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L3J?TAND MOMENT COEFFICIENTS EXPANDED TO THE SEVENTH

FOWIIROF FREQUENCY FOR OSCIXL/YHNG RECTANGULAR

WINGS IN SUPERSONIC FLOW AND APPLIED TO A

SPECIFIC FLUITER PROBLEM

By Herbert C. Nelson, Ruby A. Rainey, and Chsrles E. Watkins

suMMARY

Linearized theory for compressible unsteady flow is used to derive
the velocity potential and lift and moment coefficients in the form of
power series in terms of the frequency of oscillation for a harmonically
oscilhting rectangular wing moving at a constant supersonic speed.
Closed expressions for the velocity potential and lift and moment coef-
ficients associated with pitching and translation are given to the sev-
enth power of the frequency. These expressions extend the range of use-
fulness of NACA Report D28 in which simild,rexpressions were derived
to the third ~wer of the frequency of oscillation. For example, at a
Mach number of 10/9 the expansion of the potential to the third power
is an accurate representation of the potential for values of the reduced
frequency only up to about 0.08; whereas the expansion of the potential
to the seventh power is an accurate representation for values of the
reduced frequency up to about 0.2, a value of this parameter large enough
to cover most rectangular-wing flutter cases likely to occur at this Mach
nmiber.

The section and total lift and moment coefficients sxe discussed
with the aid of several figures. In addition, flutter speeds obtained
in the Mach number range from 10/9 to 10/6 for a rectangular wing of
aspect ratio 4.53 by using section coefficients derived on the basis of
three-dimensional flow me compsred with flutter speeds for this wing
obtained by using coefficients derived on the basis of two-dimensional
flow.

INTRODUCTION

A method for obtaining the air forces and moments acting on harmo-
nicallyoscilldxlng rectangular wings in supersonic flow is given in ref-
erence 1. This method is based on the expansion of the velocity potential
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2 NACA TN 3076

in powers of the frequency of oscillation and is applied to harmonically
translating and pitching rectangular wings to obtati expressions for the
associated forces and moments involving the frequency to the third power.

In the expansion of the Velocity potential, the frequency of oscil-
lation and Mach number enter the results in a combined fdrm such that
the range of frequency for which the expansion to a given power repre-
sents an acceptable appro~tion to the actual potential decreases as
the Mach number decreases toward unity. As a result, the force and
moment expressions of reference 1 apply to a sufficiently broad frequency
range for most flutter studies only if the stream Mach number is @?eater
thsn about 1.5. In order to obtain results that cover a larger part of
the transcmic range, that is, results that apply over a wider frequency
range at Mach numbers nearer unity, the present paper extends to the sev-
enth power of the frequency the expressions of reference 1 for velocity
potential, section force and moment coefficients, and total force and
moment coefficients. This extension results in a coverage of frequency
that is generally sufficient at Mach numbers as low as about 1.1. It
*o, of course, ticreases the frequency range coveredby the approxi-
mate theory at all supersonic Mach numibers.

Although the method of reference 1 furnishes a straightforward
approach for ms%kinnthis extension, the present paper employs a more
concise method based on the velocity potential for a semi-infinite wing,
developed in reference 2. In this reference Stewsrtson makes use of the
Laplace transformation to obtain the potential in the form of a definite
integral. The i.ntegrandof this integral expanded ti powers of the fYe-
quency and integrated termby term can be made to yield results that are
identical.h form with those obtdned by the method of reference 1. For
the sake of completeness Stewartson’s derivation of the velocity poten-
tial for the semi-infinite wing is reconsidered hereti.

For illustration the extended section coefficients are used to calc-
ulate flutter characteristics for a rectangular wing of aspect ratio 4.53
at several Mach numbers in the low supersonic speed range. These results
are compared with calculations made by using two-dimensional aerodynamic
coefficients, obtained from reference 3.

A

b

c

aspect ratio

one-half chord

speed of sound

m!hmxts

in undisturbed medium
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Cz

%

cm

%

Fn(x>y)

~n = Fn(l,y)

h

ho

i,L

JO(U)

k

Li,Mi

Ei,ii

M

Mu

Zc

4

P

section lift coefficient

total lift coefficient

section pitching-moment
tion ~

coefficient about axis of rota-

total pitching-moment coefficient about axis of rota-
tion ~

functions deftied after equation (17)

vertical displacement of axis of rotation ~, positive

downward

amplitude of vertical displacement

time derivatives of h and a, respectively

Bessel function of zero order (first kind)

reduced frequency, &/v

components of section force and moment coefficients,
respectively, defined h equations (29) to (32);
i=,l, 2, 3, andk

compnents of total force and moment coefficients,
respective~, defined in equations (37) and (38);
i =1,2,3, and4

Mach number, v/c

aerodynamic section moment on wing about sxis of rota-
tion ~, positive leadhg edge up

total aerodynamic moment on wing about axis of rota-
tion ~, positive leading edge up

local pressure difference

aerodynamic section normal force, positive downwsrd

——————.- —.——-— — —- —— —-———--—— --. — ——— —..
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F

‘a

s

t

v

W(x’,ym’,t)

