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NATIONAL ADVISORY COMMITTER FOR AERONAUTICS 

TECHNICAL NOTE 2879 

UNSTEADY OBLIQUE INTERACTION OF A SHOCK WAVE


WITH A PLANE DISTURBANCE 


By Franklin K. Moore 

Analysis is made of the flow field produced by oblique impingement 
of weak plane disturbances of arbitrary profile on a plane normal shock. 
Three types of disturbance are considered: 

(a) Sound wave propagating in the gas at rest into which the shock 
moves. The sound wave refracts either as a simple isentropic sound wave 
or as an attenuating Isentropic pressure wave, depending on the angle 
between the shock and the incident sound wave. A stationary vorticity 
wave of constant pressure appears behind the shock. 

(b) Sound wave overtaking the shock from behind. The sound wave 
reflects as a sound wave, aid a stationary'vo'rticity wave is produced. 

(c) An incompressible vorticity wave stationary in the gas ahead of 
the shock. The incident wave refracts as a stationary vorticity wave, 
and either a sound wave or attenuating pressure wave is also produced. 

Computations are presented for the first two types of incident wave, 
over the range of incidence angles, for shock Mach numbers of 1, 1.5, 
and	 .

INTRODUCTION 

The unsteady one-dimensional interaction of normal shock waves and 
disturbances, such as sound waves or other shock waves, has been studied 
quite thoroughly (an example is Kantrowitz' paper on shock stability, 
reference 1). The steady interaction between normal shock waves and 
plane Mach waves has been treated by Adams (reference 2). 

The general class of unsteady flow problems is currently of 
increasing interest, in connection particularly with stability of high-
speed aerodynamic and combustion processes. The effect of a shock pas-
sing through a flow field (or vice versa) is likely to be important in
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many applications. For example, a hot-wire anemometer intended to meas-
ure the fluctuating field of turbulence in a supersonic stream will 
actually measure the turbulence as modified by passage through the 
nearly steady bow shock of the probe. 

Considering, for simplicity, that the flow interacting with a nor-
inal shock is a nonviscous field of weak disturbance, it may usually be 
considered irrotational and isentropic (such as produced by a moving 
slender body) and therefore can be imagined to be composed of a suitable 
array of sound waves. Another possible type of weak nonviscous distur-
bance would be a stationary, incompressible flow of variable vorticity 
(turbulence which is convected rapidly past the point of observation is 
commonly thought of in this way). 

Either of these two types of flow may be represented as a linear 
combination of plane waves (each wave either a sound wave or a rota-
tional wave, depending on the type of flow to be represented) of various 
amplitudes, wave lengths, and orientations. Thus, if the interactive 
effect of a shock and each constituent wave may be fQund by a linear 
analysis, the complete problem may in principle be solved by linear com-
bination of the resulting flow fields behind the shock. The interaction 
between a turbulent field and a wind-tunnel screen and/or contraction 
has been successfully carried out in references 3 through 5 by this 
method. 

The present report concerns the interaction of a normal shock met 
obliquely by a plane sound wave, or by a convected plane vorticity wave. 
Since sound waves may impinge on a shock either from upstream or down-
stream, both cases are considered. The oblique interaction of a shock 
and weak vorticity wave is also treated in a current investigation by 
Ribner (reference 6). 

The shock is considered to be moving freely into gas nominally at 
rest (as in a shock tube, when wall effects are neglected). Of course, 
if the observer moves at a constant speed with the shock the flow 
appears as that associated with a steady shock, under different stagna-
tion conditions. The shock-tube point of view is adopted in order that 
there be no question of how the equivalent steady shock is ?tanchoredli; 
that is, end effects on the shock are not contemplated. 

GOVERNING UNSTEADY EQUATIONS 

In the following paragraphs, the equations will e derived which 
pertain to the propagation of a plane normal shock wave through a gas at 
rest, as modified by the influence of a weak pattern of unsteady 
disturbance.
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If the shock propagates without disturbance, its instantaneous 
position is x1 = Vt, in a coordinate system fixed in the fluid nomi-

nally at rest ahead of the shock (fig. 1). (All symbols are defined in 
appendix A.) The constant velocity of the shock front is V, and the 
corresponding constant velocity of the gas behind the shock is U, in 
this system. This one-dimensional motion is considered to be perturbed 
slightly by the presence of a weak field of unstea1y plane flow. The 
velocity ahead of the shock is written as u1 (x,y,t), v1 (x,y,t); behind 

the shock as U + u2 (x,y,t), v2 (x,y,t). Pressure, density, and temper-

ature are written as P + p, R + p, and 8 + e, respectively, where the 
capitalized symbols refer to the basic steady-shock motion, and the 
lower case to the unsteady disturbance. Throughout, subscripts 1 and 2 
are used to specify conditions ahead of and behind the shock, respec-
tively. As a result of the unsteady disturbance, the shock front 
itself undergoes a small unsteady displacement, given by (y,t). Thus, 
the pOsition of the shock at, any instant is Vt + (y,t). 

Shock Relations 

Because of the rapidity with which changes occur across a shock 
wave, the disturbed shock may be regarded as behaving in a locally 
quasi-steady manner; that is, in a coordinate system fixed in the shock 
at each instant, the usual Rankine-Hugoniot relations. apply. Because 
of the disturbance, the shock is slightly oblique in such a coordinate 
system (see sketch).

y
- y (approx.) 

v. i---. . (. •	 V+t-u '.1 
V-U+ k-u2	 __ 

Shock 

Because the shock is only slightly oblique, the shock relation concern-
ing the product of velocity components normal to the shock front, ahead 
of and behind the shock (reference 7) may be written approximately as
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(V - U +	 - u)(V +	 - u1) = 2	 l	 (V +	
- u1)2+1J (	 + y+l [_2

(la) 

The assumption of a slightly oblique shock also provides that the equa-
tions of conservation of normal energy and mass, respectively, may be 
written:

____	 IJ 
(V +	 - u1)2 +	 (8 + 01) =	 (V - U +	 - u2)2 

+ - 
(02 + 02) i- i	 2

(lb) 

(R1 + p1)(V ^	 - u) = (R2 + p 2 )(V - U +	 - u2 )	 (ic) 

The remaining oblique shock relation states that the velocity component 
parallel to the shock is unaltered by passage through the shock. Because 
the shock is assumed to be only slightly oblique, this relation is, 
approximately,

	

v1=v2	 (Vu) 

or,

v2 - v1 

=	 U	
(ld) 

The shock relations for the basic undisturbed shock propagation are 
obtained from equations (la), (ib), and (lc), neglecting small 
quantities:

(vu)v=21 v2+ r (2a) 

e	 1(vu)2+0	 (2b) 2	 y-1 l 

R1V = R2 (V - u)
	

(2c) 

Terms of equations (la), (lb), and (ic) which are of first order in 
small quantities yield the conditions which the disturba:ice field must 
satisfy at the shock: 

(V - U)(t - u1 ) + V(t u2 ) = 2	 - 1 rV(	 - u1 ) +	 e 
I +

(3a)
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rJ	 _____ - u1) +
	 -	

= (V - U)(t - u2) +
	

(3b) 

p1V + R1(t - u1 ) = p 2 (V - U) + R2(t - u2 )	 (3c) 

Equations (2), the state equation 

P = JR8 (basic flow)	
I

(4)


	

= + .g (perturbation flow)	
J 

and the assumption that the incident flow ahead of the shock is isen-
tropic pennit equations (3) to be simplified, yielding the following set 
of disturbance shock relations (equation (id) is also included), relating 
the disturbance fields ahead of and behind the shock: 

t_ u2	 t_ul	 p1 
=B1	 +B2-	 (5a) 

p 2	 t-ul	 p1 
=Cl	

V	
(5b) 

p 2	 tui	 p1 

	

+D2T	 (5c) 

(5d) 
VV vY 

where the coefficients are constants depending on the Mach number of the 
undisturbed shock N = V/a1: 

/



I 
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B1=-1	 (1Y1M2) 

