NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

N-3080

TECHNICAL NOTE 3080

MEASUREMENT AND ANALYSIS OF WING AND TAIL BUFFETING LOADS

ON A FIGHTER-TYPE AIRPLANE

By Wilber B. Huston and T. H. Skopinski

Langley Aeronautical Laboratory Langley Field, Va.

TECHNICAL LIBRARY AIRESEARCH MADUFACTURING CO. 9851-9951 SECULVEDA BLVD. LOS ANGELES 45, CALIF. CALIFORNIA

Washington

May 1954

37

CONTENTS

4. . .

Page
SUMMARY
INTRODUCTION
SYMBOLS
AIRPLANE AND INSTRUMENTATION 4 Airplane 4 Instrumentation 5 Standard instruments 5 Strain-gage installation 5
TESTS
METHOD OF OBTAINING DATA 7
RESULTS
ANALYSIS AND DISCUSSION OF BUFFETING-LOAD DATA
CONCLUDING REMARKS
APPENDIX A - SUMMARY OF STATISTICAL PROCEDURES 29
APPENDIX B - LOADS ON A SIMPLIFIED WING BUFFETING MODEL
REFERENCES
TABLES
FIGURES

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3080

MEASUREMENT AND ANALYSIS OF WING AND TAIL BUFFETING LOADS

ON A FIGHTER-TYPE AIRPLANE

By Wilber B. Huston and T. H. Skopinski

SUMMARY

The buffeting loads measured on the wing and tail of a fightertype airplane during 194 maneuvers are given in tabular form, along with the associated flight conditions. Measurements were made at altitudes of 30,000 to 10,000 feet and at speeds up to a Mach number of 0.8. Least-squares methods have been used for a preliminary analysis of the data.

In the stall regime, the square root of the dynamic pressure was found to be a better measure of the load than was the first power. The loads measured in maneuvers of longer duration were, on the average, larger than those measured in maneuvers of short duration. Considerable load alleviation was obtained by a gradual entry into the stall. In the shock regime, the magnitude of the load at a given speed and altitude was determined by the extent of the penetration beyond the buffet boundary. For a modification of the basic airplane in which the wing natural frequency in fundamental bending was reduced from 11.7 to 9.3 cps by the addition of internal weights near the wing tip, a 15-percent decrease in wing loads and a similar percentage increase in tail loads resulted.

The loads on a simplified wing buffeting model are examined on the assumption that buffeting is the linear response of an aerodynamically damped elastic system to an aerodynamic excitation which is a stationary random process. The agreement between the results of this analysis and the loads measured in stalls is sufficiently good to suggest the examination of the buffeting of other airplanes on the same basis.

INTRODUCTION

An early investigation of buffeting which utilized the North American F-51D airplane (ref. 1) provided basic information on the flight conditions under which buffeting was encountered and provided measurements of the magnitude of the buffeting loads on the horizontal tail. Speed and altitude were shown to be primary variables, and the load data were reduced to dimensionless coefficient form by means of the product: Dynamic pressure × Tail area. It was hoped that such a buffeting-load coefficient might be applicable to other airplanes, but the assumption that a form of coefficient common in steady-state aerodynamics would be applicable to a dynamic phenomenon was recognized as requiring further investigation.

Since the completion of the tests of reference 1, a number of other experimental flight and wind-tunnel studies have been conducted. The effects of airfoil section and plan form on buffeting have been investigated. Buffet boundaries of a number of specific airplanes have been obtained. In several instances wing and tail loads have been measured during buffeting with special research airplanes. An analytical approach has also been made to the buffeting-loads problem, based on methods developed in the study of stationary random processes (see ref. 2).

Upon completion of the tests of reference 1, plans were made to extend these tests of the same airplane to measure wing loads and tail loads simultaneously during buffeting, and, at the same time, to measure the effect of maneuver rate and the effect of penetration beyond the buffet boundary. In addition, the altitude coverage was to be improved in order to resolve more clearly the effect of this variable and, since it was thought that structural frequency might also be a significant variable, provision was made to modify the wings for several tests in order to measure some buffeting loads with a reduced wing frequency.

The purpose of the present paper is to report the results of these extended flight tests and, especially, to report the magnitude of the buffeting loads measured. The basic load data involving 194 runs are given in tabular form, together with associated flight conditions. The results of preliminary studies which illustrate certain trends in the data are also given, but this analysis is not intended to be definitive. Although the present tests do not cover either the configurations or the speed range of greatest current interest, some of the variables are covered more extensively than in other tests. Stall buffeting, in particular, which will probably be common to all airplanes whatever the configuration, is extensively covered, and it is believed that all the data may be of value to those who are interested in the prediction of buffeting loads. The results of an analytical study in which the methods of generalized harmonic analysis are applied to a simplified wing buffeting model are given in an appendix.

SYMBOLS

(Note: Symbols used only in appendixes are defined where they occur.)

NACA TN 3080

А	aspect ratio, b/c
А, В	constants used in tail-load equations
a, b	constants used in wing-load equations
Ъ	wing span, ft
$(C_{L_{\alpha}})_{\text{eff}}$	effective slope of lift curve for damping of small oscilla- tions of a stalled wing in first bending mode
$c_{\mathbf{N}}$	airplane normal-force coefficient, nW/qS
$\overline{c_n^2}$	mean-square value of coefficient of section-normal-force fluctuations in buffeting
c	average wing chord, S/b
f	frequency, cps
hp	pressure altitude, ft
k	wing stiffness, lb/ft
L	root structural shear load due to buffeting, lb
ΔL	amplitude of maximum root-structural-shear fluctuation due to buffeting encountered during run, 1b
М	Mach number
n	normal load factor
Р	penetration beyond buffet boundary (defined in eq. (13))
q	dynamic pressure, lb/sq ft
r	coefficient of linear correlation
S	area, sq ft
S	standard error
t	time, sec
Δt_{load}	time between onset of buffeting and occurrence of measured load ΔL

3

NACA TN 3080

V true	airspeed,	ft/	sec
--------	-----------	-----	-----

W airplane weight, lb

α angle of attack, radians

 ω circular frequency, $2\pi f$, radians/sec

 ϵ residual, that is, a measured value minus a calculated value

Subscripts:

av	average	over	class
----	---------	------	-------

B onset of buffeting

BB buffet boundary

E end of buffeting

L left

max maximum

n natural

R right

T tail

W wing

Mean values are designated by a bar (as $\overline{c_n^2}$); time differentiation by a dot (as $\dot{\alpha}$).

AIRPLANE AND INSTRUMENTATION

Airplane

The airplane used for the present tests was the same North American F-51D airplane with heavily reinforced horizontal tail, fuselage, and wing used for the investigations reported in references 1 and 3. A three-view diagram of the test airplane is shown in figure 1; a photograph, in figure 2.

4

The airplane is equipped with a Packard V-1650-7, 12-cylinder engine and a 4-bladed Hamilton Standard Hydromatic Propeller, 11 feet 2 inches in diameter. The propeller-to-engine gear ratio is 0.479 to 1. Geometrical data for the airplane are listed in table I. The natural structural frequencies of various components as determined by ground vibration tests are listed in table II. In this table two sets of values of wing natural frequency are shown. One set applies to the basic airplane configuration and to the greater portion of the tests reported herein; the other set applies to the modified airplane, that is, the airplane with 100-pound weights added internally near the wing tips in order to lower the wing natural frequency in the fundamental bending mode from 11.7 to 9.3 cps.

Instrumentation

<u>Standard instruments.</u> Impact pressure, pressure altitude, and normal acceleration were measured as functions of time with standard NACA recording instruments. The airspeed head was mounted on a boom extending 1.2 chords ahead of the leading edge of the wing near its right tip, and the NACA airspeed-altitude recorder was located near the boom to minimize lag effects which are believed to be negligible for the rates of change of altitude or airspeed encountered. The airspeed system was calibrated for position error up to a Mach number of 0.78; this calibration made possible the determination of the flight Mach number to within ± 0.01 .

Airplane normal force was measured with an accelerometer mounted near the airplane center of gravity. The sensitive element had a natural frequency of 16 cps and was air damped. The damping was adjusted to 0.6 of critical at sea level, except during the tests with the modified wing, when the damping was changed to 0.6 of critical at a pressure altitude of 30,000 feet.

Strain-gage installation .- Measurements of structural shear on the wing and horizontal tail were made by means of wire resistance strain gages wired in four-active-arm bridges and attached near the roots of the principal structural members. Shear bridges were attached to the spar webs and bending-moment bridges, to the spar flanges. The entire installation was calibrated by established methods. (See ref. 4.) For the shear on a wing panel, this calibration resulted in two combined strain-gage channels. One of these combined channels was principally sensitive to shear and secondarily sensitive to bending moment; the other channel was primarily a measure of bending moment, and secondarily sensitive to shear. The outputs of these two channels, recorded as a function of time on a multiple-channel recording oscillograph, could be combined numerically to obtain the wing-panel structural shear. The shear on the left and right panels of the horizontal stabilizer was

obtained from the outputs of the left and right combined strain-gage channels which were sensitive to shear. This strain-gage system represents an improvement over that used in reference 1.

The recording oscillographs used employed galvanometer elements with a natural frequency of 100 cps which were damped to about 0.6 of critical damping. This combination of damping and natural frequency insured an approximately linear response for the buffeting frequencies expected. Special care was taken to balance the galvanometer elements so as to keep any possible acceleration effects within the reading accuracy. Variations in sensitivity due to voltage changes were eliminated by provision of a calibrate signal on the record for each run, and the stability of the strain-gage installation was checked at intervals by application of known loads to the wing and tail. The overall experimental error in incremental values of wing root shear obtained from the strain-gage-oscillograph system is estimated from the calibration as less than ± 130 pounds; while for the incremental values of shear on the right and left horizontal stabilizer the estimated error is of the order of ± 80 pounds.

TESTS

All tests were made with the airplane in the clean configuration, and the power setting, at low Mach numbers, was that required to attain level flight at the altitude of test. In tests at Mach numbers greater than the level-flight capabilities of the airplane, normal rated power was used. Of a total of 194 runs in which buffeting was measured, 150 were made with the basic airplane and 44 with the modified airplane.

With the basic airplane, gradual turns to the stall were performed at nominal test altitudes of 30,000, 25,000, 20,000, 15,000, and 10,000 feet. Pull-ups were performed at 30,000, 25,000, and 20,000 feet. The range of Mach numbers covered was 0.34 to 0.792 at 30,000 feet and 0.23 to 0.41 at 10,000 feet.

