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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2670

HIGH-SPEED SUBSONIC CHARACTERISTICS OF

16 NACA 6-SERIES AIRFOIL SECTIONS

By Milton D. Van Dyke

SUMMARY

wind-tunnel investigation has been conducted to determine the

high-speed subsonic aerodynamic characteristics of N_CA 63-, 64-, 65-,

and 66-series airfoil sections having thicl_ess ratios of 6, 3, i0_

and 12 percent and an ideal lift coefficient of 0.2 with the uniform-load

type (a = 1.0) of mean camber line. Section drag, lift, and pitching-

moment coefficients measured at Mach numbers as high as 0.90 are pre-

sented for angles of attack from -6 ° to i0 ° or 12 ° .

For each thickness ratio, only a slight impairment of high-speed

section drag characteristics results from forward movement of position

of minimum base-profile pressure up to 40 percent of the chord. At the

same time_ however_ decrease of lift-curve slope and increase of angle

of zero lift, both of which adversely affect longitudinal stability and

control, are delayed further beyond the critical Mach number. Hence it

is concluded that_ for 6-series airfoil sectlons of a given thickness

ratio_ those with minimum pressure near 40-percent chord possess optimum

over-all aerodynamic characteristics.

Appreciable improvement in the hlgh-speed drag of airfoil sections

can be achieved only by decreasing their thickness ratio. Fortunatelyj

the accompanying reduction in range of lift coefficient for good high-

speed section characteristics is, for these 6-series airfoilsj much less

severe than consideration of the theoretically predicted critical Mach

number would indicate.

INTRODUCTION

In order to avoid excessive power requirements at subsonic speeds_

the airfoil sections for an airplane wing of given plan form must be

chosen so that the abrupt rise in drag associated with the formation of

shock waves is delayed to the highest possible speed. Airfoil sections

of the NACA low-drag type have critical speeds already so near to the

optimum value for any given thic1_ess ratio (reference i) that appreciable
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improvementcan be achieved only by further reduction in thickness. On
the other hand_ structural considerations and the desirability of obtain-
ing a high maximumlift coefficient prescribe as thick a wing as is con-
sistent with the attainment of the required high speed. Present practice
is to choosewing sections of such thickness that the marked drag increase
associated with the formation of shockwaveswill commencealmost immedi-
ately upon exceeding the maximumlevel-flight design speed.

This practice might on first thought appear to be a hmppycompro-
mise. Cnfortunately_ however_other adverse effects of compressibility_
of a more treacherous nature_ often manifest themselves at or slightly
above the speed at which the marked drag rise begins. Chief amongthese
are an abrupt increase in angle of zero lift for camberedairfoils and a
pronounced reduction in lift-curve slope. Both have a deleterious influ-
ence upon the airplane trim and longitudinaly stability and control_ as
discussed for unsweptwings in reference 2.

If the speedat which these adverse effects commenceis exceededby
the airplane_ as in a dive, the increase of angle of zero lift coupled
with a decrease in lift-curve slope alters the trim to promote a further
diving tendency. Concurrently, greater stability results from the reduc-
tion of lift-curve slope and from adverse changes in wing pitching moment.
In extreme cases the increase in stability is so great that recovery from
the dive cannot be effeeted by use of normal elevator control. Loss of
the aircraft will follow unless drag at lower altitudes limits the speed
sufficiently to re-estabilish elevator control_ or other morepowerful
meansof obtaining longitudinal control are provided. It would accord-
ingly appear desirable to choosefor a high-speed airplane an airfoil
having, at the design lift coefficient_ as high a critical speedas is
consistent with structural limitations and_ further, having as small
adverse effects as far beyond that speedas possible.

In the case of a bomber, the level-flight lift coefficient will
_ary through a wide range even on a single flight as a result of changes
in loading causedby fuel consumption and disposal of bombs. In the case
of a fighter aircraft_ a similarly wide range of operating lift coeffi-
cient will be required to attain satisfactory maneuverability. The ideal
airfoil for high-speed aircraft would therefore maintain the desired
high-speed characteristics throughout a broad range of lift coefficient.
That this ideal maybe difficult to achieve is indicated by theory which
predicts that_ as the critical speed of an airfoil is increased by
reducing its thickness 3 the range of lift coefficient over which favor-
able high-speed characteristics are realized shrinks rapidly.

Becauseexisting theory cannot be relied upon to predict these
conflicting effects accuratelyj the choice of optimumsubsonic airfoils
must be guided by experiment. Accordinglyj in 1945 and 1947tests were
conducted in the Amesi- by 3-i/2-foot high-speed wind tunnel to deter-
mine the subsonic characteristics of 16 NACA6-series airfoils having
various thickness ratios and positions of minimumpressure. The results
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for 12 airfoils were originally published in 1945 in a report of limited
circulation by Milton D. Van Dyke and Gordon A. Wibbert which was supple-
mented in 1947 by data for the 63-series sections published in a report of
limited circulation by Richard J. llk. These results are combined in the
present report, and the discussion is somewhatrevised, notably by includ-
ing an analysis of the data according to the transonic similarity rule.

SYMBOLS

c

Cd

Cdcr

cz

Clmax

emc/4

dc Z

d_

D I, D 2

mcL

M

Mcr

R

t

_O

_cr

airfoil chord length

section drag coefficient

section drag coefficient at theoretical critical Mach number

section lift coefficignt

maximum section lift coefficient

section pitching-moment coefficient about quarter-chord point

section lift-curve slope, per degree

reduced section drag coefficient functions in transonic

similarity rule

(See equations (2) and (4).)

reduced section lift-curve-slope function in transonic

similarity rule

(See equation (6).)

free-streamMach number

theoretical critical free-streamMach number

free-streamReynolds number based on chord

airfoil maximum thickness

section angle of attack, degrees

transonic similarity parameter [ M-_e/ I ]
(t/c) 21SJ

transonic similarity parameter at theoretical critical Mach

number IMcr2 2/1]



APPARATUSANDMETHODS

NACATN 2670

The following 16 NACAlow-drag airfoil sections, having uniform-
load type (a = 1.0) meancamber line, were tested:

63-206 64-206 65-206 66-206
63-208 64-208 65-208 66-208
63-210 64-210 65-210 66-210
63-212 64-212 65-212 66-212

The models were of 6-inch chord, polished aluminum alloy construc-
tion, and completely spanned the 1-foot width of the tunnel test section.
End leakage was prevented by a compressedrubber gasket at each end of
the airfoil to assure two-dimensional flow. Sketches of the airfoils
appear in figure I, and the ordinates for each section are presented in
table I. (The airfoil terminology and method of calculating ordinates
are described in reference 3.)

The Amesi- by 3-1/2-foot high-speed wind tunnel, in which the tests
were conducted, is a two-dimensional flow, low-turbulence, single-return-
type tunnel. It is powered by two lO00-horsepower electric motors
driving oppositely rotating propellers. This power is sufficient in all
cases to choke the tunnel.

The airfoil lift and pitching momentwere determined by tunnel-wall-
reaction measurements,using a method similar to that described for
measurementof lift in the appendix to reference 3. Previous tests have
demonstrated excellent agreement at all Machnumbersbetween lift and
pitching-moment characteristics as determined from wall-reaction measure-
ments and from integration of simultaneously obtained pressure distri-
butions.

Drag was determined by the wake-survey method using a movable 9-inch-
wide rake of 35 total-head tubes. The rake was movedto take necessary
additional readings when the wake width was greater than 9 inches at the
drag-rake station. It was not possible to evaluate the entire drag at
the choking Machnumberbecause the airfoil wake then extended from the
floor to the ceiling of the tunnel test section. Drag coefficients were
computedby the method of reference 4.

For all tests, the free-stream Machnumberranged from 0.30 to the
tunnel choking speed - approximately 0.90 Machnumberat low angles of
attack. The corresponding variation of Reynolds numberwas from one to
nearly two million for the 6-inch-chord models investigated. (See
fig. 2.) Each airfoil was tested at angles of attack varying by incre-
ments of 2° from -6° to i0 ° or 12°,e which range was ordinarily

2In the case of the NACA65-206 and 66-212 airfoils, the actual angles
were 0.5° greater than these values.
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sufficient to determine the stall. Settings for angle of attack are
believed to be accurate to within ±0.i0°; relative readings for any one
airfoil are reliable to within ±0.05° .

