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SUMMARY

The column buckling stress in the range where the component plates
have buckled is calculated by the method of split rigidities. For the
elastic range simple formulas are derived which explicitly express the
columm buckling stress in terms of the Euler buckling stress of the
column, the plate or local buckling stress, and the local buckling stress
for a higher mode of buckling. For the plastic range a Johnson parabols
is proposed which in the buckling-stress - slenderness diagram is tan-
gent to the curve for the elastic column buckling stress in the post-
buckling range. Also the case of initially crooked columms is considered.

Tests were carried out for a considerable range of slenderness ratios
on three H-sections and two square tube sections. The experimental ulti-
mate buckling stresses are in excellent agreement with those predicted by
the theory.

INTRODUCTION

The theoretical investigation is primarily concerned with buckling
phenomena in the elastic range. The influence of plasticity 1s taken
care of by using an appropriate Johnson parabola.

In the elastic range columns with given cross section and with slen-
derness ratios for which the column buckling stress (the Euler stress GE)

is lower than the plate or local buckling stress o,.,.] fail by column
buckling at the stress OR (fig. 1). If the slenderness ratio is smaller
than that value (L/r);j, in figure 1 at which of = 04y, local buckling
occurs at a stress o, Iindependent of the slenderness ratio. It was

shown in reference 1 that for the sections considered in this paper, that
is, H-sections and square tubes, the interaction between column and local

buckling is negligible.




2 NACA TN 2994

In short columns after local buckling, the average compressive
stress may still increase considerably above the critical plate buckling
stress o0,. before the ultimate stress 0, 1s reached. For very short

columns where, also after the decrease of the rigidity of the column by
plate buckling, no column buckling can occur, the ultimate stress o
will be equal to the crushing strength Oce 1in figure 1. For longer
colums, but with a slenderness ratio smaller than (L/r);, in fig-
ure 1, the ultimate stress is smaller than Occ because the local
buckling of the component plate decreases the effective flexursasl rigid-

ity of the column as a whole, so that the columms fail by column buckling
at an average stress o, smaller than Oce

As an example, a tube with square cross section is considered. At
the critical stress o,.;, the walls will buckle as plates which are

simply supported at the unloaded edges (solid lines in fig. 2(a)). In
the postbuckling range, the rigidity of the column against further com-
pression will decrease. This is shown in figure 3, where the average
stress ogy 1s plotted against the unit shortening €gy ©Of the column.

The diagram OAB shows that for averége stresses higher than Onop1 Tthe
modulus doav/deav = tan @, against further compression is smaller than
the elastic modulus E = tan ®o- For the present case, where the unloaded

edges of the plates are free to translate in the lateral direction and are
not held straight, it follows from reference 2 that tan P = 0.41E

(fig. 3). Assume that at an average stress Ogy = 0y (fig. 3) the effec-
tive flexural rigidity of the column has become so small that it begins

to buckle in the direction a (fig. 2(a)) as a column. This will gen-
erate bending stresses o, in the column (fig. 2(b)), that is, extra

compressive stresses oo, to the right and extra tensile stresses Jp

to the left of the axis. The extra compressive stresses to the right
will cause deflecting forces -tce(aew/axe) per unit surface (measuring
the coordinate x in the direction of the column axis), as indicated by
arrows in figure 2(a), which tend to increase the plate deflections Wy
by amounts LY The extra tensile stresses go to the left cause
deflecting forces that diminish the plate deflections W1, as also indi-

cated in figure 2(a). Hence the cross section will tend to assume the
dashed form, superimposing deflections Ww,, as sketched in figure 2(c),

upon the deflections Wy .

In the plates BC and AD the extra stresses 0o are higher than in

the plates AB and DC. Moreover, with respect to the extra deflections oY)
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BC and AD act as plates with widths b, while AB and DC act as plates
with widths AG = GB = DH = HC = b/2 (fig. 2(c)). Hence BC and AD tend
to bend out much more than AB and DC, so that the former will be elas-
tically restrained by the latter. If no initial deflections are present,
an elastically restrained plate behaves as shown by the diagram ODE in
figure 4. The critical stress Ocrp 1s higher than o, from the dia-

gram OAB in figure 3, while the initial slope angle ¢o of the curve DE
is larger than P in figure 3. However, in the present case there are

initial deflections Wy In case of initial deflections, instead of ODE,

the diagram of o against e of the elastically restrained plate

av av
has a shape as shown by the curve OF in figure 4, which is generally
similar to the pertinent curve for a simply supported plate (refs. 5
and 4). The curve OF approximates the curve DE asymptotically. Hence,

returning to figure 3, with column buckling at an average stress Oy

the average stress o in plate BC tends to follow a curve CF, which

av
is similar to part of the curve OF of figure k4 (for the appropriate
initial deflection) that passes through C. Also diagram ODE from fig-
ure 4 is shown in figure 3.

In plate AD, where during column buckling in the direction a

(fig. 2(a)) the average stress decreases, Ogy Will tend to follow the

dashed part CO of curve OF downward. Similar considerations as for the
plates BC and AD apply for the parts of the plates AB and DC to the right
and to the left of the line GH, respectively.

At point C (fig. 3) the curvature of a typical curve OF will tend
to increase with increasing average stress ogy (refs. 3 and 4). Hence
the over-all rigidity of the plates, which governs column buckling and
which is determined by the slope of curve OF, will be highest at incip-
ient column buckling, where it is determined by the slope angle mB at

point C. For with further buckling the effective modulus for the plates
to the right of line GH in figure 2(c), as determined by curve CF, will
decrease more than the effective modulus for the plate to the left, as
determined by curve CO, increases. Consequently in the postbuckling
range the ultimate stress which the column can sustain is the average
stress at incipient columm buckling.

Similar considerations apply for H-sections buckling in the direc-
tion perpendicular to the web. The correctness of these considerations
was confirmed by the experiments, described later in this paper, which
showed that after incipient buckling the average stress decreases mono-
tonically. To emphasize this point the influence of initial crookedness
of the column is considered in a separate section of this paper.
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In the theoretical part of the paper the ultimate stress at incip-
ient column buckling is calculated, taking account of the actual shapes
of the deflection surfaces w; and Wwo. Since with incipient buckling

the stresses 0, and the deflections W, are infinitely small they are
called opo' and w2‘. Simple formulas are found by the method of split

rigidities. Plastic deformation is taken into account by using a Johnson
parabola, which in the buckling stress-slenderness diagram is tangent to
the curve for the ultimate stress in the elastic region. The experimental
results are in excellent agreement with the theory.

The present investigation was carried out at Cornell University
under the sponsorship and with the financial assistance of the National
Advisory Committee for Aeronautics. The theoretical part was carried
out by Professor P. P. Bijlaard and the experimental part was carried
out by Professor G. P. Fisher. The project was directed by Professor
George Winter.

SYMBOLS
A area of cross section and constant in equation (103)
A,B constants in equations (127); A = 1.183, B = 1.844
B=b'/p
C’Cl’CE’CB’Ch constants
D deflecting force in method of split rigidities
E modulus of elasticity
El,eq postbuckling modulus
i moment of inertia
L column or plate length
M bending moment
N flexural plate rigidity, in particular for walls

of tubes

Nf flexural rigidity of flange of H-section
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P,q constants given by equations (56) and (57) for H-sections
and by equations (138) for square tubes

) energy or work

Y 2 coordinate axes

a half wave length of plate buckling

b plate width, in particular of flanges of H-sections and
of walls of square tubes, and length of web

Jal width of web of H-section

c constant in equation (1OL4)

3 constant in equation (10k4)

8 (40 + 5B%)

k=
504 + 754B°

L 2
< tf“crl/“ He

ky ,kp,kz,Kk),k5,k¢ constants given by equations (129)

P,d,9y parameters in equation (63)
T radius of gyration
2

8 = (UCC - Oul)/(L/I‘)l

Tt plate thickness in general and wall thickness of tubes
in particular

W plate deflection

Wy plate deflection by local buckling

we' infinitely small plate deflection from second mode
of plate buckling superimposed at incipient column
buckling

35 coordinates

ki 0cr2/ccrl




q)O: fDl, q)2) CPB
Vo= Af/A

!

()

Subscripts:
a

av
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coefficients defined by equations (86) and (88)

ratio between half wave length a and plate
width b, a/b

given by equation (43) for H-section and by equa-
tion (131) for square tubes, wgm/w]_m

constant given by equation (30)

stretching of plate in postbuckling range

plate shortening per unit length

coefficient of restraint given by equation (85)

constant given by equation (110)

radius of curvature of column axis at incipient
column buckling

normal stress

crushing strength
yield stress in compression (O.2-percent offset)

slope angles

infinitely small when applied to w and o

uniformly distributed

asymmetric

average
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ce
clear

er

ul

wlt

up

bending or flexural

column

crushing

clear inside dimension
criticall

exerted by deflecting forces
Euler

external, elastic

equivalent

flange

exerted on length equal to half wave length of buckles
internal, initial
interaction

at point K (fig. 13(a))

left

maximum

at crest of waves

outside dimension

right

symmetric

ultimate, particularly in elastic range

ultimate at tangent point between curves for 0y
and  oyp

ultimate, in general
ultimate in plastic range

web
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X in X-direction

Yy in Y-direction

1l at local buckling, or in postbuckling range

2 at second mode of plate buckling superimposed at

incipient column buckling

THEORETICAL INVESTIGATION

Ultimate Strength of Columns with H-Shaped Cross Sections

Survey of distortions and stress distribution.- First the modes of

distortion of a cross section are considered in the postbuckling range,
before as well as after column buckling. This distortion, which may be
assumed to vary sinusoidally in the X-direction (fig. 5(a)), will involve

deflecting forces -tcxaaw/axg per unit surface acting transversely on
flanges and web, where o0y includes the membrane stresses caused by

finite deflections in the postbuckling range. The deflecting forces are
held in equilibrium by restraining forces caused by transverse shearing
stresses in the component plates. Since these restraining forces do not
include the influence of the membrane stresses, they are proportional

to the deflections. They may be expressed in terms of the local buckling
stress Ou.p) of the cross section and of the local buckling stress o..o

for the mode of buckling of the cross section which is superimposed with
incipient column buckling. In order to be able to take account more
accurately of the form of the deflection surfaces of the plates, the
deflecting and restraining forces are not compared directly, but the
work done by these forces is compared.

This leads to two equations referring to the postbuckling range
before and after incipient column buckling, respectively. These two
equations have general validity and hence they apply for square tubes
as well. After the variables in these equations have been expressed
in terms of the maximum deflections and of the abscissas of the perti-
nent points of the cross section, the equations lead to an explicit
formula for the ultimate stress in the elastic range.

An H-section of effective length L is considered (fig. 5(a)). Its
cross section is given in figure 5(b). With equal effective length for
buckling in the Y- and Z-directions, for the H-sections considered and
used in the tests column buckling will occur in a direction perpendicular
to the plane of the web.
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At the local buckling stress Ocrl the cross section at the crest

of the local buckling waves in the X-direction will distort as shown in
figure 5(b). The stress Ocpr1 and the half wave length a of local

buckling follow from the theory of buckling of plate assemblies (refs. 5
and 6) and the pertinent tables (ref. 7) and graphs (ref. 8). The local
buckling stress may be expressed as

ngN

g
5 (1)
b=te

Ocrl = kg

where Ny 1s the flexural rigidity of the flanges and b and ty are
indicated in figure 5(b).