With the modified airplane, the added wing-tip weights introduced local stress concentrations which restricted the maximum allowable load factor for buffeting flight to 4, and limited the maneuvers to pull-ups. With the airplane at 30,000 feet, buffeting cannot be obtained at speeds between M = 0.54 and M = 0.73, without exceeding the limit load factor of 4; while at 10,000 feet, buffeting is not encountered at speeds between M = 0.32 and the maximum permissible diving speed which for the standard North American F-51D airplane is a true airspeed of 537 mph. For the modified airplane, buffeting was, therefore, obtained by performing pull-up maneuvers at 30,000 feet and 10,000 feet at speeds limited by the foregoing considerations.

METHOD OF OBTAINING DATA

The procedure and definitions used in presenting the results of this investigation are best illustrated by referring to the typical timehistory records shown in figure 3. The accelerometer record (fig. 3(a)) was used to establish the time for the beginning $t_{\rm B}$ and end $t_{\rm E}$ of buffeting, as well as the duration of buffeting. These values were obtained simply by observing the point at which there was a distinct change in the character of the accelerometer trace. The airplane normalforce coefficient CN was obtained from the accelerometer and airspeed records. Values of CN during buffeting were based on a mean line faired through the fluctuations of the accelerometer record. The airplane normal-force coefficients at the beginning $C_{\rm N_{\rm P}}$ and end $C_{\rm N_{\rm F}}$ of buffeting were determined and corresponding values of Mach numbers $M_{\rm PR}$ and $M_{\rm F}$ were also noted. In determining all values of airplane normalforce coefficient, the value of airplane weight W used for each run was the take-off weight corrected for the fuel consumed prior to the start of the run. The maximum rate of change of airplane normal load factor *n* prior to the onset of buffeting was determined for each run, as in figure $\mathcal{J}(a)$, and the maximum rate of change of angle of attack per chord traveled $\frac{dc}{V}$ was estimated from \dot{n} on the assumption that the speed remains constant and

$$\dot{a} = \frac{dC_N/dt}{dC_N/da} = \frac{\dot{n}W}{qS(dC_N/da)}$$

and hence that

$$\frac{\dot{\alpha}\overline{c}}{V} \approx \frac{\dot{n}}{n_{\rm B}} \frac{C_{\rm N_B}}{dC_{\rm N}/d\alpha} \frac{\overline{c}}{V}$$

In this relation, a nominal value of 5.3 was used for $dC_N/d\alpha$.

A typical oscillograph record for obtaining wing and tail loads is shown in figure 3(b). The six traces identified with numbers in this figure were employed. Traces 1 and 2 are measures of root shear on the right and left horizontal tail, respectively. Root shear on the left wing panel is measured by a combination of the deflections of traces 15 and 17; on the right wing, by a combination of traces 5 and 16. Buffeting loads, which are incremental loads, were determined from the peakto-peak deflections of these traces (designated δ_1 , etc., in fig. 3(b)). The buffet-load values ΔL reported for a run are one-half of the largest peak-to-peak fluctuation in each of the four loads encountered during that run. The time of each load maximum was recorded and is reported as the incremental time Δt_{load} following the onset of buffeting. Through use of a timer common to the standard flight instruments, values of M, C_N, and q corresponding to each buffeting load were determined.

RESULTS

Buffet Boundary

The data acquired in the present investigation of the basic airplane are incorporated in table III. For the modified airplane the data are included in table IV. Tables III(a) and IV(a) deal with the operating conditions under which buffeting was first encountered and under which it ended. In addition to the numerical data, a pilot's note column is included. In most instances the pilot estimated the intensity of buffeting, in one of four categories: very light, light, moderate, or heavy. These comments have been designated by the letters vl, l, m, and h. The pilot's notes on the direction of the roll-off after the stall are also included, left and right roll being designated by L and R, respectively, while no roll is indicated by N.

The flight conditions for the onset and end of buffeting given in tables III(a) and IV(a) are summarized in plots of airplane normal-force coefficient against Mach number in figures 4 and 5, respectively. In figure 4(a) a buffet boundary for the onset of buffeting is also shown and two labels "Stall regime" and "Shock regime" are included. These labels denote speed regimes in which the flight characteristics of the airplane differ, and thus speed regimes in which the buffet boundary was obtained in different ways. For Mach numbers below about 0.65, buffeting was usually encountered in an accelerated stall maneuver; a maximum value of airplane normal-force coefficient was reached; and controlled flight at still higher load factors was not then possible. In this stall regime the value of $\,C_{\rm N_{\rm R}}\,$ for the onset of buffeting varied with Mach number and also was generally higher in pull-ups than in turns. The increase can be associated with the abruptness of the stall entry, as measured by the largest value of $d\bar{c}/V$ reached prior to the onset of buffeting. The buffet boundary shown for the stall regime in figure 4(a) was obtained from faired cross plots of $C_{N_{\rm P}}$, М, $\dot{\alpha c}/V$, greatest weight being given to the data for 30,000 feet, and and corresponds at each Mach number to the value of $C_{N_{\rm B}}$ for $\dot{\alpha c}/V = 0$. The difference between this boundary and the actual $C_{N_{\mathrm{P}}}$ at the onset

NACA TN 3080

of buffeting is plotted as a function of $\alpha \overline{c}/V$ in figure 6 for the data from altitudes of 30,000, 20,000, and 10,000 feet. The increment in normal-force coefficient is analogous to the increment in the dynamic value of the maximum lift coefficient as compared to the static value, but, because of the approximate nature of the relation between accelerometer reading and rate of change of angle of attack, a more detailed study which might include the effects of Reynolds number has not been attempted. For this reason also, no attempt has been made to specify a variation of buffet boundary with altitude, although the possibility of such a variation is suggested by a comparison of the plots for 30,000 feet and 10,000 feet in figure 6.

For Mach numbers above about 0.65, buffeting was encountered during diving turns or in pull-outs from dives. The onset of buffeting occurred at values of C_N well below maximum lift, but controlled flight at normal-force coefficients well above the value for the onset of buffeting was feasible. The buffet boundary shown in figure 4(a) above M = 0.64 was obtained by fairing through the observed values of C_{N_B} , greatest weight being given to the data for 30,000 feet.

The buffet boundary of figure 4(a), based on data for the onset of buffeting, appears to define a transition from steady to unsteady phenomena. This boundary, which has been placed in figure 4(b) for comparison, does not appear to define the transition from unsteady back to steady conditions. The data for the end of buffeting represent, however, the flight conditions on final subsidence of oscillations in the structure. In the shock regime, when buffeting persisted to values of C_N below the buffet boundary and the return to level flight from the maximum load factor was rapid, the persistent fluctuations appeared to differ in character from the rest of the record, resembling the subsidence of a damped oscillation from which the excitation has been removed. When the approach to the boundary was at a slow rate (generally accomplished by a loss of speed at nearly constant load factor), the end of buffeting occurred as the boundary was crossed. The buffet boundary above M = 0.65 as defined by the onset of buffeting may, therefore, represent a distinct boundary below which a buffeting excitation is not present.

In the stall regime, values of ${\rm C}_{\rm NE}$ in almost all instances are below the buffet boundary. Although the persistence of structural oscillations may be a factor in this case also, the character of the fluctuations indicates that buffeting, once encountered, is maintained to values of $C_{\rm N}$ reached in the stall recovery which are well below the buffet boundary.

The buffet boundary for the basic airplane, figure 4(a), has been plotted in figure 5(a) for comparison with the data for the modified

airplane. The boundary for the basic airplane appears to represent the modified airplane reasonably well. The two points for $C_{\rm N_B}$ at the lowest Mach numbers are for maneuvers at 10,000 feet, and may represent a Reynolds number effect, but enough data to establish a consistent trend are not available.

Wing and Tail Buffeting Loads

The wing buffet loads associated with the runs of table III(a) and IV(a) are given in tables III(b) and IV(b); the tail buffet loads are given in tables III(c) and IV(c). There is also listed a quantity ΔC_N , the penetration beyond the buffet boundary in terms of mean airplane normal-force coefficient, used in the analysis of some of these data.

The wing and tail buffet-load values for the basic airplane given in tables III(b) and III(c) are shown in summary form in figures 7 and 8; the data for the modified airplane are shown in figures 9 and 10. In these figures the variation of the loads on the left and right surfaces with Mach number is shown for each of the nominal test altitudes. Turns are distinguished from pull-ups.

In the absence of any accepted theory relating the magnitude of the loads in buffeting to the flight conditions and the characteristics of the structure, the analysis of the load data of tables III and IV has necessarily been of a somewhat qualitative nature, involving both general regression studies and the fitting of regression equations to the data by means of least-squares methods. The results of this study are incorporated in the following section.

ANALYSIS AND DISCUSSION OF BUFFETING-LOAD DATA

When the buffeting-load data of tables III and IV are plotted against Mach number for different altitudes, the large amount of scatter in, for example, figures 7 and 8 makes it difficult to assess the effects of both speed and altitude and suggests that other factors may be significant. As shown by the difference between the data for turns and pullups in figure 7(a), one such factor is the abruptness with which the stall is entered. A number of studies have been undertaken in attempts to identify other significant parameters. In these studies use has been made of the usual methods of regression analysis, including correlation studies, graphical studies, and the fitting of regression equations by least-squares methods. The form of these equations was inferred from the graphical studies or in some instances could be based on analytical In these studies the loads measured in stalls were found to results. follow a somewhat different pattern from those measured in the shock regime.

NACA TN 3080

As a preliminary to analysis of the load data, a considerable simplification was effected on the basis of plots of left wing load against right wing load and left tail load against right tail load shown in figures 11 and 12, respectively. The coefficient of correlation shown in these plots, of the order of r = 0.9, can be regarded as a measure of common causes and suggests that the factors which produce loads of a given size are in general common to the left and right wing panels, or left and right tail surfaces. On this basis, the mean value ΔL_W of the two wing-panel loads measured in a run was taken as representative of the wing loads encountered during that run; that is, the mean wing load $\Delta L_W = 0.5(\Delta L_{WL} + \Delta L_{WR})$ and a similar mean tail load $\Delta L_T = 0.5(\Delta L_{TL} + \Delta L_{TR})$ were used to represent the loads in each run.

A scatter diagram of ΔL_W against ΔL_T is shown in figure 13. The value of the coefficient of correlation, 0.7, suggests a larger degree of independence between wing and tail loads than is the case for the left and right wing or tail surface. On this account, analysis of the wing and tail loads was carried out independently.