TESTRESULTS

Drag, lift, and quarter-chord pitching-moment coefficients at con-
stant angle of attack are plotted for each of the 16 airfoils as functions
of free-streamMach number M in figures 3 to 50. Corresponding cross
plots at constant Machnumberpresent, in figures 51 to 98, the variation
of section lift coefficient with angle of attack, and of section drag
and pitching-moment coefficients with lift coefficient. All data have
been corrected for tunnel-wall interference by the method of reference 5.

In figur s 3 to 50, the experimental point shownat the highest
Machnumber for each angle of attack was obtained with the wind tunnel
choked. Except for the pitching moment,data obtained at the choking
speed can be repeated with good agreement. However_it is shownin
reference 5 that the choked condition cannot be corrected to free-air
flow since, in fact, no equivalent free-alr flow exists. The usual cor-
rection procedure has nevertheless been applied to these data_ and the
results are presented as a matter of interest.

These data are considered to be unreliable not only at the choking
speed, but also within somerange of Machnumberbelow this limit. Shock
w_vesbegin to form on one or both surfaces of an airfoil soon after the
critical Machnumberof the section is exceeded. At somehigher speed
they will have extended sufficiently far across the tunnel so that their
interaction with the tunnel walls can no longer be neglected. An attempt
has been madein figures 3 to 98 to indicate by a dashed line the possible
extent of the Machnumberrange below choking within which the data are
at least quantitatively unreliable. This range may logically be presumed
to be greater at high angles of attack since one surface of the airfoil
then shocks at a Machnumberfar below the choking Machnumber.

DISCUSSION

Drag Coefficient

Subcritical characteristics.- Within the low-drag range of lift

coefficients, figures 3 to l_show that the section drag coefficient at

constant angle of attack decreases slightly in most cases until a Mach

number of 0.40 is reached; this is probably a consequence of increasing

Reynolds number rather than any compressibility effect. From this point

on, whether considered at constant angle of attack or, as in figure 99, at

constant lift coefficient, the drag coefficient remains essentially un-
changed until the predicted critical Mach number of the airfoil is exceeded.
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A curious phenomenonappears in figures 3 to 18 for higher angles
of attack. After an initial rise with Machnumber, the drag coefficient
drops to a "trough" immediately preceding the final abrupt rise. This
trough appears to be characteristic of NACA6-serles airfoils. It appears
also in tests of NACA652-215 (a = 0.5) and 66, 2-215 (a = 0.6) airfoils,
but is absent in the case of NACA0015 and 23015 airfoils and scarcely
discernible in the case of the NACA4415 section. (See reference 6.)
The trough becomesmore gentle if the variation is considered at constant
lift coefficient, as in figure 100(a), rather than at constant angle of
attack. The cause of this trough has not been determined. It is inter-
esting to note that a similar variation of drag was reported for circular
cylinders in reference 7. Balance measurementsof the drag of cylinders
of various diameters (representing Reynolds numbersof from 0.06 x 106 to
0.25 x i06 at 0.65 Machnumber) showedin each case a trough of the same
form. (See fig. lO0(b).)

Because the forces to be measuredvary over a wide range, results
at low Machnumbers are unduly affected by errors in tares and zero
readings which are negligible at higher speeds. For this reason, low-
speed values of drag should be considered as qualitatively rather than
quantitatively correct. For example, the consistent reduction in low-
speed drag coefficient expected to accompanyrearward movementof the
position of minimumbase-profile pressure is not evident in figure 99-

Low dra6 ran6e.- At low speeds, the drag polar curves for these

airfoils exhibit a characteristic "bucket" (reference 3). The drag has

a low value within the range of lift coefficients for which the minimum

pressure points on both surfaces lie well back on the airfoil. Outside

this range the drag jumps sharply to a higher value. The present tests

do not provide enough points to show this variation accurately. Measure-

ments were made at increments of not less than 0.2 lift coefficient,

whereas the extent of the low drag range is at most 0.4 lift coefficient

at low speeds. Therefore, only one or two test points are a_ilable

within the low drag range. Many more points would be required, particu-

larly near the ends of the region, to trace the typical bucket curve.

However, despite the fact that the drag curves (figs. 51 to 66) were

obtained by fairing through widely separated points, they give, particu-

larly for the thicker sections, a suggestion of the typical bucket shape.

This matter has been investigated in greater detail, as shown in

figure lO1 for two of the airfoils, the NACA 64-206 and 66-212 sections.

Here advantage has been taken of the results of tests of the same air-

foils in the Langley two-dimensional wind Gunnel (reference 3) to fix

the extremities of the low drag range. Small-perturbation theory would

predict that at any free-streamMach number M the values of lift coef-

ficient corresponding to each end of the low drag range are equal to the

low-speed values multiplied by (1 - M_) -I/2. Low-speed values from

reference 3 have been magnified by this factor, and the polar curves of

figure lO1 are assumed to be flat within these limits and pass through

the single available point. In this manner, for every Mach number up to
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the critical it is possible to draw curves passing through each point
which are remarkably similar to the low-speed curve. The agreement_
shownhere for only two airfoils, was found to be equally as good for
the others. Hence it seemsreasonable to assumethat for all 16 airfoils
investigated the typical bucket form of the drag curve is preserved until
the critical speed of the section is exceeded, and the corresponding
range of lift coefficients for low drag increases with free-stream Mach
numberaccording to the factor (1 - M2)-I/2. Outside the low drag range
the drag coefficient rises more rapidly with change of lift coefficient
than is indicated by the test results of reference 3. The difference
can probably be attributed to the lower Reynolds number of the present
tests.

Oncethe critical Machnumber of the section is exceeded it immedi-
ately becomesimpossible to fit a curve of the form assumedabove. The
low drag range vanishes; the polar curve becomesmoreparabolic in form,
and, with further increase in speed_ shifts so that the lift coefficient
for minimumdrag approaches zero.

Critical Mach number.-Abrupt changes in the magnitudes of the forces

acting upon an airfoil, and of the drag in particular, are known to occur

at speeds somewhat in excess of the critical Mach number Mcr defined

as the Mach number of the free stream for which, at some point on the

surface of the airfoil, a velocity equal to the local velocity of sound

is first attained. For a given airfoil section, the critical Mach number

is a function only of the lift coefficient, and references 1 and 3 present

a method for approximating this relationship on the basis of the known

low-speed pressure distribution over the surface of the airfoil.

For NACA low-drag airfoils of moderate thickness, the maximum

velocity (or minimum pressure), which determines the critical speed,

occurs at a point which jumps between the midportion of the airfoil and

the nose with change of angle of attack. The variation of critical Mach

number with lift coefficient, consequently, has the characteristic jointed

form shown in figure 102. The curves consist, for these cambered air-

foils, of three connected segments: a central nearly flat portion encom-

passing the low drag range, which is associated with the realization of

the maximum velocity on the upper surface of the airfoil near the position

of maximum thickness; and two steeply inclined lines, which are determined

by maximum velocity at the nose on the upper or lower surface.

Comparison of the variation of critical Mach number as determined

from pressure-distribution measurements over NACA 652-215 (a = 0.5) and

66,2-215 (a = 0.6) airfoils with that predicted by theory has shown

good agreement throughout the flat portion of the curve (reference 6).

However; the experimentally determined corners are shifted farther out

along the flat portion of the theoretical curve. As a result, the range

of lift coefficients for high critical Mach numbers extends to consider-

ably higher values than theory would predict. Beyond the corners the

experimental curves fall roughly parallel to those predicted by theory.
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The discrepancy is caused principally by the fact that the Karman-Tsien
relationship employed in the theoretical method to obtain high-speed
pressure coefficients from incompressible values, while giving excellent
agreement with experiment over most of the airfoil surface, overestimates
the increase at the nose.

In view of this extension of the high critical-speed range of lift
coefficient, the flat portions of the theoretical curves shownin
figure 102 have been extended for purposes of comparison in the following
discussion. This was done by assuming that the critical Machnumber
continues to be determined by the velocity occurring near the position of
maximumthickness.

Drag beyond critical sp_ed.- The critical Mach number is, in itself,

of no interest to the designer of high-speed aircraft. It is useful

only insofar as it aids in predicting the sudden changes in forces accom-

panying the formation of shock waves over an airfoil. Thus the Mach

number at which the drag coefficient begins suddenly to depart from its

low-speed value, termed the Mach number for drag divergence, is of greater

practical interest.

