pi^{2}}{4 \frac{\mathrm{~b}}{2}}\left[\left(0.2 l \mathrm{w}_{1 \mathrm{~m}}+\mathrm{w}_{2 \mathrm{ak}}{ }^{\prime}\right)^{2}-\left(0.21 \mathrm{w}_{1 \mathrm{~m}}\right)^{2}\right]
$$

With the same assumptions that were used in deriving equations (19) and (20) and considering that ${ }^{w} 2 a k$ ' is infinitely small, this leads to membrane tensile stresses at $x=0$ and $y^{\prime}>0$ of

$$
\begin{equation*}
\left(\sigma_{y m}{ }^{\prime \prime} '\right)_{x^{\prime}=0}=E \frac{\delta}{b / 2}=0.42 \frac{\pi^{2}}{b^{2}}{ }^{E w} 1 m^{w} 2 a k ' \tag{100}
\end{equation*}
$$

Since $W_{1 m}$ and $w_{2 a}$ ' vary sinusoidally in the X-direction, in general for $y^{\prime}>0$ (fig. 13(c))

$$
\begin{align*}
\sigma_{y m}{ }^{\prime \prime \prime} & =0.42 \frac{\pi^{2}}{b^{2}} E w^{w} 1 m^{w} 2 a k^{\prime} \cos ^{2} \frac{\pi}{b} x \\
& =0.21 \frac{\pi^{2}}{b^{2}} E^{W w} 1 m^{w} 2 a k^{\prime}\left(1+\cos \frac{2 \pi}{b} x\right) \tag{101}
\end{align*}
$$

Equal and opposite stresses $\sigma_{y m}{ }^{\prime \prime \prime}$ would occur for $y^{\prime}<0$.
In reality at $y^{\prime}=0$ and $y^{\prime}= \pm b / 2$ the plate is free to move in the Y^{\prime}-direction. If at the same time the lines $y^{\prime}=0$ and $y^{\prime}= \pm b / 2$ were held straight $\int \sigma_{y m}{ }^{\prime \prime} d x$ would become zero, so that from equation (101) for $y^{\prime}>0$

$$
\begin{equation*}
\sigma_{y m}{ }^{\prime \prime}=0.21 \frac{\pi^{2}}{b^{2}} E w_{1 m^{W}} 2 a a^{\prime} \cos \frac{2 \pi}{b} x \tag{102}
\end{equation*}
$$

as shown in figures $13(\mathrm{~d})$ and $13(\mathrm{f})$.

Actually the lines $y^{\prime}=0$ and $y^{\prime}= \pm b / 2$ are not held straight, so that at $y^{\prime}= \pm b / 2$ and, from symmetry, at $y^{\prime}=0, \sigma_{y m}{ }^{\prime}=0$. This. case may be obtained from the former one by superimposing, for example for $y^{\prime}>0$, stresses $\sigma_{y}=-\sigma_{y m}{ }^{\prime \prime}$ at $y^{\prime}=0$ and $y^{\prime}=b / 2$, which may be denoted as compressive stresses (fig. 13(h))

$$
\begin{equation*}
\left(\sigma_{y l^{\prime}}\right)_{y^{\prime}=0}=\left(\sigma_{y l^{\prime}}\right)_{y^{\prime}=b / 2}=A \cos \frac{2 \pi}{b} x \tag{103}
\end{equation*}
$$

This superimposed case is identical to that in reference 15, page 47, from which it follows that at $y^{\prime}=b / 4$

$$
\begin{equation*}
\sigma_{y l}{ }^{\prime \prime}=2 A \frac{j c \cosh j c+\sinh j c}{\sinh 2 j c+2 j c} \cos \frac{2 \pi}{b} x \tag{104}
\end{equation*}
$$

where $j=2 \pi / b$ and $c=b / 4$, so that at $y^{\prime}=b / 4$ (fig. $13(h)$)

$$
\begin{equation*}
\sigma_{y l^{\prime}}{ }^{\prime}=0.85 \mathrm{~A} \cos \frac{2 \pi}{\mathrm{~b}} \mathrm{x} \tag{105}
\end{equation*}
$$

By superimposing these stresses upon the tensile stresses $\sigma_{y m}{ }^{\prime}$ ' the actual membrane stresses $\sigma_{y m}{ }^{\prime}$ are obtained, as shown in figures $13(\mathrm{e})$ and $13(\mathrm{~g})$. Hence at point K, for $\mathrm{x}=0$ and $\mathrm{y}^{\prime}=\mathrm{b} / 4$,

$$
\begin{equation*}
\left(\sigma_{\mathrm{ym}}{ }^{\prime}\right)_{\mathrm{k}}=0.15 \sigma_{\mathrm{ym}}{ }^{\prime \prime}=0.0315 \frac{\pi^{2}}{\mathrm{~b}^{2}} \mathrm{~W}_{1 \mathrm{~m}^{\mathrm{W}} 2 \mathrm{ak}}{ }^{\prime} \cos \frac{2 \pi}{\mathrm{~b}} \mathrm{x} \tag{106}
\end{equation*}
$$

so that from equation (99)

$$
\begin{equation*}
\left(\sigma_{y m}^{\prime}\right)_{\mathrm{k}}=0.089\left(\sigma_{\mathrm{xm}}{ }^{\prime}\right)_{\mathrm{y}^{\prime}=\mathrm{b} / 4} \tag{107}
\end{equation*}
$$

Since W_{2} ' is infinitely small with respect to W_{1}, from equation (98) the deflecting forces $-t \sigma_{x m}{ }^{\prime} \partial^{2} W_{w_{1}} / \partial x^{2}$ and $-t \sigma_{y m}{ }^{\prime} \partial^{2}{ }_{w_{1}} /\left(\partial y^{\prime}\right)^{2}$, caused by membrane stresses $\sigma_{x m}^{\prime}$ and $\sigma_{y m}{ }^{\prime}$, respectively, are equal to $t \sigma_{x m}^{\prime}\left(\frac{\pi^{2}}{b^{2}}\right) w_{1}$ and $t \sigma_{y m}{ }^{\prime}\left(\frac{\pi^{2}}{b^{2}}\right) w_{l}$, respectively. Hence membrane stresses $\sigma_{y m}$ ' are equivalent to membrane stresses $\sigma_{x m}$ ' of the same magnitude, since they cause equal deflecting forces.

From equation (97), $\sigma_{x m}{ }^{\prime}$ does not vary in the X'-direction. In the Y^{\prime}-direction it varies proportionally to ${ }^{W} \mathcal{W}^{W} W_{2 a}{ }^{\prime}$. The membrane stresses $\sigma_{y m}{ }^{\prime}$ vary as shown in figures $13(e)$ and $13(g)$. About similar distributions of $\sigma_{\mathrm{xm}}{ }^{\prime}$ and $\sigma_{\mathrm{ym}}{ }^{\prime}$ as occur here in the area $\mathrm{b} / 2>\mathrm{x}>-\mathrm{b} / 2, \mathrm{~b} / 2>\mathrm{y}^{\prime}>0$, prevail in the area of a square buckle of a compressed plate that is simply supported and free to move laterally at the unloaded edges, such as the web of H-sections and the plates of square tubes. For that case it was found in equation (29) that the influence of the membrane stresses $\sigma_{y m}$ could be taken into account by multiplying the membrane stresses σ_{xm} by 1.13 , so that the influence of the stresses $\sigma_{y m}$ was 0.13 times that of the stresses $\sigma_{x m}$. Also in this case from equation (98) the deflecting forces $-t \sigma_{x m} \partial^{2} W_{w_{1}} / \partial x^{2}$ and $-t \sigma_{y m} \partial^{2}{ }_{W_{1}} / \partial y^{2}$ caused by equal stresses $\sigma_{x m}$ and $\sigma_{y m}$ are equal. In case the unloaded edges are held straight the stresses $\sigma_{y m}$ follow, for example, from reference 4. The stresses $\sigma_{y m}$ in case the edges are not held straight are found by superposition of loads $\sigma_{y l}{ }^{\prime \prime}$, as was done in equation (103) in the present case. The superimposed stresses are calculated from equation (104) where now $j=2 \pi / b$ and $c=b / 2$. This leads for the middle of the square buckle to a membrane stress

$$
\begin{equation*}
\sigma_{y m}=0.325 \sigma_{x m} \tag{108}
\end{equation*}
$$

Since in this case the influence of the membrane stresses $\sigma_{y m}$ is 0.13 times that of the membrane stresses σ_{xm}, in the present case, from equation (107), the influence of the stresses $\sigma_{y m}{ }^{\prime}$ will be $(0.089 / 0.325) 0.13=0.035$ times that of the membrane stresses $\sigma_{x m}{ }^{\prime}$.