%3

X,y,z

X’ = 2bx

y’ = 2by

z’ = 2bz

Zh

%

%

a

%

total aerodynamic force on wing, positive downward

nondhensional radius of gyration of wing section about

elastic sxis, [~fiere & ismass momentof

tiertia per unit span about elastic axis and m is
mass of wing per unit span

one-half span of wing

time

Velocity

vertical velocity at surface of wing along chordwise
section y’ = ym’

location of center of ~avity of whg measured from
elsstic axis (see ref. 3)

abscissa of axis of rotation of wing (elastic axis)

non-nsional rectangular coordinates attached to wing
moving h negative x-direction, referred to ~w
chord 2b

first bending mode shape of wing

verticsl displacement of any chordwise section of wing

first torsion mode shape of *g

angle of attack, positive leading edge up

effective angle of attack due to vertical translation
G/v

% amplitude of angle of attack a

f3+@-1
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K

%

phase angle between section lift due to h and
velocity 6

phase angle between section 13ft due to a and
position a

phase angle between section moment due to h smd
velocity 6

phase angle between section moment due to a and
position a

phase angle between total lift due to a and
position a

phase angle between total moment due to CL and
position a

/density psmmeter, fipb2m

density in undisturbed medium

disturbance-velocitypotential

frequency of oscillation

ftist bending frequency of wing

first torsion frequency of wing

ANAL?isIs

Velocity Potentials for Hszmmnically Oscillating

Rects.ngularWings

As a first step h the analysis, an integral expression is developed
for the velocity potential for a hsrmonicadly oscilJ_atingsemi-infinite
rectangular wing (fig. 1). As mentioned in the introduction this expres-
sion is given in reference 2 and is redeveloped herein for the sake of
completeness. ltromthe expression for the semi-infinite wing, the poten-
tials for the various regions (see fig. 2(a)) of a finite rectangular

.——.———-—. —— — -———— .———————.- -— ——-z———. . —
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analysis
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for the finite wing, like that
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appropriate modifications. The
of reference 1, is restricted

to the contition that the Mach line from the foremost ~oint of one wing
tip does not intersect the opposite tip ahead of the trailing edge.

Velocity potential for semi-infinite rectangular wing.- Consider a
thin, flat, semi-infinite, rectangular wing moving at a constant super-
sonic speed in a chordwise direction normal to its leading edge as shown
in figure 1. The differential equation satisfied by the disturbance-
velocity potential for the wing (when referred to a rectangular coordi-
nate system x’,y’,z’ moving uniformly in the negative x’-d3rection
with the x’y’-plane coincident with the mean position of the wing) is

()1 a+v>—. 2@.L+f.L+3!L
C2 & ax z ad2 ay’2 azt2

(1)

where x’ = 2bx, y’ = 2byj z’ = 2bzj 2b is the ~ chord, and c
is the speed of somd in the undisturbed medium. The boundsry condition
of tangential flow at the surface of the wing, in accordance with smalJ_- .

disturbance linearized theory, can be expressed as

(2)

where ~ is the vertical displacement of the orttl.natesof the surface

of any chordwise section of the w3ng such as y’ = ym’ in figure 2.

The wing is assmed to be executing simple harmnic motion with respect
to time t, so that t enters only in the exponential exp(imt), where
m is the &equency of oscild-ation. Equation (1) thus becomes

+gm-&y
c ax’ ~2

(3)

where the disturbance-velocitypotential @ is related to ~ by

d(x’,y’,z’,t) = y(x’,y’,z’)e~

..-—.
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For the case of the semi-infinite ming having identical
chordwise section the boundsry conditions that equation
are:

7

motion in every
(3) must satisfy

()a~
W(x’) (X’,y’ ~ o)

F= z 1+’()

iunl+v~=o (y’ <o)

t+r. o (X1 < o)

we o (z’+ *m)

(4)

(5)

(6)

(7)

Equation (4) is derived from equation (2) snd implies that the normal-
velocity distribution on the wing iS given; equation (5) iS the con~-
tion that the pressure be zero off the tip of the w5ng; equation (6) is
the condition that no disturbances be propagated forward of the ~;
and equation (7) is a condition on the behavior at Minity (the manner
of approaching zero is associated with the radiation condition of
Sommerfeld). Equations (3) to (7) constitute the boundsry-value problem
for the velocity potential #.

Applying the Laplace transform

J
w

~(s,y’,z’) = e -=’$(x’,y’,z’)dx’
o

to equations (3) to (7) yields the transformed boundary-value problem
in the form

a2ij +a2ij7

( )

u?—= ~2s2+ig_~=pq (8)
ayf2 az’2 c

()

~ . ~(s)

az’
(y’ ~ o) (9)

z’.~

— — —- .,— .. ..—
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~=() (y’ < o) (lo)

~-+ o (z’+ *.) (n)

The problem in this form is, as pointed out in reference 2, similar to
the problem treated in srticle 308 of reference 4. By applying the
method of reference 4 to the present ~blem, it can be shown that the
value for ~ at the upper surface of the w& (z’ =+0) is given by

P )e-~ dv (E!)

For convenience
of ref. 5) aa

equation (12) may be rewritten (see, for example, p. 478

(f fi/2
T=

)
-w(s) ~ --$ 0 e-m’see% d~ (13)

If use is made of a table of Laplace transforms (for example, pairs 55
and @ of ref. 6) and the Fal.tungor convolution theorem, the inverse
of the Laplace transform in equation (13) may be written as

I
x’

y(x’,y’,w) = - ~
P()

W(X1 - E’)G(E’,Y’)U’

where

-~ @lx!

()G(x’,y ’) = Jo 9x’ e C$2
cp2

[
()G(x’,y’) =Jo ~X’ -
C52

(x’ <fly’)

.

.

(14)

— ———



2A

.