Regression Analysis

When dealing with quantities of data, the interrelation of more than two parameters cannot ordinarily be shown in a simple plot, but the effect of a given independent variable can be investigated if the data are grouped by classes of this variable and the average values of the dependent variable (in the present case the load ΔL) are computed for each class. Provided that each class constitutes a similar sample, the effect of other independent variables on the load may thus be suppressed, or averaged out, and the variation with the independent variable of interest established. The grouping and averaging may then be repeated for other variables. Such an analysis is, of course, somewhat qualitative, and it may be difficult to show the effect of a secondary variable in the presence of a large primary effect.

In the study of loads measured on the basic airplane, the variables investigated for runs in which the stall was reached include dynamic pressure q and the length of time spent in buffeting Δt . Also investigated was the effect of the abruptness of the stall entry. For this investigation the value of $d\bar{c}/V$ was used as a measure of the abruptness of the entry in both turns and pull-ups. For buffeting encountered in the shock regime, the variables investigated include the dynamic pressure and the increment in normal-force coefficient beyond the buffet boundary at which the load ΔL was measured. The trends shown by this study for both the stall regime and the shock regime are presented in the four parts of figure 14.

Load trends in stall regime.- Stall buffeting in the present study occurs at Mach numbers below a value estimated as 0.65 ± 0.01 . All runs in table III(a), therefore, for which $M_{\rm B} < 0.64$ and for which values of $\dot{\alpha c}/V$ and Δt could be established were included in the stall analysis. For each of the 91 runs thus available, the wing-load value $\Delta L_{\rm W}$ and the tail-load value $\Delta L_{\rm T}$ were used, together with the mean of the dynamic-pressure values, tables III(b) and III(c).

The average variation of wing load with q is shown in figure 14(a). For this plot, the values of ΔL_W were grouped into eight classes, according to the value of q; the plotted variable $(\Delta L_W)_{av}$ is the average of the loads ΔL_W in each class. For the stall regime, the dynamic pressure increases by roughly a factor of 4 (i.e., 42 to 180 lb/sq ft) while the average load increases by a factor of only 2 (i.e., 500 to 1,000 pounds), an increase which is roughly proportional to the square root of q. The dynamic pressure is thus revealed as a major parameter in stalls, but the relation to load appears to be $\Delta L_W \propto \sqrt{q}$ rather than $\Delta L_W \propto q$. This proportionality is used to examine the variation of wing loads in stalls with maneuver abruptness and with time spent in buffeting in figures 14(c) and 14(d), respectively, where plots of $(\Delta L_W / \sqrt{q})_{av}$ against $\dot{\alpha c} / V$ and Δt are shown. An alleviating effect on load associated with a gradual stall entry is indicated since, at $\dot{\alpha}\overline{c}/V \approx 0$, the loads (expressed as $\Delta L_W/\sqrt{q}$) are as much as 40 percent less than the loads measured in more abrupt maneuvers where $d\bar{c}/V \approx 0.008$ radian per chord. The alleviation is indicated in figure 14(c) to be somewhat exponential in character. With regard to time spent in buffeting, figure 14(d) suggests that on the average the maximum load encountered during buffeting increases with the total duration of time Δt spent in buffeting. From periods of less than 1 second to periods of 4 to 5 seconds, the increase is of the order of 90 percent but does not appear to be linear.

The trends shown qualitatively in figures 14(a), 14(c), and 14(d) suggest a number of equations which can be written relating wing load to various combinations of the variables representing speed, altitude, time, maneuver abruptness, and structural frequencies. Among the equations investigated for the wing loads in stalls were the following:

$$\Delta \mathbf{I}_{W} = \mathbf{a}_{1} \tag{1}$$

$$\Delta L_{W} = a_{2}q \tag{2}$$

$$\Delta L_W = a_3 \sqrt{q} \tag{3}$$

$$\Delta L_{W} = a_{\mu} \sqrt{q \log_{e}(f_{n} \Delta t)}$$
 (4)

$$\Delta L_{W} = \left(a_{5} + b_{5}e^{-\dot{\alpha}\overline{c}/0.004V}\right)\sqrt{q}$$
(5)

$$\Delta L_{W} = \left(a_{6} + b_{6}e^{-\dot{\alpha}\overline{c}/0.004V}\right)\sqrt{q \log_{e}(f_{n} \Delta t)}$$
(6)

The values of the arbitrary constants in equations (1) to (6) can be obtained by fitting the equations to the experimental data. An advantage of the least-squares method of fitting lies in the ready availability of precision measures for the constants and of the standard error of estimate of the equation. (For convenient reference, definitions of terms and a summary of least-squares procedures as used in the present investigation are included in appendix A.) The results of the least-squares analysis of the wing loads in stalls are given in table V which shows the equations, the sums of the squares of the residuals, and the standard errors of estimate of the equations, together with the numerical values of the constants and their standard errors of estimate.

Equation (1) is of chief interest for comparison purposes. The value $a_1 = 749$ pounds in table V is the mean of the 91 values of ΔL_W being analyzed. The standard error of estimate, 255 pounds, is in a sense a measure of the error involved in the simple assumption that the data on the wing buffeting loads in stalls can be represented by this mean value.

Equations (2) and (3) represent the combined effect of speed and altitude. Equation (2) is analogous to the dimensionless coefficient $C_B = \frac{\Delta L}{qS}$ which parallels the usual coefficients for steady aerodynamic forces and which has been much used in buffeting studies. Equation (3), which was proposed in reference 5 and which also follows from the analysis in appendix B, represents the combined effect of an aerodynamic excitation and an aerodynamic damping. The standard errors of estimate for these equations, 293 pounds and 226 pounds, appear to indicate that q is not so good an indicator of the size of the load as is the mean value, while \sqrt{q} is better than the mean. A dependency of load on the square root of the dynamic pressure is also in line with the indications of figure 14(a), for stalls. Superiority of the square root of the dynamic pressure (as a measure of buffeting) as compared to the first power indicates that in stalls at a given altitude the loads

would be directly proportional to the Mach number or the true airspeed, while at a given Mach number (or airspeed) the loads would vary directly as the square root of the atmospheric pressure (or density). The linear trend with Mach number revealed by the least-squares analysis is recognizable in the data of figure 7 for stalls when, as for example in figure 7(a), enough runs are available to give a representative distribution of the time spent in buffeting and the abruptness of the stall entry. The trend with pressure at a given Mach number is less evident, but for a pressure change from 628 lb/sq ft at 30,000 feet to 1,455 lb/sq ft at 10,000 feet, the corresponding load increase is clearly less than the ratio of the pressures (2.32) and more nearly the square root of the pressure ratio (1.52).

With regard to equation (4) in table V, it would ordinarily be expected that for a process in which random factors play a part, the probability of occurrence of a given value is higher for a large sample than for a small one. The indication in figure 14(d) that larger loads are encountered in stalls of longer duration is qualitative confirmation of this expectation. For a stationary random process, as outlined in appendix B, analytical results are available for determining the probability that a given peak value will occur once in a time Δt . These results lead to equation (4), and the standard error of estimate, 206 pounds, represents an improvement over equation (3). In determining the value of a_4 , the value of the frequency of wing fundamental bending (11.7 cps, table II) was used for f_n . This frequency is the one most often observed in the wing-shear strain-gage records.

The roughly exponential trend of the variation of $\left(\Delta L_W / \sqrt{q}\right)_{av}$ with

 $\frac{dc}{V}$ indicated in figure 14(c) suggested the form $be^{-\frac{dc}{V} \times Constant}$ as a measure of the effect of maneuver abruptness on the loads in stalls. This form is purely empirical and was adopted simply to account in an approximate way for the observed trend in the data. Although a value of the exponential constant could have been determined by nonlinear regression methods, reference 6, the iterations required make the determination much more laborious than the evaluation of the constants of the linear variations. Preliminary investigations having indicated a value of approximately 0.004 for the constant; this value was used in equations (5) and (6). In comparing equation (5) with equation (3) or equation (6) with equation (4), the relative magnitudes of the standard errors of estimate indicate a significant improvement resulting from inclusion of a measure of the maneuver abruptness. The relative values a6 and b6 (that is, 65.6 and -31.6) indicate that a load alleviaof tion of about 50 percent could be obtained by a gradual stall entry. Although the physical basis for this alleviation is not understood, it may be associated with a less completely developed stall in the slower maneuvers resulting from a less abrupt flow breakdown. A brief study of the correlation between the duration and abruptness of the maneuvers

NACA TN 3080

included in the analysis indicates that the larger loads in abrupt maneuvers were not explainable on the basis of stalls of longer duration, but the magnitude of the effect of abruptness indicates that this factor warrants further examination and should not be ignored in other studies of wing buffeting loads in stalls.

For the analysis of the tail loads in stalls, the equations examined include the following:

$$\Delta L_{\rm T} = A_7 \tag{7}$$

$$\Delta \mathbf{L}_{\mathbf{T}} = \mathbf{A}_{\mathbf{R}}\mathbf{q} \tag{8}$$

$$\Delta L_{\rm T} = A_0 \sqrt{q} \tag{9}$$

$$\Delta L_{\rm T} = A_{\rm 10} \sqrt{q \log_e(f_n \Delta t)}$$
(10)

$$\Delta L_{\rm T} = \left(A_{\rm ll} + B_{\rm ll} e^{-\dot{\alpha}\overline{c}/0.004V}\right)\sqrt{q} \qquad (11)$$

$$\Delta L_{T} = \left(A_{12} + B_{12}e^{-\dot{\alpha}\overline{c}/0.004V}\right)\sqrt{q \log_{e}(f_{n} \Delta t)}$$
(12)

The results of the least-squares analysis shown in table VI are for the same 91 maneuvers used in the wing-loads study. The form of equations (7) to (12) parallels the form of the equations used in the wing-loads study. Because of the empirical nature of the abruptness alleviation expressed by the term $e^{-\alpha \overline{c}/0.004V}$, the wing chord and the constant 0.004 were retained in the tail-load calculations. The wing natural frequency was also retained in the expression $\log_e(f_n \Delta t)$.

Comparison of the standard errors of estimate of the equations of table VI indicates the pertinence of the square root of the dynamic pressure, the duration of the stall, and the abruptness of the maneuver. The load alleviation obtainable by a gradual stall entry appears to be even greater than in the case of the wing loads.