_y-1 2 
I + 1 yM2 

= 1 + 2 1 M2 

1/ ______	 (6) 

	

k.	 l+IlM2) 

ayM2 
21 -1 

142 -	 - 1 
2 

D2 = yM2 - I 1 

Equations of Plane Disturbance Field 

In addition to the perturbation shock relations (equations (5)) 
which are concerned with the compatibility at the shock of weak distur-
bance fields ahead of and behind the shock, the equations satisfied by 
the disturbance fields themselves are required. The nonviscous equa-
toins of motion are written in a coordinate system at rest relative to 
the gas ahead of or behind the shock. That is, the following equations 
apply in the coordinate system of figure 1 for the disturbance field 
ahead of the shock, and fn a coordinate system moving with velocity U, 
for the disturbance behind the shock. Subject to interpretation of the 
coordinate system, the same equations apply in both regions, and there-
fore the subscripts 1 and 2 are omitied for the time being. To first 
order in small quantities: 

Momentum: :: =

	
::	

() 

Continuity:	 + R(u + vy ) = o	 (8)
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Energy: c.Ret + P (u + v) = 0
	

(9) 

State

	

	 (4) 
PR e 

These equations may be combined to yield the equation for the pressure 
disturbance:

r 2
	 2 f2	 2 (10) 

the equation for the entropy disturbance (which may be shown to be pro-
portional to (p/P) -

(II) 

and the equation for the vorticity (4 - u) of the disturbance flow: 

(12) 

Thus, the pressure disturbance satisfies the wave equation (10), and any 
entropy variation (equation (ii)) or vorticity variation (equation (12)) 
is steady, relative to the main flow. Any disturbance field satisfying 
these linear equations may be regarded as composed of two parts, one 
steady, and the other unsteady, in a coordinate system at rest in the 
main flow. From equatiois (U) and (12), variation of entropy and vor-
ticity may be assigned to the steady flow and from equation (8), the 
associated velocity components satisfy the incompressible continuity 
equation. From equations (7), pressure variations must be assigned to 
the unsteady flow, satisfying the wave equation (10). The unsteady por-
tion of the flow may then be regarded as produced by a pattern of sound 
waves. A weak nonviscous disturbance field may therefore be considered 
to include: 

1. An unsteady, isentropic, irrotational disturbance, which maybe 
regarded as produced by a pattern of sound waves, and 

2. A steady rotational disturbance of constant pressure and (in 
general) variable entropy and density. 

TYPES OF INITIAL DISTUBBAI'TCE CONSIDERED 

The present analysis concerns the interaction of a shock wave with 
three types of initial plane disturbances:
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A. Sound Wave Overtaken by Shock 

The shock moves into a region in which a plane sound wave is propa-
gating in a direction oblique to the direction of shock propagation 
(fig. 2(a)). Since the shock velocity is supersonic relative to the gas 
ahead, it yill overtake the sound wave, whatever its direction of propa-
gation. The solution for the interaction of such a wave with a shock 
may in principle be generalized by linear superposition to provide anal-
ysis of the passage of a shock through any isentropic field of small 
disturbance. 

A general plane souxld wave may. be represented as follows (the par-
ticular profile of the wave need not be specified): 

(mx1 -	 + alt) 
TAlf\

mx 
-V=A2f

(12a) 
p1	 mx1- ly+a1t)


xl 

p1	 fmx1- zy^a1t\ 
=A4f	

xl

/ 
where

lsinr1;m=cos4c1	 (13) 

and	 is a length characterizing the scale of the disturbance. If the 

function f were a sine wave, ? would be equivalent to the wave 

length. By equations (12), (11), and (7), respectively, 

A3 = IA4	 (12b) 

A1 = -	 A3
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The disturbance is of the type 1 discussed in the previous section 
(unsteady, isentropic, irrotational), and is longitudinal; that is, the 
fluctuating velocity component is in the direction of propagation of the 
sound wave.

B, Shock Overtaken by Sound Wave 

The sound wave propagates relative to the fluid behind the shock, 
in such a maimer as to overtake the shock (fig. 2(b)). Thus, considera-
tion will be restricted to cases for which -a 2 cos ii 21 >V - U. The 

initial disturbance may be specified in a manner similar to that 
employed for the preceding case. 

The subscripts 1 and 2 have been introduced to denote the flow 
ahead of and behind the shock, respectively. In the present problem, 
the entire flow disturbance occurs behind the shock. The subscript 2 
is therefore appropriate to both the incident and reflected waves, which. 
will hereinafter be distinguished by second subscripts 1 and 2, 
respectively.

U2l	 - Zy + a2t) 

v21	 (mx2 - Zy + a2t) 

'2l 

P21	 (mx2 - Zy + a2t)	

r	

(l4a) 

= A f ('2 - R2	 4

ly + a2t'\ 

'2l	 I 
Pertinent equations of motion provide, as before, 

1A1 = - 

A3 = yA4

a2 
A1 = - m	 A3

(14b)
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The coordinate system x2 ,y is fixed relative to the flow behind the 
shock.

C. Stationary Vorticity Wave Overtaken by Shock 

The shock moves into a region occupied by a stationary plane shear 
disturbance of constant density, oblique relative to the shock front 
(fig. 2(c).). A system of such waves may be employed to represent a tur-
bulent field (references 3 and 4). Therefore, the effect of the passage 
of a shock through a single oblique shear wave may in principle be gen-
eralized by Fourier superposition to provide an analysis of the passage 
of turbulence through a normal shock. 

The incident vorticity wave, of arbitrary profile, may be repre-
sented as follows:

u1	 (mx1 - 
-V=AJf\	

'1
(15) 

('i - ly 

From equation (9),

mA1 = LA2	 I	 (16) 

The disturbance is therefore a special case of the type 2 discussed 
in the previous section (a steady vorticity disturbance of constant pres-
sure), and, by continuity, must be transverse; that is, the fluctuating 
velocity component is parallel to the plane of the shear waves. Since 
the wave is transverse, there may be a component of velocity disturbance 
parallel to the shock (perpendicular to the plane of fig. 2(b)) which 
maybe of arbitrary amplitude. 

This type of interaction (problem C) is treated by Ribner in 
reference 6. 

ANALYSIS OF INTERACTION BETWEEN SHOCK AND IMPOSED DISTURBANCE


Three Types of Refraction at Shock 

It has previously been shown that the equations of motion imply 
that any weak disturbance field may be divided into two parts: An 
unsteady isentropic irrotational field; and a steady vorticity
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disturbance. This point of view may be adopted with regard to the 
disturbance downstream of the shock, produced by the interaction. 

Simple refracted sound wave - problem A. - In the case of a sound 
wave overtaken by a shock (problem A of the previous section), it would 
seem reasonable to expect that for 	 near either 0 or (fig. .2(a)), 

the isentropic part of the downstream field would simply be a refracted 
sound wave traveling away from the shock. This is indicated by the 
sequence of events shown in figure 3(a). At time t 1, the initial wave 

intersects the shock front at point P1. At a later time t 2 = t1 ^ t, 

the sound wave has moved a distance a1 t, the shock has moved a dis-

tance Vbt, and the intersection occurs at point P 2 . In the meantime, 

a cylindrical sound wave has been generated at point P 1 as a result of 

the shock interaction and expands with velocity a 2 , while being con-

vected with a velocity U. Thus, at time t 2 , the effect of the inter-

section at t1 is felt within a cylinder of radius a2 t, with center 

at point Q2 . According to figure 3(a), an envelope is formed, and may 

be identified as a simple refracted sound wave. 

Attenuating refracted pressure wave - problem A. - Figure 3(a) is 
drawn for a rather small value of i. If l is increased, there 

appears a critical value iV 	 (fig. 3(b)) beyond which no envelope may 


be drawn. Thus, when *l>11cZ the influence of intersection P1 is 

felt at P2 before the intersection arrives at P2 . However, as *1 

further increased, there appears another critical angle 	 beyond 

which simple envelopes may again be drawn (fig. 3(d)) and simple sound 
wave refraction occurs. 