With further increase of the compressive force the deflections Wif
and wy,, Of the cross section will increase until at a certain load the

flexural rigidity of the column as a whole has become so small that it
will fail by column buckling. At this load the stress distribution in
the flanges, just before column buckling, is given in figure 5(c). The
maximum stress op occurs at the line of intersection of flanges and
web, which remains straight. (From ref. 1, interaction between column
and local buckling can be neglected.) In other points of the flanges
(and in the web) the compressive stress 01 1s less than 0y, because

of the superimposed membrane tensile stresses owing to the deflec-

tions wlf (and wlw)' All these stresses refer to the stresses O

in the middle plane of the plates, so that they do not contain the plate

bending stresses caused by the deflections AT and Lo

With incipient column buckling infinitely small stresses 02' are

superimposed upon the stresses 01 1in the flanges. If no additional

deflections of the flanges would accompany the column buckling, these
extra stresses o,' would show a linear distribution (fig. 5(e)).

Assuming column buckling in the direction of the arrow a in fig-
ure 5(d), with a radius of curvature p of the column, the extra
stresses at the free edges of the flanges would be Eb/p (fig. 5(e)).

However, the extra compressive stresses 02' in the right flange

will cause extra deflecting forces. These will increase the flange
deflection by an infinitely small amount wy' (fig. 5(d)), with the

same wave length in the X-direction as that of w At the same time

£
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the extra tensile stresses 02' in the left flange decrease its deflec-
tion by an infinitely small amount w,'. Since w2’ is infinitely small

with respect to wyg, it is evident that with equal bending stresses 02'

in the right and left flange, the extra deflections w2' of both flanges
are equal. Moreover, the extra deflections w2' cause a change in the

deflecting forces due to the original compressive stresses gy This

will again increase w2' for the right and left flange by equal amounts.
Hence the deflections w2’ caused by column buckling are symmetrical

with respect to the intersection O of flange and web (figs. 5(d) and 5(f)).
Thus also the membrane tensile stresses caused by the extra deflec-
tions w2' of the right flange are equal to the membrane compressive

stresses caused by the extra deflections wy' of the left flange. These

membrane stresses diminish the column bending stresses Ey/p in the right
and left flange by equal amounts, so that the remaining extra compressive
stresses 02' in the right flange are equal to the remaining extra tensile

stresses 0o in the left flange, as was assumed above.

The extra deflection w2' of the flange, being symmetrical with

respect to point O (fig. 5(f)), is practically similar to the deflection
of a flange clamped at one unloaded side and free at the other which
buckles in pure compression. The buckling stress of such a flange is,
from reference 9,

2
1 o| " Ng
e + 0.57 + 0.1958°|—%& (2)
o KBE) ! 5B:lb2tf

where B = a/b and a 1is the half wave length of buckles. In the
present case this half wave length is the same as that of the original
local buckles which occurred at the local buckling stress 0., from

equation (1). This similarity will be used in calculating the restraining
forces caused by the extra deflections wé'.

The extra deflections w,' of the flanges do not involve any rota-

tion in the line of intersection O of web and flanges. Moreover, since
with incipient columm buckling the extra stresses 02' are symmetrical

with respect to O, there will not occur any extra stresses 02' in the
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web, so that they do not cause extra deflecting forces there. However,
extra deflecting forces will work on elements of the web owing to the
curvature l/p of the column, with a half wave length equal to the col-
um length L. But since the web has buckled in many small half waves,
the deflecting forces by this curvature l/p will tend to increase the
deflection of one half wave and to decrease that of the adjacent ones,
so that they will not affect the average deflections of the web buckling
mode wyp, (figs. 5(b) and 5(d)).

Derivation of energy equations by method of split rigidities.- To
av ©f the column the method
of split rigidities will be used. The principles of this method were

explained in earlier papers, of which some of the earliest and latest
are given as references 1, L4, 10, 11, and 12.

determine the average buckling stress o

With this method equations are established that express the equi-
librium between the deflecting and resisting actions during buckling,
as explained in a generalized form in reference 1, pages 19 and 20. If

the deflecting forces -tcx(aew/ax2) dx dy caused by the compressive
forces toy, dx dy acting on elements t dx dy have to be compared for

two different modes of deflection for which their distributions in the
Y-direction are different (in the X-direction, as sketched in fig. 5(a),
all modes and deflecting forces have the same sine distribution), not
the deflecting forces themselves, but their influences on the considered
deflection have to be compared.

In reference 1 these influences, expressed by the coefficients ¢
and 7y, affected only the decrease of the column or plate buckling
stress by the interaction with plate or column buckling, respectively,
which itself was a small fraction of the actual buckling stress (com-
pare eqs. (74) and (75) of ref. 1). Therefore these influences could
sufficiently accurately be estimated by simple means.

In the present case more intricate modes of deflection occur,
especially in the case of square tubes. Moreover the influence of the
actual form of the different modes is here somewhat larger than in the
case of reference 1. Therefore a more rigorous method will be used in
determining the relative influences of differently distributed deflecting
forces; they will be determined by comparing the work done by them during
the pertinent deflections, as was proposed in reference L.

First, the postbuckling stage of the plate-buckling process is
considered (fig. 5(b)). At the critical stress ooyl known from equa-

tion (l) flanges and web begin to buckle. With increased load further
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buckling occurs. This induces membrane stresses, so that the compres-
sive stress o1y 1in the flanges will vary in the Y-direction (fig. 5(c)).

The flange deflection wye sin (nx/a) causes deflecting forces

32
-teoyp ——2 w1 sin (—Z— x> dx dy
X

]

Dy

JT2 b1
— thllef sin |- x) dx dy (3)
al A

A difficulty in determining the work done by these deflecting forces
during buckling seems to be that during this process gy¢ changes, so

that the deflecting forces at a certain point do not increase linearly
with the deflection. This difficulty may be solved, however, by
observing that the resulting deformation of the flange will be the same
as if the deflecting forces had increased linearly with the deflections
wip sin (nx/a) and hence, at any point, o;¢ had been equal to its

final value after the deflection w,. sin (nx/a) (figs. 6(a) and 6(b)).

This is evident because in that case the resulting deflection and the
internal work would be the same as in the actual case. Hence the total
work during the deflection wyp sin (nx/a) exerted by the deflecting

forces, for example, on a length of the right flange equal to the half
wave length a of buckles, is

L 7

n

b
.5 t L/1 0, oW C dy
o a5 0 1£71f

|
|+

b
2
Cltfj; 0 ¥ o Ay (4)
indicates half wave length and where Cl is

o g SN [

where the subscript
a constant.
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In all cases that have to be considered the deflecting forces and
deflections vary sinusoidally in the X-direction with the same half
wave length a. Hence it is sufficient to consider the work done on
an element of unit length in the X-direction at the crest of the waves
only. From equation (3) the deflecting force exerted on an element dy

of such a strip may be denoted as Ctpo;gewip dy, where C = :tz/a2 is
a constant. The total work during the deflection w;¢ 1s then

b
1~ 2
Viar = 5 C¢ /; o1eW1r 4Y (5)

analogous to equation (4).

The same explanation applies to the web, if also the work by mem-

brane stresses cy in the Yw-direction (fig. 5(b)) is considered. This

work can be calculated by assuming a total equivalent stress (le)eq

in the X-direction, which includes the influence of these membrane

stresses oy. In the flange these stresses Oy are practically zero.

Hence for the entire cross section the work of the deflecting forces is
ik 2
= d
Vig = 3 Cﬁgt(ol)eq w, < Ay (6)

where the sign 5#\ means that the integral has to be extended along the

entire cross section of the column (so that, in considering the web,
t 1is the thickness t;; of the web, and ¥y, 1s the coordinate Yig)'e

In calculating the work V,45, the influence of the membrane stresses

was taken into account in determining the deflecting forces.. Hence the
work Vyq 1s transformed exclusively into bending energy of the plate,

that is, without any stretching energy. In the considered initial stage
of postbuckling the shape of the deflection surface may be assumed to
remain similar to that at incipient buckling. It was shown in refer-
ence 4 that, in the case of a compressed plate that is simply supported
at the unloaded edges, such an assumption leads to practically exact
results. Hence the required bending energy for the finite deflections
involved is determined by the same equations that apply for the infi-
nitely small deflections occurring at incipient buckling. Analogous to
equation (6), at incipient buckling the work done by the deflecting



1 NACA TN 2994

forces, and hence the bending energy required for the deflections wy,
may be expressed as

’_l

_ 2
Vip = 3 Cccrlszgtwl dyy (7)

where O.py is the local buckling stress from equation (1). As explained
above, this same equation obtains for the finite deflections considered
here. Hence V;4 from equation 6 should be equal to Vip from equa-
tion (7), so that

2 _ 2

The subsequent column buckling will be considered next. As explained
above, it induces extra flange deflections w,' and no extra web deflec-

tions. The deflections w2' are symmetrical with respect to the plane

of the web and are similar to those of a compressed flange with one
unloaded side clamped and the other free, as illustrated in figure 5(f),
for which the critical stress o,., 1is given by equation (2). Analo-

gous to equation (7) the flexural energy required for the deflections wg'
may be expressed as

]! 1\ 2

This integral extends over the flanges only, since for the web w2' = (05

The best way to explain how the work done by the deflecting forces
during the actual deflection w2' of the flanges is calculated seems to

be to show first how the total deflecting forces acting on the flanges
develop - or may be assumed to develop - with increasing crest deflec-

tions wy, and w,'. Figure 6(a) shows how the compressive stress

(averaged over the flange.thickness) at a certain point of the right
flange develops. As stated above, during the deflection wy¢ it may

be assumed to remain constant. Hence at the crest of the waves it
develops a deflecting force which increases linearly with w,p with
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a final value Ctpojewip, &s indicated in figures 5(d) and 6(b). The
column buckling stresses 02' as well as the extra deflections w2‘ are
proportional to the infinitely small column deflections, so that oy’
increases linearly with w,' (fig. 6(a)). The deflections wy' with

the same half wave length a as Wif cause an increase of the deflecting
forces by the stresses o1y of a final amount Ctpoyew,' (fig. 5(a)),
increasing linearly with wy' (fig. 6(b)). The extra stresses o'
increase the deflecting forces by an amount thcg'(wlf + Wé') (figs. 5(a)
and 6(b)). The part Ctpo,'wip increases linearly with W', while the

part Ct 'w,' increases proportionally to (W?')g (fig. 6(b)). Since

o
T2 2

both 02' and w2' are infinitely small, this last term may be neglected
with respect to the first one.

With deflecting forces D and deflections w the total work done
w
by the deflecting forces is \jp D dw. Hence it is given by the hatched
0
area of the diagram for the deflecting forces in figure 6(b), so that for
an element of the right flange at the crest of the wave and of unit length
in the X-direction this work is

b b
i b '
& 0 e 0

In the left flange, the extra stresses o,' (fig. 5(e)) are opposite

to the stresses oyp (fig. 5(c)) and w,' 1is opposite to wyp (fig. 5(4)),

so that the stresses vary with the deflection as indicated in figure 6(c).
After reaching a value thclfwlf Just before column buckling, with a

deflection wyp, the deflecting force caused by the stresses o1¢ Wwill
decrease by an amount Ct_o, w.' (figs. 5(d) and 6(d)). The extra

fil e o
tensile stresses op' decrease the deflecting force by an amount

thce'(wlf - we'). For similar reasons as given for the right flange,

Ctpo pw," and Ctpo,'w; decrease here linearly with the deflection,
while the term th02'w2' may be neglected. Hence from figure 6(d) the
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total work done by the deflecting forces, as given by the hatched area,
is (fig. 5(d))

b b
; il
thfo o1p(Vie - Vo )2 ay* + = thfo op'wypw,' dy' (11)

Yay |=

| H

During incipient buckling the web does not undergo extra deflec-
tions w2', so that the total work for the web is (fig. 5(d))

it /o
Cty JQ (Ulw)eq wlw2 dyw (12)

\SH [}

Vay =

Here (ch)eq is inserted instead of 01y to take account of membrane

stresses Oy in the web. Hence, for the entire section, the total work
by the deflecting forces is

i 95 2 2
5 c tBUl)e Wl dyl ot Ul(w2'> dyl S 02 'wlwe' dyl:] (13)

where yg, t, and Y1 have the same meaning as in equation (6).