NACA TN 3Q76 9

sad g’ =2b~. lRromequation (14) the velocity potential in terms of
the nondimensional coordinates x, ~, an. y becomes

where

().(2bxj2by) =JO*X e-~ (x < BY)

[(M)-$~sec-’~Jo(~G(2bx,2by) = @X

(x> BY)

~_2ba&_—
V132

Equation (17) is the desired integral expression for the velocity poten-
tial for a semi-imfinite wing. Note that for X< f3y equation (15)
reduces to the potential for a two-dimensional wing (see ref. 3).

An expansion of the integrand of equation (15) in powers of the
frequency of oscillation is employed because
does not appear to be obtainable in terms of
of this expansion is

(s1

the indicated integration
Ialownfunctions. he result

—— ————-—-——- .—— ——— .—. ..__
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where L~j2 denotes the inte~al part of q/2 and

(x< $Y)

s Jsec-’EIr(x,y) = ~ -
0

It may be shown by induction that ~ for x > py cm be expressed h

terms of the functions Fn of reference 1 ~ folJ-~s:

where

J
x

Fn(x,y) = Xn-%in-l@ &
o

Two relations involving Fn that are of particular importance in the

next section are

(18)

and

where

_-. ——_—
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~=2qnJ)(n -2). ..(m+l)l)
(m> 1)

(2u-l)(2n -3). ..(22m+l)l)

Equations (16) to (19) provide the means for obtaining the potential to
any desired power of the freqmncy of oscillation. They are used in the
next section to develop expressions to the seventh power of the frequency
for the velocity potentials for the various regions of a finite rectan-

- ~g ~dergo~ torsioti ~d vertical translational oscillations.
These expressions are extensions of sWlar expressions developed in ref-
erence 1 to the tlxlrdpower of the frequency.

Velocity potentiaM for finite rectangular wing.- The coordinate
system aud regions of interest for the f~te rectangular winR are shown
in figure 2. On the portion of the wing between the-l.fachcon~s emanating
from the foremost point of each tip (region N in fig. 2(a)) no inter-
action takes place between the flow on the upper .md lower surfaces of
the wing. On the portions of the wing within the tip Mach cones
(regions Tl, T2, and T3 in fig. 2(a)) interaction does tdse place between
the flow on the ~per and lower surfaces. The velocity potential at a
point in one of these regions is designated by ~, ~1, &y2, or @T3

according to the region that contains the point.

For the particular case of the - independently performing small
sinusoidal torsional oscillations of amplitude ~ about some spsnwise

axis ~ and small.shmsoidsl vertical translations of amp~tude ho,

the equation for ~ is (see fig. 2(b))

~=eW~~(x-~)+~].2ba(x-~) +h (20)

Substituting this expression for ~ into equation (2) gives

w(2bx,t) =Va+2b&(x-~)+~ (21)

Equation (21) complies with the restriction inherent in the development
of equation (17), nsmely, that the wing have identical.motion in every
chordwise section.

The velocity potential for region T1 for the wing motion represented

by equation (20) is obtained &&ectly from equation (16). Futt@j the
expression for w(2bx,t) given by equation (21) into equation (16),
retaj~g only terms in the expsnsion up to the seventh power of Z&
inserting the appropriate values of J& obtained from equation (17),

-——— .—— ——..--.-— —.
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and perform@ the necessary integatio~ with the aid of equation (18)
yields the follmdng form for the velocity potenti~ in region Tl:

[

~l(x,y) = ~F1 - iZN’2- E~(xF2 + ~2F3) +% X2F2+ (2p2 -
=2 11)F4 -I-

5)F2 - 3xF~ + 2B4F~ - %$(4B2 -I-7)F2 -

3ox%14+ (8P4-4P2+ 3)F~-S~.5(8P4 +28P2+~)F2-

~OX3(6P2 + 7)F4 + ~5xF6 + 8j36Fj +-&~(8P4+

36~2+33)F2 - 107x4(2~2+ 3)F4+ ~5x?F6 -t-

(
16P6 - 8P4 + 6~2 -

}

5)FJ

J
x

~2(x,Y) = fil(x,y)dx
o

The integration reqtied to obtafi the ~ction ~2 may be re~

performed tithfie aid of equation (18). The integrated tius of Fn

(from eq. (19)) needed in equation (22) are listed in appe~ A.

Use is nowmade of the potenti~ ~1,
eqyation (22), to obtain the

potenti~ for regions I’?,T2, andT3. The potenti- ~ is obtatied

.

,
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from ji$l by substituting y = x/~ h the functions Al and > in

eqmtion (22), in which case Fn becomes

l-(Xn
Fn=– —

2n

and the velocity potential

$%
=

[

.$ (A+

where

h is given by

[ 1]Va)f~(x) + 2b~f2(X) - xofl(x) (23)

X5 @ (8p4+5~B2+ 63)$ -u:d~6~6+168~4+.-—‘OB2 + 35) 5 960M4

37892 + 231)$+ ~~& $6P6 + 216j34+ 594132+ 429)$

J
x

fz(x) = f~(x)dx
o

Note that because of the two-dimensional character of the problem in
region N the spanwise variable y is not contained in ~. EqufL-

tion (23) can also be obtained by expanding to the seventh power of Z5
the velocity potential for the two-dimensional wing given in reference 3.
The potential %2 is obtained from ~1 by replacing y in the func-

tions Xl smd ~ in equation (22) by A - y, where A= 2s/2b is the

aspect ratio. The potential in region T3 (this region exists if

1< A@< 2) is a simple superposition of the potentials for regions N,
T-J,md T2, as indicated in reference 1, and may be written as

@T5=@T~’@T#JN (2’)

—z.—— ——- _..._ ..---.—— — —--
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Forces and Moments

Section forces and moments.- The expanded velocity potentials for .

the finite wing are now used to obtain expressions for the section forces
and moments at any spanwise station of the wing. Since the distribution
over the entire wing is symmetrical with respect to the midspan section>
only expressions for the forces and moments at any station of the one-
half spsn adjacent to the origin (see fig. 2) need be considered.