Load trends in shock regime .- Buffeting at the Mach numbers of the shock regime was, for the present airplane, encountered under transient conditions in diving turns and pull-ups. In some instances so much speed was lost during a maneuver that buffeting originally encountered at a Mach number of 0.7 ended at Mach numbers of 0.62 or 0.63 with a typical stall recovery. In order to assure a homogeneous class of data, the 26 runs selected as representative of the shock regime were those in which the maximum buffeting load was encountered at Mach numbers above 0.68, as shown by the Mach numbers of tables III(b) and III(c). A plot of values of $(\Delta L_W)_{av}$ against q for these maneuvers, figure 14(a), appears to indicate a different trend with dynamic pressure in the shock regime than in the stall regime. One reason for the apparent trend with q is found in an examination of the variation of load with penetration beyond the buffet boundary. At a given Mach number, increasing penetration beyond the buffet boundary results in increased amplitude of load fluctuation, but the rate of increase of load with penetration varies with Mach number. These trends for the wing loads in the shock regime are illustrated in figure 15.

Figure 15(a) shows the wing-load values ΔL_W plotted on a diagram of the variation of C_N with Mach number. In each symbol is a numeral, indicating the value of ΔL_W in hundreds of pounds. Also shown is the buffet boundary for the shock regime from figure 4. In general, smaller loads occur near the buffet boundary, larger loads at values of C_N farther removed from the boundary. Figure 15(b) is a plot of load against the difference $\Delta C_N = C_N - C_{N_{\rm BB}}$ for Mach numbers of approximately 0.7 and 0.75. The linear dependence of load on ΔC_N is evident, but the slope $d\Delta L_W/d\Delta C_N$ decreases as M increases.

Shown also in figure 15(a) is a line marked $C_{N_{max}}$. This curve of maximum normal-force coefficient was estimated from a study of recent wind-tunnel data on $C_{N_{max}}$ since specific data for the North American F-51D are not available. If the penetration beyond the buffet boundary at each Mach number is expressed as a ratio denoted by P where

$$P = \frac{C_N - C_{N_{BB}}}{C_{N_{max}} - C_{N_{BB}}}$$
(13)

the Mach number dependence of the slopes in figure 15(b) is accounted for. A plot of $(\Delta L_W)_{av}$ against P is shown in figure 14(b). The variation of $(\Delta L_W)_{av}$ with P appears to be linear for the range of flight-test data available; the strong dependence on P effectively masks any dependence on q in figure 14(a). The equations investigated for wing loads in the shock regime were

$$\Delta \mathbf{L}_{\mathbf{W}} = \mathbf{a}_{1|4} \qquad (14)$$

$$\Delta \mathbf{L}_{\mathbf{W}} = \mathbf{a}_{15}\mathbf{q} \tag{15}$$

$$\Delta L_W = a_{16}\sqrt{q} \tag{16}$$

$$\Delta L_{W} = a_{17} P \tag{17}$$

$$\Delta L_{W} = a_{18} Pq \tag{18}$$

$$\Delta \mathbf{L}_{\mathbf{W}} = \mathbf{a}_{19} \mathbf{P} \sqrt{\mathbf{q}} \tag{19}$$

The results of the least-squares analysis are given in table VII.

For the tail loads in the shock regime the equations investigated were similar to those for the wing loads, that is,

$$\Delta L_{\rm T} = A_{20} \tag{20}$$

$$\Delta \mathbf{L}_{\mathrm{T}} = \mathbf{A}_{21} \mathbf{q} \tag{21}$$

$$\Delta L_{\rm T} = A_{22}\sqrt{q} \tag{22}$$

$$\Delta L_{\rm T} = A_{23} P \tag{23}$$

$$\Delta L_{\rm T} = A_{24} Pq \qquad (24)$$

$$\Delta L_{\rm T} = A_{25} P \sqrt{q} \tag{25}$$

The results of the least-squares treatment are shown in table VIII.

٠.

For both wing loads and tail loads in the shock regime, the values of the standard errors of estimate show that neither q nor \sqrt{q} is as good a measure of the load as the average value, although $\sqrt{3}$ is somewhat better than q. Inclusion of the penetration in the analysis through the parameter P (eqs. (17), (18), (19), (23), (24), and (25)) results in values of the standard error of estimate which are clearly very much lower than the values for the means (eqs. (14) and (20)). Between equations involving P, Pq, and $P\sqrt{q}$, the indications are not so clear. For wings equation (19), $\Delta L_W = a_{19} P \sqrt{q}$, has the smallest standard error of estimate, while for tail loads equation (23), $\Delta L_T = A_{23}P$, has the smallest standard error of estimate. The lack of a clear indication about the effect of q in the shock regime may be in part the result of the relatively small number of points and the limited range of altitudes that are available at a given Mach number. A further contributing factor may lie in the random character of the buffeting process as discussed in appendix B. The strong dependence of resultant loads on penetration, coupled with the transient character of the maneuvers at speeds above the maximum speed in level flight, would require a more detailed analysis including perhaps not only the extent of penetration but also the length of time spent at or near any given value of penetration. Since the standard errors of estimate for equations (23), (24), and (25) are so nearly the same, it will be assumed that the variable $P\sqrt{q}$ is also applicable to the tail loads in the shock regime.

Load Equations of Best Fit

<u>Wing loads</u>.- The summary of the regression analysis of the wing loads measured in the present tests, tables V and VII, indicates that the best fit is obtained with equations (6) and (19). These equations may be written in terms of the values of the regression coefficients as, for the stall regime,

$$\Delta L_{W} = \left[65.6 \pm 3.8 - (31.6 \pm 5.4) e^{-\dot{\alpha}\overline{c}/0.004 V} \right] \sqrt{q \log_{e}(11.7 \Delta t)}$$
(26)

and, for the shock regime,

$$\Delta L_{W} = (153.5 \pm 6.4) P \sqrt{q}$$
 (27)

In figure 16 a comparison is made of the variations of wing load given by equations (26) and (27) with the effects of q, maneuver abruptness, stall duration, and penetration shown in figure 14. The data points of

figure 16 are reproduced from figure 14. Shown in each part of the figure are the mean values of the "suppressed" independent variables. For the stall regime, these values $(\alpha \overline{c}/V) = 0.00193$ radian per chord and $\Delta t = 1.78$ seconds have been substituted into equation (26) in order to show in turn the variation of $(\Delta L_W)_{av}$ with q, figure 16(a), the variation of $(\Delta L_W/\sqrt{q})_{av}$ with $\dot{\alpha}c/V$, figure 16(c), and the variation of $(\Delta L_W/\sqrt{q})_{av}$ with Δt , figure 16(d). In the shock regime, the average value of q has been substituted into equation (27) to show the trend of $(\Delta L_W)_{av}$ with penetration P. (See fig. 16(b).) Since the trend of load with q in the shock regime has been obscured by the large range of values of penetration P, no comparison is shown in figure 16(a). The agreement between the points representing average trends and the dependency on \sqrt{q} and Δt in equation (26) is substantial and suggests the validity, at least for the present airplane, of the physical concepts represented in the form $\sqrt{q} \log_e(f_n \Delta t)$. The exponential character of the alleviation in load obtainable by a gradual stall entry, even though empirical, appears also to represent the trend in the experimental data. Since the effects of duration and abruptness can both be of the order of ±25 percent of the load for an average condition, the advisability of examining the buffeting of other airplanes on the same basis is indicated.

The expression of the penetration beyond the buffet boundary by means of the ratio $(C_N - C_{N_{BB}})/(C_{N_{max}} - C_{N_{BB}})$ as in equation (13) is purely empirical, but over the range of flight-test data available appears to give a reasonably good fit to the data (fig. 16(b)). The linear dependency of load on P assumed in the regression analysis is also empirical, and verification for large penetrations at Mach numbers above 0.70 is not feasible with the present airplane because of operational limits. In particular, it is not known whether the loads for a stall at transonic speeds would be given correctly or whether, as at lower speeds, the abruptness of stall approach would be important; investigation with an airplane with wider operational limits is desirable.

A comparison of the loads calculated by use of equations (26) and (27) with the measured loads on which the numerical values of the regression coefficients are based is shown in figure 17. In each part of figure 17 the line of exact agreement is the solid line with unit slope. The horizontal or vertical distance from any point to this line is the difference between the measured and the calculated load. Parallel to each line of exact agreement are two dashed lines, displaced by the amount of the standard error of estimate. In general, 68 percent of the measured values will vary from the calculated values by less than the amount of the standard error of estimate. The wing loads calculated from equations (26) and (27) when compared with the measured values (figs. 17(a) and 17(b)) show generally good agreement. The measured wing loads are estimated to be in error by less than ± 130 pounds, as compared with a standard error of estimate for equation (26) of 178 pounds and for equation (27) of 228 pounds. The fact that in the stall regime these two precision measures have roughly the same order of magnitude suggests that, with the present data, regression analysis can probably accomplish little more; in the shock regime, the larger standard error of estimate for equation (27) as compared to the error limits of the experimental data may be a further indication of the need for a more detailed study than has been possible with the present data.

<u>Tail loads</u>.- The summary of the regression analysis of tail loads measured in the present tests indicates that the best fit of the stall data (table VI) is obtained with the equation

$$\Delta L_{\rm T} = \left[44.1 \pm 2.9 - (29.2 \pm 4.1) e^{-\dot{\alpha} \overline{c}/0.004 \overline{V}} \right] \sqrt{q \log_e(11.7 \ \Delta t)} \quad (28)$$

while the equation which is taken as representing the shock-regime data (table VIII) is

$$\Delta L_{\rm T} = (75.2 \pm 4.6) P \sqrt{q} \tag{29}$$

Loads calculated from these equations are compared in figures 17(c) and 17(d) with the measured loads from which the regression coefficients were obtained. Since equations of the same form as the wing-load equations give such a good fit, the possibility is indicated that the wing is a primary agency in determining tail loads. Since the response of the tail is primarily at a frequency corresponding to that of the fuselage in torsion, the wing may excite the tail through the fuselage. On the other hand, the standard errors of estimate for equation (28), 135 pounds, and for equation (29), 174 pounds, are somewhat larger than the estimated experimental error $(\pm 80 \text{ pounds})$ and this difference, coupled with the correlation coefficient of 0.7 between tail and wing loads, indicates that one or more additional parameters may exist which are important in determining tail loads but which are not disclosed by the present investigation. The propeller slipstream may provide one such agency and the wing wake another, but, since instrumentation suitable for the evaluation of such effects was not incorporated, the relative contributions of the fuselage, the wing wake, and the propeller slipstream cannot be established.