As stated above, the bending energy required for the deflections Wy
and w2' is given by Vlb and ng from equations (7) and (9). It

could be argued that in the present case the extra energy required for
the extra deflections w2’ may differ from ng in equation (9) because

the stresses which were caused by the deflections w; may do some work
during the extra deflections wp'. Indeed, in the right flange, where
wo' 1is of the same sign as wy, some stress components may do work
during the extra deflections wg‘. But in the left flange w,' has a
direction opposite to w;, so that the same stress components will do
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there an equal and opposite amount of work. Hence the total work done
by these stresses is zero, so that indeed Vg from equation (15) must

be equal to the sum of Vj, and V), from equations (7) and (9). This
yields

9§t(ol)eq wle dy;y +k7§tcl(w2')2 dy;, + 5££02'wlw2’ dy, =

2
Oerl 95“'1 dyy + Ierp §£ t(wp')? ayy (1k)

Subtracting equation (8) from equation (14) leads to the following basic
condition:

jlgtcl(wg')e dy; + %tcg'wlwe' dy; = Oopp ‘ft(we')g dyy (15)

Derivations of formulas for stresses 01 and 02'.— The variables

in equations (8) and (15) may be expressed in terms of the maximum
deflections wy, and wpp' (fig. 5(d)) and the abscissas of the per-

tinent points to which they refer. The stress o1¢ 1in the flanges dif-
fers from o at y = O because of the stretching of the flange in the
X-direction by its deflection wjyp. Although the flanges are rotationally

restrained by the web, during local buckling they practically do not bend
in the Y-direction, as is substantiated by tests, so that the deflec-
tion wyp (fig. 5(b)) may be expressed as

W] = Wyp sin(’é— x) (16)

where

- J
e ® Yin g (17)
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Hence for a half wave length the dilatation is

o0

1
N+
2

E

0 aX
Q2
2 0 8.2 a
2
bd 2
= —W (18)
La 1f

so that the stress oy at any point of the flanges (fig. 5(c)) is

B Ed
%% =% " &
2
n<E o)
= 0. - —wa (19)
& La®

In the same way the compressive stress in the web is

Oy =0y = — W (20)

Both equations (19) and (20) neglect the influence of membrane stresses oy

and assume that o7 does not vary in the X-direction. For the flanges the

membrane stresses oy are indeed negligible. Moreover it was shown in

reference 4 that for a web plate which is simply supported and held straight
at the unloaded edges the above assumption leads to exact results. Hence

it may be assumed that for the present case also equation (20) is suffi-
ciently accurate.

However, to calculate the total work, the membrane stresses o, in
the web should be taken into account. At the unloaded edges yy = tb'/2

<
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of the web the membrane stresses oy vanish. According to reference 2

for such a case, if the plate is simply supported at the unloaded edges,
in the postbuckling range the stiffness against further compression is
0.41 times that before buckling, which may be expressed by the formula

Ogv = Oop + O.hlE(ex = €cr) (21)

where Ogqy 1s the average compressive stress Ogs> 0oy 1s the crit-
ical stress, ey 1is the shortening of the plate per unit length, and
ey °cr/E' Since at the unloaded edges the plate does not bend,

Gy = m/E, where oy is the maximum edge compressive stress (fig. 7).
Insertion in equation (21) gives

Ogy = Top + 0.41(0m = Gcr) (22)

It was shown in reference 4 that for membrane stresses Ox with a dis-
tribution (fig. 7)

Oxm = Oop COS  Iw (23)

their effect upon the buckling deflections of the plate is equivalent to
that of uniformly distributed stresses

I%,eq = 0:T500p (24)

It may be assumed that equation (23) gives the distribution of the mem-
brane stresses o,, also in the present case. Moreover, let the influence
of all membrane stresses Gl and Uym be equivalent to that of equally
distributed stresses

Ox,eq = Mo (25)
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Hence, according to the reasoning advanced in reference 4, the total

equivalent compressive stress Oy = Oy = QOgp must be equal to the
critical stress, or
% = %om = %er (26)
so that
O, - O
m CL
aiss=——— (27)
Jom

Observing that with the stress distribution from equation (23)
Oom = 2(0m & Gav) in figure 7 and using equation (22), it follows from
equations (25) and (27) that

o = 0.848¢ (28)
om

From equation (24) the equivalent stress Oy eq
D

only is O.7500m, so that the membrane stresses cym may be taken into

account, in calculating the total work, by assuming equivalent membrane
stresses

for membrane stresses o

0.848
(?Xm>eq - 0.750 %xm = 7%m (29)
where
y = 1.13 (30)

Hence in calculating the total work the stresses in the web should be
assumed as

(?lw)eq =0 -7 5 Vv (31)

instead of o7, from equation (20).
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For a column deflection in the direction a (fig. 5(d)), with =
radius of curvature p the bending stresses in a nondistorted section
would be Ey/p. However, the excess flange deflections wy'  (fig. 5(d))

generate excess membrane stresses Oym'- Analogous to equation (19) and
considering that w2' is infinitely small, this leads to actual stresses
(fig. 5(e)):

P E °E r\2 ﬂ _E 72E ,
Y2 =5 ¥ 42 ("1f+"2) w1 =59 " o3 e (32)

As shown in the section entitled "Survey of distortions and stress dis-
tribution,” the column deflection does not introduce any excess stresses
in the web, so that for the web 02' = 0.

Derivation of formulas for deflections.- After formulas for the
stresses o0 and 0,' have been derived, the deflections wp and wy'
have yet to be expressed in terms of the maximum deflections Wim
and Wy ' (fig. 5(d)) and of the abscissas of the pertinent points con-
sidered. The flange deflection wir 1s given by equation (17). The
web is bent by moments M& exerted by the flanges and may sufficiently
accurately be assumed to bend parabolically in the Y, -direction. Hence
from figure 5(d) at the crest of the waves the maximum web deflection is

b'w
L (
Wo = 33)
= 4b
so that the web deflection
by 2 b'w Ly 2
Ve = Yo & = T = T dm 1 - v (34)
(v7)2 L (by2

The flange deflection W?' is similar to that of a fully clamped
flange. Analogous to equation (15b) of reference 1 it will be assumed as

yh - Yoyl + 6pey?
wp' = o' " (35)
b

As explained above, for the web wy' = 0.



22 NACA TN 2994

Energy equations.- Equations (17), (19), (31), (32), (34), and (35)
express all variables of the basic equations (8) and (15) in terms of the

maximum deflections wp, and Wop', the maximum stress o, the half wave

length a of local buckling, the plate and web widths b and b', and
the coordinates y and y (figs. 5(c), 5(d), and 5(e)). Using equa-

tions (17), (19), (31), and (34), equation (8) yields

2 rb
2W
u_tf( f P oy 22 [ yudy>+

4a2 b2 Yo
b'/2

b'\2 o) J[ N ]2
2l—) wq “t o} a; =

<)+b> Im “w | *m 5 [ ()2 Y Yw

2 2 b'/2 N Wy 2 b

n<E ') o f L ) 1m o
el RS L Yo o| Wyp =% =7 teoepy | vE dy +

)_l_a2 4o 0 l: (b')2 L L b2 GL 0

2(2—1;)2 1n tuOery fob'/2 [-

The terms referring to the four flanges and those referring to the web
may be recognized by the factors ty and t, respectively. After inte-

gration the above equation leads to the result

(Bi)=

>
ywﬂ dy,, (36)

;2_ Wi = k(cm - Ucrl) (37)

or

1 = 2[E (o - 0er2)] 2 (5
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where
84 (40 + 8B
k = ( L ) (39)
504 + 75.B°
and
B=b'/p (%0)
By = tyfte (k1)

All terms of equation (15) vanish as far as they refer to the web, so
that it is sufficient to consider this equation for one flange only.

Using equations (17), (19), (32), and (35), equation (15) transforms
into

(WQm')e[Em Jfb (yh _ uby3 - 6b2y2)2 s

9b8 0

2

2g Y1im b
I—g ‘;@_f y2(y* - wpyd + 6v2y2)° d}] +
a 0

' b
W_]_m _wﬂ ..F‘_: f ye(y)+ - lll)y3 + 6b2y2) dy -

2% W W' b
2t [ - P 4 622 oy -
2a 3b 0

1\ 2 b
LE%E;[_ - JF (yh = hby3 + 6b2y2)2 dy (42)
0

After integration and with the aid of equation (37) this equation results
in

1

Yom _ 0.2254Eb/p
Yim  0.12874k (0 - Ocpy) + 0.2568(0cpp - oy)

B' = (43)
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Calculation of postbuckling column modulus and of ultimate strength.-

The internal bending moment M, in the column is practically given by the
total bending moment in the flanges so that

b
MC = h‘tf\,[o 0'2'y dy (M)

Inserting equation (32), in which Vg and w2' are given by equa-

tions (17) and (35), and using equations (37) and (43), equation (Lk)
yields

o, [Bb T ,
Me = 4b tfl;'—p - é(; k(cm - Ucrl)B] (43)

If the column had a constant equivalent postbuckling modulus Eq eq the
2
internal moment would be

E i E
My = 280 _ X3 “oed (46)
P o) P

By equating the right-hand members in equations (45) and (46) and using
equation (43) the equivalent postbuckling modulus is obtained

O.20h56k(cm = Gcrl) + (“crz = om)

= E (47)
O.50l§2k(cm - Gcrl) + (Ucr2 - cm)

E

1,eq

In order to express El eq in terms of the ultimate stress o, that is,
J

the average stress oy at incipient column buckling, it is observed that
the total compressive force in a flange may be written as

b
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where o, 1s the average stress in the flanges at incipient column
buckling. Substituting ojy from equation (19) and wyp from equa-
tion (17) and using equation (37), equation (48) transforms into

Ouf = iElE - k)op + kocrljl (49)

The compressive force in the web is

b'/2
1 —
tblo . =2t fo 0y &Y, (50).

Using equations (20), (34), (37), and (40), this gives the average stress
in the web,

G =(1-5l£>o +k';20 (51)

The ultimate stress oy for the entire section follows from the condition

AUu = ll'Afo'uf + Awouw (52)

where A 1is the total cross section, Af 1is the cross section of one
flange, and Ay 1is the cross section of the web. With equations (49)

and (51) and with the notation

¥ = Ap/A (53)

this leads to the relation

O = (54)
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Inserting this in equation (47) one obtains

E) seq ~ P(Uu - 0rcrl) o (Ocr2 ' Ocrl)

- (55)
Q(gu - 0crl) * (Ocre - 0crl)
where
. -1
- 0.20456k (56)
(@E)EQEW
120 3 10
0.501%32k - 1
Q=< k32> k( B2> (57)
- =1 ==[1 - =¥
120 3 10
From the definition of Ej; oq it follows that the ultimate stress
H2El
O’uz—-—’eg (58)
(L/r)2

Substituting this in equation (55) and observing that the Euler stress

2E
O = = (59)
(L/r)?
from equation (55)
1/2
Q+1l-«a E L(P+1-q)
Ou = ‘——Ea"_ Ocr1 * Ea o/l +41 - 9E%r1

EQ +1-a)o,p + PGEJ =

(60)
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where

=

(61)

0cre/ocrl

Column buckling in plastic range.- Equation (60) is valid only if

plastic deformations do not occur anywhere in the postbuckling range
before column buckling. In figure 8 the elastic ultimate stress o

u
is sketched in the buckling-stress - slenderness diagram. It is pro-
posed to define the column buckling stress Sup in the plastic range

(that is, in the case when in the postbuckling stage the local stress
at some points of the column is in the plastic range) by a Johnson
parabola, as given by the curve Oyp In figure 8. Hence it is given

by the formula

Sup = Oce - s(L/r)2 (62)

where o0,. 1is the crushing strength for short columns, where anly plate

buckling and no column buckling can occur, and where s is determined
as follows:

It appeared that, for all sections considered and tested, the expres-
sion in the second parentheses in equation (60) is practically independent
of op and thus of L/r. Hence equation (60) and the corresponding curve

for o, become a hyperbola

q

—_— (63)
(L/r)?

where p, q, and q, are parameters determined by approximating equa-

tion (60) by a hyperbola. From equation (59),

q = q,0,(1/r)? = q»°R (6+)
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At the tangent point between the curves for o
nates L/r = (L/r); and o = oy (£ig. 8},

w and Oup’ with coordi-

dcup doy, (65)

a(L/r)  a(n/r)

Using equations (62), (63), and (64), one finds from equations (65)

Oyl = %(Occ o p) (66)
(%>l - (67)
up = Occ - —'——(L)E o) (68)

’*‘11 E

Since the actual curve for o, according to equation (60) is not exactly

a hyperbola, the best way to draw a continuous curve for o, and o

u up
is first to calculate o ; from equation (66). Then from the curve

for o, the value of (L/r)l for o, = oy can be read. This gives

the curve for the Johnson parabola as

_Iﬁ_ (68a)

|
Q
!
Q
]
Q
=

0up = ce

It may happen that the slenderness (L/r)l is larger than the interaction
slenderness (L/r)in in figure 8. This is illustrated in figure 9. 1In

such a case the ultimate load is determined by o, and by Oup from

equation (68) only, and not by the curve for oy.
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Application to test columns with H-section.- The formulas for o,
and Oyp Were used to calculate the ultimate stress of the 75S-T6 aluminum-

alloy H-sections used in the tests, of which the pertinent data are given
in table 1. The dimensions b and b' in the table refer to distances
center to center of the plates, as indicated in figure 10. Factors kg

in equation (l) for On.p] Were found from figure 2 of reference 8. The
critical stress 0,.o for the mode of plate buckling which is superimposed

during column buckling is given by equation (2) in which B = a/b refers
to the half wave length of local buckling before column buckling. This
half wave length was determined for the "L'"-series columns on page 4k of
reference 1 and was found to be equal to twice the web width, which in the
present paper is denoted as b', so that a/b' = 2. The same ratio a/b’
is found for the "J"- and "K"-series columns. Since for all series

b'/b = 1.24, the ratio B = a/b in equation (2) 1s (a/p') (b'/p) = 2.48.
Hence from equation (2)

2
b1 Nf

Oepe = 1.50 (69)

2
bTte

so that the ratio « = Ocr2/Ucrl’ or, from equations (1) and (69)5
= l.50/kf, may be calculated. The crushing strength o.. 1in tablie 1

was found from figure 18(b) of reference 13, using the average yield

stress Ocy = 83,000 psi of the column material. Constants P and Q

in equation (60) are functions of the cross-sectional dimensions only
and may be calculated from equations (56) and (57).

Using the values of table 1 in equation (60) one finds the following
expressions for o,: For "J"-series columns

2
0y = (22,650 + O.O8h6oE) L+ (1 a 46,0007, psi  (70)

(212,000 + 0.79205)2

for "K"-series columns

: 165,0000p
oy = (12,150 + 0.08460g) [1 + |[1 + psi  (T71)

(113,500 + 0.79205)°
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and for "L"-series columns

Tl OOOUE
o, = (8,080 + 0.084505) |1 + || 1 + psi  (72)

(74,300 + 0.7760E)2

Curves for o, 8are given in figure 11 by the unbroken lines.

Equations (70), (71), and (72), in which the terms in the square

brackets are practically constant, may be written sufficiently accurately
as follows:

For the "J" series

oy = (47,100 + 0.17605) psi (73)
for the "K" series

o, = (26,200 + 0.18303) psi (74)
and for the "L" series

oy = (17,100 + 0.17905) psi (75)

so that, in equations (66), (67), (68), and (68a), for the "J" series

p = 47,100 psi

q = 0.176

for the "K" series

p = 26,200 psi

q = 0.183



NACA TN 2994 31
and for the "L" series
p = 17,100 psi
q, = 0.179

Hence from equations (66), (68), and (68a) and table 1, for the "J" series

Eo,soo - (25& x 106/ oE)] psi

oyp =
= Eo,soo = 2.46(L/r)§, psi (76)
for the "K" series

Oq1 = 39,350 psi (77)
Oyp = [52,500 = 8.73(L/r)§l psi (78)

and for the "L" series
oy = 31,800 psi (79)
Oyp = E+6,6oo - ll.75(L/r)ﬂ psi (80)

This is shown graphically by the unbroken curves in figure 11. The graph
for the "J" series has the shape sketched in figure 9, so that only o,

and Oyp &re governing here. This may be understood in such a way that,
although the local buckling stress Onp1 1s still in the elastic range,

in the postbuckling regior plastic deformation occurs before column
buckling.

Similar curves have been calculated by using the clear distances
belear 8nd belear' of the cross sections, as indicated in figure 10.
They are given by the dotted curves in figure 11.
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Ultimate Strength of Tubes with Square Cross Section

Energy equations by method of split rigidities.- The cross section

of a square tube will deform by plate buckling, as shown in figure 12(a)
for the crest of the waves. The plate deflections w; will cause a

distribution of the compressive stresses o; as indicated in figure 12(b) .
When the compressive force and the deflections w; increase, a situation

will be reached where the tube will buckle as a column. If no extra plate {
deflections would occur, incipient column buckling would cause bending

stresses Ey'/p, where p 1is the radius of curvature of the column deflec- ‘
tion. However, the bending stresses o' (figs. 12(d) and 12(e)) will \‘

cause extra plate deflections as indicated in figure 12(c) by wga‘
(2 for asymmetrical) for plate AB and by wo.' (s for symmetrical) for
plate BC. The deflections wp,' and wy ' cause decreases of bending

stress, as indicated in figures 12(d) and 12(e). At the corners, where
Wog' = Wpg' = 0, the bending stresses remain Eb/(2p). The infinitely

small extra plate deflections w2' occurring with incipient column
buckling are sketched separately in figure 120 e)l |

Using exactly the same reasoning as given for H-sections, one arrives
again at the result that the average column buckling stress oy is deter-

mined by the two equations (8) and (15). Since here in all plates mem-
brane stresses oyy also arise, equivalent stresses (Gl)eq and (02 )eq |

have to be used throughout instead of the actual stresses o7 and 02'.
In the present case all wall thicknesses are equal, so that equations (8)
and (15) become |

2
55(01)&1 Vi Ayl = depil S£W12 dyy (e |

5£(°l)eq(w2')2 dyy + 55(02 ')eq wiwp' Ay = Ogpp Sg("z')e dy; (82) ‘

The stresses o0y and 02' and the deflections Wy and we‘ are indi- ‘
cated in figure 12.

Derivation of formulas for stresses.- Obviously, 0., in equation (81) ?

is the plate-buckling stress for the tube. Since the webs do not restrain
each other, this is from reference 1k

\
|
\
|
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2
Gcrl = )4- 32—1: (83)

where N 1is the flexural rigidity of the plates.

Similarly as for H-sections, 0,.o 1s the compressive stress
required for buckling in the mode determined by the extra deflections Wé’,
as sketched for the tube in figure 12(f). Furthermore Ocpyp has to be

calculated for the same half wave length a as that of the original plate
buckling as sketched in figure 12(a), that is, for a =b.

The mode of buckling in figure 12(f) is similar to that of a column
with a cross section as given in figure lE(g), of which the narrower
plates are simply supported at G and H. Formulas for the buckling stress
of such columns were derived in reference 5. Calculating the buckling
stress from these formulas it was found in equation (106) of reference 1
that

)
o5 = 4.BUE(t/D)Z = 5.34 |
bt

if a Poisson's ratio of 0.3 is assumed. However, this is the critical
stress for the optimum half wave length of buckling, while 0..0 has to

be calculated for a half wave length a = b. The buckling condition for
this case is given by equation (h9) of reference 5

@ tanh Qal %) + 0p tan <aé g>‘+ 6112 T Q@E)G =0 (84)

where 6 1s given by equation (48) of reference 5. In the present case
the thicknesses of the buckling plate BC and the restraining plates GB
and HC are equal, so that, in equation (48) of reference 5, h = h'.

Hence

al‘ coth al‘b‘ - 02‘ cot O 'D’
o = (85)

()2 + (')
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The width b' of the restraining plates GB and HC is equal to b/2.
Furthermore, from the equations below equation (61) in reference Sl alial
the elastic range and with the present notations

% o = \Jt?@ = )\\‘tccre/N (86)

where

O

Ne=tal 8

it (87)
andt

2 1

@ o' = th + ?\\,t'ocrglN (88)

Since here t' =1,

0" =0 o (89)

Hence, using equation (85), equation (84) becomes

b

& tanh Q}l g> + 0, tan 612 §> =@, eat <g2 g) - @ coth (al g) (90)

By trial and error it follows from this equation that

Oopp = 2:715 55; (91)

The same result is obtained by using the tables of reference 7, which

are based on the same equations, but the above equations will also be

used to find the equations for w. ' and w. '.
2s 2a

1
Because of a printing error in reference 5 two of the primes in the
present equation (88) were omitted.
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The variables o and w,' 1in equations (8l) and (82)

1
2 Eo RS 2

may be expressed in terms of the maximum deflections Wim and w2m'

and the abscissas of the pertinent points to which they refer (fig. 12(c)).
In the same way as was found in equations (19) and (20) for H-sections,
the stresses oy (fig. 12(b)) are

2R
o] = 0 - r= wl2 (92)
L4p2

since here the half wave length a = Db. As far as the influence of the
membrane stresses Oy is concerned, the plates are here in the same

condition as the web of an H-section, so that, analogous to equation (51)
and with a = b, the equivalent stress (ol)eq to be used in equa-

tions (81) and (82) is
(O1)eq = %m = 7 == ¥; (93)

where 7 = 1.13 from equation (30). Analogous to equation (32), for
the plates AB and CD (fig. 12(c)), with a =b (fig. 12(d))

T % "1¥ea (94)

For the plates BC and DA, y' = b/2, so that (figs. 12(c) and 12(e))

Eb x°E
o U5 =2 o e = qepaxe . U )

As far as the membrane stresses cy

are in about the same condition as in case of the initial deflections wy,

are concerned, the plates BC and DA

so that, in determining the total work done, they can be taken into account
by using in equation (82) equivalent stresses

Eb 7°E '
0ty =E2 . B L (96)
( 2s )eq 20 2b2 i 28
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The plates AB and CD are in a different position. From equation (9k)
in the X-direction the deflection wea' causes extra membrane tensile

stresses

2

v_ﬂE
O%m = > wlw2a' (97)

2b

where w and Ww a' are the deflections at the crest of the waves

i 2
(st x = 0 1in fig. 13(a)). These stresses o,,' are zero for y' = O
and y' = tb/2, where w2a' and W, are zero, respectively. From ref-

erence L4 the deflection wy; may be assumed to have the same shape as
with incipient buckling, so that

Wy = Wy COS % X cos % y' (98)
and at x =0
T( 1
Wy = W, cos = y (98a)

At point K (fig. 13(a)) for x =0 and y' = b/4, from equation (98a)

wy = 0.71lwyy. Denoting w2a' at this point as Vs ]', from equation (97)
- x 128k (99)
o = (0 — Ewy W !

The extra membrane stresses Uym' caused by the extra deflec-
tions wp,' have relatively little influence. The equivalent membrane

1

stresses oyn' may be approximated as follows. If at y' =0 and

' = tb/2 no displacement in the Y'-~direction were possible, the
¥

1 i —
increase LOYER of the deflection O.2lwlm of a strip at x = 0 with
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respect to the straight line GyB would cause a dilation of that strip,
which, from equation (18), is

e

o 2
B = ;75 (O.Elwlm ') - (o.elwlm):]
>

With the same assumptions that were used in deriving equations (19)

and (20) and considering that Wogy 1S infinitely small, this leads

to membrane tensile stresses at x =0 and y' > 0 of
(100)

. 1
Since wlm and wea

for y' >0 (fig. 13(c))

vary sinusoidally in the X-direction, in general

2
o.'"" = 042 I_ Woo ! cos® X x
ym b2 1m*2ak oe b
2
= 0.21 £§ EW1 Wog ! (1 + cos %; x) (101)
b
Equal and opposite stresses cym"' would occur for y' < O.