The Mach numb@r for drag divergence has been chosen from the experi-

mental curves (figs. 3 to 18) as that Mach number at which the final rise

in drag coefficient begins. For low angles of attack 3 this point is

fairly clearly defined. The drag curve can be approximated by a hori-

zontal line followed by a parabolic rise, and the divergence point is

taken to be thebeginning of the parabola. At higher angles of attack

precise determination of the divergence point is rendered difficult by

the presence of the trough discussed previously. In these cases the

divergence point is taken to be the bottom of the trough.

The Mach numbers for drag divergence selected in this manner are

compared in figure 102 with the critical Mach numbers predicted theo-

retically. It is seen that the Mach number for drag divergence is very

nearly equal to the predicted critical Mach number throughout the range

of lift coefficient within which the latter has a high value. The Mach

number for drag divergence remains high, however, through a considerably

wider range than does the theoretical critical Mach number. This widen-

ing of the favorable range of lift coefficient is explained in part by

the fact, mentioned previously, that the actual extent of high critical

Mach numbers is somewhat greater than theory would indicate. However,

this does not constitute a complete explanation, because in the tests

of thicker airfoils referred to previously (reference 6) the Mach number

for drag divergence was found to remain high through a much wider range

of lift coefficient than did even the experimentally determined critical

Mach number.

A possible explanation for this extension suggests itself. When,

as is the case within the favorable range of lift coefficients, sonic

velocity first occurs on the gently curved midportion of the airfoil,
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only a slight Machnumbergradient exists normal to the surface. A small
increase of free-stream Machnumberabove the critical will produce an
extensive region of local supersonic flow, culminating in a shock wave
extending far out from the airfoil and involving a correspondingly large
drag increase. On the other hand, when sonic velocity is first attained
on the sharply curved nose of the airfoil, the local Machnumberdrops
abruptly with distance away from the surface. A muchgreater increase
of free-stream Machnumberabove the critical may then be required to
induce a shock wave extensive enough to produce large losses. Further-
more, when sonic velocity appears first on the midportion of the airfoil
rather than at the nose, the boundary layer will be more fully developed
at the shock wave. The flow maythen be more susceptible to separation
in the vicinity of the shock, which will result in rapid increase of
drag.

It will be noted that the Machnumbersfor drag divergence follow_
for somedistance in each direction, the extended theoretical critical
Machnumbers calculated by neglecting the velocity peak at the nose of
the airfoil and assuming that the velocity near midchord is always the
greatest to be found anywhere on the airfoil.

Insufficient points are available to determine, with any accuracy,
the exact amount by which this favorable range of lift coefficients
extends beyond that for high critical Machnumbers. In fairing the
curves of figure 102, howeverj the assumption has been madethat the
variation of Machnumberfor drag divergence is of the samejointed form
as that of critical Machnumber. This assumption maybe unwarranted;
its justification lies in the fact that curves of this form can be drawn
to pass through every point. Whether or not this hypothesis is admitted,
it is evident that the range of lift coefficients for good high-speed
drag characteristics is twice as wide as the theoretical range of high
critical speeds for 12-percent-thick airfoils and three times as wide
for the 6-percent-thick sections. It should be noted that, even for the
thinnest airfoils tested, high Machnumbers for drag divergence are
attained over a wide enoughrange of lift coefficient to insure adequate
maneuverability in a fighter airplane at high speeds_and satisfactory
performance at diverse loading conditions and altitudes for a high-speed
bomber.

The variation of drag coefficient with Machnumberat the design
lift coefficient of 0.2 is shownfor the 16 airfoils in figure 99-
Theoretical critical Machnumbersare also indicated (extended values
from fig. 102 are shownfor the NACA65-206 and 66-206 sections). It is
seen that at design lift the supercritical drag rise is practically
unaffected by position of minimumlpressure. The critical Machnumber
increases so slightly with rearward movementof minimumpressure that
significant improvement of high-speed drag characteristics can be achieved
only by reducing the airfoil thickness ratio.

Finally, the nature of the increase in drag coefficient beyond the
theoretical critical Machnumbermaybe considered. Figure 99 suggests
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that the form of the rise maybe almost identical, at least near the
design lift coefficient, for airfoils of widely varying thickness ratios,
as well as different positions of minlmumpressure. Attempts based on
both theory and experiment have in the past been madeto obtain some
form of universal drag curve applicable beyond the critical speed. The
increment in drag coefficient above that observed at the theoretical
critical Machnumber is shownin figure 103 for all but one of the air-
foils near zero angle of attack as a function of the corresponding
increment in Machnumber. (Values for the NACA65-206 airfoil are not
shownbecause no experimental points were obtained within the favorable
range of predicted critical Machnumber.) The points are seen to define
a single curve; all scatter lies within the range of experimental uncer-
tainty, and no consistent variation from the meanappears with change
of either thickness or minimum-pressure position. Plotting the same
points on logarithmic coordinates shows a slope of 2; accordingly a
parabola, given by

2

- = 2.36 (M - Mcr) (1)Cd Cdcr

has been fitted in figure 103. This correlation is not confined to zero

angle of attack, because for the NACA 66-212 section the angle was 0.5 ° .

It seems likely that equation (i) will predict the supercritical drag

characteristics of these airfoils throughout the theoretical range of

lift coefficients for high critical Mach numbers. Outside this range,

however, the agreement is found to be mediocre.

The question arises whether this empirical correlation is in accord

with the transonic similarity rule (reference 8). Unfortunately, the

similarity rule is not strictly applicable here. Each group of airfoils

having the same minimum-pressure position would constitute a family of

"similar" shapes were it not for the fact that their camber is fixed,

rather than proportional to thickness. However, it seems reasonable to

apply the rule as an approximation in the following way.

If the airfoils were truly similar, their drag coefficients would

be related by

ca = (t/c)s/3 (2)

where t/c is the thickness ratio_ and D z

transonic similarity parameter

M m - 1
= •

(t/c) 21s

is some function of the

(3)

This rule does not apply even approximately to the present airfoils

because camber strongly affects the critical Mach number. Except for

the skin friction, which lies outside the scope of the similarity theory,

the drag must rise from zero at the critical Mach number. Hence the
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similarity rule maybe written in another form as

cd - cd = (t/c) 5/3D2 (_ _ _cr) (4)
cr

where _r, the value of the similarity parameter at the theoretical

critical Mach number, is, within the accuracy of the transonic similar-

ity theory, a constant for truly similar shapes. In this form it seems

reasonable to apply the rule to the present airfoils_ because the fact

that _cr is not constant is accounted for. Thus the dissimilarity dde

to camber is counterbalanced. 2

Using the similarity rule in this way_ the data of figure 103 can

be fitted by taking the function D 2 to be twice the square of its
argument. 3 This gives

2

cd - Cdc r = 2(t/c) 5/3 (_ - _cr )2 = 2(t/c) 1/3 (M 2- Mcr 2) (5)

For all 16 airfoils, this expression differs from that of equation (i)

by less than 3 percent. Hence there is no need to replot the data;

figure 103 may be regarded alternatively as a correlation according to

one form of the transonic similarity rule.

Lift Coefficient

Angle of zero lift.- For incompressible flow, thin-airfoil theory

permits calculation of the angle of zero lift, which is determined largely

by the camber line, as disqussed in reference 3- Assuming the theoretical

value of the lift-curve slope, 2_ per radian 3 the angle of zero lift for

airfoils having a design lift coefficient of 0.2 and an a = 1.0 mean

camber line is calculated to be -i._2 °. The experimental values are_

with one exception, slightly less negative than this at low Mach numbers,

in agreement with the results of reference 3. (See fig. 104.) The

anomalous behavior of the NACA 65-206 airfoil may result from apparent

poor model construction near the trailing edge. At low speeds little

consistent variation of zero-lift angle, either with thickness or posi-

tion of minimum pressure, is evident from figure 104.

2It seems likely that the latter form of the similarity rule will yield
better correlation near the critical Mach number even for similar air-

foils, because _cr is not actually constant but varies markedly with
thickness as a result of higher'order effects.

32he simplicity of the numerica_ factor 2 has no significance_ because

powers of (7 + i) have been neglected in stating the similarity rulej

where 7 is the adiabatic exponent.
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With increase in Machnumber, the angle of zero lift is seen to
remain sensibly constant, or tend only slightly closer to 0°, up to the
extended theoretical value of the critical Machnumbertaken from
figure 102. Approximately 0.075 Machnumberabove this critical speed,
the 12- and 10-percent-thick airfoils exhibit an abrupt increase in
angle of zero lift; and the sameeffect appears to have Just commenced
at the highest test Machnumbers for the thinner sections. This sudden
change in angle of zero lift, together with the decrease in lift-curve
slope discussed later, will require large alterations of trim for an
airplane in level flight at any wing loading.