Extension of Results

Comparison of loads measured on basic and modified airplane.- The large amount of scatter in plots of buffeting load against Mach number in figures 7, 8, 9, and 10 makes difficult any simple determination of the effect of the added wing-tip weights on the magnitude of the buffeting loads. Comparison of figures 7(a) and 9(a), for example, is inconclusive. The equations obtained in the analysis of the buffeting loads on the basic airplane have, therefore, been employed to extend the results obtained on the basic airplane to the analysis of the data for the modified airplane. For the stall regime, equations (26) and (28) have been used, modified only to the extent required to allow for the slightly reduced probability of encountering a given load in a given time since the wing frequency has been reduced. The equations are

$$\Delta L_{W} = \left(65.6 - 31.6e^{-\dot{\alpha}\overline{c}/0.004V}\right) \sqrt{q \log_{e}(9.3 \Delta t)}$$
(30)

$$\Delta L_{\rm T} = \left(44.1 - 29.2e^{-\dot{\alpha}\overline{c}/0.004V}\right) \sqrt{q \log_{e}(9.3 \Delta t)}$$
(31)

In the shock regime equations (27) and (29) were used. Values of $\dot{\alpha c}/V$ and Δt from table IV(a) were used with average values of q and ΔC_N from tables IV(b) and IV(c) to calculate values of ΔL_W and ΔL_T . These calculated values are compared with the values measured in flight in figure 18 in which the solid lines are lines of exact agreement. As a measure of the effect of the reduced frequency on load, the average ratio $\frac{(\Delta L)_{modified}}{(\Delta L)_{basic}}$ has been determined, by computing the value of k in the equation

$$(\Delta L)_{\text{modified}} = k(\Delta L)_{\text{basic}}$$
 (32)

The values of k for the wing and tail in the stall regime and shock regime together with their standard errors of estimate are

kwing, stall = 0.90 ± 0.03
kwing, shock = 0.71 ± 0.07
ktail, stall = 1.25 ± 0.04
ktail, shock = 1.10 ± 0.10

21

The dashed straight lines represented by these values of k are shown in figure 18.

For the wing in the stall regime, the value of k indicates an average reduction of 10 ± 3 percent over and above the average reduction of about 4 percent that would be expected because of the reduced probability associated with the frequency reduction. The estimate of a 29 ± 7 percent load reduction in the shock regime is somewhat less reliable than the 10-percent estimate since a smaller number of points is involved, but an overall reduction of something like 15 percent is indicated for the modified airplane.

Comparison of the tail loads measured on the modified airplane with the loads calculated from the least-squares equations as shown in figures 18(c) and 18(d) indicates that the wing modification has increased the tail loads about 15 percent. In buffeting, the motion of the tail is primarily in an antisymmetrical mode at the natural frequency of the tail assembly as restrained in torsion by the fuselage, 9.8 cps in table II. Since the addition of the wing-tip weights reduced the frequency of the wing in fundamental bending from 11.7 to 9.3 cps, table II, wing buffeting of the modified airplane occurs at a frequency only about 0.5 cps removed from the tail buffeting frequency, whereas with the basic airplane, the difference is nearly 2 cps. The amplitude response of a simple system would be expected to be larger, the nearer the frequency of the excitation to resonance, and it is possible that a coupling exists between wing and tail vibration modes such that this simple explanation would be sufficient to account for the experimental results. If so, the importance of the fuselage as a coupling agent in the tail-load problem is indicated.

<u>Measured loads compared with results for simplified wing buffeting</u> <u>model</u>.- In appendix B, an equation is developed which gives the form of the relation between pertinent structural and aerodynamic parameters and the mean-square value of the root-structural-shear fluctuations of a stalled wing under the assumption that such buffeting can be treated as the response of a damped linear elastic system to an aerodynamic excitation which is a stationary random process. The buffeting model considered is a simplified wing with one degree of freedom, fundamental bending, and the development parallels, in some respects, the study of the loads on a tail in a fluctuating airstream in reference 2. The development is tentative, since the assumption that stall buffeting is a normally distributed stationary random process has yet to be verified, but a comparison of the loads measured in the present study with the tentative relation is of interest.

A primary aerodynamic factor determining the magnitude of the buffeting loads is the power spectrum of the aerodynamic excitation, denoted by the spectrum of the coefficient of section-normal-force fluctuations $c_n^{2}(\omega)$ in appendix B. Provided that this spectrum possesses certain general dimensional and frequency characteristics (especially a fairly constant level over a band of low frequencies), the details of the shape of the spectrum are of minor concern, but the mean-square value of the excitation $\frac{1}{c_n^{2}}$ is of great importance. In appendix B, the scale factor in the power spectrum of the excitation is assumed to be the chord, the damping is assumed to be positive and aerodynamic, and the resultant equation for the root-mean-square shear at the root of a wing panel due to buffeting (eq. (B27)) is

$$\sqrt{\overline{L^2}} \approx \frac{1}{2} \left(k \overline{c} S \frac{1 - e^{-A/2}}{A/2} \right)^{1/2} \left[\frac{\overline{c_n^2}}{(C_{L_{\alpha}})_{eff}} \right]^{1/2} \sqrt{q}$$
(33)

In this equation the operating conditions of speed and altitude are included in the term \sqrt{q} ; the geometry of the wing and its stiffness are included in the term in parentheses; while the excitation and the aerodynamic damping are represented by the term $\overline{c_n^2}/(c_{L_{\alpha}})_{eff}$. Little information is available about any spectrum of section normal force, or about the term $(CL_{\alpha})_{eff}$ which is an effective slope of the lift curve applicable to the aerodynamic damping of small bending oscillations of a stalled wing. Unpublished tests in the Langley 2- by 4-foot flutter research tunnel on a stalled, rigid NACA 65A010 airfoil have given values of $\sqrt{c_n^2} \approx 0.07$ over a range of angles of attack beyond the stall. Vibration tests of a similar stalled wing have indicated that over a wide range of reduced frequencies and angles of attack the aerodynamic damping is of the same order of magnitude as that indicated by the two-dimensional slope of the lift curve, that is. $(C_{L_{III}})_{eff} \approx 2\pi$. Using these two results as a guide to order of magnitude gives a value

$$\left[\frac{\overline{c_n^2}}{(C_{L_{\alpha}})_{eff}}\right]^{1/2} \approx 0.028$$
(34)

For the present airplane the wing stiffness in fundamental bending at 11.7 cps is approximately 19,000 pounds per foot. This value for k together with the dimensions given in table I and the estimate of equation (34) gives the following relation for the root-mean-square buffeting shear at the root of each wing panel:

23

$$\sqrt{\overline{L^2}} \approx 44 \sqrt{q} \tag{35}$$

and for the maximum buffeting shear likely to be encountered in a time Δt (eq. (B33)):

$$\frac{\Delta L_W}{\sqrt{q \log_e(11.7 \Delta t)}} \approx 62$$
(36)

The least-squares relationship for the wing loads of the present tests with the basic airplane, equation (26), gives as a limit for very abrupt stalls,

$$\frac{\Delta L_W}{\sqrt{q \log_e(11.7 \Delta t)}} = 65.6$$
(37)

while for very gradual stalls the limit is

$$\frac{\Delta L_{W}}{\sqrt{1 \log_{e}(11.7 \Delta t)}} = 34$$
(38)

and for the data as a whole, equation (4) and table V, an average is

$$\frac{\Delta L_{W}}{\sqrt{q \log_{e}(11.7 \Delta t)}} = 44.4$$
(39)

In view of the limited knowledge available about buffeting as a stationary random process, the number and character of the assumptions in appendix B, and the limited applicable experimental data on the aerodynamic characteristics of stalled wings, the agreement between the constant value 62 of equation (36) and the values 65.6, 34, and 44.4 obtained by least squares (eqs. (37), (38), and (39)) may be fortuitous. The agreement shown does suggest, however, that further investigation is warranted of both the aerodynamic parameters and their relationship to the buffeting of other airplanes. Buffeting coefficients.- The results of the present tests indicate that the usual buffeting coefficient of the form $\Delta L/qS$ would, for both wing and tail loads, be overly conservative if coefficients based on loads measurements at high altitudes were used for the estimation of loads at low altitudes. The tests also indicate that, for a given airplane, a simple comparison of loads on the basis of values of the dimensional forms $\Delta L/\sqrt{q}$ or $\Delta L/\sqrt{q} \log_e(f_n \Delta t)$ would give more consistent results. To the extent that the simplified analysis of appendix B represents the buffeting of a straight-wing airplane in

stalls, a coefficient of the form ΔI

$$L / \sqrt{\frac{qk\bar{c}S(1 - e^{-A/2})_{loge}(f_n \Delta t)}{A/2}}$$

would be required to include both the geometry and the elastic properties of the wing, as well as the operating conditions of speed and altitude. Such a coefficient for the present abrupt-stall data would have a value of approximately 0.03. Whether such a coefficient established for one type of airplane would give useful information about another type differing, say, in wing thickness ratio or airfoil section would depend on the aerodynamic characteristics of the wing in stalls, as represented in the term $\overline{c_n^2}/(CL_\alpha)_{eff}$. In the absence of more experimental data on a spectrum of aerodynamic excitation for buffeting and on the effects of Mach number and angle of attack on both the spectrum and the aerodynamic damping, a conclusion about a final form of a wing buffeting coefficient cannot be reached. However, should the results for the present unswept-wing airplane be confirmed for other similar airplane types, it should be possible to extend them to swept wings and to tails.

<u>Comparison of wing buffeting loads and design loads</u>.- The results of the least-squares analysis of the wing buffeting loads of the present tests can be used to compare the maximum wing buffeting loads likely to be encountered in stalls with the wing design loads for the North American F-51D airplane. From equation (26) the amplitude of the maximum buffeting-load increment in an abrupt stall of duration Δt is approximately

$$\Delta I_{W} = 65.6 \sqrt{q \log_{e}(11.7 \Delta t)}$$
(40)

The dynamic pressure of the stall can be expressed in terms of load factor, wing loading, and airplane normal-force coefficient as

$$q = \frac{n(W/S)}{C_{N_{BB}}}$$

Therefore ΔL_W can also be expressed as

$$\Delta L_{W} = 65.6 \sqrt{\frac{n(W/S)}{C_{N_{BB}}} \log_{e}(11.7 \Delta t)}$$
(41)

The largest value of ΔL_W would be found in stalls at limit load factor at such speed and altitude that $C_{N_{\rm BB}}$ is as small as possible. The least value for $C_{\rm N_{\rm BB}}$ in stalls, figure 4(a), is 1.04. The limit load factor for the test airplane is 7.1 for a gross weight of 9,000 pounds. These values give, for the maximum value of ΔL_W expected,

$$\Delta L_{W_{\text{max}}} = 1,050 \sqrt{\log_{e}(11.7 \,\Delta t)}$$
(42)

or, for a stall of 5 seconds' duration, $\Delta L_{W_{\text{max}}} = 2,650$ pounds.