When iJi <<	 the downstream pressure disturbance cannot be a 

simple sound wave. The cylindrical sound waves produced by the inter-
action at the shock do not coalesce, but rather continue to expand 
independently, thus diminishing in strength as time progresses. Accord-
ingly, the isentropic part of the downstream disturbance may be expected 
to die out at large distances downstream of the shock. This attenuating 
disturbance may, however, be expected to remain planar, because both the 
incoming, disturbance and the shock are plane. This attenuating wave has 
been called a pressure wave rather than a sound wave, because, as will 
be shown subsequently, it does not propagate at the local velocity of 
sound.
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Expressions for	 and	 in terms of shock Mach number may 

be obtained from the following equation derived by inspection of 
figure 3(b):

	

a22 - (v - U) 2	 (V cot	 + a1 csc	 (17) 

The solution of this equation is shown in figure 4, labeled "sound wave" 
The curves labeled "stationary vorticity wave t' will be discussed subse-
quently. The curves both approach a value of 1800 for M = 1, and have 
a half-order singularity there. As M-+, the curvesbecome symmetric 
about l = 90 , because a1 becomes insiguificant compared to V. The 

0 
limiting value of 1 cl 'is 67.8 

Steady vorticity wave - problem A. - Returning to figure 3, if a 
vorticity disturbance is created at the shock-disturbance intersection, 
and is thence convected with a velocity U, a vorticity wave appears 
along the line connecting P2 and Q2, whatever the value of 

Thus, of the three types of refractions discussed, the "steady vor-
ticity wave tt always appears, in combination with either a "simple 
refracted sound wave", or an "attenuating pressure wave", depending on 
the arigLe l 

Expectations for problem B. - In the case of the shock overtaken by 
a sound wave, it may be shown by constructing figures similar to fig-
ure 3 that a simple reflected sound wave will always occur, in conjunc-
tion, of course, with a steady vorticity wave. 

Expectations for problem C. - In the case of the shock overtaking a 
stationary shear wave, sketches may be drawn similar to those presented 
in figure 3, except that the incident wave does not move in the time 
interval t. The qualitative character of the downstream disturbance 
is expected to be the same as for problem A. Despite th fact that the 
initial disturbance is not a sound wave, sound waves are produced by the 
interaction and form envelopes when O<l<cZ or	 In 

this case, the values of 	 and	 are obtained from equation (17)


with the term involving a 1 omitted. The solution, which is presented 
0	 0 

in figure 4, is symmetric about 	 = 90 , approaches 90 at M = 1 with 

a half-order singularity, and has the same asymptote at M = 	 as in 
problem A. As in problem A, when *cZ <1Vl<cu an attenuating pressure 
wave occurs, and for all values of 'l' the steady vorticity wave 

appears.
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The foregoing discussion may be summarized as follows: In case A, 
the incident sound wave refracts, as either a siniple sound wave or as a 
more complicated attenuating pressure wave, and an oblique steady wave 
of variable entropy and vorticity appears. In case B, the incident 
sound wave reflects at the shock as a simple sound wave, and. a steady 
vorticity wave appears. In case C, the initial "vorticity wave" refracts 
to form a stationary vorticity wave in which, because of the action of 
the shock, the entropy also varies. In addition, a sound wave or pres-
sure wave is produced by the interaction. 

Solution of Problem A 

In the problem of an oblique plane sound wave overtaken by the 
shock, there are two different solutions to be obtained - one for 

and cu<l< it and another for ci<l<cu The first 

is the simpler, and will be presented first. 

Solution when O<l < cl or 'cu<l<fl - The initial distur-

bance ahead of the shock is described in equations (12) and (14). The 
discussion of the preceding section has established that, in these 
ranges of	 the pressure variation behind the shock is associated with 

a simple sound wave. Accordingly, the disturbance pressure is written 

P2	 + 13y + a2t)	
(18) 

where K, a., 13, and X2 are to be determined. In order that the pres-

sure satisfy the wave equation (10), 

+ 132 = 1	 (19) 

Equation (18) is written on the assumption that the profile of the pres-
sure disturbance carries through the shock undistorted, though its ori-
entation, magnitude, and scale may change. This assumption may be 
regarded as a trial, the correctness of which is inferred from the self-
consistency of the entire solution so obtained. 

in view of the requirements of the shock relations (equations (5)), 
the arguments of the downstream pressure wave (equation (18)) and the 
initial wave (equation (12)) should match. At the shock, x1 = Vt and 

= (V - u)t. The matching requirement therefore is



(+)	
}

1 r2 
I-

1 - rLX1 

=- 1—

(21) 

14
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[a(V - U) + a t + y (mV + ai) t - 
-	 ?1 

Equating coefficients of y and t,

(20) 

where

U/v
	

(22) 

Equations (19) and (21) yield a quadratic equation for X2ft 1, the mean-
ingful solution of which is

11+ 111-

X1 (i 
+ 1)2 

+ n2l - r)21 

where

^ n2 (1 - r)2/l + 1)21 
l-r	

l-1(i-r) 
y+l	 I 

(23) 

n i/rn = tan *1
	

(24) 

The other solution corresponds to a wave moving in the same direction 
as the shock and is rejected. (Inspection of fig. 3(a) shows that two 
families of envelopes might be indicated mathematically, and that only 
one is physically significant.) Thus, the inclination and scale of the 
pressure wave are fully determined, and only the magnitude K remains 
to be found. 

The vorticity wave will also be assumed to have a profile given by 
the function f. In view of equation (12), its argument can be a func-
tion only of	 and. y, and must furthermore match the argument of the 

incident wave at the shock, in order that the shock relations may be 
satisf led. At the shock, the argument of the incident wave is given by 
the right-hand side of equation (20). Also, t = x2/(V - U), at the 

shock. The argument of the vorticity wave must therefore be
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m + l/M 
1 - r 

2 -
(25) 

1i 

The inclination and. scale of the vorticity wave are thus determined. 

The density fluctuation behind the shock consists of two parts - 
one part associated with the pressure fluctuation to form the sound 
wave, its magnitude determined by equation (II); the other part associ-
ated with the vorticity wave. Thus, 

	

p y-f-a2t)	

1 i-r 
m + 1/N 

	

R2	 r	 '2	
+Q,f 

Likewise, the velocity components each consist of two parts, the 
first associated with the sound wave and the second associated with the 
vorticity wave. Accordingly,

m + l/M 

	

u	 lax + y + a2t	 (_i - r 2	

2
+ Gf 

	

v	 lax2+Y+a2t\	 __________ m +1M 2 -_13T) 
) ^ If( 1 

The requirement that all terms in the shock equations (5) have the 
same functional form and the same argument suggests that 

= 
f [(m + l/M)Vt -	 1 

	

r	 (29) 
-	 n	 I(m + 1/M)vt - iy 

y1^l/mM	
[	 ] 

(Cross-differentiation shows that these two equations are compatible.) 

The solution is completed by the algebraic determination of the 
various unknown constants. The coefficients F and H may be found in 
terms of K through equations (7); I may be found in terms of G from 
the incompressible continuity equation. The remaining unknowns K, Q, 
G, and L may be successively determined by use of the four shock rela-
tions (equations (5)) when it is recalled that the arguments of all 
quantities have been arranged to match at the shock. Neither the

(26)

(27)

(28)
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details of the remaining procedure nor of the final solution are partic-
ularly interesting, and therefore the analysis has been completed in 
appendix B. The numerical results will be discussed in a subsequent 
section. 

Form of attenuating pressure wave when cl<'41<41cu . - It is


	

intended to form the solution for this range of	 in essentially the 

same way as was done in the preceding paragraph. An essential step in 
that solution was the assumption that the refracted sound wave has the 
same profile as the initial disturbance. Therefore, in order to proceed 
with the analysis of the case cl <411< cu it is first necessary to 

determine the form of the pressure disturbance just behind the shock, 
and the manner in which it attenuates with distance behind the shock. 