Hence they may be taken into account by using in equations (81) and (82) equivalent stresses

$$
\begin{equation*}
\left(\sigma_{2 a^{\prime}}\right)_{e q}=\frac{E}{\rho} y^{\prime}-\mu \frac{\pi^{2} E}{2 b^{2}} w_{1} w_{2 a} \tag{109}
\end{equation*}
$$

instead of $\sigma_{2 a}$ ' from equation (94). Consequently

$$
\begin{equation*}
\mu=1.035 \tag{110}
\end{equation*}
$$

Derivation of formulas for deflections.- Finally the superimposed deflections $\mathrm{w}_{2 \mathrm{~s}}{ }^{\prime}$ and $\mathrm{w}_{2 \mathrm{a}}{ }^{\text {' }}$ have to be expressed in terms of the maximum deflection $W_{2 m}{ }^{\prime}$ (fig. l2(c)). The form of the deflection $W_{2}{ }^{\prime}$ may sufficiently accurately be assumed to be similar to that in which a column with cross section GBCH, as given in figure $12(\mathrm{~g})$, buckles. In reference 5 the deflections $W_{2 s}$ ' and $W_{2 a}$ ' are given by equations (40) and (44), respectively, while, as pointed out on page 58 of reference 5, for the present case in equation (40) $C_{2}=C_{4}=0$ and in equation (44) $C_{1}{ }^{\prime}=C_{3}{ }^{\prime}=0$, so that

$$
\begin{gather*}
w_{2 s}{ }^{\prime}=\left(C_{1} \cosh \alpha_{1} y+C_{3} \cos \alpha_{2} y\right) \cos \frac{\pi}{a} x \tag{111}\\
w_{2 a^{\prime}}{ }^{\prime}=\left(C_{2}^{\prime} \sinh \alpha_{1}{ }^{\prime} y^{\prime}+C_{4}{ }^{\prime} \sin \alpha_{2}{ }^{\prime} y^{\prime}\right) \cos \frac{\pi}{a} x \tag{112}
\end{gather*}
$$

Considering $W_{2 s}$ ' first, from equation (111) the condition that $w=0$ at $\mathrm{y}=\mathrm{b} / 2$ yields

$$
c_{1}=-\frac{\cos \left(\alpha_{2} \frac{b}{2}\right)}{\cosh \left(\alpha_{1} \frac{b}{2}\right)} C_{3}
$$

so that, since here $a=b$,

$$
\begin{equation*}
w_{2 s}^{\prime}=c_{3}\left[\cos \alpha_{2} y-\frac{\cos \left(\alpha_{2} \frac{b}{2}\right)}{\cosh \left(\alpha_{1} \frac{b}{2}\right)} \cosh \alpha_{1} y\right] \cos \frac{\pi}{b} x \tag{113}
\end{equation*}
$$

From equations (86), (87), and (91) of the present paper

$$
\left.\begin{array}{l}
\alpha_{1}=1.844 \frac{\pi}{b} \tag{114}\\
\alpha_{2}=1.183 \frac{\pi}{b}
\end{array}\right\}
$$

Inserting these in equation (113) results in

$$
\begin{equation*}
w_{2 s}{ }^{\prime}=C_{3}\left(\cos 1.183 \frac{\pi}{b} y+0.03116 \cosh 1.844 \frac{\pi}{b} y\right) \cos \frac{\pi}{b} x \tag{115}
\end{equation*}
$$

At $y=0$, from equation (115), $\mathrm{w}_{2 \mathrm{~s}}{ }^{\prime}=1.03116 \mathrm{C}_{3}=\mathrm{w}_{2 \mathrm{~m}}{ }^{\prime}$ (fig. $12(\mathrm{c})$), so that $C_{3}=0.96978^{\circ} \mathrm{w}_{2 \mathrm{~m}}$ ', and from equation (115)
$W_{2 s^{\prime}}{ }^{\prime}=0.96978 W_{2 m}{ }^{\prime}\left(\cos 1.183 \frac{\pi}{b} y+0.03116 \cosh 1.844 \frac{\pi}{b} y\right) \cos \frac{\pi}{b} x$

From equation (112) the condition that $w=0$ at $y^{\prime}=b / 2$ leads to the relation

$$
c_{2}^{\prime}=-\frac{\sin \left(\alpha_{2}^{\prime}, \frac{b}{2}\right)}{\sinh \left(\alpha_{1}, \frac{b}{2}\right)} c_{4}^{\prime}
$$

From equation (89) $\alpha_{1,2}{ }^{\prime}=\alpha_{1,2}$, so that, from equation (112), with $\mathrm{a}=\mathrm{b}$,

$$
\begin{equation*}
\mathrm{w}_{2 \mathrm{a}^{\prime}}={C_{4}}^{\prime}\left[\sin \alpha_{2} \mathrm{y}^{\prime}-\frac{\sin \left(\alpha_{2} \frac{\mathrm{~b}}{2}\right)}{\sinh \left(\alpha_{1} \frac{\mathrm{~b}}{2}\right)} \sinh \alpha_{1} \mathrm{y}^{\prime}\right] \cos \frac{\pi}{\mathrm{b}} \mathrm{x} \tag{117}
\end{equation*}
$$

or, from equations (114),

$$
\begin{equation*}
w_{2 a^{\prime}}=C_{4}{ }^{\prime}\left(\sin 1.183 \frac{\pi}{b} y^{\prime}-0.10583 \sinh 1.844 \frac{\pi}{b} y^{\prime}\right) \cos \frac{\pi}{b} x \tag{118}
\end{equation*}
$$

At B (fig. l2(c)) continuity requires that

$$
\begin{equation*}
-\left(\partial w_{2 a^{\prime}} / \partial y^{\prime}\right)_{y^{\prime}=b / 2}=-\left(\partial w_{2 s} ' / \partial y\right)_{y=b / 2} \tag{119}
\end{equation*}
$$

Using equations (116) and (118) this gives

$$
\begin{equation*}
C_{4}^{\prime}=0.28145 \mathrm{w}_{2} .2 \mathrm{~m}^{\prime} \tag{120}
\end{equation*}
$$

so that from equation (118)

$$
w_{2 a^{\prime}}=0.28145 w_{2 m}{ }^{\prime}\left(\sin 1.183 \frac{\pi}{b} y^{\prime}-0.10583 \sinh 1.844 \frac{\pi}{b} y^{\prime}\right) \cos \frac{\pi}{b} x
$$

Solving of energy equations.- All variables in equations (81)

and (82) have now been expressed in terms of the maximum deflections ${ }^{W} 1 m$ and $\mathrm{w}_{2} \mathrm{~m}^{\prime}$ (fig. l2(c)) and of the abscissas of the pertinent points. For reasons of symmetry (fig. 12(a)) in equation (81) it is sufficient to integrate over one-half wall only, so that for square tubes equation (81) becomes

$$
\begin{equation*}
\int_{0}^{\mathrm{b} / 2}\left(\sigma_{1}\right)_{\mathrm{eq}} \mathrm{w}_{1}^{2} \mathrm{dy}=\sigma_{\mathrm{crl}} \int_{0}^{\mathrm{b} / 2} \mathrm{w}_{1}^{2} d y \tag{122}
\end{equation*}
$$

The deflections $w_{2}{ }^{\prime}$ are symmetrical with respect to the Z-axis (fig. l2(c)). Furthermore, for negative values of y^{\prime} the values of σ_{2} ' and $W_{2}{ }^{\prime}$ are both equal and opposite to those for positive values of y^{\prime}, so that all terms in equation (82) are symmetrical with respect to the Z'-axis (fig. l2(c)). Hence in equation (82) it is sufficient to integrate over one-half wall $A B$ and one-half wall $B C$ only, by which equation (82) becomes

$$
\begin{align*}
& \int_{0}^{b / 2}\left(\sigma_{1}\right)_{e q}\left(w_{2 s^{\prime}}\right)^{2} d y+\int_{0}^{b / 2}\left(\sigma_{2 s^{\prime}}\right)_{e q} w_{1} w_{2 s^{\prime}} d y+ \\
& \int_{0}^{b / 2}\left(\sigma_{1}\right)_{e q}\left(w_{2 a^{\prime}}\right)^{2} d y^{\prime}+\int_{0}^{b / 2}\left(\sigma_{2 a^{\prime}}\right)_{e q} w_{1} w_{2 a}{ }^{\prime} d y^{\prime}= \\
& \sigma_{\text {cr2 }}\left[\int_{0}^{b / 2}\left(w_{2 s^{\prime}}\right)^{2} d y+\int_{0}^{b / 2}\left(w_{2 a^{\prime}}\right)^{2} d y^{\prime}\right] \tag{123}
\end{align*}
$$

From equation (122), using equations (93) and (98a),

$$
\begin{align*}
& { }^{w_{1 m}}{ }^{2}\left(\sigma_{m} \int_{0}^{b / 2} \cos ^{2} \frac{\pi}{b} y d y-\frac{\pi^{2} E}{4 b^{2}} \gamma w_{1 m}^{2} \int_{0}^{b / 2} \cos ^{4} \frac{\pi}{b} y d y\right)= \\
& { }_{w_{1 m}}{ }^{2} \sigma_{\operatorname{crl}} \int_{0}^{b / 2} \cos ^{2} \frac{\pi}{b} y d y \tag{124}
\end{align*}
$$

from which

$$
\begin{equation*}
\frac{\pi^{2} \dot{E}}{b^{2}} w_{1 m}^{2}=\frac{16}{3 \gamma}\left(\sigma_{m}-\sigma_{c r l}\right) \tag{125}
\end{equation*}
$$

or

$$
\begin{equation*}
w_{1 m}=\frac{b}{\pi}\left[\frac{16}{3 \gamma E}\left(\sigma_{m}-\sigma_{c r l}\right)\right]^{1 / 2} \tag{126}
\end{equation*}
$$