In reality at y' =0 and y' = +b/2 the plate is free to move in
the Y'-direction. If at the same time the lines y' =0 and y' = tb/2

were held straight u/;ym" dx would become zero, so that from equa-

tion (101) for y' > O

2

10 b4 1 21
Oym'' = 0.21 ;5 EW{  Woope COS =X (102)

as shown in figures 13(d) and 13(f).
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Actually the lines y' =0 and y' = tb/2 are not held straight,

so that at y' = ¢b/2 and, from symmetry, at y' = O, Oym' = 0. This-
case may be obtained from the former one by superimposing, for example
for y' > O, stresses Uy = -oym" at y' =0 and y' =b/2, which

may be denoted as compressive stresses (fig. 13(h))

(cyl' |)y'=o = (Uyl‘ .>y'=b/2 = A cos %t- X (103)

This superimposed case is identical to that in reference 15, page 47,
from which it follows that at y' = b/k

jc cosh jc + sinh Jjc
Goq't = op S ) 2 Noe %? X (104)

sinh 2jc + 2jc

where j = 2x/b and c = b/k, so that at y' = b/k (fig. 13(h))

27

"' = 0.85A cos = (105)

O'yl

™

By superimposing these stresses upon the tensile stresses Uym" the

actual membrane stresses Uym' are obtained, as shown in figures l}(e)

and 13(g). Hence at point K, for x =0 and y' = b/k,

2
(Gym')k = 0.150,, """ = 0.0515 TE Wi Wogx ' COS % x (106)

so that from equation (99)

(Uym')k = 0.089(cm')y,=b/,+ (107)
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Since wg' is infinitely small with respect to w1, from equation (98)

the deflecting forces -toy,' agwlfaxg and  -toy,' Bawl/(ay')g, caused by

1
membrane stresses Oym

2
and oym’, respectively, are equal to tcxm'<£§>wl

b
and tcym’<§§>wl, respectively. Hence membrane stresses Gym' are equi-
valent to membrane stresses o,,' of the same magnitude, since they cause
equal deflecting forces.

From equation (97), o,,' does not vary in the X'-direction. In
the Y'-direction it varies proportionally to WiWog'. The membrane
stresses o,p' vary as shown in figures 13(e) and 13(g). About similar

distributions of me' and Uym' as occur here in the area

b/2 =35 > -b/2, b/2 > y' > 0, prevail in the area of a square buckle
of a compressed plate that is simply supported and free to move later-
ally at the unloaded edges, such as the web of H-sections and the plates
of square tubes. For that case it was found in equation (29) that the

influence of the membrane stresses Oym could be taken into account by
multiplying the membrane stresses Oym DY 1.13, so that the influence
of the stresses Uym was 0.13 times that of the stresses Oym+ Also

in this case from equation (98) the deflecting forces ~toyp Bewl/ax2

and aEWl/ayE caused by equal stresses o and o are equal.

-tcym xm ym
In case the unloaded edges are held straight the stresses Oy follow,

for example, from reference 4. The stresses o in case the edges are

ym
not held straight are found by superposition of loads oyl" as was
done in equation (103) in the present case. The superimposed stresses
are calculated from equation (104) where now j = 2x/b and c = b/2.

This leads for the middle of the square buckle to a membrane stress

Oym = 0.3250,p (108)

Since in this case the influence of the membrane stresses dym is
0.13 times that of the membrane stresses Oym» in the present case,
from equation (107), the influence of the stresses Uym' will be

(0.089/0.325)0.15 = 0.0%35 times that of the membrane stresses Uxm"
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Hence they may be taken into account by using in equations (81) and (82)
equivalent stresses

2
E n<E
instead of o,,' from equation (94). Consequently
2a

h=1.035 (110)

Derivation of formulas for deflections.- Finally the superimposed

deflections wes' and W2a' have to be expressed in terms of the maxi-

mun deflection w, ' (fig. 12(c)). The form of the deflection Wy

may sufficiently accurately be assumed to be similar to that in which
a column with cross section GBCH, as given in figure l2(g), buckles.
In reference 5 the deflections WES' and w2a' are given by equa-

tions (40) and (44), respectively, while, as pointed out on page 58 of
reference 5, for the present case in equation (hO) Co = Ch =0 and in

equation (44) Cy' =Cz' =0, so that

Vog' = (Cl cosh oy + Cz cos o?y> cos g-x (111}
T
LY (CE’ sinh o 'y' + Cu' sin ozz'y'> cos — x (112)
Considering wgs' first, from equation (111) the condition that w = 0

at y =b/2 yields
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so that, since here a = b,

o

COs (Clz g

wes' = 05 cos Opy =
cosh (al

cosh oy | cos g-x (113)

o’
N

From equations (86), (87), and (91) of the present paper

b1
al 1.84h .E

(114)

1.18% %

%

Inserting these in equation (113) results in

PR 7 k1 T
Wog' = CB(Fos 1.183% =y + 0.03116 cosh 1.844 = y) cos = X (115)

At y =0, from equation (115), wpg' = 1.03116Cx = wpy' (fig. 12(c)),
so that Csz = 0.96978w2m', and from equation (115)

Wog' = O.96978wam'6xm 1.183% % y + 0.03116 cosh 1.84k % y) cos % x

(116)

From equation (112) the condition that w =0 at y' =b/2 leads
to the relation
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From equation (89) % ,' =0 4, so that, from equation (112), with
J 9
a =b,

O e 1 G 1 . 1 T
L CLL sin opy' - ————= sinh aqy'| cos > x (117)
or, from equations (114%),

v, ' = Ch'<sin 1.18% % y' - 0.10583 sinh 1.84k4 % y‘> cos % x  (118)

At B (fig. 12(c)) continuity requires that
- 1 1 - = 1
(§w2a [oy >y’=b/2 QBWES /ay)y=b/2 (119)
Using equations (116) and (118) this gives

C,' = 0.28145wy ! (120)

so that from equation (118)

A i E e i £ ' £
Voo ! = 0.2811+5w2m (sin 1.183 =¥ 0.10583 sinh 1.84k4 = y) cos = x

(121)
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Solving of energy equations.- All variables in equations (81)
and (82) have now been expressed in terms of the maximum deflections Wim

and wy,' (fig. 12(c)) and of the abscissas of the pertinent points.

For reasons of symmetry (fig. 12(a)) in equation (8l) it is sufficient
to integrate over one-half wall only, so that for square tubes equa-
tion (8l) becomes

b/2 b/2
2 2
\/; @1)eq wo dy = o JC Wy dy (122)

The deflections w,' are symmetrical with respect to the Z-axis

(f1g. 12(c)). Furthermore, for negative values of y' the values of
02' and wo' are both equal and opposite to those for positive values

of y', so that all terms in equation (82) are symmetrical with respect
to the Z'-axis (fig. 12(c)). Hence in equation (82) it is sufficient
to integrate over one-half wall AB and one-half wall BC only, by which
equation (82) becomes

b/2 - b/2
JQ (ol)eq(wgs‘) dy + J[ @és')eq wiWo, ! Ay +

0
b/2 . b/2
JQ (ol)eq(wea') dy' + JQ (C2a')eq wlwga' dy' =

b/2 b/2
dcrE[}g (w2s')2 dy + Jf (WEa')Q dy* (123)

0]

From equation (122), using equations (93) and (98a),

b/2
w 2 o b/2 cos2 ol y dy - EEE YW 2 / cosh i y dy| =
m A" Jo e w2 T Jg b

. b/2 o
LA Gcrl‘JQ cos = dy (124)
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from which

%‘EE w1m2 = _31-%(%1 - Ucrl) (125)
or

vy = E-E%(cm - Ocrlﬂl/g (126)

From eqﬁation (123), using equations (93), (96), (98a), (109), (113),
and (121),

where

b/2 b/2
Eb
o} w'edy+——f w.w, 'dy -
m/; (25> 2p VYo 1 2s J

2
35t°E , fb/e ng (Wes')2 S j;b/g(WQa')e ayet

4be 0

b/2 2 b/2
Ef Ty ! 1 TE f 2 2
- wow, 'y dy' - — (7 + 21) w,c(w, ') dy' =
P Jo 1 2a Wb2 0 1(28.)

b/2 b/2
ccr2|:j; (w25'>2 dy +j; (w2a')2 dy] (127)

b/2 : . b/2 K
f <wes'> dy = o.9uou7(w2m') f cos?® A = dy +

0 0

h /2 o _ =
0.0009709 f cosh™ B TV dy +
0

b/2
0.062%2 f cos A % y cosh % y dy> (127a)
0
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b/2 b/2 It T
j;) leQS' d_y = 0-9697&rlmw2nl' '/; cos _; Yy cos A g Yy dy +

b/2
0.03116 f cos £y cosh B X y dy (127v)
0 b b

Bz o 2 2 2 i L 2, "
’ W) (wES') dy = 0.940k7w, - (w2m') : cos® =y cos A;ydy+

b/2
0.0009709f cos® X y cosh® B XL y dy +
0 b b

b/2
0.06232 f cog? I ycos Ay coshBE y dy
o b b b

(127¢)

fb /2

b/2
("2a')2 dy' = 0.079211+(w2m')2<f0 / sin A ;‘-) y'ay' +

b/2 .
o.onzf sinh® B =y day' -
0

b/2
0.21166f sinA%y' sinhB%y' dy'> (1274)
0
b/2 b/2
f WiWog 'y' dy' = 0.28145w (w ')2f y' cos 1[-y' sinA X y' dy' -
o 1%2g, 1m\"2m o b b

b/2
o.1o583f y' cos %y' sinh B % v dy'> (127e)
0
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b/2

b/2 | ) ) 2
f Wy (W2a') dy ' = 0.079211+wlm (W2m'> f

s T :
cos® — y' 5in° A-y'ady'+
0 b b

(&)

b/2
0.0112 f cosQ%y'sinhe BLy' ay' -
0

b/2
o.21166f cosE%y' sinA%y' sinhB%y' dy’

0
(1271)
where A = 1.185 and B = 1.844. After evaluating the integrals
b/2 5
1 — 1
fo (Wesfdy - kl(wzm) B
b/2
A W) Wog dy = 2k2wlmw2m b
b/2
2 1\2 _ 2 1\2
L W) (wgs) dy = kBWlm <w2m > b
$ (128)

b/2
fo (wza'>2 dy* = ku(wem')gb

b/2 .
1 1 | AR U
/(; WiWog 'Y dy' = k5wlmw2m b

b/2 2 \J 2 1 2 1 2
fo Y1 (Wga ) Ay’ = Kg¥yy (WEm )"
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in which
kl = 0.22910
ks = 0.11938
ks = 0.1779k
> (129)
kh: = 0.00753%
ks = 0.00786
kg = 0.00323 )

Insertion of equations (128) in equation (127) yields

2
(kg + k5)§ Vi m¥or ' be - Ek57 + kg(y + 2p) i-gi-: wlme(w ')2b -

(%1 + k) (0ern = o) (Woy')2 = 0 (130)

Using equation (125) this results in

Won' ) (k2 * k5)E %
Yin  (4/37) [3ksy + gy + EHEJ(Um - Oery) + (¥ + Ky )(9cro - )
(131)

Calculation of postbuckling column modulus and of ultimste strength. -
The total internal moment at incipient column buckling is

b/2 b/2
M, = W(b/2) JQ to,, ' dy + b . to,, 'y dy! (132)
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Using equations (94) and (95) this becomes

b/2 b/2
JF wlwgs' dy + 2 JF wlwza'y' dy'] (133)