Tentatively, the pressure is written as a function of two variables 
only:

	

p	 p 
= - (1b)
	

(30) 
2	 2 

where

	

--[- (v-u)t]	 1
(31) 

	

-(ax2+y+cvt)	 J 
and the constants d, a, J3, and c require determination. The variable 
i is proportional to distance behind the shock front, -x 2 + (V - u)t. 
Neither the undisturbed shock front nor the incident wave have curvature. 
Therefore it is expected that along any one of a family of planes moving 
with constant velocity, any variation of pressure would be due solely to 
the attenuation associated with distance behind the shock. This consid-
eration leads to the definition of the second variable , such that the 
equation	 = constant defines a plane moving obliquely with a constant 

velocity. 

The wave equation (10) is satisfied if 

	

(2	 2\2
(32a)
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V2 

	

a. = - - (1 - r)c	 (32b) 
a 

_- [ 2 i - r) 2 - 2] = d2 - (a.2 ^ 2)	 (32c) 
a22 

The boundary conditions to be applied in solving Laplace's equa-
tion (32a) are

P2 
.-	 = 0 
£2 

and a condition (equation (5c)) at the shock providing compatibility 
with the initial disturbance. In the following discussion, this in±or-
mation will be used to iafer a likely form for the pressure wave. 

Part of the downstream velocity variation is associated with the 
pressure to form an isentropic irrotational flow. For this part of the 
disturbance field, a velocity potential (ri,) may therefore be 
defined such that

d	 a 
u2 =q' 2 = -	 +	 (34a) 

V2	 = 

In view of equations (7) and (34), 

gradP	
1	 p2 

= - r grad p 2 ;	 = 

Therefore,

d = - .- V(l - r)	 - - Vp	 (34c) 

In the case of the simple sound wave, compatibility at the shock was 
obtained by supposing that the profile of the disturbance (the function 
f) carried through the shock undistorted. In the present case, the cor-
responding assumption would be that, just behind the shock, at 'r = 0, 
the various disturbance quantities each contain a term proportional to 
r(), and that	 should therefore match the argument of the initial 

(33)
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distuzbance at the shock. From equation (34b), if v2 (O,) is to con-

tain a term proportional to f(), then the potential must contain a 
term proportional to

iT-

	

(1)	 1 rf(T) tan - -
	 ___ 

which satisfies equation (32a) and hence the wave equation, satisfies 


	

boundary condition (33), and has the property that 	 (1) (o,) = 

This solution may be regarded as the result of a distribution of singu-
larities along the plane of the shock (i = 0). In the skew coordinate 
system r1,, these singularities may be identified as potential-flow 
vortices. Therefore, from equations (34a) and (34c), u2 and p2 would 

each contain a term linear in f() at the shock and, in addition, a 
term linear in

g()=(1) (O,)	 P.V.fT)d	 (35a) 

where P.V. denotes the Cauchy principal value of an improper integral. 

Of course, v2 would likely contain a term linear in g() at the 

shock also, and therefore the potential would have another part 

(2)	 - 1	
f(T)	 [	 + ( - )2 dT p	 2it 

satisfying equations (32a) and (33), and having the properties: 

	

(2)	
= g();	

(2)(Q,)f()	 (35b) 

This solution may be regarded as a distribution of potential-flow sources 
along the plane of the shock, in the r 	 system. 

Thus, the quantities associated with the attenuating pressure wave 
may tentatively be written in the following form: 

	

= K	 () () + K(2) (2)	 (36)



NACA TN 2879
	

19 

where

('Co 
(1) (1)	 (2) 1	 _____________

dT = -	 = - /	 f(T)	
+ ( -

(37) 

(2) (2)	 (1) = i /	 f(r)	 T -	 dT =	 -Tl	 t	 r2+(T_)2 

and the constants K(1) and K(2) require determination. At the shock 
equations (35) and (36) provide that: 

p2(o,)
= K( 1) f() + K(2) g() P2 

Examples. - (a) If it happens that f() = sin 2it, then 
g() = cos 2it, and

(i) = e 21 sin 2 

(2) = e 2 '	 cos 2it. 

Thus,

2	 -2ir [K( 1) sin 2i ^ K(2) cos 2J	 (38) —=e 
P2 

and therefore, the disturbance undergoes a phase shift in passing through 
the shock, and subsequently attenuates exponentially with distance behind 
the shock. 

(b) If f() = (1 + 2) 1, then g() = - (i 
+ 2 )

 1 (see accom-
panying sketch), and 

p 2 -	 1(i) (i + i) - K(2) 
- (i + 

)2 + 2 L
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Solution when	 - The form of the pressure wave has 

been adduced in the previous paragraph (equation (36)). The quantities 
d, a, , and c may be found by using equations (32) and the requirement 
that the disturbance function f have the same argument ahead of and 
behind the shock: At the shock, x1 = Vt, x2 = (V - u)t, this reauirement 

leads to the equations

1
	

(39a) 

m + l/M - c
(39b) 1- r 

Equations (32b) and (39b) yield

m+l/M	
(39c) 

l-(lr)2 
a2 

and equation (32c) may be solved for d: 

I 
v2 2 +a2 ^i2 --C 

d 
=	 a22	

(39d) 

1 -	 (1 - r)2 
a2
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The vorticity wave is expected to involve a linear combination of 
the profile functions f and g, just behind the shock, and is not 
expected to change its form subsequently, because it is not time-
dependent in the x 2 ,y coordinate system and therefore c?.nnot attenu-

ate, as does the pressure wave, or otherwise change character. A match-
ing procedure at the shock yields, as previously, the argument given in 
expression (25).

The remaining analysis parallels that following expression (25) in 
the paragraph Solution when O<411<V cl or	 i cu

<	 <it. 
1. 

x2 -ly
/m+1/M x2 - Zy p 2	 1p2	 (i)	 1-r 

(m+l/M
)^Q(2)g(1-r 

_________

4O) 

= F()	 (i) ^ F(2)	 (2) + G ( ' )

^ 1/M	

) 
(_1 - r	 X2 -

+ G(
4 + 

1/M 2 - 1 - r
)	

(41)

_______________	 1 - r 2 - Zy 1-r x2	 Zy 

= H() (") ^ H(2) (2) + (i)	
- ) 

+ (2)	
)	

(42) 

= L()	
[(m + 1/M)Vt - iy] + L(2)	 r(m + l/M)Vt - 1y1 (43)  j 

(l)	 1m + l/M)Vt - ZY] + L(2) g [(m + l/M)Vt - ZY]} n	 _________	 _________ 

=1^1/Mm	 L xl

(44)  

The various unknown constants remain to be determined algebraically 
through equations (7), the incompressible continuity equation, and the 
shock equations (5), as before. These equations suffice to determine a 
greater number of constants than were required in the previous case 
because the functions f, g,' e (1), and )(2) and their derivatives form 
two separate groups of functions whose coefficients may be separately 
equated. Details of this procedure are provided in appendix B. 

C 
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Solution of Problem B 

The analysis of problem B (sound wave overtaking shock from behind) 
is identical in all essential respects to that of problem A when only a 
simple refracted sound wave is involved. The only differences which 
arise are the slightly different matching of arguments at the shock, and 
a slightly different form assumed by the shock relations (5). 

The equation (18) is adopted in the present case to represent the 
reflected sound wave. Matching the argument of this expression with that 
of the initial disturbance (equation (14)) yields 

- r) + a2] t +	 =	 [[mV(l - r) + a21 t -	 (45)

'2l L 

whence,

1 IX 22	 a2	 a2 
rrn ( l - r) + (46a) 

• ?\22	
(46b) 

21 

Equations (19) and (46) provide a quadratic equation for ? 22/) 2l, the 
useful solution being:

a22	
(i - r)2

(46c) 2 ? 21	 -	 a2 

	

(1-r) 2 ^2	 ml r)+—
V2 

The other solution is	 = 1, corresponding to the incident wave 

itself. 