Such a buffeting load encountered in a stall at limit load factor would be superimposed on a steady wing-panel root structural shear of approximately 22,000 pounds. In terms of a gross weight of 9,000 pounds, a root-shear fluctuation of $\pm 2,650$ pounds corresponds to a load-factor fluctuation of approximately ± 0.30 .

Fatigue .- For fatigue studies, information is needed on the number of times a given value of load is exceeded in a given period. For a stationary random process, this information is provided by the meansquare load and the power spectrum of the load, as in equation (B26). The simple buffeting model considered in appendix B is a single-degreeof-freedom system which is very lightly damped. For such a system, the response to a random input has the character of a sine wave with a frequency roughly equal to the system natural frequency and an amplitude which fluctuates irregularly. The irregular amplitude fluctuations are characterized by the probability distribution of equation (B31) which gives the number of peaks per second which will exceed a given value. Since the total number of positive peaks per second corresponds to the natural frequency of the system f_n (with an equal number of minimums), equation (B31) provides a simple basis for considering the fatigue aspects of buffeting. (See also ref. 7.) Although based on a simplified model which ignores any contribution of higher vibration modes to the wing buffeting loads, equation (B31) may well represent a satisfactory engineering approximation since modes of frequency higher than first bending ordinarily make but a small contribution to wingroot shear.

CONCLUDING REMARKS

Wing and tail buffeting loads have been measured on a fighter-type airplane during 194 maneuvers. The half-amplitude of the largest fluctuation in structural shear was used as the measure of buffeting intensity in each maneuver. Correlation coefficients of 0.9 were found for loads on the left and right wings and the left and right horizontal stabilizers. Least-squares methods have been used to illustrate certain trends in the data; in these studies the loads in the stall regime were found to follow a pattern which differed from that found in the shock regime.

In the stall regime primary variables affecting the magnitude of the loads were speed and altitude as represented by the dynamic pressure, but the square root of the dynamic pressure was a better measure of the load than was the first power, a result which may be due to the action of aerodynamic damping. The loads measured in maneuvers of longer duration were, on the average, larger than those measured in maneuvers of short duration, a result which is in accord with considerations of stationary random processes. As compared with abrupt pull-ups, load alleviation of about 50 percent was obtained by a gradual entry into the stáll.

In the shock regime, the primary variable affecting the magnitude of the loads was the extent of the penetration beyond the buffet boundary. The data do not provide a clear indication of a dependency of load on dynamic pressure, a result which may be in part attributable to the operating limitations of the airplane which restricted the range of the investigation in the shock regime; a more detailed investigation appears to be required.

Loads were also measured on a modification of the airplane incorporating internal wing-tip weights which reduced the natural frequency of the wing in fundamental bending from 11.7 to 9.3 cps. Analysis of the measured loads indicated a reduction in wing loads of about 15 percent, and a similar percentage increase in the tail loads, as compared with the loads on the basic airplane.

The loads on a simplified wing buffeting model have been examined on the assumption that buffeting is the linear response of an aerodynamically damped elastic system to an aerodynamic excitation which is a stationary random process. The results of the present tests for stalls are sufficiently consistent with the results of the analytical study to suggest the examination of the buffeting of other airplanes on the same basis.

Langley Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Va., February 11, 1954.

APPENDIX A

SUMMARY OF STATISTICAL PROCEDURES

A typical problem in linear regression involving a dependent variable w and, say, two independent variables x and y, which is solved by least-squares methods, is usually represented as finding the unknown coefficients a, b, and c in the equation

w = ax + by + c

given a set of N values of x and y assumed to be exact, and N corresponding measured values of w denoted by w'. For any set of values of a, b, and c, each measured value w'_i and the corresponding calculated value w_i differ by the residual ϵ_i where

$$\epsilon_{i} = w'_{i} - w_{i}$$
$$= w'_{i} - ax_{i} - by_{i} - c$$

The theory of least squares assumes that the "best" values of a, b, and c are those for which the sum of the squares of the residuals $\sum_{i=1}^{N} \varepsilon_i^2 \text{ is a minimum, a condition which is fulfilled by the values of a, b, and c in the so-called least-squares normal equa-$

tions which may be represented in matrix form as

N	∑x	∑у	ြ	$\left[\sum \omega' \right]$
Σx	$\sum x^2$	∑xy	$\left \left\langle a \right\rangle \right\rangle = \langle a \rangle$	$\left\{ \sum \omega' x \right\}$
∑y	∑ xy	∑y²_	b	Σω'y

where the summation $\sum_{i=1}^{N}$ denotes $\sum_{i=1}^{N}$. The resulting plane ax + by + c passes through the point $(\overline{w}', \overline{x}, \overline{y})$ determined by the mean values of w', x, and y.

The present paper is concerned with the application of least-squares methods to equations of the type where c = 0, and

w = ax

 \mathbf{or}

w = ax + by

that is, problems where the least-squares line or plane is required to pass through the origin (w = x = y = 0). In this case for two independent variables, x and y, the values of a and b are given by the normal equations

$\sum x^2$	Σxy	[a]	∫∑w'x	
∑ xy	∑y2	$\left\{ b \right\} = 0$	∑w'y	ſ

The solution may conveniently be written in terms of the inverse matrix which for second-order matrices is given by

$$\begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} = \begin{bmatrix} \sum x^2 & \sum xy \\ \sum xy & \sum y^2 \end{bmatrix}^{-1}$$

$$=\frac{1}{\sum_{x^2}\sum_{y^2} - (\sum_{xy})^2} \begin{bmatrix} \sum_{y^2} & -\sum_{xy} \\ -\sum_{xy} & \sum_{x^2} \end{bmatrix}$$

Accordingly

$$\begin{cases} a \\ b \end{cases} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \begin{cases} \sum w'x \\ \sum w'y \end{cases}$$

30

NACA TN 3080

The sum of the squares of the residuals is given by

$$\sum \epsilon^2 = \sum w'^2 - [a \ b] \begin{cases} \sum w'x \\ \sum w'y \end{cases}$$

A measure of the spread in the measured values of w' is s_W' , the standard error of w' defined by

$$s_{w'} = \sqrt{\frac{\sum (w' - \overline{w'})^2}{N - 1}}$$

where $\overline{w'}$ is the arithmetic mean of the measured values $\frac{\sum w'}{N}$. The standard error of w' is usually most easily evaluated by the equation

$$s_{w'} = \sqrt{\frac{N\sum_{w'}^{2} - (\sum_{w'})^{2}}{N(N - 1)}}$$

The standard error of the mean $s_{w'}$ is proportional to $s_{w'}$ and inversely proportional to the square root of the number of points, that is,

$$s_{\overline{w'}} = \frac{s_{w'}}{\sqrt{N}}$$

A measure of the ability of the regression equation to represent the data is given by the standard error of estimate of the equation, which for w = ax is

$$s_{w_1} = \sqrt{\frac{\sum \epsilon^2}{N - 2}}$$

and for w = ax + by is

$$s_{w_2} = \sqrt{\frac{\sum \epsilon^2}{N-3}}$$

The standard errors of estimate of the constants a and b are related to the standard error of estimate of the equation and the terms on the principal diagonal of the inverse of the matrix of the coefficients of the normal equation by the relations

$$s_a = \sqrt{c_{11}} s_w$$

$$s_b = \sqrt{c_{22}} s_w$$

The standard error of w', that is, s_w' , is a measure of the error involved in representing the N values of w' by their mean value w'. An equation, say, w = ax, for which the standard error of estimate s_w is smaller than s_w' would ordinarily be considered an improvement over the mean-value representation, since it implies that specification of a value of x gives better information about the value of w' than does the mean value w'. The methods of the analysis of variance give a statistical estimate of whether the equation w = ax is improved by the addition of another variable y, to give $w = a_2x + b_2y$. For this particular question (see ref. 8) if $\sum \varepsilon_1^2$ and $\sum \varepsilon_2^2$ represent the sum of the squares of the residuals of the one- and two-parameter equations being compared and the ratio

$$F = \frac{\sum_{\varepsilon_1}^{\varepsilon_2} - \sum_{\varepsilon_2}^{\varepsilon_2}}{\frac{s_{w_2}^2}{\varepsilon_2}}$$

exceeds a certain critical value, then, on the basis of the evidence at hand, the chances are at least 100 to 1 that the improvement is real. The magnitude of the critical value of F depends upon the number of values N. For N = 25, 50, and 100, the values of F are 7.97, 7.20, and 6.91, respectively.

Although linear dependency between two variables w and x is usually expressed by a relationship of the type w = ax + c when the measured values of x are considered exact, or in any event more nearly under experimental control than the measurements of w, there are instances when a more general measure of the linear dependency of two variables is desired. The coefficient of linear correlation r is such a measure which does not depend on the choice of w or x as independent variable or on the units of w and x. The value of r is usually calculated from the relation

$$\mathbf{r} = \frac{\mathbb{N}\sum \mathbf{w} \mathbf{x} - (\sum \mathbf{w})(\sum \mathbf{x})}{\sqrt{\mathbb{N}\sum \mathbf{w}^2 - (\sum \mathbf{w})^2 \mathbb{I} \mathbb{N} \sum \mathbf{x}^2 - (\sum \mathbf{x})^2 \mathbb{I}}}$$

but it can be shown that this value is equal to the square root of the product of the slopes a and a' in the two regression equations

$$w = ax + c$$

and

$$x = a'w + c'$$

that is

 $r = \sqrt{a'a}$

The values of r fall within the range $-1 \leq 0 \leq 1$, unit values indicating exact linear dependence and zero indicating complete independence of the two variables. A negative correlation coefficient indicates inverse dependency; that is, increasing values of one variable are associated with decreasing values of the other.

For convenience in computation, all of the summations required in regression and correlation studies of the variables w and x may be obtained by expressing the N pairs of related measurements such as $(w,x)_i$ in the rectangular matrix

and premultiplying this matrix by its transpose $\|M^T\|$, so that the following symmetrical square matrix results

$$\begin{bmatrix} \mathbf{M}^{\mathrm{T}}\mathbf{M} \end{bmatrix} = \begin{bmatrix} \mathbf{N} & \sum \mathbf{w} & \sum \mathbf{x} \\ \sum \mathbf{w} & \sum \mathbf{w}^{2} & \sum \mathbf{w} \\ \sum \mathbf{x} & \sum \mathbf{x}\mathbf{w} & \sum \mathbf{x}^{2} \end{bmatrix}$$

Similar considerations apply, of course, to the study of w, x, and y. More detailed treatment of the precision and interpretation of regression studies will be found in references 8 and 9. Numerical procedures are described in references 10 and 11.
APPENDIX B

LOADS ON A SIMPLIFIED WING BUFFETING MODEL

References 2 and 5 have illustrated the application of methods developed in the study of stationary random processes¹ to the problem of the buffeting of an elastic structure such as a tail located in a turbulent airstream. A simple parallel treatment is possible which illustrates the form of the relationship between the airfoil motions and pertinent structural, geometric, and aerodynamic parameters for an elastically restrained airfoil subjected to the excitation of its own separated flow.