0 0

2
TR CEE )
3p

and using equations (125), (128), and (131)

M, = 2b%t % %? - %g( + Xs5) (o - Gcrl>éi} (134)

If the colum had a constant equivalent postbuckling modulus E; eq
5/
the internal moment would be

E
M, = = § potie 2l (135)

From equations (134) and (135) and using equations (30), (110), (129),
and (131)

2'09(°m - 0crl) w5 (Gcr2 - 0m)

- (136)
3'055(Um - Gcrl) + (Ucr2 = °m)

E

1,eq

The relation between the edge stress o, and the average stress o

m av
is given by equation (22), which applies for the webs of the tubes as
well and where now 0 Since now G is the ultimate

stress oy, it may be written as

Op = Top] = 2.hh(ou = °crl> (137)
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Inserting this in equation (13%6) gives

Ey Jeq =:P(Gu - Orcrl) & (ccr2 = Orcrl)

(55)
E Q(cu = Gcrl) + (dcre - 0crl)
analogous to the previous equation (55), where now
P = 2.66
(138)
Q = 5.01

Hence, similarly to the case of H-sections, the ultimate stress is given
by equation (60):

1/2
<é+l-a s 4LQ(P+1-a)
5 Ucrl o0 GE cEccrl
2Q [Q+ 1=ar) epl b PcrE]2
(60)
where P and Q are given by equations (138) and
K= ccr2/ccrl (61)

The critical stresses o and o are given by equations (83)

erl er2
and (91), so that

= 1.4375 (139)
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Hence

)+)+ . 6OUEO

eril

(140)

= (0.4560 + 0.265 Tenfl =
on ( Oerl UE) (u'570crl N 2.660E)2

Column buckling in plastic range.- For tubes as for H-sections

equation (140) may be written approximately in the form of equation (63),
so that for column buckling in the plastic range equations (66), (67),
(68), and (68a) apply.

Application to test columns with square-tube section.- The dimensions
of the 61S-T6 aluminum colums (fig. 14) used in the experiments were
for the "D" series by, = 2.5 inches and t = 0.046 inch and for the
"E" series bgyt = 3 inches and t = 0.04k inch. Hence the center-to-

center distances b of the webs are 2.45L inches and 2.956 inches,
respectively. Thus from equation (83) for "D" and "E" series
Oop1 = 13,600 and 8,560 psi, respectively, so that from equation (140)

for the "D" series columns

608,000
oy = (6,200 + 0.26505) |1 + |[1 -

psi  (1k41)
(62,200 + 2.6605)

and for the "E" series columms

382,0000y
B (5,900 +0.26505) |1 + |1 - psi  (142)
(39,200 + 2.6605)2

or, approximately, for the "D" geries

w = (8,050 + 0.34505) psi (143)

Q
1l

and for the "E" series

Q
Il

u = (5,070 + 0.34505) pst (144)
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Hence in equations (66), (67), and (68), for the "D" series p = 8,050 psi
and q) = 0.345 and for the "E" series p = 5,070 psi and q; = 0.345:

The crushing strength o was found from figure 18(d) of refer-

ce
ence 13, using for the "D" and "E" series the averaged yield stresses
of 43,500 and 39,500 psi, respectively, from which o,, is 22,600 and

18,600 psi, respectively. Hence from equations (66) and (68), for the
"D" series

gl = 15,320 pel (145)
el [22,600 - 1.45(L/r)2] psi (146)
and for the "E" geries
0, = 11,83%0 psi (147)
Oyp = [18,600 = 1.2u(L/r)2:] psi (148)

Curves for o, and oy, for the "D" and "E" series are given in fig-
ure 15 as functions of L/r.

If instead of center distances the clear distances between the plates
are considered as the width b of the plates, that is for the "D" and
"E" series b = b,jeqp = 2.408 inches and 2.912 inches, respectively, the

dotted curves in figure 15 apply.

Effect of Crookedness of Column on Load-Deflection Curve

In the postbuckling range a simply supported and initially straight
column will buckle in a half sine wave under a load Aog,, where from
equation (58)

_ %Eleq (58)
(L/r)?

Oy
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Here the postbuckling modulus El,eq is given by equation (55).
Since at incipient buckling the external moment M, = Aow (fig. 16(a))

for any cross section is equal to the internal moment Mj, the internal
moment is likewise

A column with initial deflections wy 1s considered next
(fig. 16(b)). Under a load Aog an excess elastic deflection w, will
occur. From equation (149) under a load Acu an elastic deflection

according to a sine wave causes internal moments Ag,w, where o, 1is
given by equation (58). Assuming that wy and w, in figure 16(b)
also vary sinusoidally, the deflection W, Wwould cause internal
moments Mi = AoyWe 1if the postbuckling modulus would be the same for
the initially straight column. However, since the average stress o

av
is here smaller than 0,» the postbuckling modulus Eq eq is now found
J

by replacing o, by ogy in equation (55). Thus, from equation (55)

P(0gy = Ocpy) + (Fcre - Ocrl)

El,eq = (150)
(Uav - ccrl) + (Uch - Ucrl)
Hence the internal moment is (fig. 16(b))
Mj = Aow, = Acu(w - wi) (151)

where o, 1s given by equation (58) in which El,eq is determined by
equation (150). The external moment is

Me = AGaVW (152)
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Since Mg = My, from equations (151) and (152)

OgyW = Oy(W - Wi)

or

0u/"av (15%)
(Uu/oav) =y

where o4, 1s the average stress in the column and g, 1s given by
equations (58) and (150).

For example, consider a column with a square tube section of the
"E" series, where, from equations (138) and (139), P = 2.66, Q = 540k
and & = Ogpp[0opy = 1.4375, while from equation (83) gy = 8,560 psi,

so that from equation (150)

(2.660av - 19,000) psi

Eq = E (154)
o4 (5-010gy - 39,100) pst

This equation applies if the average stresss gy is above the critical

plate buckling stress o,.;. Below O.pr1 the buckling modulus to be
inserted in equation (58) is simply Eq, eq = E. This assumes that the
J

‘eccentricity is so small that it does not influence the average stress

at which the plates begin to buckle. For a column with a slenderness
ratio L/r = 75, equations (58), (150), and (153) lead to the results
given in table 2 and figure 17.

It is seen from table 2 that above the critical plate buckling
stress o0, the deflection increases rapidly, owing to the sudden
decrease of o, and Uu/UaV'

Load-deflection diagrams like that of figure 17 appeared also in
the tests. At first sight such a diagram could be mistaken for that of
an initially straight column, of which the resistance increases with
increasing deflection. This would be in contradiction with the conten-
tion that the ultimate resistance of an initially straight column is
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attained at incipient column buckling, as was explained in the intro-
duction. It is clear from the above that actually such a diagram is
due to an initial column deflection which, however, below the critical
plate buckling stress O.pr1 Cen hardly be detected.

Theoretical Results

For slenderness ratios larger than (L/r);, (fig. 8), where the

column buckling strength, according to Euler or Shanley, is lower than
the critical plate buckling stress Oop1» the ultimate strength is

determined by this unreduced column buckling strength.

For slenderness ratios between (L/r)l and (L/r)in (fig. 8),

where plate buckling is governing, and where at all points the stresses
remain in the elastic domain, the ultimate strength is given by oy

from equation (60). In particular for H-sections, in equation (60)
Ocrl» Ogs» P, Q, and a are given by equations (1), (59), (56), (57),

and (61). For square tubes equation (60) reduces to equation (140),
where o0,.; and op are given by equations (83) and (59).

For slenderness ratios smaller than (L/r)l, where plastic deforma-

tions occur, the ultimate strength is given by Oup» determined by equa-

tion (68a). This is a Johnson parabola, with its apex at the crushing
strength o.. of the section and tangent to the curve for 9y at the

slenderness (L/r)l.

If the critical plate buckling stress is near the proportional 1limit,
(L/r), may be larger than (L/r) in which case the ultimate strength
1 Y in’

1s determined by o, Top1? and Gup’ as 1is sketched in figure 9 and as

is the case for series "J" of the H-sections, as shown by the unbroken
lines in figure 11. If the crushing strength Oce 1s equal to the

critical plate buckling stress Oopyp the ultimate strength is deter-
= "ot
mined by o and Terl = e alone, as is the case for series "J of

the H-sections (fig. 11) if the plate widths are assumed to be equal to
the clear distances.

The method for determining the ultimate strength as used till now
in aircraft design (ref. 16) and in light-gage steel structures (refs. 17
and 18) is to draw a Johnson parabola tangent to the curve for the Euler
column buckling stress op Wwith its apex at the crushing strength Occ-
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As follows from the present theory, which is in excellent agreement with

the test results given in the experimental part of this paper, this
method can be considerably improved by interposing the curve for Oy
as given by equation (60).

Curves for ultimate strength against slenderness ratio of the par-

ticular H-sections and square tubes used in the tests are given in fig-

ures 11 and 15, respectively. These curves are confirmed closely by
experimental investigation.

EXPERTMENTAL INVESTIGATION

Description of Specimens

The specimens used for the experimental program were as follows:

(a) H-sections, extruded, of 758-T6 aluminum alloy with the nominal
dimensions shown in the order: Depth, flange width, plate thickness.

il by 222 inches by % inch, designated "J"

8 16
2% by 3%% inches by % inch, designated "K"

3 by 4= inches by L inch designated "L"
8 J

o\

All H-sections had the same and constant nominal thickness for web and
flange plates.

(b) Square tubes, drawn, of 61S-T6 aluminum alloy with the nominal
dimensions shown.

2 by 2 inches by 0.063 inch, designated "B"

2% by 2% inches by 0.047 inch, designated "D"

3 by 3 inches by 0.047 inch, designated "E"

All tubes were special drawings of the Aluminum Company of America with
square corners and slight thickening of the walls on the inside near the
corners.

Deviations from flatness, straightness, and squareness were well
within tolerable limits with one exception. The series "E" square tubes
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had component plates bowed outward an amount approximately equal to one-
half the plate thickness. The consequences of this initial curvature
are explained in a following section.

Compressive stress-strain tests for the H-sections were performed
on coupon specimens by, and data therefrom supplied through the courtesy
of, the Aluminum Company of America. Each of the stress-strain curves
given in figure 18 is a weighted average of stress-strain curves for
coupons taken from edge-of-flange, center-of-flange, and web locations
and as such represents the composite stress-strain curve for the whole
H-section.

Compressive stress-strain characteristics for the square tubes, as
shown in figure 19, are from tests performed on complete sections with
the walls supported to prevent premature local buckling. The detailed
procedure for these tests was reported in reference 1.

Lengths of column specimens were selected to cover sufficiently the
range for which postbuckling strength is important. The lower limit
ot L/r ratio was determined by the shortest length possible to test
without end effects and the upper limit, by the interaction length,
except for a few specimens in the Euler range for the purpose of checking
test technique. The geometric properties of all specimens tested are
given in tables 3 and h.‘

Instrumentation and Test Procedure

The instrumentation for measurement of local and column buckling
and the knife-edge end supports have been described in detail in ref-
erence 1 and were used for this series of tests with only minor revisions
required for the H-sections.

The test procedure was likewise identical to that described in ref-
erence 1. The general test setup is shown in figures 20 and 21.

Evaluation and Comparison of Experimental Results

The results of the experimental investigation are exhibited in three
forms: (1) Ultimate and critical plate stresses compared with theoretical
values, (2) column-deflection curves, and (3) buckle-depth variation.

Each of these will be discussed in some detail.

The comparisons of the experimental values with the theoretical
values are presented in tables 5 and 6 and in figures 22 to 27. Par-
ticular note should be given to the last three columns of these tables,
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two of which indicate deviation of experimental from theoretical values,

and the third of which gives some indication of the postbuckling strength.