The right side of equation (45) is used as the argument in the 
expressions for 	 and.
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(47) 

Y	 a2 
1 -r +-mV 

The right side of equation (45) also yields the argument of the vorticity 
wave, when the substitution t = x2/(V - U) is made: 

[	

a2 1. 
m+V(l	 jx2-2y - r1j	

(48) 
21 

Equations (26), (27), and (28) may be adopted to conplete the description 
of the flow, except that expression (48) must be used for the argument 
of the vorticity wave. The analysis is completed in appendix B. 

Solution of Problem C 

The only differences between problem A and problem C (stationary 
vorticity wave overtaken by shock) involve the shock equations (5), and 
the matching of arguments at the shock. The difference in matching is 
due to the fact that in the present case, the disturbance is stationary, 
while in problem A, the disturbance moves with velocity a 1 . Accord-
ingly, when 0 <	 <	 equations (18), (21), (23), and (25) through 

(29) apply directly to the present case, if the quantity l/M is omitted 
wherever it appears explicity. When 1'cZ <i < cu' equations (36), 

(37), and (39) through (44) may also be adopted, again omitting terms 
proportional to l/M. The remaining details of the analysis are provided 
in appendix B. 

As previously mentioned, an Initial disturbance of type C may have 
a third fluctuating velocity component parallel to the shock, which might 
be represented as follows:

Wi	 (mx1 - 

.-.= A5f 

(see equations (15)). The amplitude A5 is arbitrary, within the limi-

tations of linear analysis. This disturbance will pass through the shock 
unaffected, and become part of the steady vorticity wave behind the shock. 
Thus,



Refracted wave

/

Refracted wave 

ck 
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=A5f( 

Ill 
X - 

The shock front itself will not be affected by this purely transverse 
disturbance.

Singularities at 	 and 
cl	 Cu 

Equation (23), which applies in the refracted sound wave solution, 

contains a radical which vanishes at 	 and	 and becomes imaginary 

when	 <l <1 1• It may be shown that the quantity under the radi-

cal vanishes with a nonzero slope. Accordingly, the quantity '2/2l, 
though finite, has a half-order singularity at 	 and '4cu• Further-

more, this quantity is involved in all the formulas characterizing the 
refracted sound wave (see appendix B). In the range Vci	 4'i 'Vcu, 

the attenuation coefficient d (equation (39d)) vanishes with half-
order singularities at 1'cl and cu' and similarly affects the remainder 

of the analysis. 

The reason for this singular behavior may be inferred from figure 3. 
According to figure 3(a), when	 <1i < Vcl, the refracted sound wave 

is the envelope of an imagined succession of cylindrical waves, as shown 
in the sketch. At 4cl' however, according to figure 3(b), the cylindri-

cal waves all meet at a common point of tangency, as shown in the sketch. 
Therefore, successive waves reinforce at one point, giving a singularity 
of the flow. This singularity of course depends on the fact that the 
theory is linear. An exact analysis would presumably show steep though 
not singular flow gradients. 

This situation is similar to that arising in the linearized analysis 
of compressible flow about bodies: as the Mach number of the flow 
approaches 1, the Mach waves have a common point of tangency at the nose, 
and the wave drag shows a reciprocal half-order singularity in Mach num-
ber. In the present case, the physical quantities remain finite, but 
have infinite rates of variation with
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The preceding discussion applies to problems A and C, but not to B. 

RESULPS MD DISCUSSION 

In the following paragraphs, the results (presented in graphical 
form) will be described for problems A and B. Results for problem C are 
presented in reference 6. The solution for each problem has essentially 
three elements: 

1. Disturbance of the shape of the shock front 

2. Characteristics of the isentropic pressure wave behind the shock 

3. Characteristics of the steady vorticity wave behind the shock. 

Computations have been carried out for three Mach numbers, 1, 1.5, 
and infinity. Of course, the case M = 1 is. really degenerate, because 
the shock is then a weak sound wave, and therefore the interaction with 
the incident disturbance is obtained by linear superposition, the initial 
disturbance passing through the "shock" with no change. Also, M = 1 is 
a singular point, because the range of angles of incidence of initial 
disturbance for which the attenuating pressure wave appears in problems A 
and C vanishes with a half-order singularity (fig. 4), and in problem B, 
because the incident wave is unable to overtake the flshockTt moving with 
sonic velocity. 

The results will show that the critical angles cl .and 4rcu are 
also singular points. In many instances there are not a sufficient number 
of points near the singular points f or which computations have been made, 
so that not all of the curves can be faired with complete confidence. 
For this reason, the computed points are shown as heavy dots, so that the 
basis for the fairing will be clear in each case. 

No mention will be made of the temperature disturbance behind the 
shock, which may be obtained directly from equation (4) if the pressure 
and density disturbances are known. 

All disturbance quantities found by the linearized analysis of the 
present report will be proportional to the intensity of the incident 
wave. Therefore, results are divided by the pressure amplitude of the 
incident wave, A3 (see equations (l2a) and (14a)). 

Problem A - Shock Overtaking Sound Wave 

1. Shock front disturbance. - In figure 5 are shown the airrplitudes 

L(l) t	 L( l )/A3 and L( 2 )'	 L( 2 )/A3 of the incremental velodiy of the
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shock front, due to the interaction. From equations (29), (43), and (44) 
these amplitudes are associated, respectively, with the functions f 
(which defines the profile shape of the incident wave) and g (which is 
an additional profile function arising when 'cZ < 'Vj <Vcu) to give the 

actual incremental velocity. The variations with 1111 are quite extreme, 

particularly at the critical angles, where, in fact, there are half-order 
singularities. The variations with Mach number are equally severe. 

When i = a (incident wave moving parallel to and toward the shock) 
the figure shows that the shock front is retarded by a pressure wave. 
In the case M = 1, this is because the velocity in an incident compres-
sive sound wave, relative to which the shock (really a weak compression 
wave) propagates as it moves through the disturbance, is directed against 
the shock. When the incident compression wave moves in the same direc-
tion as the shock (i = it), the shock front is speeded up for low shock 

Mach numbers; at M = 1, this is true because the incremental velocity 
due to the incident wave is in the same direction as the "shock" movement. 
Whether 4r1 = 0 or i, there is a smaller accelerating effect due to the 
higher velocity of sound in the incident compression wave - that is why 
the curve for M = 1 is not perfectly anti-symmetrical about 'l = it/2. 

When M = , the curves are symmetrical about 	 = ic/2 because 

the incremental sound wave velocity is vanishingly small compared with 
the shock velocity. 

For each value of M there is a value of 	 for which the shock 

intersects the incident sound wave permanently at one point on the 
traveling wave, and the problem becomes essentially steady, so that the 
increment in shock velocity vanishes (though a steady displacement 

occurs). This happens when a1 = - mV, or,	 = sec-(-N), yielding 

131.8° when M = 1.5, and 9Q0 when M = , and is the case of steady 
interaction of a Mach wave and a normal shock which has been treated by 
Adams (reference 2). 

2. Characteristics of pressure wave. - (a) Inclination of refracted 
pressure front: Figure 6 shows the angle between the directions of 
propagation of' the shock and the refracted pressure wave behind the 
shock. In view of equations (is) and (31), this quantity is given by the 
equation

= cot 1 (-a./13) 

Of course, when	 < t'i < ecu' this wave is not a sound wave, and the 

inclination shown refers to a front parallel to which physical quantities
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depend only on distance behind the shock. Outside the range 

'Vci <tl <*cu, the pressure wave is a sound wave. When M = , the 
curve is symmetrical about	 = 

(b) Coefficient of attenuation of pressure wave: Figure 7 shows 
the coefficient d which appears in equations (31) and (39d). This 
quantity vanishes at	 and	 indicating that the sound wave 

solution and attenuating wave solution meet continuously at the critical 
angles. When M is either 1.5 or , the maximum value of d is 
about 1. This implies a rather rapid attenuation - if f() = sin 2it, 
it has been shown (equations (38)) that the wave attenuates as 
exp(-2itr). From the definition of ij (equation (31)), when d 1, the 

attenuation factor becomes e 	 at a distance behind the shock approxi-
mately equal to l/2ic times the wave length of the incident sound wave. 