The local pressure difference between the upper and lower surfaces
of the w5ng may be written as

4=-2+-$ (25)

The section force, positive downward, is therefore

.

and the
Sxis of

J
1

P = -2b 4dx (26)
o

section moment, positive leading edge up, about the arbitrmy
rotation x = ~ is

(27)

Under the previously mentioned restriction that the Mach Lfme from
one tip not intersect the opposite tip ahead of the trailing edge, equa-
tions (26) and (27) must be evaluated for the two cases that can srise
(see fig. 3). These cases are: (1) The Mach Mnes from the tips do
not intersect on the wtng (AB > 2) and (2) the Mach lines intersect on
the w5ng but the Mach line from one tip does not intersect the opposite
tip ahead of the trailing edge (l= AB~ 2). Only the final forms of
the section forces and moments are given. These forms are calculated by
deriving the pressure difference for the different regions from the
appropriate velocity potentials, making use of figure 3 to determine the
limits of integration for the regions involved, and using the relation
given in equation (18) to perform the integrations involving the func-
tions Fn; the results can be written as

. —.— — .—
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}

(28)

The quantities Li (i = 1, 2, 3, and 4) and Mi (i = 1, 2)43, and 4)

are the components of the section force and section moment coefficients,
respectively. The reduced frequency k is related to m and C by
the relations

k=~=~~
v ~2

In order to obtain self-consistent expressions for the forces and moments,
the terms of the velocity potentials associated with h and a we
expanded to the seventh power of ZG and the terms associated with &
are expanded to the sixth power. As a result, the coefficients in equa-
tions (28) are ss fo~ws:

Case l(see fig. 3(a)): For any section between the tip and the
point where the Mach line intersects the trailing edge, or where—
o<y<l/p,

[( ) 2- 35(@2+ 9)?4--& 7 16p4 + 48p2 -I-33 ~

(
6

E8P8+ 64P6 - 16B4+ 8p2 - = ~5)4( ) ]
ii

(
2

)10+8J34+4p2-1~4~ +

4

)]()
8B4-2gJ2+I_~6~ -

+ lo5~6 - 112f3%7 +

(29a)

———.—— ——————.—— .— —..—.—.-z —. —-——— —.—-—— ... ——. —



6 + 64p4 - 1~~2+3)~6 (:)4 +24013%5+ (168P

33)~, - 35(P2 + 9) i4 + a(16p8 - @6 + 6p4 -

( 576P8 + 232f36- “p’+ 15p2 - = =6 -5)4( ) ]

‘p’ + 3$2- 3)F4 -

[(& 7 2p4 + 27p2 +

5B2 + 5) F6 - @6P%7 +

(29d) -
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4P* + 3)?4 -I- (24P4 + 8P* - l)q(;y - &~5(*~2 + 3)~2 -1054-

J (30b)

](E* 1[*1132+ 3)~4 ~) + ~ 3 (P2 + 5)~2 + 3*E@3 - 2(4w6+ 20~4 -

4
)]()5P* + 3)~4 + (56p6 + @K~4+ 11~2 -1 ~6 ~ [(-&52B4+

21f3*+ 21)F2 - J_5(p2+ 7)~4 + @J%5 - 3(U2P8 + 56p6 -

(Equation continued on next page)
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M4 =

6
lkp4 + 7P2 - 4]()]5)~6+ (192f38+232B6+44~4 -5j32+ F8 : -

(WC)2%(% + L3 + 2XOL1)

132(5P2+

9of3%5 +

3)Ea(*~-*E(p2+7)F2+5(8’6-4’4+3’2-3)F4-

1
[(2P4(28P2 + 19)~7 (:)4+ -&3 2$4 + 27EJ2+ 33)~2 -

14(B2+9)~4+7(16P8 - 8p6+ 6134- 5j32+ 5)~6 - 2248%7+

where 7’n (n=l,2, . . . 9), giwn h appem A, is Fn evaluated

atx=l. For any section between the point where the Mach line inter-
sects the traiMng edge and the midspanj or where 1/$ <YgA/29

L1 =

L2 =

164$6 -I-432134+ 792f? + 429(~)6
322560

[

.G -
1=

—

(31a)

(31b)

.

.

-. —- —— .-
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L5 .

L4 .

Ml =

M2 =

M3 .

- %%2

L

64B6 -I-432P4 + 792~2 + 429 Z56
(M)
— --1

181440

(31C)

(31d)

(32b)

1

[ (Jp2+l_FME2+*
fy42~2 8’ 576 \]M

6

(M)]

8P6 + 140@4+ 357p2 + 231 m—
460@

- %(M1 + L3 + 2%41) (32c)

— ——.—— — _—.,, , 1 .;.
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%%-%?4+()
2

4{j32-l)+f32+5Q -

3 15 M

6

()] (

8$b + lti~k + 561B2+ 429 m - ~M2+L4 +2X&J (32d)
181440 F

Case 2 (see fig. 3(b)): For any section between the tip y’ = O
and the @nt where the Mach line from the tip at y’ = 2s intersects

(
the trailing edge or where O< y< A - ~

)
1 the components of the sec-

tion force and moment coefficients are given by equations (29) and (ZYl),
respectively. For any section between the petit where the Mach ltie
from the tip at y’ = 2s intersects the trailing edge and the midspan

(
or where A - ~

P )
<y <A/2 the components of the section force and

moment coefficients, respectively, are obtatied by first adding to equa-
tions (29) and (30) the results of stistituting A - y
equations and then subtracting equations (31) and (32)
For exsmple, the term of L1 that does not contafi m

for y in these
from the result.
is given by

[
-4P2 ~l(y) + ~l(A - 1]

1
Y] +4(2@2+ l)~2(Y) +~2(A- Y)

-~

(33)

Total forces and moments.- lRrpressionsfor the total forces and
moments can be derived by considering only case 1 of the previous sec-
tion. It can be shown that case 2, al.tho&h more cumbers&e to handle,
leads to the ssme expressions. Therefore the total force, positi~
downward, may be written as

J
l/f!