The postbuckling strength is markedly illustrated in the figures.
The double-branched curve for theoretical ultimate stress is the same
as that described generally in figure 8. The parabolic branch for the
plastic region partly depends for its location upon empirical values of
the crushing strength Oce ©Of short columns tested with flat ends to

avoid buckling. Such tests were not performed for this program, but
the values were taken in this instance from curves recently recommended
in reference 13%.

Experimental critical plate buckling stress was evaluated by means
of the top-of-knee method as given in reference 3. Theoretical critical
plate stresses were computed for a plate width measured from the centers
of adjoining plates. As the width-to-thickness ratio of the plate
decreases, the boundary effect of the plate junction apparently becomes
more pronounced, such that theoretical values of critical plate stress
based on the clear plate width more nearly check the experimental values.
As a practical design matter, this is not important, since the midwall
values should always be conservative and appear to be so from the test
results.

Figure 22 for the series "J" H-sections shows experimental values
of ultimate stress which lie between the theoretical values based on
midwall plate width and clear plate width, respectively. On the latter
basis, the crushing strength o,. 1s identical to the critical plate
stress. Stresses based on the clear plate width are presented since
this series had the smallest b/t ratio of the H-sections tested and
therefore the largest percentage difference between clear and midwall
dimensions. The parabolic branch of the ultimate-stress curve based
on midwall plate width is defined by equation (76); no elastic branch
occurs for this case. (See also figs. 9 and 11.)

Figure 23 for the series "K" H-sections shows an ultimate-stress
curve as defined by equations (71) and (78).

Figure 24 for the series "L" H-sections has an ultimate-stress
curve as defined by equations (72) and (80).

Figure 25 for series "B" square tubes shows no postbuckling strength.

When the critical plate stress occurs in the plastic range, plate buckling

is immediately followed by complete collapse of the column. As a direct
consequence, it was not possible to measure experimental values of
critical plate stress by the top-of-knee method.
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Figure 26 for series "D" square tubes shows a theoretical ultimate-
stress curve as given by equation (141) for the elastic branch and equa-
tion (146) for the plastic branch. (See also fig. 15.)

Figure 27 for series "E" square tubes has a theoretical ultimate-
stress curve as given by equations (142) and (148). It will be noted
that the experimental values of critical plate stress are considerably
higher than the theoretical values. As indicated before, the specimens
in series "E" were the only ones which showed significant deviation
from flatness of plates. Measurements showed the initial plate deflec-
tion to be 0.018 inch on the average. That the elevated values of the
critical plate stress are likely the result of this initial plate curva-
ture may be demonstrated as follows: From reference 19, where R is
the radius of curvature

g
<_E£> = 0.3 %
E cylinder

and for a stiffened curved plate (ref. 16)

(Ucr> B <Ucr> 2 N <Ucr> 2 N l<°cr>
E /combined E /cylinder E /flat 2\ E /flat

O'cr 11'2 2 t 2
where |(—— = —————————<E> = 3.62(—) for the corresponding flat
flat  3(1 - v)2\P b
plate. For a curved element of the square tube under consideration with
E = 10.67 X 10 psi, t = 0.0k inch, b = 2.956 inches, and a center-
line deviation from flatness of 0.018 inch from which may be derived a
radius of curveture R = 63.4 inches, one finds that the critical stress
for the curved element is oo = 9,100 psi, whereas for the flat plate

. 8,560 psi. The order of increase in this stress due to the effect

of curvature will be seen, by reference to figure 27, to be the same
as that measured experimentally.

o)

Column-deflection curves, presented in figures 28 to 32, show varia-
tion of column-center deflection with load, and have been taken well
beyond the ultimate load and to the point of complete collapse or nearly
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so. The general character of these curves has been developed theoreti-
cally. It is represented by equation (15%) and shown in figure 17,
clearly indicating the effect of initial imperfections.

Buckle-depth variation has been plotted in figures 33 and 34 for
the two larger H-sections and in figure 35 as typical of the square
tubes. It is clearly evident from the former that the local deflection
curve is roughly parabolic in shape and therefore in qualitative agree-
ment with theory.

CONCLUDING REMARKS

It is well-known that very short columns for which column buckling
does not occur can show definite postbuckling strength, that is, excess
strength beyond that indicated by the critical plate buckling stress.
The ultimate stress can exceed appreciably the plate critical stress,
especially if the latter is well within the elastic range.

This postbuckling strength decreases with increasing slenderness
ratio L/r because column buckling becomes the governing influence
except for extremely small slenderness ratios. It becomes zero at
that L/r at which the plate buckling stress is equal to the column
buckling stress. Approximate methods of accounting for this effect
have mostly consisted in using a Johnson parabola tangent to the Euler
colum curve with apex at the local crushing strength and L/r ="0%

In the present investigation, general energy equations are derived
from which the ultimate strength in the postbuckling range can be cal-
culated for columns of any shape and slenderness. Specific expressions
are derived for columns with H- and square-box sections and numerous
tests have been made on columns of these two shapes. The results,
reported herein, show consistent agreement with the developed theory.
The reported results of measurements of plate and of column deflections
indicate the magnitude of the deformations which occur before as well
as after the ultimate load.

Cornell University,
Ithaca, N. Y., May 1, 1952.
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TABLE 1.- DATA FOR T755-T6 ALUMINUM-ALLOY H-SECTIONS

TABLE 2.- STRESSES FOR SQUARE COLUMNS

bbb, & t E/106 Oeri Oces
Series i in, igi 1‘1'11{ psi, o psi * psi . -
g %g % 0.128{0.125| 10.45 | 0.741|58,000|2.02(60,500{0.792|4.68
" " 61 1‘9
K == .129| .122|10.43 | .727|31,500|2.07|52,500| .792|4.68
2
np 2% %? J124| .126/10.41 | .760|20,500(1.98|46,600| .776|%.60
1l

s o

;Z;_’ El,eq/E plsli Tu /gy w/wy
4,280 1 18,800 bk 1.29

88, 560 1 18,800 2.2 1.83
9,000 .882 15,440 172 2.39

10,000 .69 12,970 1.30 4.36

11,000 .6k 12,000 1.09 120

11,300 .629 ' 11,800 1.043 | 24.3
8'Uc:r'l ’



TABLE 3.- GEOMETRIC PROPERTIES OF H-SECTIONS

Average Cut Corrected free
Series Defzh’ r, Piece | Colum | length, wZifgz’ 2;e§£. length, L, L/r
: in. in. in.
n g i 0.70k4 ngnil | ss-1 13.0% 557.% | 0.960 17.62 25
8 ngn_1 ES-1 16.50 705.% .959 21.16 30
WL S=1 19.94 85255 .960 24 .65 35
"J'-2 I-1 23.98 1 025 .960 28.84 40.8
13- L-1 24,98 1,064 .958 29.84 4o.5
"Jr-1 L-2 24,98 1,069 .960 29.84 42,5
] Ll 30.34 1,297 .960 35.20 50
iyt ol 0.967 ngn_ 5S-1 19.50 1,142 1.317 24,15 25
2 I3 ES-1 2l ,28 1,413 1.309 29.03 %0
PRA-1 S5-1 29.06 1,700 1,314 33,84 35
"K"-3 MS-1 33.91 1,976 1.310 38.70 40
4 it M-1 38.72 2,264 1.31% 43,53 45
ngios ML-1 43, 42 2,522 1.309 48.37 50
Ngl—o Bl 49,25 2,887 1.317 54.11 55.9
oL 3 1172 MLil=o 88-1 2. 47 1,660 1.525 29.23 25
i A Es-1 36.30 2,495 1.542 41.10 35
"L"-2 R-1 42,03 2,84k 1.521 46.86 Lo
ULE=2 M-1 k.72 3,245 1.528 52,27 L. 9
gl Sl 59.63 4 085 1.540 ol 48 55
G e ML-1 67.81 4 610 1 8o T72.66 62
“LES ML-2 67.81 4,650 1.542 72.66 62
"L"-1 I-1 76.11 5,205 1.538 80.97 69.1
"L"-3 B-1 88.94 6,097 1.54%0 93.80 80
S NAGA

662 NI VOVN
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TABLE L4.- GEOMETRIC PROPERTIES OF SQUARE TUEES

Aversge Cut Corrected free
Series Dimx;:ilons, T, Piece Colum length, W;;‘:ﬁs, simi;,. length, L, L/r
in. in. in.
: 2 by 2 by 0.062 0.792 "B"-1 SS-1 8.05 17T 0.481 11.82 14.95
"R §5-2 8.1 169.1 A470 11.88 15.00
"Rl ES-1 11.38 238.9 ATk 15.23 19.25
"B".2 ES-2 11.39 238.6 L3 15.24 19.25
"RI-1. S-1 17.48 368.7 476 21.45 27.15
HRNZD S-2 17.49 366.6 L7h 21.46 27.15
SN M-1 26.00 551.8 478 30.02 37.95
S | M-2 26.00 549.2 L76 30.02 37.95
*pn.2 I-1 32.34 6T7.3 LT3 36.37 45,95
"RN_2 I-2 32.36 677.2 L73 36.39 45.95
"B -2 I-3 32.36 676.2 L2 36.39 45.95
NBt_3 ML-1 36.35 TTL.4 A79 40.38 51.00
Up-% I-1 40.23 853.0 479 4l 26 56.00
"B".3 L-2 40.23 850.2 R i 44 .26 56.00
"p" ol vy oL vy 0.047 1.001 "pr_l SS-1 17.31 346.2 0.452 21.25 21.23
2 B *hi=). S-1 38.88 780.0 452 43,03 43,00
L e DS-1 53,94 1,092.0 A55 58.06 58.00
*Pr-2 RM-1 67.00 1,349.7 155 71.09 71.02
"pit-l MS-1 T72.16 1,446.0 LA52 76.25 76.17
"p".3 I-2 81.78 1,635.2 L52 85.87 85.78
"p"-1 I-1 81.81 1,641.0 A453 85.90 85.81
"p*.5 Tie1) 123.49 2,545.0 465 127.58 127.45
el 3 by 3 by 0.047 1.206 "E"-3 8s-1 20.40 4754 0.52% 24 .41 20.2
"E"-2 ES-1 b1k 1,028 .522 48.23 ko.0
5 A DS-1 56.21 1,309 .523 60.30 50.0
BRI s-1 68.14 1,565 SLT T72.23 59.9
"E"-9 MS-1 86.36 1,995 .520 90.45 75.0
IER T M-1 92.30 2,125 .518 96.39 79.9
"E"-11 MA-1 95.91 2,200 .516 100.00 83.0
"E"-L4 MA-2 95.91 2,210 .518 100.00 83.0
"E"-5 RM-1 106.16 2,450 .519 110.25 91.5
"E"-2 ML-1 116.54 2,685 51T 120.63 100.0
"Eg"-3 T-1 129.82 3,000 .519 133.91 113:.0
"E"-10 Tl 140.63 3,255 .520 14k, 72 120.0