(c) Propagation velocity of pressure wave when cj <*1 <cu 

Figure 8 shows the quantity c of equations (31) and (39c), combined 
with other quantities to give propagation velocity as a fraction of the 
speed of sound a2 . Since the solution when VcZ < V1 <'Vcu meets the 

sound wave solution continuously, the propagation velocity is equal to 
the speed of sound at	 and cu• The change of sign of c is 

taken into account in figure 6 by the 180° shift of direction shown at 
the angle for which c 0. 

(d) Ratio of scales of pressure waves behind and ahead of shock: 
Figure 9 shows the quantity ?.2/?\l (equation (23)), which was defined 

only for the sound wave solution. However, inspection of equation (31) 
shows that the equivalent quantity when 'Vi <i	 is 
(2 + 

The reversal of sign of X 2/X signifies a reversal of the direc-

tion of propagation of the pressure wave relative to the shape of the 
incident wave. For example, when •	 = 0, the incoming and outgoing 

waves might appear as follows:

incident wave profile 

x2A1 positive 

Shock



28	 NACA TN 2879 

whereas when	 = it, they would appear thus: 

2l negative 

Shock 

The difference between these two cases consists of a difference in sign 
in the arguments of the refracted wave in the two cases, and arises 
formally in the present analysis as a change in sign of 

When M = 1.5, th magnitude of 	 is greater for	 = 

than for	 = 0, because when the incident wave is traveling in the 
same direction as the shock, the shock requires a longer time to traverse 
the incident wave than when the two waves travel in opposing directions. 

(e) Amplitudes of pressure disturbance behind shock: Figure 10 

shows the coefficients (of f, or of	 (l) and	 (2) when 
'cl <l <cu) which describe the pressure wave behind the shock; 

K , 2 )	 K()2)/A3 (see equatIons (18) and (36)). As in figure 5, the 

flow is shown to be singular at the two critical angles and to vary 
markedly with both 'l'l and M. At M = 1.5, near	 = it, the 
refracted sound wave is seen to be very weak.. 

Since the pressure wave is isentropic, the coefficients of the cor-
responding part of the density variation are equal to 1/y times the 
pressure coefficient. 

(r) and(g) Coefficients for velocity coniponents in pressure wave: 
Figures 11 and 12 show the coefficients for the velocity components 
associated with the isentropic pressure wave behind the shock (equa-. 
tions (27), (28), (41), and (42)). The velocity resultant is longitu-
dinal with respect to the direction of propagation of the pressure 
wave, except when	 <i < 

3. Characteristics of the steady vorticity wave behind the shock: 

(a) Inclination of the steady vorticity wave: Figure 13 shows the 
inclination 4(3 of- the vorticity front behind the shock. From equa-

tion (25),

- cot rl + i/1 
Ln(1-r)i
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(b) Ratio of scale of vorticity wave to that of incident sound 
wave: From equations (12a) and (25) this is 

( jt2 '1'3 + i)_1 = Sin 

which is shown in figure 14. When M = 1 and 	 = t, the scale ratio 

goes to	 because the ttshocktt is unable to overtake the incident wave. 

(c) Aniplitude of density variation in vorticity wave behind shock: 

Figure 15 shows Q(1)t and Q(2)' (equations (26) and (40).). Appar-
ently, when M is of order 1.5, the vorticity wave is very weak. 

(d) and (e) Coefficients for velocity components in vorticity wave: 
Figures 16 and 17 show the coefficients for the transverse velocity 
field associated with the vorticity wave. 

Problem B - Sound Wave Overtaking Shock from Behind 

Consistent with the previous analysis, computations have-been 

carried out only for values of r21 (incident wave inclination) suff 1-

ciently close to 180° so that the component of propagation velocity in 
the direction of the motion of the shock is greater than the velocity 
of the shock relative to the fluid behind. These values of	 are 

134.5° and 112.2° for M = 1.5 and , respectively. 

1. Shock-front disturbance. - FIgure 18 shows the aniplitude of the 
incremental shock-front velocity, L' = L/A 3 . When 421 is near. 1800, 

an incident pressure wave displaces, the shook ahead. 

2. Characteristics of reflected sound wave. - The downstream pres-
sure wave in problem B is always a simple sound wave. 

(a) Inclination of reflected wave: The inclination 

22 = cot(-ct/f3) (see equation (18)) is shown in figure 19. In effect, 

the incident and reflected waves coalesce into a single wave at the 
critical angles. 

(b) Ratio of scales of reflected and incident sound waves: This 
ratio is given by equation (46c) and is shown in figure 20. At V21 = 
the scale ratio is greater when M = 1.5 than when M = , just as in 
problem A, and for the same reason. At the critical angles, the ratio 
becomes 1, because the incident and reflected waves coalesce.
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(c) Aniplitude of reflected sound wave: The pressure amplitude 
K t K/A3 (equation (18)) is shown in figure 21. At 2l = t, an inci-
dent compression wave reflects as an expansion wave with a strength 
which is greater the higher the Mach number, but always less than that 
of the incident wave. 

The velocity components associated with the reflected sound wave 
are obtained simply from Kt and are therefore not plotted. 

3. Characteristics of the steady vorticity wave. - The coefficient 
Q t of the density fluctuation in the vorticity wave is simply propor-
tional to L t (combini,ng equations (B26) and (B27) of appendix B) and 
is therefore not shown in a figure 

At M = 1.5; Q' = - 0.147L' 

At M=	 ; Q' = - l.43L' 

(a) Inclination of the vorticity wave: From equation (47), the 
inclination is given by 

*23 = cot-'	
+ _______ 

which is plotted in figure 22. 

(b) Ratio of scale of vorticity wave to that of incident sound 
wave: As in problem A, this ratio is given by (1/i) sin *23 and is 

shown ixi figure 23. As for the reflected sound wave, the scale ratio 
is larger for M nearer one. 

(c) and (d) Velocity variations in vorticity wave: Coefficients 
G' and I' of the transverse velocity fluctuation (equations (27) and 
(28)) in the vorticity wave are shown in figures 24 and 25. 

4. Wave reflection at the critical angle. - The analysis and fig-
ures show that at the critical angle the incident and reflected sound 
waves coalesce to form a single sound wave. This statement may be inter-
preted to mean that a sound wave incident at the critical angle reflects 
as a steady vorticity wave only. Therefore, the shock disturbance and 
vorticity wave characteristics may be expressed in terms of the pressure 
amplitude of a single incident sound wave of strength 
A3 + K = A3 (l + K').
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CONCLUDING REMARKS 

In principle, the interaction of a shock with any weak flow field 
may be obtained by first constructing the initial flow field as a 
linear combination of plane waves of varying strength and orientation. 
From the present analysis the interaction of each constituent wave with 
the shock may be found. Assembling the resulting waves behind the shock 
then would yield. the desired solution. Regrettably, the formulas for 
the interaction depend on the angle of Incidence In a rather complicated 
way and It would in general be difficult to evaluate explicitly inte-. 
grals in which these formulas are used for the distribution functions. 
Numerical procedures could be used. for this purpose, though a technique 
would be required for dealing with the singularities at the critical 
angles 'cl and cu 

The nature of the solution of problem B perhaps requires clarifi-
cation, in that the angles of incidence 	 have been restricted to 

the range for which the sound wave overtakes the shock. For purposes 
of superposition, however, all incidence angles must be considered. 
Inspection of figures 6 to 12 shows that a sound wave of any incidence 
angles between 0 and it may be identified either as an Incident 
wave or as a reflected wave, in the sense of the analysis. For purposes 
of linear superposition, the distinction between Incident and reflected 
waves is of no significance. The point of view may be adqpted that 
whatever its angle, a constituent wave of the Initial flow has asso-
ciated with it another sound wave of another angle and. a steady vor-
ticity wave. The notion of cause and effect is not needed. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 


Cleveland, Ohio, October 15, 1952
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APPENDIX A 

NOTATION 

The following symbols are used in this report: 