Lift at constant angle of attack.- At moderate angles of attack,
the increase of lift coefficient w_th Mach number is in accord with the

Prandtl-Glauert factor (i - M2) -I/_ up to the critical speed of the

section. (See figs. 19 to 34.) At greater angles, however, this char-

acteristic curvature no longer appears; the variation is more nearly

linear within the Mach number range 0.30 to 0.60, and in many cases the

curvature is actually reversed, as it is for the NACA 65-212 section

at 6° and -6° . (See fig. 30.) This behavior can possibly be explained

as a variation with Reynolds number, which predominates over the com-

pressibility effect at low speeds.

Supercritical characteristics.- At any angle of attack_ shortly

after the critical Mach number for the section has been exceeded, the

losses in lift which accompany shock-wave formation begin to counteract

the subcritical rise. An inflection point is reached in the variation

of lift coefficient with Mach number for constant angle of attack

followed by a peak beyond which the lift falls rapidly. A final abrupt
reversal within the last few thousandths of a Mach number before the

choking speed often appears in the present tests, and in most other

high-speed subsonic wind-tunnel data.

The rapid loss of lift beyond the critical speed, producing as it

does a large change in airplane trim and a dangerous increase in sta-

bility, must, for airfoils intended for high-speed aircraft, be post-

poned to as high a Mach number as is practicable at the large lift

coefficients required for dive recovery as well as near design lift.

Reduction of airfoil thickness_ with consequent increase in critical

Mach number, serves within the low drag range to raise the speed at

which these undesirable effects appear. Consideration of the theoretical

variation of critical Mach number with lift coefficient might lead to

the conclusion that any improvement inside the low drag range can be

achieved only at the expense of greatly impairing the characteristics

at other lift coefficients. That this fear is unfounded is demonstrated

in figure 102. Mach number for lift divergence, defined as the inflec-

tion point in the curves of figures 19 to 34, is shown as a function of

lift coefficlent_ points used in cross plotting again being indicated.

It is seen that, in every case, the behavior of Mach number for lift

divergence is similar to that of Mach number for drag divergence dis-
cussed previously. Instead of falling off rapidly outside a narrow
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range of lift coefficient as does the theoretical critical Machnumber,
it remains high through an even greater range than does the Machnumber
for drag divergence, running parallel to the extended critical Machnum-
ber curve for a considerable distance in each direction. This widening
of the favorable range maybe causedby the fact, mentioned before, that
the boundary layer will be more resistant to separation in the vicinity
of a shock wavewhich appears near the nose than for one occurring first
on the midportion of the airfoil.

It is important to observe that the Machnumberfor lift divergence
lies considerably farther above that for drag divergence in the case
of 63-, 64-, and 65-series airfoils than it does for the 66-series
sections. As a consequence,because supercritical drag rise is essen-
tially the samefor all 6-series airfoils of equal thickness, the
66-series airfoils exhibit adverse compressibility effects at lower
speeds, and at lower drag coefficients, than do the other sections. In
this respect, then, 66-series airfoils are somewhatinferior in high-
speedperformance to those having minimumpressure farther forward.

Lift-curve slope.- Low-speed lift-curve slopes shown in figure 105

are smaller than those reported in reference 3 for airfoils of the same

series, and appreciably less than the theoretical value for thin air-

foils (2_ per radian). The discrepancy can probably be attributed to

differences in Reynolds number. Variation of thickness ratio and mini-

mum pressure position have little effect on the low-speed lift-curve

slope; a slight decrease results in every case, however, from rearward

movement of minimum pressure. (See fig. 105(b).)

For all 16 airfoils the increase of lift-curve slope with Mach

number is well represented at moderate speeds by the factor (i - M2) -I/2

derived from small perturbation theory. At higher Mach numbers, the

rise is somewhat more rapid, reaching a sharp peak beyond the critical
speed. 4 This peak is delayed to higher values of Mach number and lift

coefficient with decrease of thickness ratio and also with forward move-

ment of the chordwise position of minimum base-profile pressure. This

delay is ordinarily desirable. It must be noted, however, that exces-

sively high values of wing lift-curve slope tend to produce airplane

instability, as discussed in reference 2. For this reason the present

6-percent-thick sections may be unsuitable for use on unswept-wing

aircraft in cases for which the low-speed stability is marginal.

Furthermore, great care must be exercised in the choice of a section

for the horizontal tail plane when a thin wing section is employed.

Serious instability may result if the tail plane is so thick that it

experiences a loss of lift-curve slope at a lower Mach number than does

the wing.

As discussed previously, the transonic similarity rule is not

strictly applicable to these airfoils because of their fixed camber.

4For the NACA 65-206 and 66-206 sections, the theoretical critical Maeh

numbers indicated in figure 105 are the extended values taken from

figure 102.
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However, according to thin wing theory, lift-curve slope is independent
of camber in both subsonic and supersonic flow. It seemsreasonable to
assumethat this is true also in the intermediate transonic range pro-
vided that the lift curve is linear. If so, the lift-curve slopes for
airfoils having the samethickness distribution but different thickness
ratios t/c are related by

dcz
- --(t/c) 1/s L_(_) (6)

where L_ is some function of the transonic similarity parameter
(equation 3) •

The present lift curves are generally fairly linear up to the

design lift coefficient of 0.2 (see figs. 67 to 82). Therefore, the

"reduced lift-curve slope," (t/c) I/s (dc_/da), at design lift has been

plotted as a function of the similarity parameter in figure 106. Com-

parison with figure 105(a) shows that, in general, the correlation of

data at high Mach numbers has been significantly improved. Excepting

the anomalous results for the 65-208 airfoil, the correlation probably

lies within the bounds of experimental error and uncertainty in block-

age corrections.

The lift curves themselves (figs. 67 to 82) often show, above the

low drag range of lift coefficient, the Jog typical of NACA 6-series

airfoils, which is analyzed in reference 9. Beyond a Mach number of

0.65 or 0.70 the Jog disappears or is obscured by other phenomena. The

results of reference 9 indicate that at least for low speeds it will

vanish entirely at flight values of Reynolds number, and there is little

_reason to doubt that it will then disappear at all speeds.

Maximum lift coefficient.- It must at the outset be emphasized

that the low-speed values of maximum lift coefficient obtained in these

tests are not applicable to flight conditions. Numerous investigations

have indicated that scale effect is so great that, at the higher

Reynolds numbers of flight, maximum lift coefficients half again as

large as those shown in figure 107 may be attained. Other tests of

several of the present airfoils at greater values of Reynolds number

indicate, as would be anticipated, that the low-speed maximum lift

coefficient increases as the minimum pressure is moved forward as far

as the 40-percent-chord position. (See reference 3.)

The results of reference i0 indicate that scale effect on maximum

lift coefficient vanishes above a Mach number of about 0.55. The present

results shown in figure 107 can therefore probably be applied with con-

fidence above 0.60 Mach number. At these higher speeds the maximum lift

coefficient is greatest for airfoils having minimum pressure at the

40- or 50-percent-chord position. Thus it is seen that airfoil sections

with minimum pressure near 40 percent of the chord, in addition to having

almost as good high-speed drag characteristics as sections with minimum.

pressure farther back, and higher Mach numbers for lift divergence and
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for change of angle of zero lift, likewise demonstrate higher maximum

lift coefficients at low speeds as reported in reference 3; and, as

shown by the present tests, these airfoil sections maintain this

superiority up to high Mach numbers.

All 16 airfoils show desirable gradual-stall characteristics up to

high Mach numbers (figs. 67 to 82). The nature of the stall seems to

be essentially independent of both thickness ratio and position of mini-

mum pressure.

Pitching-Moment Coefficient

The pitching moment of an airfoil, like the angle of zero lift, is

determined mainly by the mean camber line. The low-speed value can

accordingly be calculated from thin-airfoil theory. For all 16 air-

foils considered here, the theoretical value of the quarter-chord

pitching-moment coefficient is -0.05. (See reference 3-) Figures 35

to 50 indicate the experimental values to be in most cases smaller than

this at low speeds and low angles of attack, and reference 3 reports

that such is generally the case for airfoils cambered with the uniform-

load type (a = 1.0) of mean camber line.