J
A/2

~=kb (p)Tl @ + ‘b ~,p (P)N ~
o

(3’)

and the total moment, positive leading edge up, about the axis x = X.
as

&= ‘b~”p @.& dY+ ‘b~: (%)N ‘y (35)

.

.
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In equations (34) and (35) the quantities (P)T1 and (~)Tl are the

section force and moment, respectively, whose components are given in
equations (29) and (30)Y =d (P)N and (~)N are the section force

and moment, respectively, whose components are given in equations (31)
~d (32).

Upon perfomdng

(35) tith the aid of

the integrations indicated in equations (34) and
the relation

J
l/j3 =

Fndy=
2(n+2) X

o “- ~

the results can be written as

7

—

L

where

[ -()E1=~l- 42+5~2+

$3 24 M %34 -
1(36)

6

() [

64B6 + 432f34+ 79282 -t-429 ~ 4+8B2+#+_&#+2-’P
322560 M 3A~ 20 ()K

(?

P6+ 18P4+ 48p2+ 32 4 - 01]P8+32P6+ l@p4+ 256P2+ 128~6

840 K 604&)

(37a)

..——. —- — .- .— —— — .— --.——— — -—
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i3=J-
@&’k2
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ii4

{

= I- 4( B2-1)+p2+5tB2 44+4 2+6 tG4+

jac 3 u (J -%i!iY@

86 -t. MbD4 + 561E12+ 429
181440

@6+&_[-y@2+

‘J

+ 2%%) (3ed)

SOME PROPERTIES OF IORCES AND MOMENTS

of some of the properties of the extended section and
moments of the present paper may be of interest. For

Examination
tot~ forces snd
this purpose consider, first, the conventional coefficients for section
lift c~ and section pitching moment cm that may be obtained from

equations (28) as

where ah = 6/V is the

lRromeqwtions (39) the
derivatives) associated
respectively,

J

angle of attack due to vertical translation.

section lift- and moment-curve slopes (complex
with vertical trsmslation and pitching are,

dcl
— = -i4k(L1 + ~)
%

(40a)
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d%_ . .~(M3 + ‘4)
da (40b)

The coefficients Cz and ~ and their associated slopes reduce to

we~-lmown results in the steady case (k = O). For example, substitu-
tion of the components given in equations (31) into equations (39) yields
the result c1 = 4u/~ (Ackeret’s result) for a nonoscillating two-

dimensional wing. Equations (39) and (40) have the additional featwe
that

with

(i =
more

multiply& the components ~ and ~ (i = 1 and 2) associated

vertical translation by k and the components & and Mi

3 and 4) associated with pitching by k? makes these quantities
uniform in magnitude and therefore more suitable for plotting.

Now consider the coefficients for total Mft ~ and total moment

~ that maybe obtained from equations (36) aS

%=- *= @(Tl + q% ‘ k2(% + fi4)3

i

(41)

~=-!!!L=
[

)]-2 -ik(iil+ mJ~+k?(Fi3 + iE4 a
4pb~A

lRcomequations (41) the total lift- and moment-curve slopes (complex
derivatives) associated with vertical translation and pitching
respectively,

and

d% - 4k2(E3 + fi4
da )

are,

(42a) .

(42b)

Equations (~) may be used to illustrate the extent to which the
approximate expressions of the present paper for the section force and
moment on a finite rectangular whg may be Usefti. A compmison~ based

-. —-. —_.— —-—. — .—-- — — .—— .—— ---————————— —-—— —
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on these equations, is made in figure k of some exact and approximate
calculations for a two-dimensional wing vertically translating and
pitching about its midchord position. Results for a two-dimensional
wing sre chosen because in this case approximate and exact results can
be compsred and the extent of convergence determined. The two-&hensional
case is a legitimate stsndard in the absence of exact results for the
finite wing since consideration of equation (16) will show that this
equation is at least as convergent when expanded to a certain power of
fi for a finite wing as when expanded to the same power of ti for a
two-dimensional wing. In figme 4 the components of the section moment-
curve slopes deftied in equations (~) are plotted against & for
M= 10/9 and ~= 0.5. The three dashed-line curves appearing in each

of the four parts of figure 4 represent approximate results obtained by
substituting the components given in equations (32) into the appropriate
expressions of equations (40) and relxdniqg terms involving Zh .up to
the third, fifth, and seventh powers. The solid-line curves represent
exact results obttied by using the moment coefficients tabulated in
reference 3. Curves of the components of the section lift-curve slope
sre not included because they show essentially the ssme convergence
tendencies.

As maybe noted h figure 4, the value”of fi at which a particular
approximation departs from the exact theory is essentially the same
regardless of the moment component considered.