A1,A2,A3,M coefficients of incident disturbance (equations (12a), 
(14a), or (15)) 

a	 velocity of sound 

B1 ,B2	 coefficients in shock relations (equations (6)) 

C1 ,C2	 coefficients in shock relations (equations (6)) 

c	 dimensionless velocity of propagation of pressure wave 

behind shock (equation (31) or (39c)) 

c	 specific heat at constant volume 

D1,D2	 coefficients in shock relations (equations (6)) 

d	 coefficient of attenuation of pressure wave behindshock 
(equation (31) or (39d)) 

F	 coefficient of part of u2 associated with pressure wave 

(equation (27) or (41)) 

f	 profile function of incident wave (equation (12a), (14a), 
or (15)) 

G	 coefficient of part of u2 associated with vorticity wave 

(equations (27) or (41)) 

g	 additional profile function appearing behind shock 

-	 dT, equation (35a)) 

H	 coefficient of part of v2 associated with pressure wave 

(equations (28) or (42)) 

functions involved in solution when ci <l <cu 

(equations (B19), appendix B)
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I	 coefficient of part of v2 associated with vorticity wave 
(equations (28) or (42)) 

gas constant (equation (4)) 

K	 coefficient of p 2 (equations (18) or (36)) 

L	 coefficient for	 (y,t) (equations (29) or (43)) 

1	 sin	 or sin 2l 

M	 Mach number of shock (= V/a1) 

in	 cos	 or cos 2l 

n	 tan 'l or tan 2l 

P mean static pressure 

p perturbation in static pressure 

Q coefficient for density fluctuation in vorticity wave 
(equations (26) or (40)) 

R mean gas density 

r ratioof	 U	 to	 V 

t time 

U mean velocity of gas behind shock (fig. 1) 

u perturbation of velocity component in x-direction (fig. i) 

V mean velocity of propagation of shock in gas at rest 
(fig. 1) 

v perturbation of velocity component in y-directlon 

x1 ,x2 coordinates measured in the direction of the shock propa-
gation, relative to which the gas is (on the average) at 
rest ahea	 of and behind the shock, respectively 
(figs. 1 and 2) 

y coordinate orthogonal to 	 xi	 or	 X2 (figs. 1 and 2)
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a ,13	 functions defining pressure front (equations (21) or (39)) 

r	 ratio of specific heats ( 1.4 for air) 

variable upon which pressure wave depends when 
4'cl< Ihl< 1Vcu (equations (31)) 

variable upon which pressure wave depends when 
< i< cu (equations (31)) 

e	 mean static temperature 

0	 fluctuation. in static temperature 

2..	 scale of pressure wave (equation (23)) 

displacement of shock front (fig. 1) 

p	 fluctuation in gas density 

a, X	 functions appearing in solution for L (equations (B9) or 
(B31), appendix B) 

function associated with pressure wave when 

1cl < l< 'cu (equationQ (37)) 

velocity potential associated with pressure wave when 

cl<l<cu 

	

1'21	 angles of inclination of incient waves (fig. 2) 

	

2'22	 angles of inclination of pressure wave behind shock (figs. 6 
or 19) 

	

3'23	 angles of inclination of vorticity wave behind shock (figs. 13 
or 22) 

lower and upper bounds, respectively, of the range of 

for which the attenuating pressure wave appears (equa-
tion (17)) 

Subscripts: 

Subscript notation for partial differentiation has been used where 
convenient.
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1	 conditions ahead of shock 

2	 conditions behind shock 

Double subscripts 21 and 22 (problem B), incident and reflected 
waves, respectively. 

Superscripts: 

(1) coefficients associated with f at' the shock 

(2) coefficients associated with g at the shock 

Primed coefficients are referred to intensity of incident wave. 

(A3 in problems A and B, ,\jAl2 + A2 2 in problem C). 

Primes are also used to denote ordinary differentiation of f 
and g with respect to their arguments. 

LI
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APPEI'IDIX B 

COMPLETION OF INTERACTION ANALYSIS 

Problem A 

The solution of problem A is found in two separate ranges of 

for which the solution involves a refracted sound wave in one case and 
a refracted attenuating pressure wave in the other. The analysis will 
be completed in that order. 

1. 0< l < cl' CU< \1 l < it. - Equations (27) and (28) are sub-

stituted into equations (7), and coefficients of f' are equated, 
yielding:

a2 
F = - - Ka..

(Bi) 

H. = - - K3 
yV 

When equations (26), (27), and (28) are substituted into continuity 
equation (8), the quantities associated with the sound wave combine to 
satisfy continuity. The terms associated with the vorticity wave then 
must satisfy the incompressible continuity equation ( u + Vy 

because the corresponding density term is time-independent. Therefore, 
equating coefficients of ft, 

I= 1+l/ G	 (B2) 
n(l - r) 

The shock equations remain to be satisfied; it should be noted that the 
arguments of f for the various quantities have been matched at the 
shock, so that coefficients of f may be equated. From equations (5a), 
(27), (29), and (12a), 

G=L-F-B1(L-A1) -B2A3	 (B3) 

From equations (5b), (5c), (5d), respectively, with the necessary sub-
stitutions made,

K 
Q = c(L - A1 ) + C 2A3 - -	 (B4) 

K = D1(L - A1 ) + D2A3	 (B5)
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L=1+h/(H+I_A2) 
,/	

(B6)

nr 

The ternis H and I in equation (B6) may be expressed in terms of L 
by using equations (Bi), (B2), (B3), and (B5). The resulting equation 
for L yields the result 

a2(m)	 '+ra2 
- —	 n(lr) LIV yM	 2)(Bl +B 2 - 

L L'
a 

+ 
rn	 4	 D1 - n(l-r) + l - B1

(B7) 

or, from equations (6), (21), and (23): 

+ y+l M I 3-y " 
- - -I (1-r) 

L'=- a	 lr) 

a2 

r+i',( 
l+x----

(B8) 
where - 

- n(l - r) 
1 

1 + 

and () 

___	

1+a2
\1/2 

XE 2	
r i) 

and where use is made of the results from equations (2),	 (6)	 and (22) 
that

r 
=	 1	 -

fa2\ 2 y-1 
) 
=(1r)(l^ 2 
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when L' is known,"t'he remaining coefficients follow from equations (Bi) 
through (B5)	 - 

2. r < fr <c . - Equations (36) and (41) substituted into (7) Cl	 1	 Cu 

give

	

a22 1K()	 (1) + K( 2 )	 . (2) (Blo) F ( - )	 + F( 2 )	 (2) = -
	 2 

From equations (31) and (37), 

(l,2) = (V - u) d(l,2) 	 cV(1,2) 

	

(l,).	 d 
X2	 - -	

ci(i,2) + _ 

Equation (37) show that

(1) - -	 (2)	 (i)	 (2) 

Accordingly, equation (310) may be written: 

(1 - r)	 (i)	 (i) - cF(1)	 (2) + (1 - r)	 (2)	 (2) + cF( 2 )	 (1') 

- a22 
- -	 E	 -	 1)(2) -	 (2)	 (2) + aK(2) 

Equating coefficients of	 and	 (2) separately, 

yv2 
(1 - r)	 (i) + cF( 2 ) =	 ((i) -	 2))	

(Bil) 

-	 (1 - r)	 (2) - cF()	
.a2	

+
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Similarly, equations (36), (42), and (7) yield: 

(1 - r)	 (i) + CH(2) -
	 a22 

- K(2) 
- - yV2 

(1 - r)	 (2) - cH() = a22

39 

(B12) 

When equations (41) and (42) are substituted into equation (8), and 
coefficients of f' and g' are equated, the following equations are 
obtained:

1 
i(l) = 1 +	 G(l) 

n(l - r)

(B13) 

i(2) =
	 +	

G(2) 
n(l - r) 

The shock conditions remain to be applied. Equations '(5a), (5b), 
(5c. ), and (5d) yield, respectively, the following four pairs of equa-
tions, when the coefficients of f and g are separately equated: 

G( l ) = L( l ) - F( l ) - B1 (L 1 - A) - B2A3 1
(Bl4) 