From equation (123), using equations (93), (96), (98a), (109), (113), and (121),

$$
\begin{align*}
& \left.\sigma_{m} \int_{0}^{b / 2}\left(w_{2 s}\right)^{\prime}\right)^{2} d y+\frac{E b}{2 \rho} \int_{0}^{b / 2} w_{1} w_{2 s} s^{\prime} d y- \\
& \frac{3 \pi^{2} E}{4 b^{2}} \gamma \int_{0}^{b / 2} w_{1}^{2}\left(w_{2 s^{\prime}}\right)^{2} d y+\sigma_{m} \int_{0}^{b / 2}\left(w_{2 a^{\prime}}\right)^{2} d y^{\prime}+ \\
& \frac{E}{\rho} \int_{0}^{b / 2} w_{1} w_{2 a^{\prime}} y^{\prime} d y^{\prime}-\frac{\pi^{2} E}{4 b^{2}}(\gamma+2 \mu) \int_{0}^{b / 2} w_{1}^{2}\left(w_{2 a^{\prime}}\right)^{2} d y^{\prime}= \\
& \sigma_{c r 2}\left[\int_{0}^{b / 2}\left(w_{2 s^{\prime}}\right)^{2} d y+\int_{0}^{b / 2}\left(w_{2 a^{\prime}}\right)^{2} d y^{\prime}\right] \tag{127}
\end{align*}
$$

where

$$
\begin{aligned}
\int_{0}^{b / 2}\left(w_{2 s^{\prime}}\right)^{2} d y= & 0.94047\left(w_{2 m}\right)^{2}\left(\int_{0}^{b / 2} \cos ^{2} A \frac{\pi}{b} y d y+\right. \\
& 0.0009709 \int_{0}^{b / 2} \cosh ^{2} B \frac{\pi}{b} y d y+ \\
& \left.0.06232 \int_{0}^{b / 2} \cos A \frac{\pi}{b} y \cosh \frac{\pi}{b} y d y\right)
\end{aligned}
$$

$$
\begin{align*}
& \int_{0}^{b / 2} w_{1} w_{2 s}{ }^{\prime} d y=0.96978 w_{1 m^{w}} w_{m}^{\prime}\left(\int_{0}^{b / 2} \cos \frac{\pi}{b} y \cos A \frac{\pi}{b} y d y+\right. \\
& \left.0.03116 \int_{0}^{b / 2} \cos \frac{\pi}{b} y \cosh B \frac{\pi}{b} y d y\right) \tag{127b}\\
& \int_{0}^{b / 2} w_{1}^{2}\left(w_{2 s^{\prime}}\right)^{2} d y=0.94047 w_{1 m}^{2}\left(w_{2 m}\right)^{2}\left(\int_{0}^{b / 2} \cos ^{2} \frac{\pi}{b} y \cos ^{2} A \frac{\pi}{b} y d y+\right. \\
& 0.0009709 \int_{0}^{b / 2} \cos ^{2} \frac{\pi}{b} y \cosh ^{2} B \frac{\pi}{b} y d y+ \\
& \left.0.06232 \int_{0}^{b / 2} \cos ^{2} \frac{\pi}{b} y \cos A \frac{\pi}{b} y \cosh B \frac{\pi}{b} y d y\right) \\
& \text { (127c) } \\
& \int_{0}^{b / 2}\left(w_{2 a^{\prime}}\right)^{2} d y^{\prime}=0.079214\left(w_{2 m^{\prime}}\right)^{2}\left(\int_{0}^{b / 2} \sin ^{2} A \frac{\pi}{b} y^{\prime} d y^{\prime}+\right. \\
& 0.0112 \int_{0}^{b / 2} \sinh ^{2} B \frac{\pi}{b} y^{\prime} d y^{\prime}- \\
& \left.0.21166 \int_{0}^{b / 2} \sin A \frac{\pi}{b} y^{\prime} \sinh B \frac{\pi}{b} y^{\prime} d y^{\prime}\right)(127 d) \\
& \int_{0}^{b / 2} w_{1} w_{2 a^{\prime}} y^{\prime} d y^{\prime}=0.28145 w_{1 m}\left(w_{2 m^{\prime}}\right)^{2}\left(\int_{0}^{b / 2} y^{\prime} \cos \frac{\pi}{b} y^{\prime} \sin A \frac{\pi}{b} y^{\prime} d y^{\prime}-\right. \\
& \left.0.10583 \int_{0}^{b / 2} y^{\prime} \cos \frac{\pi}{b} y^{\prime} \sinh B \frac{\pi}{b} y^{\prime} d y^{\prime}\right) \tag{127e}
\end{align*}
$$

$$
\begin{aligned}
\int_{0}^{b / 2} w_{1}^{2}\left(w_{2 a^{\prime}}\right)^{2} d y^{\prime}= & 0.079214 w_{1 m}^{2}\left(w_{2 m}\right)^{2}\left(\int_{0}^{b / 2} \cos ^{2} \frac{\pi}{b} y^{\prime} \sin ^{2} A \frac{\pi}{b} y^{\prime} d y^{\prime}+\right. \\
& 0.0112 \int_{0}^{b / 2} \cos ^{2} \frac{\pi}{b} y^{\prime} \sinh ^{2} B \frac{\pi}{b} y^{\prime} d y^{\prime}- \\
& \left.0.21166 \int_{0}^{b / 2} \cos ^{2} \frac{\pi}{b} y^{\prime} \sin A \frac{\pi}{b} y^{\prime} \sinh B \frac{\pi}{b} y^{\prime} d y^{\prime}\right)
\end{aligned}
$$

where $A=1.183$ and $B=1.844$. After evaluating the integrals

$$
\begin{align*}
& \left.\int_{0}^{\mathrm{b} / 2}\left(\mathrm{w}_{2 \mathrm{~s}}\right)^{\prime}\right)^{2} d y=\mathrm{k}_{1}\left(\mathrm{w}_{2 m^{\prime}}\right)^{2} \mathrm{~b} \\
& \int_{0}^{\mathrm{b} / 2} \mathrm{w}_{1} \mathrm{w}_{2 s}{ }^{\prime} d y=2 \mathrm{k}_{2} \mathrm{w}_{1 \mathrm{~m}} \mathrm{w}_{2 m}{ }^{\prime} \mathrm{b} \\
& \int_{0}^{\mathrm{b} / 2}{ }_{w_{1}}^{2}\left(w_{2 s}{ }^{\prime}\right)^{2} d y=k_{3^{W} \mathrm{w}^{2}}{ }^{2}\left(\mathrm{w}_{2 \mathrm{~m}^{\prime}}\right)^{2} \mathrm{~b} \tag{128}\\
& \int_{0}^{b / 2}\left(w_{2 a^{\prime}}\right)^{2} d y^{\prime}=k_{4}\left(w_{2 m^{\prime}}\right)^{2} b \\
& \int_{0}^{b / 2}{ }^{w_{1}} w_{2 a} y^{\prime} d y^{\prime}=k_{5} w_{1 m^{w}} 2 m^{\prime} b^{2} \\
& \left.\int_{0}^{b / 2} w_{1}^{2}\left(w_{2 a^{\prime}}\right)^{2} d y^{\prime}=k_{6} w_{1 m}^{2}\left(w_{2 m^{\prime}}\right)^{2} b\right]
\end{align*}
$$

in which

$$
\left.\begin{array}{l}
\mathrm{k}_{1}=0.22910 \tag{129}\\
\mathrm{k}_{2}=0.11938 \\
\mathrm{k}_{3}=0.17794 \\
\mathrm{k}_{4}=0.00753 \\
k_{5}=0.00786 \\
k_{6}=0.00323
\end{array}\right\}
$$

Insertion of equations (128) in equation (127) yields

$$
\begin{align*}
& \left(k_{2}+k_{5}\right) \frac{E}{\rho} w_{1 m} w_{2 m} b^{2}-\left[3 k_{3} \gamma+k_{6}(\gamma+2 \mu)\right] \frac{\pi^{2} E}{4 b^{2}} w_{1 m}^{2}\left(w_{2 m}\right)^{2} b- \\
& \left(k_{1}+k_{4}\right)\left(\sigma_{c r 2}-\sigma_{m}\right) b\left(w_{2 m^{\prime}}\right)^{2}=0 \tag{130}
\end{align*}
$$

Using equation (125) this results in

$$
\begin{equation*}
B^{\prime}=\frac{w_{2 m}^{\prime}}{w_{1 m}}=\frac{\left(k_{2}+k_{5}\right) E \frac{b}{\rho}}{(4 / 3 \gamma)\left[3 k_{3} \gamma+k_{6}(\gamma+2 \mu)\right]\left(\sigma_{m}-\sigma_{c r l}\right)+\left(k_{1}+k_{4}\right)\left(\sigma_{c r 2}-\sigma_{m}\right)} \tag{131}
\end{equation*}
$$

The $\frac{\text { Calculation of postbuckling column modulus and of ultimate strength }}{\text { total internal moment at incipient column buckling is }}$

$$
\begin{equation*}
M_{c}=4(b / 2) \int_{0}^{b / 2} t \sigma_{2 s}{ }^{\prime} d y+4 \int_{0}^{b / 2} t \sigma_{2 a^{\prime}} y^{\prime} d y^{\prime} \tag{132}
\end{equation*}
$$

Using equations (94) and (95) this becomes

$$
\begin{equation*}
M_{c}=\frac{2}{3} \frac{E}{\rho} b^{3} t-\frac{\pi^{2} E t}{b^{2}}\left(b \int_{0}^{b / 2} w_{1} w_{2 s} s^{\prime} d y+2 \int_{0}^{b / 2} w_{1} w^{2} 2 a^{\prime} y^{\prime} d y^{\prime}\right) \tag{133}
\end{equation*}
$$

and using equations (125), (128), and (131)

$$
\begin{equation*}
M_{c}=2 b^{2} t\left[\frac{1}{3} \frac{E b}{\rho}-\frac{16}{3 \gamma}\left(k_{2}+k_{5}\right)\left(\sigma_{m}-\sigma_{c r l}\right) \beta^{\prime}\right] \tag{134}
\end{equation*}
$$

If the column had a constant equivalent postbuckling modulus E_{1},eq the internal moment would be

$$
\begin{equation*}
M_{c}=\frac{E_{1, e q} I}{\rho}=\frac{2}{3} b^{3} t \frac{E_{l, e q}}{\rho} \tag{135}
\end{equation*}
$$