(

By extending the @
results of reference 1 represented by the curves in fig. 4 labeled

“expansion to &’,” except that b the present paper an ~ term has

been added to the component Z%Ml) to @ and to 57, the value of fi

at which the approximation and the exact theory depart at M = 10/9
has been increased from 0.8 to 1.3 aud 2.o, respectively. Further inves-
tigation will show that these values of fi remain essentially the ssme
regsnlless of the Mach number involved. The ranges of reduced frequency k

( 2QM

)
- 1 in which the vsrious approximations adequately rep-equal to

2 M2

resent the exact theory may therefore be expressed as follows:

For expansion to 3,

O*,<Q&h&d--
M2

for expansion to $,

o.,+@.!JEA-_
M2
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IYom these expressions it is resdil.yseen that expanding to U37 rather

thsn @ more than doubles the allowable k range. For example, at
M= 10/9 the limiting value of k is ticreased itromO.076, which is
too sti, to 0.19 which is sufficiently large to ticlude most flutter
cases that would Mkel.y be encountered at t~s Mach number.

In order to study the effect of aspect ratio on the forces snd
moments, consideration is given to the spanwise variation of section
lift and moment coefficients. me curves in figures 5 and 6 ser-veas
illustrations. In figure 5 the magnitudes of the slopes obtahed by
substituting equations (29) to (32) into equations (40) are plotted
against the spanwise variable 1 - ~ for the conditions M = 1.3,
A=4, ~= 0.413, and fi= 0.544. The quantity ~ is the previously
used variable y divided by A/2. The phase angles associated with
the magnitudes of the slopes shown h figure 5 are plotted in figure 6;
for example, the phase angle associated with the magnitude
dcz

– ‘T
2 is ea.tm

da
4k2 %2 + L4 ‘1 L4/L3“ The portions of the curves

& t~ese figures in the range O ~ 1 - ~ ~ 0.4 (1/p~ y= A/2) also

apply to a two-dimensional wing under the conditions listed. The effect
of aspect ratio may be noted & the
(Osy<

The

est. h
in phase
in phase

l/p) .

phase angles ~ snd em

keeping with the fact that
with the velocity 6 or a

tip region 0.4< 1- ~s 1.0

in figure 6 are of particrdsr inter-

a component of the force due to h
component of the moment due to u

with the singularvelocity & would be destabilizing, values
of eh between 90° snd

would indicate possible
torsion, respectively.

so that Oh is between

270° and &lues of em between 0° tid lti”

-c instability i.npure bending and pure
The coefficient ~, however, is always positive

.gO” and 90°; this agrees with the wel&hown

fact that pure bending oscillations we always damped, at least in poten-
tial flow. The phase angle f3m, on the other hand, is less than 180°

in the two-dimensional region snd corresponds to undamped or unstable
conditions; whereas in most of the region affected by the wing tip the
phase angle ea is greater than lti”, which corresponds to damped or

—— —.— . -—. . —.— — -.. — —. ..— — ..__



28 NACATN 3076

stable cotitions. The main feature of figure 6, therefore, is that
aspect ratio has a stabilizing effect with regard to the nmtion a.
This result seems to indicate that a flutter analysis which takes tito
accouut the spanwise vsriation of aeroi@amic forces would yield a higher
flutter-speed coefficient than one based on two-dimensional aerodynamic
forces.

Upon substitti~ equations (37) and (38) into equations (42), the
overall effect of aspect ratio on the total ~t- and moment-curve slopes
can be calculated for particular values of the parameters M, a, X0,

and A. Although the effect of aspect ratio A ~ change considerably
with small changes h one or more of the other parameters, some insight
into the overall effect may be gained from calculations in which, together
with A, one of the parameters fi, ~, or M is varied while the other

two remdn ftied. Figures 7 aud 8 show the effect on ~/dJz and dC&a

of varying A snd ~ while keeping M and ~ ffied, @ fi~e 9 ‘

/
shows the effect on ~ da of varying A and ~ while keeping M

and C ftied. The effect on the total lift- and moment-curve slopes

of var@g A and M can be exlracted from figures 4 and 5 of refer-
ence 1.

In figure 7 the magnitudes and in figure 8 the associated phase
angles of the slopes ~ida and ~/da are plotted against ~ for

M= l*3j X0 = 0.5, and several values of A. In figure 9 the limiting

value as ~ +0 of the slope dC&#a is plotted against ~ for

M= 1.3 and three values of A. me curves in figures 7, 8, and 9
labeled A = l/p apply to the least value of A permitted by the fore-
going analysis in that they represent calculations for the combination
of aspect ratio and Mach number that causes the Mach line from one wing
tip to intersect the opposite tip at the trailing edge.

As illustrated in figure 7(a), a decrease in aspect ratio for a
given value of fi produces a decrease in the magnitude of the total
lift-curve slope. This trend is in general true for the range of Z
considered and is not affected by a change h ~ or M (see fig. 4

of ref. 1). In the case of the magnitude of the total moment-curve
slope, however, the trend with aspect ratio iS ~eat~ dependent on XO=

,As maybe seen from figures 7(b) and 9 (see also fig. ~ of ref. 1), the
ms@itude may increase, decrease, or perhaps not vary at an (= is the
case in fig. 9 at ~ = 0.67) tith a decrease in aspect ratio, depend3ng

on the value of ~ under consideration. This seemingly anomalous
behavior of the total moment-curve slope is associated with the change
in center of pressure, for prescribed motions of the wing, with change
b aspect ratio. Also note h figures 7 and 9 that the departure from
the two—&tmensional (A= m) results is rather large for aspect ratios
less than about 4.

.