G( 2 ) = L( 2 ) - F( 2 ) - B1L(2)	 J 
Q(l) = c1 (L( l ) - A1) + C 2A3 - K(l)/y	 1

(Bl5) 

Q(2) = C1L( 2 ) - K(2)/y	 J 
K( 1 ) = D1 (L l - A1) + D2A3

(Bl6) 

K(2) = D1L(2)
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L(l)	 i +1/Mm (11(1) + i(') - A2) 

	

L( 2 ) = 1 +/Mm (H( 2 ) + i(2))	

(B17) 

Equations (Bli) through (B17) may be combined to yield the solu-
tions for L(1) and L(2)

'm D2 

L(l)	
L(l)	

h1h2 -	
+ ) 

h32 

	

A3	 h22+h32	 I 

	

/ m	 D2	
(B18) 

L(2)'	 L(2)	
h1 

+	 +) h2 

	

A3 =h3
	

h22+h32	 J 
where

1 - r 1 r1 
h1E- r	 L12)1 

1	 1-B1 
h2l__r	 L	 (B19) 

r	 2
a 

h	
2d(l-r) 

za 
(i^T1r) 

Equations (B16) are substituted into equations(Bll), which may be solved 
to yield

m D2\ 

	

= h4 (L l +	 +	 h5L()' 

	

m	

(B2o) 

	

F(2) t = h4L( 2 )' + h5 (L 1 I +	
+ ) J
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where

h4-
= y + 1 (i + a2) 

2rdcr(l - r) V2 

+ a 2 ) a2 

Similarly,

H(l) = h4 (L(	 +	
+	

+ ah5L() 

D\ n	 2i H( 2 )' =	 h4L( 2 )' - oh5 (L() ++) 

The remaining quantities follow from equations (B14) and (B15).

(B21) 

(B22) 

Problem B 

The solution of problem B is restricted to angles 2l for which 

-m > -i-- (1 - r), and involves a reflected sound wave and vorticity wave a2 

behind the shock. The momentum equations (7) provide 

a2 
F = - - aX 

yV

(B23) 
a 

H = -	 3K 
yV 

and the continuity equation (8) provides that 

a/V \ 1 m+ 2	 G	 (B24) 
1-r /
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All perturbation quantities vanish ahead of the shock, and. shock rela-
tions (5a), (5b), (5c), and (5d) yield, respectively, 

G = L(l - B1 ) - F - A1	 (B25) 

Q = C1L - A4 - K/i	 (B26) 

K D1L - A3	 (B27) 

m(1 - r) + a2/V 
L =	 (n + I + A2 )	 (B28) 

Solving the foregoing set of equations for L, 

L= 1 +1 (1+ u1 r)	 (B29) 
A3	 21 \	 2	 1+X_1lr(l+iG2r) 

where

n 
a2/V 

1+ m(l - r) 

_______	 (B3o) 

XE_( 1a + m) /_1-r 
1+ 2 r 

The remaining quantitie .s follow from equations (B23) through (B27). 

Problem C 

The analysis of this problem parallels that of problem A. 

1. 0 < th <i.,, 'L. < 'Vi <ic. - The equations of motion (7). and (8) 

proviae

a2 
F = - - Ka 

yV
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H = -

G 
n(l - r) 

The shock equations (5) give 

G = L - F - B1 (L - A1) 

= c(L - A1 ) - K/y 

K = D1(L - A1) 

L = - (H + I - A2) rn 

These equations may be solved to yield 

=i[l_i+l	 r(l-na) L	 ______ _____________________________ 
L ' _______ 

Al2+A22	 L	 i^X_Tlr(l+1al 
4

- r) 

where, in this case,

G	 n(l - r) 

+ i	 + 2 \1/2	
(B31) 

2 r 1) 

2. cl < 'i < 1'cu - The analysis is essentially identical to the 

corresponding part of problem A, except that the constants B 2 , C 2 , and 

D2 do not appear in the present case, and the Mach number M does not 

appear explicitly. Except for these differences, equations (B14) 
through (B17) may be carried over to the present case. The solutions 

(1)	 (2) 
for L	 and L	 may be written as
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L(1) '_.	 L(1)	
h1h2 + 1h32 

4 Al2 + A22	 h22 + h32 

	

L(2)' E	
L(2)	

= h3 h
1 - 1h2 

Al2 + A22	 h22 + h32 

The definitions of the h's follow those of problem A (equations (B19) 
and (B21)), with the exceptions that 

1-nfl	 \ 

	

h1	 —i--mi 
r O\G	 / 

and, in this case, a n(1 - r). The solutions for the F's and H's 
are:

	

F'	 = h4 (L( l )' -	 - h5L(2)' 

+ A22 

F(2) '
	 F(2)	

= h4L( 2 )' + h5 (L(1)' - 
IAl2 + A22 

	

fi (1)	 =	
h4 (L( 1 )' -	 + ah5L(2) 

JAl2 .+ A22 

	

H( 2 )	 =	
h4L( 2 )' - oh5 (Ln' - 

+ A22 

The remaining quantities follow as before.
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V2
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of disturbed shock 
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no disturbance 

Figure 1. - Notation for shock wave propagating into a region of weak 

disturbance. 

V	 sound wave 
.[profi1e (f) 

-sound wave front 
a 

(a) Shock overtaking sound wave.

VU 

I (*2 

(b) Sound wave overtaking shock from behind. 

yl 	
Xl 

(c) Shock overtaking stationary shear wave. 

Figure 2. - Types of initial disturbance considered.
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Figure 3. - Fornation of waves behind slock, because of interaction with 

sound wave (problem A.)
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Figure 4. - Critical angle of incident wave for formation of refracted sound 
wave behind shock.
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Figure 5. - ProbleanA: shock front disturbance (shock overtaking 

sound wave).
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Figure 6. - Problem A: inclination of refracted pressure front 
(shock overtaking sound wave). 
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Figure 7. - Problem A:. attenuation of pressure wave behind shock (shock 
overtaking sound wave). 
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Figure 8. - Problem A: propagation velocity bf pressure wave behind shock (shock 

overtaking sound wave). 
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Inclination of incident wave, 'I1 , d.eg 

Figure 9. - Problem A: ratio of scales of pressure wave up- and. down-
stream of shock (shock overtaking sound wave).
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Figure 10. - Problem A: amplitudes of pressure disturbance behind 
shock (shock overtaking sound wave.)
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Figure 11. - Problem A: coefficient for part of u 2 associated


- with pressure wave (shock overtaking sound wave.) 
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Figure 12. - Problem A: coefficient for part of v 2 associated


with pressure wave (shock overtaking sound wave.) 
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Figure 13. - Problem A: Inclination of vorticity wave behind shock 
(shock overtaking sound wave.) 
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0	 20	 40 60	 80	 100	 120 140 160 180 
Inclination of incident wave, V2 deg 

Figure 14. - Problem A: ratio of scales of vorticity wave behind 
shock to that of incident sound wave (shock overtaking sound 
wave.)
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Figure 15. - Problem A: anrlitude of density variation in vorticity 
wave behind shock (shock overtaking sound wave.) 
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Figure 16. - Problem A: coefficient for part of u2 associated


with vorticity wave (shock overtaking sound wave.) 
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Figure 17. - Problem A: coefficients for part of v 2 associated


with vorticity wave (shock overtaking sound wave.)
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Figure 18. - Problem B: shock-front disturbance (sound wave over-
taking shock.)
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Figure 19 - Problem B: inclination of reflected sound wave 
(sound wave overtaking shock.) 
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Figure 20. - Problem B: ratio of scales of reflected and incident 
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Figure 21. - Problem B: amplitude of reflected sound wave 
(sound wave overtaking shock.) 
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Figure 23. - Problem B: ratio of scales of vorticity wave behind 
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Figure 24. - Problem B: coefficient for part of U22 associated 

with vorticity wave (sound wave overtaking shock.) 
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Figure 25. - Problem B: coefficient for part of v22 associated 

with vorticity wave (sound wave overtaking shock.) 
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