From equations (134) and (135) and using equations (30), (110), (129), and (131)

$$
\begin{equation*}
\mathrm{E}_{1, \mathrm{eq}}=\frac{2.09\left(\sigma_{\mathrm{m}}-\sigma_{\mathrm{crl}}\right)+\left(\sigma_{\mathrm{cr} 2}-\sigma_{\mathrm{m}}\right)}{3.055\left(\sigma_{\mathrm{m}}-\sigma_{\mathrm{cr} 1}\right)+\left(\sigma_{\mathrm{cr} 2}-\sigma_{\mathrm{m}}\right)} \mathrm{E} \tag{136}
\end{equation*}
$$

The relation between the edge stress σ_{m} and the average stress $\sigma_{a v}$ is given by equation (22), which applies for the webs of the tubes as well and where now $\sigma_{c r}=\sigma_{c r l}$. Since now $\sigma_{a v}$ is the ultimate stress σ_{u}, it may be written as

$$
\begin{equation*}
\sigma_{\mathrm{m}}-\sigma_{\mathrm{crl}}=2.44\left(\sigma_{\mathrm{u}}-\sigma_{\mathrm{crl}}\right) \tag{137}
\end{equation*}
$$

Inserting this in equation (136) gives

$$
\begin{equation*}
\frac{E_{l, e q}}{E}=\frac{P\left(\sigma_{u}-\sigma_{\mathrm{cr} 1}\right)+\left(\sigma_{\mathrm{cr} 2}-\sigma_{\mathrm{crl}}\right)}{Q\left(\sigma_{u}-\sigma_{\mathrm{cr} 1}\right)+\left(\sigma_{\mathrm{cr} 2}-\sigma_{\mathrm{cr} 1}\right)} \tag{55}
\end{equation*}
$$

analogous to the previous equation (55), where now

$$
\left.\begin{array}{l}
P=2.66 \tag{138}\\
Q=5.01
\end{array}\right\}
$$

Hence, similarly to the case of H-sections, the ultimate stress is given by equation (60):
$\sigma_{u}=\left(\frac{Q+1-\alpha}{2 Q} \sigma_{c r l}+\frac{P}{2 Q} \sigma_{E}\right)\left(1+\left\{1-\frac{4 Q(P+1-\alpha)}{\left[(Q+1-\alpha) \sigma_{c r l}+P \sigma_{E}\right]^{2}} \sigma_{E} \sigma_{c r l}\right\}^{1 / 2}\right)$
where P and Q are given by equations (138) and

$$
\begin{equation*}
\alpha=\sigma_{\mathrm{cr} 2} / \sigma_{\mathrm{cr} l} \tag{61}
\end{equation*}
$$

The critical stresses $\sigma_{\text {crl }}$ and $\sigma_{\text {cr2 }}$ are given by equations (83) and (91), so that

$$
\begin{equation*}
\alpha=1.4375 \tag{139}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\sigma_{u}=\left(0.456 \sigma_{\mathrm{cr} 1}+0.265 \sigma_{\mathrm{E}}\right)\left[1+\sqrt{1-\frac{44.60 \sigma_{\mathrm{E}} \sigma_{\mathrm{cr} 1}}{\left(4.57 \sigma_{\mathrm{crl}}+2.66 \sigma_{\mathrm{E}}\right)^{2}}}\right] \tag{140}
\end{equation*}
$$

Column buckling in plastic range.- For tubes as for H-sections equation (140) may be written approximately in the form of equation (63), so that for column buckling in the plastic range equations (66), (67), (68), and (68a) apply.

Application to test columns with square-tube section.- The dimensions of the 61S-T6 aluminum columns (fig. 14) used in the experiments were for the " D " series $b_{\text {out }}=2.5$ inches and $t=0.046$ inch and for the " E " series $b_{\text {out }}=3$ inches and $t=0.044$ inch. Hence the center-tocenter distances b of the webs are 2.454 inches and 2.956 inches, respectively. Thus from equation (83) for "D" and "E" series $\sigma_{\text {crl }}=13,600$ and 8,560 psi, respectively, so that from equation (140) for the "D" series columns

$$
\begin{equation*}
\sigma_{u}=\left(6,200+0.265 \sigma_{E}\right)\left[1+\sqrt{1-\frac{608,000 \sigma_{E}}{\left(62,200+2.66 \sigma_{E}\right)^{2}}}\right] \mathrm{psi} \tag{141}
\end{equation*}
$$

and for the " E " series columns

$$
\begin{equation*}
\sigma_{u}=\left(3,900+0.265 \sigma_{E}\right)\left[1+\sqrt{1-\frac{382,000 \sigma_{E}}{\left(39,200+2.66 \sigma_{E}\right)^{2}}}\right] \mathrm{psi} \tag{142}
\end{equation*}
$$

or, approximately, for the "D" series

$$
\begin{equation*}
\sigma_{u}=\left(8,050+0.345 \sigma_{E}\right) \mathrm{psi} \tag{143}
\end{equation*}
$$

and for the "E" series

$$
\begin{equation*}
\sigma_{u}=\left(5,070+0.345 \sigma_{E}\right) \mathrm{psi} \tag{144}
\end{equation*}
$$

Hence in equations (66), (67), and (68), for the " D " series $p=8,050$ psi and $q_{1}=0.345$ and for the " E " series $p=5,070 \mathrm{psi}$ and $q_{1}=0.345$:

The crushing strength $\sigma_{c c}$ was found from figure l8(d) of reference 13, using for the "D" and "E" series the averaged yield stresses of 43,500 and $39,500 \mathrm{psi}$, respectively, from which $\sigma_{c c}$ is 22,600 and 18,600 psi, respectively. Hence from equations (66) and (68), for the "D" series

$$
\begin{gather*}
\sigma_{u l}=15,320 \mathrm{psi} \tag{145}\\
\sigma_{u p}=\left[22,600-1.45(\mathrm{~L} / \mathrm{r})^{2}\right] \mathrm{psi} \tag{146}
\end{gather*}
$$

and for the "E" series

$$
\begin{gather*}
\sigma_{u l}=11,830 \mathrm{psi} \tag{147}\\
\sigma_{u p}=\left[18,600-1.24(\mathrm{~L} / \mathrm{r})^{2}\right] \mathrm{psi} \tag{148}
\end{gather*}
$$

Curves for σ_{u} and $\sigma_{u p}$ for the "D" and "E" series are given in figure 15 as functions of L / r.

If instead of center distances the clear distances between the plates are considered as the width b of the plates, that is for the "D" and " E " series $\mathrm{b}=\mathrm{b}_{\text {clear }}=2.408$ inches and 2.912 inches, respectively, the dotted curves in figure 15 apply.

Effect of Crookedness of Column on Load-Deflection Curve

In the postbuckling range a simply supported and initially straight column will buckle in a half sine wave under a load $A \sigma_{u}$, where from equation (58)

$$
\begin{equation*}
\sigma_{u}=\frac{\pi^{2} E_{1, e q}}{(L / r)^{2}} \tag{58}
\end{equation*}
$$

Here the postbuckling modulus $E_{1, e q}$ is given by equation (55). Since at incipient buckling the external moment $M_{e}=A \sigma_{u} w$ (fig. 16(a)) for any cross section is equal to the internal moment M_{i}, the internal moment is likewise

$$
\begin{equation*}
M_{i}=A \sigma_{u}{ }^{W} \tag{149}
\end{equation*}
$$

A column with initial deflections w_{i} is considered next (fig. 16(b)). Under a load $A \sigma_{a}$ an excess elastic deflection W_{e} will occur. From equation (149) under a load $A \sigma_{u}$ an elastic deflection according to a sine wave causes internal moments $A \sigma_{u} w$, where σ_{u} is given by equation (58). Assuming that w_{i} and w_{e} in figure 16 (b) also vary sinusoidally, the deflection w_{e} would cause internal moments $M_{i}=A \sigma_{u} W_{e}$ if the postbuckling modulus would be the same for the initially straight column. However, since the average stress $\sigma_{a v}$ is here smaller than σ_{u}, the postbuckling modulus E_{l}, eq is now found by replacing σ_{u} by $\sigma_{a v}$ in equation (55). Thus, from equation (55)

$$
\begin{equation*}
E_{l, \mathrm{eq}}=\frac{\mathrm{P}\left(\sigma_{\mathrm{av}}-\sigma_{\mathrm{crl}}\right)+\left(\sigma_{\mathrm{cr} 2}-\sigma_{\mathrm{crl}}\right)}{Q\left(\sigma_{\mathrm{av}}-\sigma_{\mathrm{cr} l}\right)+\left(\sigma_{\mathrm{cr} 2}-\sigma_{\mathrm{crl}}\right)} \tag{150}
\end{equation*}
$$

Hence the internal moment is (fig. 16(b))

$$
\begin{equation*}
M_{i}=A \sigma_{u} W_{e}=A \sigma_{u}\left(w-w_{1}\right) \tag{151}
\end{equation*}
$$

where σ_{u} is given by equation (58) in which E_{1}, eq is determined by equation (150). The external moment is

$$
\begin{equation*}
M_{e}=A \sigma_{a v^{W}} \tag{152}
\end{equation*}
$$

Since $M_{e}=M_{i}$, from equations (151) and (152)

$$
\sigma_{a v^{w}}=\sigma_{u}\left(w-w_{i}\right)
$$

or

$$
\begin{equation*}
\mathrm{w}=\frac{\sigma_{u} / \sigma_{\mathrm{av}}}{\left(\sigma_{u} / \sigma_{\mathrm{av}}\right)-1} \mathrm{w}_{i} \tag{153}
\end{equation*}
$$

where $\sigma_{\text {av }}$ is the average stress in the column and σ_{u} is given by equations (58) and (150).