At moderate angles of attack, the variation of pitching-moment

coefficient with Mach number up to the critical is represented roughly

by the factor (i - M2) -I/2 from small-perturbation theory. At higher

Mach numbers the variation definitely departs from this rule.

It would be desirable at this point to define a moment divergence,

analogous to the drag and lift divergences discussed previously, and to

consider as before the Mach number at which it occurs. However, con-

sideration of figures 35 to 50 indicates that changes in pitching-

moment coefficient are much less pronounced near the critical speed

than are changes in either drag or lift coefficient. Consequently,

formulation of a criterion for moment divergence has not been attempted.

Figure 108 presents the variation with Mach number of the quarter-

chord moment coefficient at the design lift coefficient. 5 The variation

is similar for all 16 airfoils, no effects of changing either thickness

or minimum-pressure position being discernible.

Because of the strong effect of camber upon pitching moment, no

attempt has been made to apply the transonic similarity rule.

5Again, for the NACA 65'206 and 66-206 airfoils extended values of

Mcr are shown.
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CONCLUSIONS

The most important conclusions to be drawn from tests at high
subsonic speeds of 16 NACA6-series airfoil sections are the following:

i. The "bucket" form of the low drag range of the drag curve
appears to persist up to the critical speed of the section, the corre-
sponding range of lift coefficient increasing with Machnumberby the
factor (i - M2)_/_.

2. The Machnumberat which a rapid increase in drag coefficient
begins is very nearly equal to the critical Machnumberpredicted by
the theory of references 1 or 3 throughout the range of lift coeffi-
cient within which the theoretical value is high. Outside this range,
all 16 airfoils continue to exhibit good drag and lift characteristics
through a considerably wider range of lift coefficient.

3. Near design lift, the increase in section drag coefficient
beyond the predicted critical Machnumber is nearly identical for all
16 airfoils and can be represented by a parabola. This correlation is
in accord with the transonic similarity rule.

4. Within the limits investigated, variation of chordwise position
of minimumbase-profile pressure has almost no effect on the high-speed
drag characteristics of these airfoils. Appreciable improvement can be
achieved only by reduction of thickness ratio.

5. The 66-series airfoils tested were found to be decidedly
inferior to the other sections as far as maintaining good high-speed
lift characteristics beyond the critical speed. Forward movementof
the position of minimumpressure to 40-percent of the chord; in addition
to raising the maximumlift coefficient at high speed, produces two
effects favorable to high-speed stability and control. Abrupt increases
in angle of zero lift and decreases in lift-curve slope are both
delayed to Machnumbersfarther above that at which the drag begins to
rise.

AmesAeronautical Laboratory,
National Advisory Committee for Aeronautics,

Moffett Field, Calif., December13, 1951.
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TABLE I.- AIRFOIL ORDINATES

[Stations and ordinates given in percent of airfoil chord]

NACA 63-206 NACA 63-208

I Upper surface Lower surface

! Statlon Ordinate Stati_ _

O. 0 O I 0

8 .551 .5_e j -.h51

.703 .677 .797 I -.937

1.197 .876 1.303 _ -.66_

2.h38 1.2_i 2.56a I _869

h.9_ 1.776 5,068 I -1.1h_
7._9 2.189 7.571 J -1.3h1

g.g%O 2.526 10.O70 1 --I.E�e

I 14 _O_4 3•058 15,066 ] --I.712

, l_.g_l 3. 451 20.0_9 J --i.8_9

i 2_. g50 3 •736 25.050 J --I.9h6

_._O 3.9_6 3o.o_.o J -L�_

[ _ o_ _.030 35.030 J -1.970

i _@._I h.O }_ 110.019 J --1.900

,_,_ _I 3-97_ 4%9o9 J -1.78_

i 5o,o00 3.8e6 50.0oo I -1.6_o

95.008 3.6]2 _.992 l -1._2

60.015 3.338 99.985 ! --1.196

6%C_0 3.0_ 64.980 I -.95,9-

7o.o@3 a,6_a 69,977 J -,698

75. C@3 _.237 7h. 977 J -.hk7

8o. oez 1.8oh 79.978 J _212

_.o19 L 356 8_.981 I _ olo

9o.o13 .9oo 89.987 I .13_

95.006 ._Sh 9h. 993 ] .178

100.000 0 100.000 I 0

L. E. rmdius: 0.297

Slupm of raalus through L. E. : 0.08_

Upper surface Lower surface

Statlon Ordinate I Station 0rdlnste

i

o o.715 o o._h .596 -.615
.687 .876 .813 -.736

1.179 1.131 1.321 -.917

2. M8 I. 592 2.982 -i. 220

4.909 2.266 5.o91 -i .63 h

7.406 2.780 7.59_ -1.932

9.906 3.201 lO.O�h -2.167

14.912 3.861 15.088 -2.515

19.922 4.3k9 2o.078 -2.753

24.934 h.690 25.066 -2.900

_9.9k7 k.918 3o,053 -2.97h

3h.961 5.030 35.o39 -2.970

39.97h 5.027 _0.096 -2.885

hh.988 _-919 45.o12 -2.729

9o.ooo _.717 5o.oo0 -2.511

55.on 4.h29 5_.989 -2.239

6o.o19 _.069 59.981 -I .927

65.026 3.645 6h.97h -1.585

70.030 3.170 69-970 -i.226

75.031 2.657 7h.969 -.867

80.029 2.119 79.971 -.593

85.025 1.963 8h.975 -.217

90.oly i .013 89.983 .021

95.008 ._94 9_.992 o.i38I00. ooo o ioo. 0oo

L. E. radius: 0,_03

Slope of radius through L. E. : 0.0842

NACA 63-210

Upper surface Lower _urfaee

Station Ordinate Station Or_Inute

0 O O 0

._30 .876 .57o -.776

.6_9 i.I07 .831 --967

1.162 1.379 1.338 -1._65

2.398 1.939 2.602 -1.567
4.886 2.753 5.11h -2.121

7.382 3.372 7.618 -2.52_

9.882 3.877 lO.118 -9.843

lb.890 _.666 15.110 -3,329

19.902 5.2_0 20.098 -3.6_8

2_.917 5.61_7 25.083 -3.857

29.933 5.9_o 3o,o67 -3.966

3_.951 6.030 35.0_9 -3.97o

39._8 6.o09 40.032 -3.867

_a.985 5.861 h5.015 -3.671

_o.000 5-999 50.000 -3.393

55.O13 5.235 5h-987 -3.045
60.02_ _.786 99.976 -2.644

65.032 4.26_ 64.968 -2.205

70.037 3.68h 69,963 -i .740

75.038 3.C61 7_.962 -1.271

80.036 2._'lh 79.96_ -.822

85.030 1.761 84.970 -.hi5

90.021 1.121 89.979 -,087

95.01o .530 9h-99o .io2
ioo. _o 0 I00. 000 0

L. E. radium: 0.770

Slope of radi_s throush L, E.: 0.0_4_

NACA 63-212

Upper surface Lower surface

Station Ordinate Station Ordinate

0 0 O 0

.hi7 1.032 .583 -.932

-657 1,260 .843 -1,120

1.145 1,622 d,355 -1.408

2.378 9.284 2.622 -1.912

h.863 3.238 5.137 -2.606

7.398 3.963 7.6h2 -3.115

9.859 4-55_ I0. lhl -3.520

ih.868 5._70 15.132 -4.124

19.882 6.137 20.118 -h.545

24.900 6.606 25.100 -h.816

29.920 6.902 30.080 -h.958

3h.941 7.030 35.059 -_.970

39.962 6.991 h0.038 -h.849

_.982 6.799 b5.018 -h.609

90.00o 6._73 9o.000 -h._7

55.o16 6.030 5_.98h -3.84o

60.029 5._91 59,971 -3.349

65.038 4.870 6_.962 -_.810

7o.o_3 k.182 69.957 -2._38

75.0_5 3.451 7h,955 -1.661

8o.o_2 2.698 79.958 -hlO6

85.035 1.9h7 8_._65 -.6oi

9o.o_5 1.22h 89.975 -.19o

95.o1_ .556 9_.958 .o66

iO0.0OO O I00.000 0

L. E. radius: 1.087

Slope of radius through L. E.: O.08_2
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TABLE I.- CONTINUED

[Stations and ordinates given in percent of airfoil chord]