The simplified model considered in the present section is a rigid airfoil of mass m, span b, mean chord \overline{c} , and area S restrained by a spring of stiffness k to oscillate in vertical motion only. The vertical displacement z(t) from equilibrium can be expressed by the differential equation for a single-degree-of-freedom system:

$$\frac{d^2 z}{dt^2} + 2\gamma \omega_n \frac{dz}{dt} + \omega_n^2 z = \frac{F(t)}{m}$$
(B1)

where γ is the ratio of the damping to critical damping, ω_n is the undamped natural circular frequency given by the relation

$$\omega_n^2 = \frac{k}{m} \tag{B2}$$

and F(t) is an impressed force. For an airfoil in a stream of air of dynamic pressure q, the exciting force associated with a time-varying fluctuating section normal-force coefficient $c_n(t)$ would be (three-dimensional effects being ignored)

 $F(t) = c_n(t)\overline{c}bq$ (B3)

^LTime variations of a quantity during a particular time interval may be studied by the method of Fourier analysis, and this method can be generalized to apply to a continuing nonperiodic disturbance through use of the concept of a stationary random process. This concept applies when the underlying physical mechanism which gives rise to an irregular disturbance does not change in time and the resultant process is thus both stationary and random. As a random process it can be described by certain statistical parameters (mean, mean square, and power spectrum are ordinarily of chief interest); as a stationary random process, these parameters do not change in time and prediction on a statistical basis is therefore possible. For a more complete discussion see references 12 and 13.

(B4)

·(B8)

If $c_n(t)$ is a random function of time but is expressible in terms of a power spectrum of the coefficient of the section-normal-force fluctuations $c_n^2(\omega)$ such that the mean-square section normal-force coefficient is

$$\overline{c_n^2} = \int_0^\infty c_n^2(\omega) d\omega$$

then z(t) is also a random function of time, expressible by a power spectrum $z^2(\omega)$ and, by reason of equation (B1), $z^2(\omega)$ is related to $c_n^2(\omega)$ through the admittance $A^2(\omega)$ of the system by the relation

$$z^{2}(\omega) = \frac{\overline{c}^{2}b^{2}q^{2}}{m^{2}\omega_{n}^{4}} c_{n}^{2}(\omega)A^{2}(\omega)$$
(B5)

where

$$A^{2}(\omega) = \frac{1}{\left(1 - \frac{\omega^{2}}{\omega_{n}^{2}}\right)^{2} + 4\gamma^{2} \frac{\omega^{2}}{\omega_{n}^{2}}}$$
(B6)

The mean-square displacement of the airfoil is given by the definite integral of equation (B5), that is,

$$\overline{z^2} = \frac{\overline{c}^2 b^2 q^2}{m^2 \omega_n^4} \int_0^\infty c_n^2(\omega) A^2(\omega) d\omega$$
 (B7)

Evaluation of the integral in equation (B7) could be a complex problem, even under the assumption of positive damping, but, for small values of the damping, the admittance $A^2(\omega)$ in equation (B7) changes very rapidly in the frequency band in the vicinity of resonance, $\omega = \omega_n$, and it is possible to substitute for $c_n^2(\omega)$ in equation (B7) its value at ω_n and to write the approximate relation

$$\overline{z^2} \approx \frac{\overline{c}^2 b^2 q^2}{m^2 \omega_n^{4}} c_n^2(\omega_n) \int_0^{\infty} A^2(\omega) d\omega$$

For the admittance given by equation (B6), the area under the admittance curve is inversely proportional to the damping ratio since

$$\int_{0}^{\infty} A^{2}(\omega) \, d\omega = \frac{\pi \omega_{n}}{4\gamma}$$
(B9)

Therefore, the mean-square displacement is

$$\overline{z^2} \approx \frac{\pi \overline{c}^2 b^2 q^2}{4 \gamma m^2 \omega_n^3} c_n^2(\omega_n)$$
(B10)

For the simplified buffeting model considered, aerodynamic damping forces would originate in the velocity of the vertical motion \dot{z} and the damping ratio could be expressed as

$$\gamma = \frac{q \overline{c} b}{2m \omega_n V} (C_{L_{\alpha}})_{eff}$$
(B11)

Where $(C_{L_{\alpha}})_{eff}$ will be considered as an effective slope of the lift curve applicable to the damping of small bending motions of a stalled airfoil. The present flight tests have been concerned with values of wing root shear, which are analogous not to the airfoil displacement but to the load L = kz exerted on the spring support. Hence, an expression for the mean-square shear load in buffeting obtained from equations (B2), (B10), and (B11) would be $\overline{L^2} = k^2 \overline{z^2}$ or

$$\overline{L^2} \approx \frac{\pi k c b q V}{2(CL_{\alpha})_{eff}} c_n^2(\omega_n)$$
(B12)

Two characteristics pertinent to the definition of the spectrum $c_n^2(\omega)$ are its level, as determined by the mean square, and its shape, or the frequency distribution of the excitation. These characteristics may be expressed by writing $c_n^2(\omega)$ in the form

$$c_n^2(\omega) = \overline{c_n^2} \Phi(\omega)$$
 (B13)

where $\phi(\omega)$ is the power-spectral-density function or shape parameter which defines the contribution to c_n^2 from the excitation in any frequency band between ω and $\omega + d\omega$. Thus, in view of equation (B4),

$$\int_{0}^{\infty} \Phi(\omega) \, d\omega = 1$$
 (B14)

For a section property, it seems probable that the frequency ω is a less fundamental variable for defining the shape of the spectrum than a reduced frequency based on the speed V and a linear dimension related to the size of the airfoil or the chordwise extent of separation. For the chord as the pertinent linear dimension, a reduced shape parameter $\Phi\left(\frac{c\omega}{V}\right)$ is related to $\Phi(\omega)$ by requirements of dimensional consistency, that is

$$\Phi(\omega) = \frac{c}{KV} \Phi\left(\frac{c\omega}{V}\right)$$
(B15)

where the constant K which appears in the denominator is the area under the curve defined by the reduced shape parameter. Thus, on the basis of dimensional considerations, the spectrum $c_n^2(\omega)$ may be written as

$$c_n^2(\omega) = \overline{c_n^2} \frac{c}{KV} \Phi\left(\frac{c\omega}{V}\right)$$
 (B16)

where

$$K = \int_{0}^{\infty} \Phi\left(\frac{c\omega}{V}\right) d\left(\frac{c\omega}{V}\right)$$
(B17)

and the intensity of the fluctuations of section normal force at a particular frequency is seen to depend not only on the mean-square value c_n^2 but also on the scale and speed and on the spectral distribution of the excitation as expressed by the reduced shape parameter. From equation (B16), which provides a value for $c_n^2(\omega_n)$, the mean-square buffeting load is

$$\overline{L^{2}} \approx \frac{\pi k \overline{c}^{2} bq}{2K (C_{L_{\alpha}})_{eff}} \overline{c_{n}^{2}} \Phi \left(\frac{c \omega_{n}}{V}\right)$$
(B18)

Little information is available concerning the shape parameter $\oint \left(\frac{c\omega}{V}\right)^{2}$ for stalled airfoils. In references 2 and 14 isotropic turbulence has been used to illustrate a random excitation expressible by a power spectrum. At a point in isotropic turbulence, the turbulent component of velocity w(t) normal to the free-stream velocity V results in an equivalent fluctuating angle of attack $\alpha(t) = \frac{w(t)}{V}$ which has a mean-square value $\overline{\alpha^{2}}$ and a spectrum $\alpha^{2}(\omega)$ that can be written in terms of a reduced frequency $l\omega/V$ as

$$\alpha^{2}(\omega) = \overline{\alpha^{2}} \frac{\iota}{KV} \Phi\left(\frac{\iota\omega}{V}\right)$$
(B19)

where l is a linear dimension characteristic of the scale of the turbulence, and

$$\Phi\left(\frac{l\omega}{V}\right) = \frac{1 + \frac{3l^2\omega^2}{V^2}}{\left(1 + \frac{l^2\omega^2}{V^2}\right)^2}$$
(B20)

for which the constant K of equation (B17) is equal to π . This particular shape parameter, which has been plotted in figure 19, is relatively constant and close to unity for values of reduced frequency less than 1 and then falls rapidly to low values. The assumption that the spectrum of the coefficient of the section-normal-force fluctuations on a stalled airfoil $\Phi\left(\frac{c\omega}{V}\right)$ has a shape similar to that expressed in equation (B20) with $l = \bar{c}$ leads to an estimate of π for the constant K in equation (B18) and provides a guide for estimating the value of $\Phi\left(\frac{\bar{c}\omega_n}{V}\right)$.

In equation (B3) and thus in equation (B18), section properties have been applied to the excitation of the entire wing, an application which, in general, would be expected to overestimate the net excitation since fluctuations at one chord station would not necessarily be in phase with fluctuations at another station. A simple overall correction is possible, however, which is based on a correlation function observed in isotropic turbulence and is directly related to the spectrum, equation (B19). This correction is similar to the length correction used in hot-wire anemometry and is used in reference 14 to relate the mean-square angle-of-attack fluctuation at a point along the span to the mean-square value over the entire span. It involves the ratio of the scale of the turbulence to the span b. If the same overall correction is applied to the coefficient of section-normal-force fluctuations to take care of the major effects of spanwise load correlation, the wing $\overline{C_N^2}$ would be related to the section $\overline{c_n^2}$ by the equation

$$\overline{c_N^2} = \overline{c_n^2} \frac{\overline{c}}{b} \left(1 - e^{-b/\overline{c}} \right)$$
(B21)

This same overall correction leads to the final expression, applicable to the simplified model, for $\overline{L^2}$ the mean-square force exerted on the model support

$$\overline{L^{2}} \approx \frac{k\overline{c}^{2}bq}{2} \frac{1 - e^{-b/\overline{c}}}{b/\overline{c}} \frac{\overline{c_{n}^{2}}}{(^{C}L_{\alpha})_{eff}} \Phi\left(\frac{\overline{c}\omega_{n}}{V}\right)$$
(B22)