For example, consider a column with a square tube section of the " E " series, where, from equations (138) and (139), $P=2.66, Q=5.01$, and $\alpha=\sigma_{\mathrm{cr} 2} / \sigma_{\mathrm{crl}}=1.4375$, while from equation $(83) \sigma_{\mathrm{crl}}=8,560 \mathrm{psi}$, so that from equation (150)

$$
\begin{equation*}
\mathrm{E}_{1, \mathrm{eq}}=\frac{\left(2.66 \sigma_{\mathrm{av}}-19,000\right) \mathrm{psi}}{\left(5.01 \sigma_{a v}-39,100\right) \mathrm{psi}} \mathrm{E} \tag{154}
\end{equation*}
$$

This equation applies if the average stresss $\sigma_{a v}$ is above the critical plate buckling stress $\sigma_{\text {crl }}$. Below $\sigma_{\text {crl }}$ the buckling modulus to be inserted in equation (58) is simply $E_{1, \text { eq }}=E$. This assumes that the eccentricity is so small that it does not influence the average stress at which the plates begin to buckle. For a column with a slenderness ratio $L / r=75$, equations (58), (150), and (153) lead to the results given in table 2 and figure 17 .

It is seen from table 2 that above the critical plate buckling stress $\sigma_{\text {crl }}$ the deflection increases rapidly, owing to the sudden decrease of σ_{u} and $\sigma_{u} / \sigma_{a v}$.

Load-deflection diagrams like that of figure 17 appeared also in the tests. At first sight such a diagram could be mistaken for that of an initially straight column, of which the resistance increases with increasing deflection. This would be in contradiction with the contention that the ultimate resistance of an initially straight column is
attained at incipient column buckling, as was explained in the introduction. It is clear from the above that actually such a diagram is due to an initial column deflection which, however, below the critical plate buckling stress $\sigma_{\text {crl }}$ can hardly be detected.

Theoretical Results

For slenderness ratios larger than $(L / r)_{\text {in }}$ (fig. 8), where the column buckling strength, according to Euler or Shanley, is lower than the critical plate buckling stress $\sigma_{\text {crl }}$, the ultimate strength is determined by this unreduced column buckling strength.

For slenderness ratios between $(L / r)_{1}$ and (L/r) in (fig. 8), where plate buckling is governing, and where at all points the stresses remain in the elastic domain, the ultimate strength is given by σ_{u} from equation (60). In particular for H-sections, in equation (60) $\sigma_{\text {crl }}, \sigma_{E}, P, Q$, and α are given by equations (1), (59), (56), (57), and (61). For square tubes equation (60) reduces to equation (140), where σ_{crl} and σ_{E} are given by equations (83) and (59).

For slenderness ratios smaller than $(L / r)_{1}$, where plastic deformations occur, the ultimate strength is given by $\sigma_{u p}$, determined by equation (68a). This is a Johnson parabola, with its apex at the crushing strength $\sigma_{c c}$ of the section and tangent to the curve for σ_{u} at the slenderness $(L / r)_{1}$.

If the critical plate buckling stress is near the proportional limit, $(L / r)_{1}$ may be larger than $(L / r)_{i n}$, in which case the ultimate strength is determined by $\sigma_{E}, \quad \sigma_{c r l}$, and $\sigma_{u p}$, as is sketched in figure 9 and as is the case for series " J " of the H-sections, as shown by the unbroken lines in figure ll. If the crushing strength $\sigma_{c c}$ is equal to the critical plate buckling stress $\sigma_{\text {crl }}$ the ultimate strength is determined by $\sigma_{\text {E }}$ and $\sigma_{\text {crl }}=\sigma_{c c}$ alone, as is the case for series "J" of the H-sections (fig. ll) if the plate widths are assumed to be equal to the clear distances.

The method for determining the ultimate strength as used till now in aircraft design (ref. 16) and in light-gage steel structures (refs. 17 and 18) is to draw a Johnson parabola tangent to the curve for the Euler column buckling stress σ_{E} with its apex at the crushing strength $\sigma_{c c}$.

As follows from the present theory, which is in excellent agreement with the test results given in the experimental part of this paper, this method can be considerably improved by interposing the curve for σ_{u}, as given by equation (60).

Curves for ultimate strength against slenderness ratio of the particular H-sections and square tubes used in the tests are given in figures 11 and 15, respectively. These curves are confirmed closely by experimental investigation.

EXPERIMENTAL INVESTIGATION

Description of Specimens

The specimens used for the experimental program were as follows:
(a) H-sections, extruded, of $75 \mathrm{~S}-\mathrm{T} 6$ aluminum alloy with the nominal dimensions shown in the order: Depth, flange width, plate thickness.
$1 \frac{7}{8}$ by $2 \frac{13}{16}$ inches by $\frac{1}{8}$ inch, designated "J" $2 \frac{1}{2}$ by $3 \frac{13}{16}$ inches by $\frac{1}{8}$ inch, designated " K "

3 by $4 \frac{5}{8}$ inches by $\frac{1}{8}$ inch, designated "L"
All H-sections had the same and constant nominal thickness for web and flange plates.
(b) Square tubes, drawn, of 61S-T6 aluminum alloy with the nominal dimensions shown.

2 by 2 inches by 0.063 inch, designated " B " $2 \frac{1}{2}$ by $2 \frac{1}{2}$ inches by 0.047 inch, designated "D"

3 by 3 inches by 0.047 inch, designated " E "
All tubes were special drawings of the Aluminum Company of America with square corners and slight thickening of the walls on the inside near the corners.

Deviations from flatness, straightness, and squareness were well within tolerable limits with one exception. The series "E" square tubes
had component plates bowed outward an amount approximately equal to onehalf the plate thickness. The consequences of this initial curvature are explained in a following section.

Compressive stress-strain tests for the H-sections were performed on coupon specimens by, and data therefrom supplied through the courtesy of, the Aluminum Company of America. Each of the stress-strain curves given in figure 18 is a weighted average of stress-strain curves for coupons taken from edge-of-flange, center-of~flange, and web locations and as such represents the composite stress-strain curve for the whole H-section.

Compressive stress-strain characteristics for the square tubes, as shown in figure 19, are from tests performed on complete sections with the walls supported to prevent premature local buckling. The detailed procedure for these tests was reported in reference 1.

Lengths of column specimens were selected to cover sufficiently the range for which postbuckling strength is important. The lower limit of L / r ratio was determined by the shortest length possible to test without end effects and the upper limit, by the interaction length, except for a few specimens in the Euler range for the purpose of checking test technique. The geometric properties of all specimens tested are given in tables 3 and 4 .

Instrumentation and Test Procedure

The instrumentation for measurement of local and column buckling and the knife-edge end supports have been described in detail in reference l and were used for this series of tests with only minor revisions required for the H-sections.

The test procedure was likewise identical to that described in reference 1. The general test setup is shown in figures 20 and 21.

Evaluation and Comparison of Experimental Results

The results of the experimental investigation are exhibited in three forms: (l) Ultimate and critical plate stresses compared with theoretical values, (2) column-deflection curves, and (3) buckle-depth variation. Each of these will be discussed in some detail.

The comparisons of the experimental values with the theoretical values are presented in tables 5 and 6 and in figures 22 to 27. Particular note should be given to the last three columns of these tables,
two of which indicate deviation of experimental from theoretical values, and the third of which gives some indication of the postbuckling strength.

The postbuckling strength is markedly illustrated in the figures. The double-branched curve for theoretical ultimate stress is the same as that described generally in figure 8. The parabolic branch for the plastic region partly depends for its location upon empirical values of the crushing strength $\sigma_{c c}$ of short columns tested with flat ends to avoid buckling. Such tests were not performed for this program, but the values were taken in this instance from curves recently recommended in reference 13 .

Experimental critical plate buckling stress was evaluated by means of the top-of-knee method as given in reference 3. Theoretical critical plate stresses were computed for a plate width measured from the centers of adjoining plates. As the width-to-thickness ratio of the plate decreases, the boundary effect of the plate junction apparently becomes more pronounced, such that theoretical values of critical plate stress based on the clear plate width more nearly check the experimental values. As a practical design matter, this is not important, since the midwall values should always be conservative and appear to be so from the test results.

Figure 22 for the series "J" H-sections shows experimental values of ultimate stress which lie between the theoretical values based on midwall plate width and clear plate width, respectively. On the latter basis, the crushing strength $\sigma_{c c}$ is identical to the critical plate stress. Stresses based on the clear plate width are presented since this series had the smallest b / t ratio of the H-sections tested and therefore the largest percentage difference between clear and midwall dimensions. The parabolic branch of the ultimate-stress curve based on midwall plate width is defined by equation (76); no elastic branch occurs for this case. (See also figs. 9 and 11.)

Figure 23 for the series " K " H-sections shows an ultimate-stress curve as defined by equations (71) and (78).

Figure 24 for the series "L" H-sections has an ultimate-stress curve as defined by equations (72) and (80).

Figure 25 for series "B" square tubes shows no postbuckling strength. When the critical plate stress occurs in the plastic range, plate buckling is immediately followed by complete collapse of the column. As a direct consequence, it was not possible to measure experimental values of critical plate stress by the top-of-knee method.

Figure 26 for series "D" square tubes shows a theoretical ultimatestress curve as given by equation (141) for the elastic branch and equation (146) for the plastic branch. (See also fig. 15.)