NACA 64-206 NACA 64-208

Upper surface Lower surface

Station Ordinate Station Ordinate

0 O O
0.499 .5_2 .5_I -.442

.704 .664 -796 -. 524

1.198 .859 1.302 -.6_5

2.440 1.208 2.560 -.836

4.93_" 1.719 5.O66 -z.087

7.432 2.115 7.968 -1.267

9.933 2.&44 lO.O67 -i.410

I_.937 2.970 15.o63 -1.624

19.943 3.367 20.057 -1.775

2_.952 3.667 25.048 -1.877

29.961 3.879 30.039 -i .935

3_.971 4.011 35.029 -1.991

39.981 4.066 40.019 -1.924

44.991 4.o14 45.009 .1.824

50.000 3.878 50.000 -1.672

55.008 3.670 54.992 -i. 480

60,015 3.402 59.985 -1.260

65,020 3.080 64.980 -i.o20

70.023 2.712 69.977 -.768

75,025 2.307 74.975 -.517

80.024 1.868 79.976 -.276

85.o2o 1.41o 84.98o -.o64

9o,o15 .940 89.985 .094

95.0O7 .473 9_.993 .159

10O,000 o ioo.ooo o

L. E. radius: 0.256

Slope of radius through L. E.: 0.084

Upper surface Lower surface

Station Ordinate Station Ordinate

o 0 o O6o 6.445 .7o6 •555 -.

.688 .862 ,812 -.722

1.18o 1.ilO 1.320 -.896

2.421 1.549 2.579 -I.177

4.912 2.189 5.088 -1.557

7.410 2.681 7-990 -1.833

9.910 3.089 10.090 -2.055

14.915 3.741 15.085 -2-395

19.924 4.232 20.076 -2.6hO

24.935 4.598 25.065 -2.8O8

29.9h8 4.856 30.052 -2.912

34.961 5.oo9 35.039 -2.949

39.974 9.063 _0.O26 -2.921

44.988 4.978 45.012 -2.788

50.0O0 4.787 5(3.000 -2.581

59.011 4.506 9_.989 -2.316

60.020 4.152 59,980 -2.010

65.027 3.734 64.973 -1.674

70. O31 3. 263 69.969 -i. 319

75.032 2.749 74.968 -.959

80.O31 2.200 79.969 -.608

85.027 1.634 84.973 -.288

9o.o19 1.067 89.981 -.033

95.O10 .522 94.990 .iiO
lOO.OOO o lOO.0oo o

L. E. radius: 0.h70

Slope or radius through L.E.: 0.084

NACA 64-210

Upper surface Lower surface

Station Ordinate Station Ordinate

0 "'0 0 0

.431 .867 .569 -.767

•673 1.056 .827 -.916

1.163 1.354 1.337 -i.140

2.40Z 1.884 2.599 -1.512

4.890 2.696 5.110 -2.024

7.387 3.248 7.613 -2._00

9.887 3-737 10.113 -2.703

14.894 4.514 15.106 -3.168

19.905 5.097 90.095 -3.505

24.919 5.933 25.081 -3.7_3

99.934 5.836 30.066 -3,892

34.951 6.OLO 35.0_9 -3.990

39.968 6.o99 h0.o32 -3,917

44.985 5.938 45.015 -3.748

90.000 5.689 _0.000 -3.483
55.014 5.333 54.986 -3.143

60.025 4.891 59.975 -2.749

65.033 4.375 64.967 -2.319
70.038 3.799 69.962 -i .855

75,040 3.176 74.960 -i. 386

80.038 2.518 79.962 -.926

85.O32 1.849 84.968 --903

90.023 1.188 89.977 -.154

99.O12 .564 94.988 .068

iOO.000 0 i00.OOO 0

L. E. radius: 0.720

Slope of radius through L. E.: 0.084

NACA 64-212

U_er surface Lower surface

Station Ordinate Station Ordinate

o o 0 o

.418 1.o25 .582 -.925

•659 1.245 .841 -1.i05
1.147 1.593 1.353 -1.379

2.382 2.218 2.618 -1.846

4.868 3,123 5.132 -9.491

7.364 3.815 7.636 -2.967

9.865 4.386 lo.135 -3.352

14.872 5.991 15.128 -3.9a5

19.886 5.968 _9.114 -4.376

24.903 6.470 25.097 -4.680

29.921 6.815 3o.o79 -4.871

34.941 7.008 35.099 -4.948

39.961 7.052 40.039 -4.910

44.982 6.893 45.O18 -4.703

50.000 6.583 50.000 -4,377

55,016 6.151 5_.984 -3.961

60.029 5.619 99.971 -3.477

65.039 9.004 64.961 -2.944

70.045 4.322 69.955 -2.378

75.047 3.590 74.953 -1.800

80.045 2.825 79.995 -1.233

85.038 2.054 84.962 -.708

90.027 1.303 89.973 -.269

95.013 .604 94.987 .028

ioo.ooo o IOO.OOO 0

L. E. radius: 1.0_O

Slope of radius through L. E.: O.O84
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TABLE I.- CONTINUED

[Stations and ordinates given in percent of airfoil chord]

NAOA 65-2o6

llpF_r surface Lower surface

.......Station Ordl_te

0 0

.46o .524
7o6 .642

1.2oo .822

9.h4& 1.140

4.930 1.625

7 437 2,012

9.Q3_ 2,3h0

la.939 2.869

19 •Qk5 3. 277

2&. 953 3. 592

29.962 3,82&

3k. 971 3,982

3 o . 981 4.069

44.990 4.078

50,o00 4.oo3

5%o09 3.836

f_%.O16 3,589

65.022 3.276
70.026 2.907

7%028 2.589

80. 027 2,029

85.024 i. 538

Oe.O18 1,027

95.oo9 ,511

IOO.O00 0

0

.ShO I -.524

• 79g 1 -.902

1.see I -.608

2.556 I -.768

5.061 t -.993
7.5,53 ] -1.164

10.065 ] -I. 306

15.061 ] -1.923

20.055 I -1.685
25.047 t -1.802

30,O %q 1 -1.88o

35.029 t -1.922

_o.o19 I -1.927
45.010 I -1,8_8

90.00o 1 -i.797
54. q01 { -I. 656

59.984 ] -I, hh7

6_. 978 I -i.216

69.975 I -.963

74.972 I -.699

79.973 I -.537

_M976 I -.19

_9. 982 I .007

94.991 I .]21

i00. OeO I 0

T. W. rndlus: 0.2&O

Slope of radius thro_h L. g.: 0.084

NACA 65-208

Up,per

Station

0 i

._47

.651

1,184

2._26

h.qlH

7._15 :

9.91;