1662 NI YOVN
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TABLE 5.- TEST RECORD, H-SECTIONS
Designation Theoretical [rExperimental Ratio, experimental
to theoretical
Piece|Column| & Turt’ Tex Swe’ ;gi’ Bkt fox o
r psi | psi psi | (g) | %ult| Yer Ggi

g1l B8el |25 58,910 58,000 |62,500| 56,800{1.060| 0.979 |1.079
"J"-1| ES-1 |30 58, 300| 58,000 |61,000{57,000{1.045| .983 |1.052
[q"-2f '8-1 |35 58,000/ 58,000 {59,200|56,300{1.020| .971 |1.021
"g"-2| I-1 |L40.8| 58,000/58,000 |56,300|------ L9T0| —=mm- .972
"gol|  L-1 | 42.5|P57,600|58,000 54,850 ~----- 952 | cemn |mamanm
"J"-1l L-2 |b42.5)057,600}58,000|55,200) ---~-- L9068 | —mmmm | mmmmm
"J'_1| E-1 |50 |Ph1,700|58,000 |41, 750 ~-=---~ 1.001| -=ooc |===--
PKU-1) 88-1 |25 47,000/ 31,500 {49,900| 33,050{1.061| 1.050 |1.585
R Ll mS-1 |30 44 650( 31,500 [47,600(32,100/1.065{ 1.019 |1.510
a0 s G U ST I ) 41,800(31,500 (42,600(31,950{1.018| 1.013 |{1.352
"K"-31 MS-1 [LkO 38,500 31,500 |39,200|32,100{1.018| 1.019 [1.243
"K"-1] M-1 (45 35, 750{ 31,500 {36,150 31, 750|1.011 [ 1.007 {1.1hk7
"K"-3] ML-1 |50 33,750|31,500 |33,800|32,100{1.001| 1.019 |1.072
"K"-2| I-1 [55.9| 31,950 31,500 |51,800--~--- 9T | -=--- et
"L"-2| 88-1 |25 39,250(20,500 |41,300|20,750[1.052 | 1.011 |2.018
PERL3) EB-l |35 32,200|20,500 |32,400(21,550(1.005 | 1.050 |{1.580
"L"-2| R-1 |40 29,050 (20,500 (28,800(20,700{ .981| 1.010 (1.405
nptopl  M-1 |Lk.9| 26,500{20,500 |26,200|19,650| .988| .959 [1.278
Mgl 881 155 23,400 |20,500 |23,800|20,950{1.018 | 1.021 {1.160
L2 M-l |62 21,950|20,500 {20,650(19,650| .9k2| .959 |1.008
i I 21,950|20,500 [21,600(20,150| .985 983 [1.053
"L"-1f I-1 |69.1| 20,750(20,500 |20,35Q|-~~=== .982| —---- .993
"L"-3| E-1 |80 [P16,080(20,500 [15,600|-~---- 972 mmmem mme

8plate critical stress as determined by NACA top-of-knee method.

bEuler stress.
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TABLE 6.- TEST RECORD, SQUARE TUBES

NACA TN 2994

Designation Theoretical | Experimental Ratio%h2§22§if§?tal
[
Piece |Column| = Oult> | Y%rs |%ult’ ggi’ Jult %r | Suit
T psi psi psi (a) 041t Oor ’ 0o

"B".1 | 8S-1 | 15.0 37,250|37,250{37,150| ~===-- 0.997| =---- 10.997
"B"-2 | $8-2 | 15.0/ 37,250(37,250|37,650| ~=---- 1012 |8 ===~ $1.012
"B"-1 | ES-1 | 19.3| 37,250|37,250|57,800| --~--- 1.016| =---- 1.016
"B"-2 | ES-2 | 19.3| 37,250|37,25036,800|------ 988 ----- e
"B"-1 | S-1 | 27.2| 37,250|37,250|37,270|------ 0 e L902
"B"-2 | §-2 | 27.2| 37,250|37,250|36,800|------ 500 eces oot
"B"-1 | M-1 | 38.0| 37,250|37,250|36,600|------ 983 | ----- .983
"B"-1 M-2 | 38.0| 37,250(37,250{36,200|-~--- 972 | ———-- 972
"B".2 I-1 | 46.0| 37,250(37,250|35,750| -==--- .960| ~=--= .960
Bt s | 1.2 | L6.0¢ 37,250137,250]56,800] ~~~~~~ .988| ----- .988
"B"-2 I-3 | 46.0| 37,250|37,250 (36,350 -===-= 976| ----- 976
"B".3 | ML-1 | 51.0 (P36,500|37,25035,800|--==--- 9821 ——ooe |—=---
"B".3 | L-1 | 56.0(P33,600(37,250|32,200|-===-- 958 ~--on |--mee
"B"-3 | L-2 | 56.0|P33,600|37,250|32,350|------ s L
"D"-4 | ss-1 | 21.2| 21,950|13,600 |21,390|14,290/0.975| 1.050 |1.570
"D"-1 s-1 | 43.0| 19,920(13,600 |20,350{14,200{1.020| 1.0kk |1.497
2pt.o L' Bs-1 [ 58.00% 17,700115,600117,750]1%,960{ 1.002| 1:027 {1.505
"D".2 | RM-1 | T71.0| 15,320|13,600{14,920{13,875! .975| 1.020 |1.097
"D"-4 | MS-1 | 76.2| 14,500|13,600 |14,420|14,270] .995| 1.049 |1.061
"D".3 I-2 | 85.8| 13,740|13,600 |13, 790 |-===-~ 1.010| =-=--- 1.013
[ I-1 | 85.8| 13,740|13,600 {13,330|-=~=-= OO === .982
"".5 | L-1 [127.5] P6,480(|13,600| 6,240}|------ 2963 | ==-== ===
"E"-3 | 8s-1 | 20.2| 18,090| 8,560 |16,820| 9,560(0.930| 1.118 [1.967
"E"-2 {ES-1 | ko0 16,620 8,560 |16,300]10,070{ .982| 1.177 |1.906
"E"-5 | DS-1 | 50 15,500| 8,560 |15,930|10,030{1.028 | 1.172 [1.863
"E"-1 S-1 | 59.9| 14,140| 8,560 |13,900|10,450( .983| 1.222 |1.625
"E"-9 | MS-1 | 75 11,600| 8,560 [11,640( 9,530(1.003{ 1.113 [1.361
"E"-1 | M-1 | 79.9{ 10,700| 8,560 !10,710{ 9,880{1.000| 1.154 |1.252
"E"-11 | MA-1 | 83 10,200| 8,560 |10,420} 9,500/1.021 | 1.110 |1.219
"E"-L | MA-2 | 83 10,200 8,560 [10,420} 9,950(1.021 | 1.163 [1.219
"E"-5 | RM-1 | 91.5| 9,380| 8,560 (10,220| 9,930{1.088| 1.160 |1.193
"E"-2 | ML-1 {100 8,860 8,560 | 9,440 9,440{1.064 | 1.103 [1.103
FRY.3 | I-1 (111 8,560| 8,560 | 8,300 |--=--= 970 | ~-=-- 970
"E"-10 | IL-1 [120 | P7,300| 8,560 | 7,120|------ 975 | ~mmmm |mmmm-

aPlate critical stress

bEuler stress.

as determined

by NACA top-of -knee method.

\ﬁﬁ%f
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(a) Local deflections Wy in postbuckling range of straight column and

local deflections Wo imposed during column buckling.

4

(b) Column bending stresses O caused by column buckling.

*‘un;!"

ft G B

(c) Superimposed local deflections Wo caused by column buckling.

Figure 2.- Distortions of and column bending stresses in the cross section
of square tubes after column buckling in the postbuckling range of the
plates.
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Figure 3.- Diagram of average stress O plotted against unit shortening
€yy for tube with square cross section. Broken line OAB applies if

column remains straight. After column buckling at average stress oy

average stress in plates BC and AD (fig. 2) follows the curves CF
and CO, respectively.
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Figure 4.- Diagram of average stress Ty plotted against unit shortening

Con for a plate that is elastically restrained along the sides. Broken

line ODE and curve OF apply in case of an initially flat plate and of a
plate with initial deflection, respectively.
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(a) Plate buckling with half wave

length a

T1

in longitudinal direction.

(b) Local deflections Wy

in postbuckling range of straight column.

Figure 5.- Distortions of and stresses in column with H-section before
and after column buckling in postbuckling range of plates.



12 NACA TN 2994

IS
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(c) Compressive stresses o7 in postbuckling range in flange of straight
column.

W G
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th‘f W+ Cf;‘zé“f“'x)I W\ AZ -
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5 »
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tf‘lf, \ﬂ,f
(d) Local deflections w1 + w2' after incipient column buckling.

Figure 5.- Continued.
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tension

decrease of €

by defleclion w,'_

(e) Column bending stresses 02' caused by column buckling.

(f) Excess deflections w2' occurring after incipient column buckling.

Figure 5.- Concluded.
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(a) Variation of O1p and 02' in right flange with local deflections

Wip and WE'_
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for certain point
of right fhng‘ th& wr
f 1
C‘;‘f“"-f il
Ce 6 (wgrwy)
A work done by deflecting
forces at cerfain point
ﬂfﬂ 2 , k deflection

wlf “‘6 w,’_

(b) Variation of the deflecting forces at a certain point of right flange
with deflections Vi and w2'.

Figure 6.- Determination of the work done during local deflections of right
and left flanges of H-section.
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(¢c) Variation of o1¢ and 02' in left flange with local deflections

1
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(d) Variation of deflecting forces at a certain point of left flange with
deflections Ww,e and wg'.

Figure 6.- Concluded.
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in web of H-section.

™
Figure T7.- Compressive stresses le
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Figure 8.- Diagram of Euler stress R and ultimate stress plotted against

slenderness L/r. The branches o, and Oup of the ultimate stress

refer to the elastic and plastic range, respectively.
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L/ [_l'm [rl

Figure 9.- Diagram of Ops  Oys and Tup plotted against slenderness L/r

in case where, with column buckling in the postbuckling range, plastic
deformations occur from the beginning.
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Figure 10.- Cross section of H-section, showing notations.
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A B
(a) Local deflections w, in postbuckling range of straight tube.
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" decrease of 6 by deflection w,

(b) Compressive stresses 0, 1in postbuckling range of straight tube.

D his C
N\
/ \\Wam
/ wlm" \

|

[

| , y I’ Z
\ Z

\ Weq _jé'?/ )
\ e ¢ Wag

// ‘E\\
A G Yyl B

(c) Local deflections w, + w2' after incipient column buckling.

Lension —

comp\-esfa n NACA

decrease of & hy
defleclion w,,

(d) Column bending stresses Uza' in plates AB and DC caused by column
buckling.
Figure 12.- Distortions of cross section and stresses in tube with square

cross section before and after column buckling in the postbuckling
region of the plates.
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decrease of €
b\] deflechion wyg

(e) Column bending stresses o s' in plate BC caused by column buckling.

Wim

Was

(f) Excess deflections w2' occurring after incipient column buckling.

H}C’TC

(g) Right half of figure 12(f).

Figure 12.- Concluded.
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(a) Plan view of plate AB.
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(b) Section of deflected plate AB at x = O, showing deflections at point K.

dl
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(c) Tensile membrane stresses oym"' caused by excess deflections wog'

for y' >0 incaseat y' =0 and y' =b/2 no displacement in the
Y'-direction occurs.

(d) Membrane stresses cym" caused by wog' for y' >0 if lines

y' =0 and y' =b/2 are free to move in the Y'-direction, but are
held straight.

(e) Actual membrane stresses oym‘ at y' =b/k.
Figure 13.- Determination of the membrane stresses Uxm' to which the
membrane stresses o' are equivalent.

ym
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(f) Membrane stresses o'’ 8t x =0.
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B i

(g) Actual membrane stresses Uym' at x = 0.

(h) Superimposed membrane stresses cy ' in order to reduce membrane
stresses cy ' to actual membrane stresses cy'.

Figure 15.- Concluded.
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Figure 14.- Cross section of tube, showing notations.
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Figure 15.-~ Graph of ultimate stresses plotted against slenderness ratios
L/r for tubes with square cross section.
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A6,

(a) Buckling of initially straight column.
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w

“‘!ﬂ‘!"’

A

(b) Deflection of column with initial eccentricity Wy -

Figure 16.- Determination of effect of crookedness of column.
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Figure 17.- Load-deflection diagram of square tube of "E" series with
slenderness ratio L/r = 75 and initial eccentricity wj.
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Figure 18.- Stress-strain curves for H-sections.
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Figure 19.- Stress-strain curves for square tubes.
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Column shown is L3-MI2.

Figure 20.- View of test setup.
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Figure 21.- Side view of test setup.
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Figure 28.- Column-deflection curves for "J" series H-sections.
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Figure 33.- Buckle-depth variation for "K" series H-sections. Average 3
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