Figure 27 for series " E " square tubes has a theoretical ultimatestress curve as given by equations (142) and (148). It will be noted that the experimental values of critical plate stress are considerably higher than the theoretical values. As indicated before, the specimens in series " E " were the only ones which showed significant deviation from flatness of plates. Measurements showed the initial plate deflection to be 0.018 inch on the average. That the elevated values of the critical plate stress are likely the result of this initial plate curvature may be demonstrated as follows: From reference 19, where R is the radius of curvature

$$
\left(\frac{\sigma_{\mathrm{cr}}}{\mathrm{E}}\right)_{\mathrm{cylinder}}=0.3 \frac{\mathrm{t}}{\mathrm{R}}
$$

and for a stiffened curved plate (ref. 16)

$$
\left(\frac{\sigma_{\mathrm{cr}}}{\mathrm{E}}\right)_{\text {combined }}=\sqrt{\left(\frac{\sigma_{\mathrm{cr}}}{\mathrm{E}}\right)_{\text {cylinder }}^{2}+\left(\frac{\sigma_{\mathrm{cr}}}{\mathrm{E}}\right)_{\mathrm{flat}}}+\frac{1}{2}\left(\frac{\sigma_{\mathrm{cr}}}{\mathrm{E}}\right)_{\mathrm{flat}}
$$

where $\left(\frac{\sigma_{c r}}{E}\right)_{\text {flat }}=\frac{\pi^{2}}{3(1-v)^{2}}\left(\frac{t}{b}\right)^{2}=3.62\left(\frac{t}{b}\right)^{2}$ for the corresponding flat plate. For a curved element of the square tube under consideration with $\mathrm{E}=10.67 \times 10^{6} \mathrm{psi}, \quad \mathrm{t}=0.044$ inch, $\mathrm{b}=2.956$ inches, and a centerline deviation from flatness of 0.018 inch from which may be derived a radius of curvature $R=63.4$ inches, one finds that the critical stress for the curved element is $\sigma_{\mathrm{cr}}=9,100 \mathrm{psi}$, whereas for the flat plate $\sigma_{c r}=8,560$ psi. The order of increase in this stress due to the effect of curvature will be seen, by reference to figure 27 , to be the same as that measured experimentally.

Column-deflection curves, presented in figures 28 to 32 , show variation of column-center deflection with load, and have been taken well beyond the ultimate load and to the point of complete collapse or nearly
so. The general character of these curves has been developed theoretically. It is represented by equation (153) and shown in figure 17, clearly indicating the effect of initial imperfections.

Buckle-depth variation has been plotted in figures 33 and 34 for the two larger H-sections and in figure 35 as typical of the square tubes. It is clearly evident from the former that the local deflection curve is roughly parabolic in shape and therefore in qualitative agreement with theory.

CONCLUDING REMARKS

It is well-known that very short columns for which column buckling does not occur can show definite postbuckling strength, that is, excess strength beyond that indicated by the critical plate buckling stress. The ultimate stress can exceed appreciably the plate critical stress, especially if the latter is well within the elastic range.

This postbuckling strength decreases with increasing slenderness ratio L / r because column buckling becomes the governing influence except for extremely small slenderness ratios. It becomes zero at that L / r at which the plate buckling stress is equal to the column buckling stress. Approximate methods of accounting for this effect have mostly consisted in using a Johnson parabola tangent to the Euler column curve with apex at the local crushing strength and $\mathrm{L} / \mathrm{r}=0$.

In the present investigation, general energy equations are derived from which the ultimate strength in the postbuckling range can be calculated for columns of any shape and slenderness. Specific expressions are derived for columns with H - and square-box sections and numerous tests have been made on columns of these two shapes. The results, reported herein, show consistent agreement with the developed theory. The reported results of measurements of plate and of column deflections indicate the magnitude of the deformations which occur before as well as after the ultimate load.

Cornell University,
Ithaca, N. Y., May 1, 1952.

REFERENCES

1. Bijlaard, P. P., and Fisher, G. P.: Interaction of Column and Local Buckling in Compression Members. NACA TN 2640, 1952.
2. Hemp, W. S.: The Theory of Flat Panels Buckled in Compression. R. \& M. No. 2178, British A.R.C., 1945.
3. Hu, Pai C., Lundquist, Eugene E., and Batdorf, S. B.: Effect of Small Deviations From Flatness on Effective Width and Buckling of Plates in Compression. NACA IN 1124, 1946.
4. Bijlaard, P. P.: Determination of the Effective Width of Plates With Small Deviations From Flatness by the Method of Split Rigidities. Proc. First U. S. Nat. Cong. Appl. Mech. (June 1951, Chicago, Ill.), A.S.M.E., 1952, pp. 357-362.
5. Bijlaard, P. P.: Theory of the Plastic Stability of Thin Plates. Pub. Int. Assoc. Bridge and Structural Eng., vol. 6, 1940-41, pp. 45-69.
6. Lundquist, Eugene E., Stowell, Elbridge Z., and Schuette, Evan H.: Principles of Moment Distribution Applied to Stability of Structures Composed of Bars or Plates. NACA Rep. 809, 1945.
7. Kroll, W. D.: Tables of Stiffness and Carry-Over Factor for Flat Rectangular Plates Under Compression. NACA ARR 3K27, 1943.
8. Kroll, W. D., Fisher, Gordon P., and Heimerl, George J.: Charts for Calculation of the Critical Stress for Local Instability of Columns With I-, Z-, Channel, and Rectangular-Tube Section. NACA ARR 3KO4, 1943.
9. Bleich, Friedrich: Theorie und Berechnung der eisernen Brücken. Julius Springer (Berlin), 1924.
10. Bijlaard, P. P.: Nauwkeurige Berekening van de Plooispanning van Hoekstalen, zoowel voor het Elastische als voor het Plastische Gebied. De Ingenieur Ned.-Indië, vol. 6, no. 3, Mar. 1939, pp. I.35-I. 45 .
11. Bijlaard, P. P.: Berekening van de Knikspanning van Gekoppelde Profielen volgens een Nieuwe Methode. De Ingenieur Ned.-Indië, vol. 6, no. 3, Mar. 1939, pp. I.45-I. 46.
12. Bijlaard, P. P.: Analysis of the Elastic and Plastic Stability of Sandwich Plates by the Method of Split Rigidities-I. Jour. Aero. Sci., vol. 18, no. 5, May 1951, pp. 339-349.
13. Stowell, Elbridge Z., Heimerl, George J., Libove, Charles, and Lundquist, Eugene E.: Buckling Stresses for Flat Plates and Integral Flat-Plate Sections. Trans. Am. Soc. Civ. Eng., vol. 1l7, 1952, pp. 545-575.
14. Timoshenko, S.: Theory of Elastic Stability. First ed., McGraw-Hill Book Co., Inc., 1936.
15. Timoshenko, S.: Theory of Elasticity. First ed., McGraw-Hill Book Co., Inc., 1934.
16. Sechler, Ernest E., and Dunn, Louis G.: Airplane Structural Analysis and Design. First ed., John Wiley \& Sons, Inc., 1942.
17. Winter, G.: Performance of Compression Plates as Parts of Structura] Members. Res. Eng. Structures Supp., Academic Press, 1949, pp. 179-185.
18. Winter, George, Lansing, Warner, and McCalley, R. P.: Four Papers on the Performance of Thin Walled Steel Structures. Reprint No. 33, Eng. Exp. Station, Cornell Univ., 1950, pp. 51-57.
19. Niles, Alfred S., and Newell, Joseph S.: Airplane Structures. Vol. I. Third ed., John Wiley \& Sons, Inc., 1943.

TABLE 1.- DATA FOR 75S-T6 ALUMINUM-ALLOY H-SECTIONS

Series	b, in.	b', in.	t_{f}, in.	t_{W}, in.	$\begin{gathered} \mathrm{E} / 10^{6} \\ \mathrm{psi} \end{gathered}$	k_{f}	$\begin{gathered} \sigma_{\mathrm{crl}} \\ \mathrm{psi} \end{gathered}$	α	σ_{cc}, psi	P	Q
"J"	$\frac{45}{32}$	$\frac{7}{4}$	0.128	0.125	10.45	0.741	58,000	2.02	60,500	0.792	4.68
"K"	$\frac{61}{32}$	$\frac{19}{8}$. 129	. 122	10.43	. 727	31,500	2.07	52,500	. 792	4.68
"L"	37	$\frac{23}{8}$. 124	. 126	10.41	. 760	20,500	1.98	46,600	. 776	4.60

TABLE 2.- STRESSES FOR SQUARE COLUMNS

$\sigma_{\text {av }}$, psi	$E_{1, \text { eq }} / E$	σ_{u}, psi	$\sigma_{u} / \sigma_{\text {av }}$	w / w_{i}
4,280	1	18,800	4.4	1.29
$a_{8,560}$	1	18,800	2.2	1.83
9,000	.882	15,440	1.72	2.39
10,000	.69	12,970	1.30	4.36
11,000	.64	12,000	1.09	12.1
11,300	.629	11,800	1.043	24.3