14.91_

19.927

24.9y_

29.9h9

34.961

39- 97 _

M_. _,

50.ooo

55.o12
60.022

65.029

7o.c34

75.o37

Eo.o36

85.o31

9'3,023

95.012

1630,000 i
.......... I

surface Tmwer surface

Ordinate ] Statior r_rdinate

0 0 0

•675 -553 --575

•82h .809 -.685 •

1.050 1. 316 -.836

1.451 2.574 -i.079

2.059 5.082 -i.427

2.5ho 7.545 -1.692

2.948 I0,085 -I.91L
3.6o3 15;081 -2.257

k.107 20.073 -2,515

4.493 25.063 -2.7o3

4.777 3o.o51 -2.833

4.968 35.039 -2.908

5.069 40.026 -2.927

5.069 45.013 -2.879

_.960 5( .000 -2.7_t_

5.733 5_,988 -2,543

5.408 59.978 -2.266

5.001 64.971 -1.941

3•525 69.966 -i. 581

2.991 74.963 -t. 201

2.413 79. 964 -. 821

1.8O4 8_. 969 -.458

i. 181 89. 977 -.147

.568 94.988 .065

0 lOO.OOO 0

L. E. raalus: 0.$3&

Slope of radius through L. E.: 0.084

NACA 65-210

_per Surface Lower surface

St_t_on Ordlnate _tation | Ordinate

o o o i o

• _35 .819 .565 I -.719

•678 .999 .822 -.859

1.169 1.273 1.331 -i.059 ]
2.4o8 i.757 2.59e -I. 385 I

.898 2,491 5 • 102 -i. 859

7.394 3.069 7.6_6 -2.221

o 89k 3.555 10.106 -2. 521

14.899 4.338 15.101 -2.992

19.909 4.93_ 20.091 -3.346
2k-921 5.397 25.079 -3.607

29.936 5.73) 30.06_ -3,788

34.951 5..°54 35. 0h9 -3,894

39.968 6.067 4o.032 -3.925

&h.984 6.058 45.016 -3.866

5_.000 [ 5 915 50.000 -3.7o9

55 "Ol_ ] 5 I_5 54-986 -3.435

6o.o27 5.217 59-973 -3.075
65.036 4.712 65.964 -2.652

i 70"043 k. 12,q 69.957 -2.18_

75.045 3-479 74-955 -1.689
{ 8o,:9,4 _.783 79.956 -i.191

_. 85.03_q 2.057 84,962 -.711

i _. 028 i. 327 89,972 -.293

, 95.01_ .622 94.9_6 .SlO
IOO. c_D 0 i00.000 0

T,. E. radius: 0.687

Slope of radius throl_h L. F..: 0.084

NACA 65-212

Lower surface

Statlon0_iFrO_l. :reIOrdlnate Statlon0.577ltO_dinateo-*870

.665 ] L176 I .836 I -Lo36

1.154 11.491 I 1.3h6 ] -1.277

2._9_ 2.0_ I 2._9 | -1.686

4.878 _.919 I 5.122 l -2,2_7

7.373 ] 3.593 [ 7.627 | -2.7_5

9.8_73 1 U'_@ l 10.m7 l -3._8

14.879 [ 5.073 _ 15.121 | -3.727

19.89O [ 5.770 I 2o.11o 1 _.178

24.9o6 I 6.3_ I 25.094 [ -4.5zo

29.923 [ 6.687 [ 30.077 |-h.7_3

34-952 1 6-942 I 35.058 |-4.882

39.961 I 7.068 ] h0.039 |-4.926

k4.981 ] 7.04_ [ 45.019 [-4.855

50,000 [ 6.8_ I _o.oee l-4.654

I I 54 3.  317
• oN I 6.OlU I 59.968 [-3.872

65.053 _ 5.511 I 6_'.957 |-3,351

70.050 [ k.715 I 69.950 |-2.771

75.053 I 3.95 _ I 75.947 [-2.164
80.o52 [ 3.14o [ 79.948 /-1.5_8

85.C4_ 2.m/ I 84,o55 | -._
_._ I 1._3 I e9._ l .L29

95.017 _ .672 ] 9_.983 [ -,o_

l°°X°° L°

L. E. radius: 1.000

Slope of ra_llus through L. E,: 0.084
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TABLE I.-

[Stations and ordinates given

NACA 66-206

Upper surface

Station Ordinate

0 0

.461 .509

.707 .622

1.202 .798

2.447 1.102

h.941 1.572

7.439 $.947

9.939 2.268

14.942 2,791

19,947 3.196

24.954 3.513

29.962 3.754

34,971 3.929

39.981 4.042

4k.990 4 ,o95

5o.0oo 4 .O88

55.009 4 .o2o
63.o18 3.886

65.026 3.641

7o.o31 3.288

75.034 2.848

80.034 2.339

85.031 1.780
90.023 1.182

95.O12 .578

iOO.000 0

L.E. radius: 0.223

Lower sur f&ee

Statlom Ordinate

0 0

•539 -.409

•793 -.4_2

1.298 -.984

2-553 -.730

5.059 -.94o

7.561 -1.099

io.o61 -1.234

15.o58 -1.4k5

20.053 -1,604

25.046 -1.723

30.038 -1.810

35.029 -1.869

4o.O19 _1.900
L5.olo -1.905

50.OOO -1.882

54.991 -1.830

59.982 -i.744

64.974 -1.581

69.969 -1.344

74.966 -I.0_8

79.966 -.7h7

84.969 -.434

89,977 -.1N_

94.988 .054

i00.O00 0

Slope of radius through L.E.: 0.084

CONCLUDED

in percent of airfoil chord]

NACA 66-208

Upper surface Lower surface

Station Ordimate Station Ordinate

O O

.449 .658

• 693 .803
1.186 i.o2_

2.429 1.403

4.922 1.987

7.419 2.453

9.918 2.851

14.922 3.498

19,929 3.996

24.939 4.384

29.95O h.681

34.962 4.895

39.974 5-033

44.987 5.095

5o._ 5.o81

55.o12 4.991

6o.o24 4.811

65.o3_ 4._89

70.o41 4.034

75.oh5 3._69

80.045 2.823

85.0_0 2.119

90.030 1.38o

95.o16 .654

1oo.ooo o

L.E. radius: O._ii

O 0

• 551 -,5_

.807 -.663
1.314 -.810

2.571 -1.031

5.078 -1-355
7.581 -1.6O5

10.082 -1.817

15.078 -2.152

20.071 -2.40_

25.061 -2.594

30,050 -2.737

35.038 -2.835

40.026 -2.891

45.013 -2.90"3

5O.000 -2.875

54.988 -2._i

59.976 -2.669

64.966 -2.429

69.959 -2.090

74.955 -1.679

79.955 -1.231

84.96O -.7_i _
89.970 -.3

94.984 -.o22
ioo.0oo 0

Slope of radius through L,E.: 0.O84

NACA 66-210

Upper surface

Station Ordinate

O O

._36 .8o6

.679 .980

1.171 1.245

2.&12 1.699

4.902 2.401

7,399 2.958

9.898 3,_32
14.903 _,202

19.912 4.796

24.924 9.257

29.937 5.608
34.952 5.862

39.968 6.024

_4.984 6.095

9o,000 6.074

95.016 9.960

60.030 5-736

65.042 5-332

70.051 4-759

75.056 4.071

80.055 3.289

85.049 2.445

90.037 1.570

95.O19 .724

lqO.OOO 0

L.E. radius: 0.662

Slope of radius through

Lower surface

Station Ordinate

o._ 4 o-.7o6
,821 -.84o

1.329 -1.031

2.988 -1.327

5.098 -1,769
7.601 -2.110

lO. lO2 -2.398

15.o97 -2,856
20.088 -3.20_

25.O76 -3.467
30.063 -3.664

35.048 -3.8oe

40.032 -3.882

45.o16 -3-905

5o.ooo -3.868

54.984 -3.T7O

59-970 -3-594

64.958 -3.272

69.949 -2.815

74.944 -2.281

79.999 -1.697

84.951 -1.o99

89.963 -.536

94.981 -.o92

iOO.OO0 O

L.E.: 0.084

NACA 66-212

Upper surface

Station Ordinate

O 0

.424 .953

.666 1.154

1.156 1.462

2. 395 1.991

4.883 2.809

7.379 3.499

9.878 4.Oli
14.883 4.905

19,894 5.596

24.908 6.132

29.925 6.539

34.943 6.833

39.962 7.018

44.981 7.095

5o.ooo 7.o68

55.019 6.931

60.036 6.659

65.o51 6.169

7o.o61 5._87

75.o66 4.661

80.O65 3.739

85.057 2-755

90.043 1.750

95.022 .789

100.000 0

L.E. radius: 0.952

Lower surface

Statlon T Ordlnat_

O I 0

.576 1 -.853

•83 h I -I.014

1.3 _4 I -1.248

2,605 t -1.619

5.117 I -2.177
7.621 1 -2,611

10.122 1 -2.977

15.117 [ -3.559
20.1061 -4004
25.092 1 -4.342
30.075 1 -4.595

35.057 I -4.773

40.038 1 -h.876

_5.O19 1 -4.905

5O.0OO I -4.862

54.981 1 -4.741

59.96h I -4.517

64.949 I -4.1o9

69.939 I -3.543

74.934 1 -2,871

79-939 _ -2.147

84-943 1 -i.409

89.957 1 -.716

94.978 1 -.157

i00.000 I 0

Slope of radius through L.E.: 0.084
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C

NACA 63-=°06 NACA 65-206

C

NACA 63-208 NACA 65-208

NACA 63-210

NACA 63-212

NACA 65-210

NACA 65-212

NACA 64-206 NACA 66-206

NACA 64-208

C

NACA 66-208

NACA 64-210 NACA 66-210

NACA 64-=712 NACA 66-212

Figure I.- NACA 6-series airfoil sections having uniform-load type

(o = LO) mean camber line.
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F7gure 2.-Voriofion of Reynolds number with Moch number,
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.14

.08

.06

D4

.02

_- Vm_X_M of section d_g co_ff_i_nt wlM Mm_k r_m_ _

NACA 84-_0 _irfolL

LO

#O,-VoHo['/_ of _f'l_ _ coeffici_n/ _ _ _b_r for

NACA 64-2/2 ot_fo_
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Figu_ IL-Vorioh_ of section drag cmefflclenf with Much number for /hG •

NACA 65-206 olrfoiL
Figure I_,-Voriotton of section drug coefficl_t with Much number for

NACA 65-208 oirfo#
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I

I

.5 .8 2' .8 9 10

MoCh number, M

drag coofflcleM with Moch number for /he
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Moth rm_ber, M Moc_ number_ M

Figcl_ 19.-77)e vO_iof_ of ,ll_#Y_,l lift ceeff#_mnf tith Much number for Figure _O.-The vorio#ion of section lift coefficient with Moch number for

the NAGA 53-_06 oirfoil. #he NACA 63-208 olrfotl.