.
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IEromfigure
em = l~o f~~
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9 for’ A= cu the following phase angles are obtained:
~< 0.5 and eM = 0° for ~ >0.5. The phase

angle of 90° shown in figure 8(b) for A = m, ~ = O, and ~ = 0.5,

although associated with a slope of zero magnitude and not reald.ysignif-
icant, is therefore a transitional value. Note in figure 8(b) that em

is less than 0° for A less than 6; this result also indicates that
aspect ratio is stabilizing.

APPLICATION OF FORCES AND MOMENTS TO

Method of Flutter Analysis

l?LuITER

For

-is
sidered.
tions to

the purpose of applying the foregoing results, a flutter
of the Rayleigh type for uniform cantilever wings is now con-
Such an saalysis involves the selection of a set of modal func-
approximate the flutter mode, the formation of the flutter deter-

minant, and the solution of this dete-ant for the fltiter condition.
(Although the use of the force and moment coefficients derived herein
for the undistorted rectangular wing results, in certati cases, in a big
improvement in accuracy over the use of two-dimensional flow coefficients,
perhaps a more accurate but much more cumbersome procedure would be to
use coefficients derived for a distorted wing.)

The flutter mode of the uniform cantilever wing is assumed to be
adequately represented by proper combination of the uncoupled first
bending and first torsion ~de shapes of the wing. The flutter deter-
minant based on these two modes haG the form

where the determinant elements are given by (see fig. 10 for coordinate ~)

—..——— .— .— ..— — .—— ——— ———-—-— —————- -— -—- -—-
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(44C)

and where o is the flutter frequency. In the event that two-dhnensional
air forces and -momentsare used, the force and moment coefficients appear
as constants in the integrals and can be factored from under the integral
signs, and the determinant elements become

> (45)

(It may be noted that eqs. (44) an. (45) are not restricted to any
particular Mach nuniberrange if ~ and Mi (i = 1, 2, 3, ~. 4) .ef~ed

in accordance with eq. (28) sre taken to apply at either subsonic or
supersonic speed.) The uncoupled first bending mode shape Zh and the

first torsion mode shape ~ needed for the evaluation of the aero-

dynamic titegrsls of equati~ns (44) are plotted against 1- C in fig-
ure Il. The mode-shape titegrals of equations (44) and (45) are given
by
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J’
1

zh~ d~ = 0.337
0

I
1
&2d~ = 0.50

0

The flubber condition is determined from the nontrivial solution
of equation (43). This solution may be obtained by various means (see
ch. ~ of ref. 7). In the present paper equation (43) was solved for
the unlnown ~/~. For a particular wing and Mach nuiber, for which

values of M, K, %> % /
ra2, and ~ ~ are specified, the reduced

frequency k was varied until the ratio ~/~ determined from equa-

tion (31) matched that of the wing. In thi~ manner the values of k

/
and ~ o at flutter and consequently the flutter-speed coefficient

I
V ~ were determined for the wing at the selected value of M.

Flutter Calculations

The foregoing method of analysis was used to obtain flutter char-
acteristics in the Mach nuniberrange 10/9 s MS 10/6 for a rectangular

wing with the following properties: A= 4.53, l/K = 95.3, ~ = 0.341,

% = 0.350, ra2 = 0.39, ~d ~1~ = 0.583. Calculations were made on

the basis of the compments of the section force and moment coefficients
given in equations (29) to (32). A numerical method for evaltiing the

(
aerodynamic integr~s resfiti~ from the use of these components for

For comparison, calculations were abo made by
coefficients for a two-dimensional wing (strip

\

outlined in appendix B.

using force and moment
theory). In this latter

case the determinant elements are of the form given in equations (45)
wherein the components ~ and Mi sre obtained from either reference 3

or equations (31) and (32) of the present paper. In figure 12 the two
curves resulting from these calculations are plotted in the form of
flutter-speed coefficient V/~ against Mach number M. As may be

noted in the figure, the curves we well-sepsrated at M = 10/9 but
tend to converge as the Mach number is increased. At M = 10/9 the
flutter speed obtained by using coefficients for a two-dimensional wing
is about 62 percent of that obtained by using coefficients for a rectan-
gular wing, whereas at M = 10/6 it is about 95 percent.

..— .——.— —— --— — — ————-- —.———-.— — ——.—
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CONCLUDING KEMARKS

NACA TN 3076

The linearized theory for compressible unsteady flow has been used
to derive expressions to the seventh power of the frequency of oscilla-
tion for the velocity potential and section and total forces and moments
for a tldn rectangular wing harmnictiy oscillating in pitch and vertical
translation and moving at supersonic speed. These expressions are exten-
sions, although obtained by a different method, of similar expressions
derivedto the third power of the frequency of oscillation inNACA
Report m28. As a result of this extension the largest value of reduced
frequency for which the theory is sufficiently exact has been increased

from k = 0.4(M2 - 1) to k=~~l—, where M is the Mach number.
“M2

For example, at M = 10/9 expsnsion to the third power of the frequency
is accurate up to about k = 0.08, whereas expansion to the seventh power
is accurate up to k = 0.2, The first of these values for k is too
small but the second is probably large enough to include most rectangulsr-
win.gflutter cases likelyto occur at M= 10/9.