TABLE 3.- GEOMEIRIC PROPERTIES OF H-SECTIONS

Series	$\begin{gathered} \text { Dimensions, } \\ \text { in. } \end{gathered}$	$\begin{gathered} \text { Average } \\ \text { r, } \\ \text { in. } \end{gathered}$	Plece	Colum	Cut length, in.	Weights, grams	Area, sq in.	Corrected Pree length, L, in.	L / r
"B"	2 by 2 by 0.062	0.792		$\begin{array}{r} \text { SS-1 } \\ \text { SS-2 } \\ \text { ES-1 } \\ \text { ES-2 } \\ \mathrm{S}-1 \\ \mathrm{~S}-2 \\ \mathrm{M}-1 \\ \mathrm{M}-2 \\ \mathrm{I}-1 \\ \mathrm{I}-2 \\ \mathrm{I}-3 \\ \mathrm{ML}-1 \\ \mathrm{~L}-1 \\ \mathrm{~L}-2 \end{array}$	$\begin{array}{r} 8.05 \\ 8.11 \\ 11.38 \\ 11.39 \\ 17.48 \\ 17.49 \\ 26.00 \\ 26.00 \\ 32.34 \\ 32.36 \\ 32.36 \\ 36.35 \\ 40.23 \\ 40.23 \end{array}$	$\begin{aligned} & 171.7 \\ & 169.1 \\ & 238.9 \\ & 238.6 \\ & 368.7 \\ & 366.6 \\ & 551.8 \\ & 549.2 \\ & 677.3 \\ & 677.2 \\ & 676.2 \\ & 771.4 \\ & 853.0 \\ & 850.2 \end{aligned}$	$\begin{array}{r} 0.481 \\ .470 \\ .474 \\ .473 \\ .476 \\ .474 \\ .478 \\ .476 \\ .473 \\ .473 \\ .472 \\ .479 \\ .479 \\ .477 \end{array}$	11.82 11.88 15.23 15.24 21.45 21.46 30.02 30.02 36.37 36.39 36.39 40.38 44.26 44.26	$\begin{aligned} & 14.95 \\ & 15.00 \\ & 19.25 \\ & 19.25 \\ & 27.15 \\ & 27.15 \\ & 37.95 \\ & 37.95 \\ & 45.95 \\ & 45.95 \\ & 45.95 \\ & 51.00 \\ & 56.00 \\ & 56.00 \end{aligned}$
"D"	$2 \frac{1}{2}$ by $2 \frac{1}{2}$ by 0.047	1.001		$\begin{array}{r} \text { SS-1 } \\ \mathrm{S}-1 \\ \mathrm{DS}-1 \\ \mathrm{RM}-1 \\ \mathrm{MS}-1 \\ \mathrm{I}-2 \\ \mathrm{I}-1 \\ \mathrm{~L}-1 \end{array}$	$\begin{array}{r} 17.31 \\ 38.88 \\ 53.94 \\ 67.00 \\ 72.16 \\ 81.78 \\ 81.81 \\ 123.49 \end{array}$	$\begin{array}{r} 346.2 \\ 780.0 \\ 1,092.0 \\ 1,349.7 \\ 1,446.0 \\ 1,635.2 \\ 1,641.0 \\ 2,545.0 \end{array}$	$\begin{array}{r} 0.452 \\ .452 \\ .455 \\ .455 \\ .452 \\ .452 \\ .453 \\ .465 \end{array}$	$\begin{array}{r} 21.25 \\ 43.03 \\ 58.06 \\ 71.09 \\ 76.25 \\ 85.87 \\ 85.90 \\ 127.58 \end{array}$	$\begin{array}{r} 21.23 \\ 43.00 \\ 58.00 \\ 71.02 \\ 76.17 \\ 85.78 \\ 85.81 \\ 127.45 \end{array}$
"E"	3 by 3 by 0.047	1.206		$\begin{array}{r} \text { SS-1 } \\ \text { ES-1 } \\ \text { DS-1 } \\ \mathrm{S}-1 \\ \mathrm{MS}-1 \\ \mathrm{M}-1 \\ \mathrm{MA}-1 \\ \mathrm{MA}-2 \\ \mathrm{RM}-1 \\ \mathrm{ML}-1 \\ \mathrm{I}-1 \\ \mathrm{IL}-1 \end{array}$	$\begin{array}{r} 20.40 \\ 44.14 \\ 56.21 \\ 68.14 \\ 86.36 \\ 92.30 \\ 95.91 \\ 95.91 \\ 106.16 \\ 116.54 \\ 129.82 \\ 140.63 \end{array}$	$\begin{aligned} & 475.4 \\ & 1,028 \\ & 1,309 \\ & 1,565 \\ & 1,995 \\ & 2,125 \\ & 2,200 \\ & 2,210 \\ & 2,450 \\ & 2,685 \\ & 3,000 \\ & 3,255 \end{aligned}$	$\begin{array}{r} 0.523 \\ .522 \\ .523 \\ .517 \\ .520 \\ .518 \\ .516 \\ .518 \\ .519 \\ .517 \\ .519 \\ .520 \end{array}$	$\begin{array}{r} 24.41 \\ 48.23 \\ 60.30 \\ 72.23 \\ 90.45 \\ 96.39 \\ 100.00 \\ 100.00 \\ 110.25 \\ 120.63 \\ 133.91 \\ 144.72 \end{array}$	$\begin{array}{r} 20.2 \\ 40.0 \\ 50.0 \\ 59.9 \\ 75.0 \\ 79.9 \\ 83.0 \\ 83.0 \\ 91.5 \\ 100.0 \\ 111.0 \\ 120.0 \end{array}$

TABLE 5.- TEST RECORD, H-SECTIONS

Designation			Theoretical		Experimental		Ratio, experimental to theoretical		
Piece	Column	$\frac{\mathrm{L}}{\mathrm{r}}$	$\begin{gathered} \sigma_{u l t}, \\ \text { psi } \end{gathered}$	$\begin{aligned} & \sigma_{\mathrm{cr}}, \\ & \mathrm{psi} \end{aligned}$	$\begin{gathered} \sigma_{u l t}, \\ \text { psi } \end{gathered}$	σ_{cr}, psi (a)	$\frac{\sigma_{u l t}}{\sigma_{u l t}}$	$\frac{\sigma_{\text {cr }}}{\sigma_{\mathrm{cr}}}$	$\frac{\sigma_{\text {ult }}}{\sigma_{\text {cr }}}$
	SS-1	25			62,500	56,800	1.060	0.979	1.079
	ES-1	30	58,300	58,000	61,000	57,000	1.045	. 983	1.052
	S-1	35	58,000	58,000	59,200	56,300	1.020	. 971	1.021
	I-1	40.8	58,000	58,000	56,300		. 970		. 972
	L-1	42.5	b57,600	58,000	54,850		. 952		
"J"-1	L-2	42.5	b57,600	58,000	55,200		. 968		
"J"-1	E-1	50	b41, 700	58,000	41, 750		1.001		
"K"-1	SS-1	25	7,	31,500		33,050	1.061	1.050	1.585
"K"-3	ES-1	30	44,650	31,500	47,600	32,100	1.065	1.019	1.510
"K"-1	S-1	35	41,800	31,500	42,600	31,950	1.018	1.013	1.352
"K"-3	MS-1	40	38,500	31,500	39,200	32,100	1.018	1.019	1.243
"K"-1	M-1	45	35,750	31,500	36,150	31,750	1.011	1.007	1.147
"K"-3	ML-1	50	33,750	31,500	33,800	32,100	1.001	1.019	1.072
"K"-2	I-1	55.9	31,950	31,500	31,800		. 997		1.009
"L"	SS-1	25			41,300	20,750	1.052	1.011	2.018
"L"-1	ES-1	35	32,200	20,500	32,400	21,550	1.005	1.050	1.580
"L"-2	R-1	40	29,050	20,500	28,800	20,700	. 981	1.010	1.405
"L"-2	M-1	44.9	26,500	20,500	26,200	19,650	. 988	. 959	1.278
"L"-1	S-1	55	23,400	20,500	23,800	20,950	1.018	1.021	1.160
"L"-2	ML-1	62	21,950	20,500	20,650	19,650	. 942	. 959	1.008
"L"-3	ML-2	62	21,950	20,500	21,600	20,150	. 985	. 983	1.053
"L"-1	I-1	69.1	20, 750	20,500	20,350		. 982		. 993
"L"-3	E-1	80	b16,080	20,500	15,600		. 972		

a Plate critical stress as determined by NACA top-of-knee method. $\mathrm{b}_{\text {Euler }}$ stress.