'=,.- ,, I _l_i .,+_.!_, "Ii ill -i m lie ._,oi'-_ iiii lJ__ it';):,-:_ ,o<-:<_--LI '<__oI

i ! _ 2 ! .i -_i ,

_ _-' t I\T td .-.--o!i i i r I t i 1 1 1] 7_i ! I

I t-4 o,L= U
I"_ "L_ L-L_LL_iI 11 I i I I/.l.J_
!+,t;+"l1-4 _,_ _rm:, ,__--_.+.L!/_/1_ !_1

-+-'+-",1 " i_t _ l

4 S' A 7!._ .j, ] t j _id.-I! I ]::] _ !l j_o
Moch numbs 4 M Moch _uftl_er, M

Figure 2/.-The roe/or/on of section lift coefficient with Moch number for Figure 22.-Ths relic#ion of section /if# coefficient with Moch _umber for
##','e NACJ 63-1710 oirfoiL the NACA 63-212 oirfoiL
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i

/.0

.6

0

"_2_-I__
=4

-i.°2"__ .._ .,_ .5 .e .r
nu_M

I " i tt.t!o,,_,,, j I
_LL -._: - o-6 _-

_j j _L,

_I _ _ ____

i: I_

Moch ,number, M

Fiqure 23,-Voriotion of section lift coefficient with Moch number for till

NAOA 64-_06 alrf_L
Fi_lre 24,-Voriol_on of section lift coefficient with Mach number for /he

NACA 64-20B oirfoi_

I.£

I.C

.8

.6

¢,

•_ o

"_6

-.e_

Figure BS.-VorioWon of sec#on lift coefficient with Moch numl;_t for the

NAC,4 64-_J0 otrfoiL

": -- i , i-- _ - -_:._ I-[- i.., 1 , '

g ,g t_ ,--- .6 .--_
_, _L_ ]_ J

i ill I bii-i-i .... _ "
-[ ] i I ] _ J |;_ _ t I J. I I 1 J !

Moch number, M Moch number, M

FiFure 26:Vorlo#on of section lift coefficient with Moch number for the

N_C_ 64Ipf_ o#fotl.
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0 -5.5 J ! [_., o@9 t

,_1_-/.5 _ L- t2 J'-_ _--

,,orv 6.5._- _,_ _ I.OI__I_

= i!J--

Moch number, M

figure 27.-Votiotion of section lift coeffic/#M wHh Moch number for /t_

NACA 65-_06 oicfoiL

• !o
Moch ,_mb_e, M

Figur_ 28.-V_riotlon of oechbn #ft coeffid#M with /l_./t r_ml_r For th_

NACA 65- _08 oirfo/Z

. _,-e. g.. I t _ i_ I H Io or._T u O _ f l I I I ' ix-2 4_--._

0 2 p-_ ' ' = _ 0 2
_4' : . l,k LJ e!s 4_

,8 v 67- ! _ki;',: i I iv _4_+i D S _

-I

._ _ _o

Moch number_ M Moch numl_r_ M

Figure29.-Vor/otion of sect/on lift coefficient with Moth number f_ the Figure 30.-Voriofion of section lift coeff/cieM with M_ch numb_ for the

NACA 65-210 oirfoil. NACA 65-_12 oirfoiL
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.3 _ ....

.2 x -2

,a

.6 .7 B .9

Moch number, M

Figure 35.-The voNoflon of section moment coefflclenf with Moch number for
the NACA 63-206 oirfoil

3 4 5 6 7

Moch number, M

Figure 36.-The voriotion of section moment coefficient wlfh Moch number for
the NACA 63-208 oirfoiL

"9 NACA -

Moch number, M

Fi_/ure _8.-The vorlotlon of section moment coefficient with Moch number for
the NACA 63-212 oirfo#,
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number for

Moth number, M

Fibre 40.-Voriotion of section _t coefficient with Moch number

for the NACA 64-_08 oirfoii

.1

4-

It,

-J

o_ I _ __

o+:._

ao __
X_ ...

4

I

Fl#ure 41.-Voriofion of section mome#l# coefficient with Mocil number fo_

#he NACA 64-_10 oirfo#_
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i - _,,'=_ - "_[ .i___L " '?2o"'2 1 ,I
, _,',_ -- _., i!_

i

,, ! I
.,r 6 _ ,7 ._ .9 /.0 .;" .e - _-9- zo

Moth number, M Moc_ number, M

Filrere 4_-Voriofion of $ecfion moment coefficient with Moch mallber for

#he NACA 64-21_ o/trolL
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7-, :! 'iil "-- 7"--..NACA/
6 .8 ,9 ZO . . .6 ? _9 _/,0

Moch #umber, #4 M_ch rlmber #4

Fi_we 43..-Vm'/oflon of sec#on moment coefficient with Moth number for Ftgure 44,-Voriofion of sic#ion /Ix]men/ coefficient with Moch m_mber for

hie NACA 65-206 O#fo4L . for NA1CA 65-208 _rfoJL

.3

_:_ -

.,0==

o

-4

-'!£_ .5

i I+-,1 ]
: : ] s_,- -,,_-=' -;= 7>_t

i _ l.t /

I I _i 1_

.7 .8 .9 LO . .

Moch numblr, M

F_,_ure 45.-Vorio/ion of section moment c_efficJ_n# with Moch _mitt for

the NAI_A 65-B10 olrfoll.

, "_, r_

MOCh number,, M

Figure 46.-Pbriof/on of sic#ion moment coeff_ienf _#th Moch #umber for

#hi NAOA 65-_M oirf_l.
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!O B

lJ,

Figure 47,-Vorioh_ of see!ton moment cowfficienf with Moch humor for

the NACA 66-206 otrfoiL

Figure 48.-Voriotion of section momen! coefficient with Moch number for

the NACA 66-_08 o#foii

!o-_
_t+_ 4 ,

!ool.

',_ 6 i
;1:> 8 I

!'

FTge_re 49-Vo_tkg_ of $eclJon moment coefficient with Moth number for

the NACA 66-_10 oirfoiL

• ¢' •_×-/_ l F_- I '

!! _t _ i--1 I l ', ! I ,1l "_
" ! "e _F--" i +q F " _----:-]I i i' !q U

. kill _ '-1 l I ! , ! I t !

tlL _! . ' i

' r-ti t t!,t
Moch number Moch number, M

Figure 50.-Voriohon of section mo,'nonf coeffic/bn! with Moch number for

the NACA 66-_M oirfoil.
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Fi_# 53.-Tlhe vorlofion Of saeclion drog coefficient with section lift

co#fficient for the NACA 63-210 oirfo_

q? r,w ] qTY-I ]..:TIT- T_ "_iI:T: L_I I _. ,
' . --, I ] , IO _ _J'd ] L J ,. "/,1\.....71/,/ --!,i'!.',..
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70 _ .

x _,_.,,p-_!2 .3 I or'.'s.i,,-_I: :,_w--_

t.,!: - ,_l , or ._ 'V , -
I ' I 1.60 , /J "x_ , 60

i, _r--__l-'-:_'J ' - or- --"-_- ---

! -T_-_ __ /_. :q .... _ _-_
i " : r_O, _ ; ' L--'Vll ' '; 0 ..1 I ! I I _0 r _ J , i

i ! I _ 40, J i : • _ 40 "

30, _ :. _ t t : , ' .30 '

Sect_ /_f C_ffic_t, Cl Secf_en k_t coeH_enf, cI

Figure 54.-T&e vo_iolio_ of S_CIiO_ _ coofflci_nf with section lift
coef_i_nf fo_ t_e NACA 63-_1_ OirfO_Z
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Figure 99.- Voriotion of section drog coefficient with Moch number

ot the design lift.
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(o) NACA 6-series oirfoil sections ot high lift coefficients.
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