Flutter calculations were made in the Mach nmber range from 10/9
to 10/6 for a rectangular wing of aspect ratio 4.53 by using the section
force and moment coefficients for a rectangular wing derived in the pres-
ent paper and the force and moment coefficients for a two-dimensional
wing given i.nNACAReport 846. Comparison of the two curves of flutter
speed indicated, as may be expected, that the use of finite-wing coef-
ficients is very ~luential at Mach mmibers nesr unity but becomes less
so as the Mach nmiber is increased. At M= 1.O/9 for the particular
~ _@, the flutter speed obtained by using the section coeffi-
cients for a two-dimensional wing is about 62 percent of that obtained
by using coefficients for a rectangular wing; whereas at M= 10/6 it
is about 95 percent. Since fltiter speeds calculated on the basis of
two-dimensional+dng coefficients are generally very consermtive ti
the low supersonic speed range, it would seem that flutter speeds obtdned
by using the section coefficients for rectangular whgs of the present
paper may compare more favorably with experiment.

Langley Aeronautical Laboratory,
National Adtisory Co?mnitteefor Aeronautics,

Langley Fielii,Vs., Janusry 14, 1954.
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APPENDIX

SOMEINmxwmD VALUES

IYom equation (19) the values of the functions F= needed in eq~-

tion (22) are as follows:

%-ym+xsti”lfm

%-*@=m+~sm17=

*,. *+%YZ+8?9W
45

~m+$sb-lm

~k. @+6@+ wx+16
Ma

~~m +$.in-’m

F, . +bJpy-x3+bP#x2 + 15@3#X+ * f~mj + g b-l ~
m

F6.w+PPa+- + %& 31Q+l@y%+*
4198

~ !@G=m + $ .ill-’w.

y .23w5+mmx3 *M 2+
7 ac%?l

S12@y3r+
-v==+ +”-’v=

P8 .
4z$i7+462&+ @@#+*4 + +

m-m ‘7’7 m + $ ““m=

r9 . @@ + 6E6WW + + fc=ax&#+ lEk3&r3 +122 + 11$~ 77-I+ * ~~R+$mi@@z

The functions F1 to F5 were given previously in reference 1 but are

repeated here for the sake of completeness.

The values of Fn needed in equations (29) and (~) we obtained

by substituting the value of x at the trailing edge (x = 1) into the
preceding values of Fn. That is,

~n = Fn(l,y)

—— -—__ ——. .— .—_— _ __ --————
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APPENDIX B

NUMERICAL MBTHOD OF EVALUATING AERODYNAMIC

A nmerical method of integration for evaluating the aerodynamic
integrals of equations (44) is now outlined. The outline is based on
the two cases discussed after eqvation (28) and depicted in figure 3.

Case 1 (see fig. 3(a)): The spanwise stations at which values for
the components of the section force and moment coefficients given in

[

equattons 29) to (32) are to be found sre shown in figure 10. Since
equations 29) and (30) reduce, respectively, to equations (31) and (32)

for ~ > 2/Aj3,the values of in needed to obtain the components of the

section force and moment coefficients at the various stations sre as
follows:

Note that these values of ~n do not vary with A and @ so long as

A~>2. lhomthe expressions for ~ and ~ in equation (29), the
.

preceding table of values

the flutter parameters

k= 0.10

B = 0.8307

~ = o.k31

of Fn, the curve for ~ in figure 11, and

A=4

hp=&= 0.1505

h= 0.5 - ~= 0.1990
AP

— —
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the following ssmple integration table based on Simpson’s p~abol.ic
inte~ating rule may be devised:

I Station, n I c
I o 0

I 1

I 2

H--l-+=
w
I I

%2 $++ In = (LI + iL2)~2

1 .Oom I o I o

.6273 \ .4549 + 7.1684i I .2854 + 4.4965i

.3469 I .9335 + 9 .5932i I .3238 + 3.328M

.1584 1.3839 + 10 .9939i .2192 + 1 .7415i

.0520 1.6646 + xL.6236i .0%5 + .60421

.0041 11.66!6 + u.6236i .0068 + .0476i

o 1.6646 + n.6236i o

I = 0.1456 -i- 1.6685i I

where In denotes the value of the integrand at station n. In a

shilsr manner the remaining aerodynamic integals of equations (44) can
be evahated.

Case 2 (see fig. 3(b)): In this case, as illustrated by equation (33),
the components of the force and moment coefficients=for the wing sections
passing through region T3 contain the functions Fn(A - y) h addi-

tion to the functions in(y). As a result, there is no arrangement of

spanwise stations which will yield values of Fn that do not varytith

A and ~. For this reason, it seems advisable S@lY to choose stations
at even increments along the span for the nmerical integration.

-———— -—— ————-—————— _—.-—__ .— .—
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Fi~e 1.- Sketch illustrating chosen coordinate system for semi-infird.te
wing.
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(a) Plan farm (x’y’-plane).
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w - Wdkn

Tra3imj
edge
d:2b

“p+=+’
(b) Section y’= y; (x’z’ -Pl~e).

Figure 2.- Sketch illustrating coordinate system for finite rectangular
wing with two degrees of freedom a and h.
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(b) Case 2.- Mach lines from tips intersect on wing
but not ahead of midchord ( I S A~ ~ 2).

Figure 3.- Sketch based on nondimensional coordinates x and y
illustrating different Mach line locations accounted for in
analysis.
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(a) Realpartof moment-curve slope associated with vertical
translation of wing.
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(b) Imaginary part of moment-curve %ope associated with vertical
translation of wing.

Figure 4.- Comparison of two-dimensional moment-curve slopes based on
exact and approximate theory as a function of frequency parameter fi
for M . 10/9 and ~ . 0.5.
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c ) Real part of moment-curve slope associated with
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ld) Imaginary part of moment-curve slope associated with

pitching of wing.

Figure 4.- Concluded.
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slope for rectangular wing of aspect ratio 4 plotted against spanwise

position In tenths of semlapan measured tiom wing center for M = 1.3,

%“ 0.413, w a= 0.544.
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