TABLE 6.- TEST RECORD, SQUARE TUBES

Designation			Theoretical		Experimental		Ratio, experimental to theoretical		
Piece	Column	$\frac{\mathrm{L}}{\mathrm{r}}$	$\begin{gathered} \sigma_{u l t}, \\ \text { psi } \end{gathered}$	$\begin{aligned} & \sigma_{\mathrm{cr}}, \\ & \mathrm{psi} \end{aligned}$	$\sigma_{u l t}$ psi	σ_{cr}, psi (a)	$\frac{\sigma_{u l t}}{\sigma_{u l t}}$	$\frac{\sigma_{\mathrm{cr}}}{\sigma_{\mathrm{cr}}}$	$\frac{\sigma_{u l t}}{\sigma_{c}}$
	SS	15	37,250		37,150		0.997		0.997
	SS-2	15.0	37,250	37,250	37,650		1.012		1.012
"B"-1	ES-1	19.3	37,250	37,250	37, 800		1.016		1.016
"B'	ES-2	19.3	37,250	37,250	36,800		. 988		88
"B"-1	S-1	27.2	37,250	37,250	37,270		1.002		1.002
"B"	S-2	27.2	37,250	37,250	36,800		. 988		88
"B"-1	M-1	38.0	37,250	37,250	36,600		. 983		. 983
"B'	M-2	38.0	37,250	37,250	36,200		. 972		72
"B"-2	I-1	46.0	37,250	37,250	35,750		. 960		0
"B'	I-2	46.0	37,250	37,250	36,800		. 988		8
"B"-2	I-3	46.0	37,250	37,250	36,350		. 976		. 976
"B"-3	ML-1	51.0	b36,500	37,250	35,800		. 982		
"B"-3	L-1	56.0	b33,600	37,250	32,200		. 958		
"B'	L-2	56.0	b33,600	37,250	32,350		. 963		
"D"-4	SS-1	21	21,950	13,600	21,390	14,290	0.975	1.050	1.570
"D"-1	S-1	43.0	19,920	13,600	20,350	14,200	1.020	1.044	1.497
"D"-2	DS-1	58.0	17,700	13,600	17,750	13,960	1.002	1.027	1.305
"D"-2	RM-1	71.0	15,320	13,600	14,920	13,875	. 975	1.020	1.097
"D"-4	MS-1	76.2	14,500	13,600	14,420	14,270	. 995	1.049	1.061
"D"-3	I-2	85.8	13,740	13,600	13,790		1.010		1.013
"D"-1	I-1	85.8	13,740	13,600	13,330		. 970		982
"D"-5	L-1	127.5	b6,480	13,600			.963		
"E"-3		20	18,090	8,560	16,820	9,560	0.93	1.118	1.967
"E"-2	ES	40	16,620	8,560	16,300	10,070	. 982	1.177	1.906
"E"-5	DS-1	50	15,500	8,560	15,930	10,030	1.028	1.172	1.863
"E"-1	S-1	59.9	14,140	8,560	13,900	10,450	. 983	1.222	1.625
"E"-9	MS-1	75	11,600	8,560	11,640	9,530	1.003	1.113	1.361
"E"-1	M-1	79.9	10,700	8,560	10,710	9,880	1.000	1.154	1.252
"E"-11	MA-1	83	10,200	8,560	10,420	9,500	1.021	1.110	1.219
"E"-4	MA-2	83	10,200	8,560	10,420	9,950	1.021	1.163	1.219
"E"-5	RM-1	91.5	9,380	8,560	10,220	9,930	1.088	1.160	1.193
"E"-2	ML-1	100	8,860	8,560	9,440	9,440	1.064	1.103	1.103
"E"-3	I-1	111	8,560	8,560	8,300		. 970		. 970
"E"-10	Lu-1	120	$\mathrm{b}_{7,300}$	8,560	7,120		. 975		

${ }^{a}$ Plate critical stress as determined by NACA top-of-knee method. $\mathrm{b}_{\text {Euler }}$ stress.

Figure l.- Variation of ultimate stress σ_{u} with slenderness L / r.

(a) Local deflections W_{1} in postbuckling range of straight column and local deflections W_{2} imposed during column buckling.

(b) Column bending stresses σ_{2} caused by column buckling.

(c) Superimposed local deflections w_{2} caused by column buckling.

Figure 2.- Distortions of and column bending stresses in the cross section of square tubes after column buckling in the postbuckling range of the plates.

Figure 3.- Diagram of average stress $\sigma_{a v}$ plotted against unit shortening $\epsilon_{a v}$ for tube with square cross section. Broken line $O A B$ applies if column remains straight. After column buckling at average stress σ_{u} average stress in plates $B C$ and $A D$ (fig. 2) follows the curves $C F$ and CO , respectively.

Figure 4.- Diagram of average stress $\sigma_{a v}$ plotted against unit shortening $\epsilon_{a v}$ for a plate that is elastically restrained along the sides. Broken line ODE and curve OF apply in case of an initially flat plate and of a plate with initial deflection, respectively.

(a) Plate buckling with half wave length a in longitudinal direction.

(b) Local deflections W_{l} in postbuckling range of straight column.

Figure 5.- Distortions of and stresses in column with H-section before and after column buckling in postbuckling range of plates.

(c) Compressive stresses σ_{1} in postbuckling range in flange of straight column.

(d) Local deflections $w_{1}+w_{2}^{\prime}$ after incipient column buckling.

Figure 5.- Continued.

(e) Column bending stresses σ_{2}^{\prime} caused by column buckling.

(f) Excess deflections $w_{2}{ }^{\prime}$ occurring after incipient column buckling. Figure 5.- Concluded.

(a) Variation of $\sigma_{l f}$ and σ_{2}^{\prime} in right flange with local deflections $W_{\text {lf }}$ and W_{2}.

(b) Variation of the deflecting forces at a certain point of right flange with deflections $w_{l f}$ and w_{2} '.

Figure 6.- Determination of the work done during local deflections of right and left flanges of H -section.

(c) Variation of $\sigma_{l f}$ and σ_{2} ' in left flange with local deflections $W_{l f}$ and w_{2}.

(d) Variation of deflecting forces at a certain point of left flange with deflections $W_{\text {If }}$ and w_{2} '.

Figure 6.- Concluded.

Figure 7.- Compressive stresses $\sigma_{\text {lw }}$ in web of H-section.

Figure 8.- Diagram of Euler stress σ_{E} and ultimate stress plotted against slenderness L / r. The branches σ_{u} and $\sigma_{u p}$ of the ultimate stress refer to the elastic and plastic range, respectively.

Figure 9.- Diagram of σ_{E}, σ_{u}, and $\sigma_{u p}$ plotted against slenderness L / r in case where, with column buckling in the postbuckling range, plastic deformations occur from the beginning.

Figure 10.- Cross section of H-section, showing notations.

Figure ll.- Graph of ultimate stresses plotted against slenderness ratios L / r for H -section columns.

(a) Local deflections w_{1} in postbuckling range of straight tube.

(b) Compressive stresses σ_{1} in postbuckling range of straight tube.

(c) Local deflections $w_{1}+w_{2}$ after incipient column buckling.

(d) Column bending stresses $\sigma_{2 a}$ ' in plates $A B$ and $D C$ caused by column buckling.
Figure 12.- Distortions of cross section and stresses in tube with square cross section before and after column buckling in the postbuckling region of the plates.

(e) Column bending stresses $\sigma_{2 s}$ ' in plate $B C$ caused by column buckling.

(f) Excess deflections $\mathrm{w}_{2}{ }^{\prime}$ occurring after incipient column buckling.

(g) Right half of figure $12(f)$.

Figure 12.- Concluded.

(a) Plan view of plate $A B$.

(b) Section of deflected plate $A B$ at $x=0$, showing deflections at point K.

(c) Tensile membrane stresses $\sigma_{y m}{ }^{\prime \prime}$ ' caused by excess deflections wa' for $y^{\prime}>0$ in case at $y^{\prime}=0$ and $y^{\prime}=b / 2$ no displacement in the Y^{\prime}-direction occurs.
(d) Membrane stresses $\sigma_{y m}{ }^{\prime \prime}$ caused by $W_{2 a}{ }^{\prime}$ for $y^{\prime}>0$ if lines $y^{\prime}=0$ and $y^{\prime}=b / 2$ are free to move in the Y^{\prime}-direction, but are held straight.
(e) Actual membrane stresses $\sigma_{y m}{ }^{\prime}$ at $y^{\prime}=b / 4$.

Figure 13. - Determination of the membrane stresses $\sigma_{\mathrm{xm}}{ }^{\prime}$ to which the membrane stresses $\sigma_{y m}$ ' are equivalent.

(f) Membrane stresses $\sigma_{y m}{ }^{\prime \prime}$ at $x=0$.

(g) Actual membrane stresses $\sigma_{y m}^{\prime}$ at $x=0$.

(h) Superimposed membrane stresses $\sigma_{y l}$ '' in order to reduce membrane stresses $\sigma_{y}{ }^{\prime \prime}$ to actual membrane stresses $\sigma_{y}{ }^{\prime}$.

Figure 13.- Concluded.

Figure 14.- Cross section of tube, showing notations.

Figure 15.- Graph of ultimate stresses plotted against slenderness ratios L/r for tubes with square cross section.

(a) Buckling of initially straight column.

(b) Deflection of column with initial eccentricity w_{i}. Figure 16.- Determination of effect of crookedness of column.

Figure 17.- Load-deflection diagram of square tube of "E" series with slenderness ratio $\mathrm{L} / \mathrm{r}=75$ and initial eccentricity w_{i}.

Figure 18.- Stress-strain curves for H-sections.

Figure 19.- Stress-strain curves for square tubes.

Figure 20.- View of test setup. Column shown is L3-ML2.

Figure 2l.- Side view of test setup.

Figure 22.- Test results for "J" series H-sections. $\sigma_{c r l} / \sigma_{c y}=0.70$;

$$
\sigma_{c r l} / \sigma_{c c}=0.96
$$

Figure 23.- Test results for "K" series H-sections. $\sigma_{c r l} / \sigma_{c y}=0.375$;

$$
\sigma_{c r l} / \sigma_{c c}=0.60
$$

Figure 24.- Test results for "L" series H-sections. $\sigma_{c r l} / \sigma_{c y}=0.25$;

$$
\sigma_{\mathrm{crl}} / \sigma_{\mathrm{cc}}=0.44
$$

Figure 25.- Test results for "B" series square tubes. $\sigma_{\text {crl }} / \sigma_{c y}=0.85$; $\sigma_{c r l} / \sigma_{c c}=1.00$.

Figure 26.- Test results for " D " series square tubes. $\sigma_{\text {crl }} / \sigma_{c y}=0.31$;

$$
\sigma_{c r l} / \sigma_{c c}=0.60
$$

Figure 27.- Test results for " E " series square tubes. $\sigma_{c r l} / \sigma_{c y}=0.21$; $\sigma_{c r l} / \sigma_{c c}=0.46$

Figure 28.- Column-deflection curves for "J" series H-sections.

Figure 29.- Column-deflection curves for "K" series H-sections.

Figure 30.- Column-deflection curves for "L" series H-sections.

Figure 32.- Column-deflection curves for "E" series square tubes.

Figure 33.- Buckle-depth variation for "K" series H-sections. Average
half wave length $=4.75$ inches.

Figure 34.- Buckle-depth variation for "L" series H-sections. Average half wave length $=5.75$ inches.

Figure 35.- Buckle-depth variation for "E" series square tubes. Average