With slight modification, an expression applicable to the root shear of a wing panel can be obtained from equation (B22). For wing motions which are simplified in that only fundamental bending at natural frequency ω_n is considered, the vertical motion varies along the semispan direction y in accordance with the shape of the bending mode $z_1(y)$ (taken as unity at the tip). The stiffness k would be an effective stiffness corresponding to this mode, where

$$k = m_e \omega_n^2$$
 (B23)

and m_e is an effective mass for bending in this mode, given by the integral of the product of the spanwise wing mass distribution m(y) and the square of the mode shape, or

$$m_e = \int_0^{b/2} m(y) z_1^2(y) dy$$
 (B24)

· · · ·

NACA TN 3080

Thus for the assumed wing, the mean-square root buffeting shear for one wing panel of span b/2 would be

$$\overline{L^{2}} \approx \frac{k\overline{c}^{2}qb}{4} \frac{1 - e^{-b/2\overline{c}}}{b/2\overline{c}} \frac{\overline{c_{n}^{2}}}{(C_{L_{\alpha}})_{eff}} \phi\left(\frac{\overline{c}\omega_{n}}{V}\right)$$
(B25)

or, in terms of aspect ratio $A = \frac{b}{\overline{c}}$ and total wing area $S = b\overline{c}$, the mean-square root shear would be

$$\overline{L^{2}} \approx \frac{k\overline{c}Sq}{4} \frac{1 - e^{-A/2}}{A/2} \frac{\overline{c_{n}^{2}}}{(c_{L_{\alpha}})_{eff}} \Phi\left(\frac{\overline{c}\omega_{n}}{V}\right)$$
(B26)

For a given structure (\overline{c} and ω_n fixed) the proportionality between $\overline{L^2}$ and q (or V^2) could be modified by changes in the value of the shape parameter $\Phi\left(\frac{\overline{c}\omega_n}{V}\right)$ with speed. If, however, the value of the reduced frequency $\frac{\overline{c}\omega_n}{V}$ lies in a nearly flat portion at the low-frequency end of the spectrum, then for a spectrum with a shape parameter like that given by equation (B2O), the value of the shape parameter $\Phi\left(\frac{\overline{c}\omega_n}{V}\right)$ in equation (B26) can be replaced by its approximate value, unity, and

$$\overline{L^2} \approx \frac{k\overline{cS}}{4} \frac{1 - e^{-A/2}}{A/2} \frac{\overline{c_n^2}}{(C_{L_{\alpha}})_{eff}} q \qquad (B27)$$

Such a substitution would be valid over a range of speeds which is wider for low values of \overline{c} and low values of natural frequency ω_n .

The foregoing development deals with the mean-square load on a wing panel. If the buffeting of the simplified model can be considered a normally distributed stationary random process, then the relationship between the mean-square root shear L^2 and the probable amplitude ΔL of the maximum fluctuation occurring in a time interval Δt is fixed by the power spectrum of the load $L^2(\omega)$. As shown in reference 12, (in the notation of the present paper) the number of peak values per second which will exceed a particular level ΔL_1 is approximately, when ΔL_1 is large,

$$N_{\Delta L_{1}} = \frac{1}{2\pi} \begin{bmatrix} \int_{0}^{\infty} \omega^{2} L^{2}(\omega) d\omega \\ \int_{0}^{\infty} L^{2}(\omega) d\omega \end{bmatrix}^{1/2} e^{-\Delta L_{1}^{2}/2L^{2}}$$
(B28)

Just as equation (B7) was simplified to equation (B8) the term in brackets is easily evaluated, since

$$\frac{\int \omega^2 L^2(\omega) \, d\omega}{\int L^2(\omega) \, d\omega} \approx \frac{\int \omega^2 A^2(\omega) \, d\omega}{\int A^2(\omega) \, d\omega}$$
(B29)

and, for an admittance given by equation (B6),

$$\int_{0}^{\infty} \omega^{2} A^{2}(\omega) \, d\omega = \omega_{n}^{2} \int_{0}^{\infty} A^{2}(\omega) \, d\omega$$
 (B30)

Therefore, since $\omega_n = 2\pi f_n$,

$$N_{\Delta L_1} = f_n e^{-\Delta L_1^2/2L^2}$$
(B31)

and a value of ΔL will, on the average, be exceeded once in a time interval Δt given by the expression

 $\frac{1}{\Delta t} = f_n e^{-\Delta L^2/2L^2}$ (B32)

or the value $\ \Delta L$ which occurs once, on the average, in a time interval $\ \Delta t$ is given by the equation

$$\Delta L = \sqrt{2L^2} \log_e(f_n \Delta t)$$
 (B33)

The ratio $\Delta L/\sqrt{L^2}$ is plotted in figure 20 for two values of f_n , 9.3 and 11.7 cps, corresponding to the basic and modified wing in the fundamental bending mode, the predominant mode in the wing buffeting time histories observed in the present investigation.

Combination of equations (B27) and (B33) leads to an equation which relates the maximum load ΔI_W (as measured in the present tests) in a stall of duration Δt to the geometric, structural, and aerodynamic characteristics of the simplified wing,

$$\Delta I_{W} \approx \left(\frac{k\overline{cS}}{2} \frac{1 - e^{-A/2}}{A/2}\right)^{1/2} \sqrt{\frac{\overline{c_{n}^{2}}}{(C_{L_{\alpha}})_{eff}}} \sqrt{q \log_{e}(f_{n} \Delta t)}$$
(B34)

REFERENCES

- 1. Stokke, Allen R., and Aiken, William S., Jr.: Flight Measurements of Buffeting Tail Loads. NACA TN 1719, 1948.
- Liepmann, H. W.: On the Application of Statistical Concepts to the Buffeting Problem. Jour. Aero. Sci., vol. 19, no. 12, Dec. 1952, pp. 793-800, 822.
- 3. Aiken, William S., Jr.: Flight Determination of Wing and Tail Loads on a Fighter-Type Airplane by Means of Strain-Gage Measurements. NACA TN 1729, 1948.
- 4. Skopinski, T. H., Aiken, William S., Jr., and Huston, Wilber B.: Calibration of Strain-Gage Installations in Aircraft Structures for the Measurement of Flight Loads. NACA TN 2993, 1953. (Supersedes NACA RM L52G31.)
- 5. Liepmann, H. W.: Parameters for Use in Buffeting Flight Tests. Rep. No. SM-14631, Douglas Aircraft Co., Inc., Jan. 3, 1953.
- 6. Scarborough, James B.: Numerical Mathematical Analysis. The Johns Hopkins Press (Baltimore), 1930.
- 7. Miles, John W.: An Approach to the Buffeting of Aircraft Structures by Jets. Rep. No. SM-14795, Douglas Aircraft Co., Inc., June 1953.
- 8. Goulden, C. H.: Methods of Statistical Analysis. John Wiley & Sons, Inc., c.1939.
- 9. Anderson, R. L., and Bancroft. T. A.: Statistical Theory in Research. McGraw-Hill Book Co., Inc., 1952.
- Dwyer, Paul S.: A Matrix Presentation of Least Squares and Correlation Theory With Matrix Justification of Improved Methods of Solution. Annals of Mathematical Statistics, vol. 15, no. 1, Mar. 1944, pp. 82-89.
- 11. Dwyer, Paul S.: Linear Computations. John Wiley & Sons, Inc., c.1951.
- 12. Rice, S. O.: Mathematical Analysis of Random Noise. Pts. I and II. Bell Syst. Tech. Jour., vol. XXIII, no. 3, July 1944, pp. 282-332; Pts. III and IV, vol. XXIV, no. 1, Jan. 1945, pp. 46-156.
- 13. James, Hubert M., Nichols, Nathaniel B., and Phillips, Ralph S.: Theory of Servomechanisms. McGraw-Hill Book Co., Inc., 1947.

14. Liepmann, H. W.: An Approach to the Buffeting Problem From Turbulence Considerations. Rep. No. SM-13940, Douglas Aircraft Co., Inc., Mar. 13, 1951.

NACA TN 3080

TABLE I.- GEOMETRICAL DATA FOR TEST AIRPLANE

Wing:	
Span, ft	• 37.03
Area, sq ft	. 240.1
Mean aerodynamic chord, ft	. 6.63
Aspect ratio	. 5.71
Root thickness ratio	0.15
Tip thickness ratio	. 0.12
Taper ratio	. 0.462
Horizontal tail:	
Span, ft	. 13.18
Area, sq ft	. 41.0
Weight at take-off, 1b:	
Basic airplane	. 8,995
Modified airplane	• 9,149
Center-of-gravity position at take-off, percent M.A.C.:	
Basic airplane	. 27.2
Modified airplane	. 25.3

TABLE II.- NATURAL FREQUENCY OF AIRPLANE COMPONENTS

, ·

	Basic airplane	Modified airplane
Wing: Fundamental bending frequency, cps First asymmetric bending frequency, cps Torsion frequency, cps	11.7 22.3 38.0	9.3 18.1 34.5 52.0
Horizontal stabilizer: Primary bending frequency, cps First asymmetric bending frequency, cps Torsion frequency, cps	25.0 36.0 70.0	25.0 36.0 70.0
Fuselage: Torsion frequency, cps	9.8 12.5 14.9	9.8 12.5 14.9

TABLE III.- BUFFETING CONDITIONS AND LOADS - BASIC AIRPLANE

•

(a) Operating Conditions

		·····					·				-
Pilot's note (a)		E Pat a	면 너머머머머 머머머머머머머머머머머머머머머머머머머머머머머머머머머머머머머	н ц ц ц	ччн еч	я дя		***	~ ~	, r, 1, R 1, R 1, R	
c _{NE}		0.57 .995 .816		-500 -500 -500 -790	.473 .659 .658			0.833	.795	1.092 .707	
W	ıded	0.399 .4.36 	.500 .500	-587 -626 -626	.630 .648 .688 .679			0.308	.329	. 368	
Δt, Bec	- Conclu	1.25 1.25 1.25 1.25 1.25 1.25	2.20 1.40 2.50	1.10 1.20 1.75	3.66 3.66 4.65 3.03	5.22 8.40 8.40 9.40 8.40 9.40 9.40	0 ft	2.10 1.70 1.85	1.55	1.72 1.45 1.80	
-l8i	tude of 30,000 ft	0.74 × 10 ⁻³ 2.43 4.71 7.04 1.82	2.01 2.92 2.16 1.63 5.79	1.41 2.88 3.41			altitude of 25,00	0.58 × 10-3 .52 1.25	1.52 1.28	14. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	
ů, g/sec	t an alti	3.80 2.50 4.40 7.10	2.50 9.30 9.30 9.30	5.60 5.60			ns at an	0.15 21.0 21.0 21.0	<u>છ</u> ંછું	1 50000 1 50000 1 1 50000	
ft ft	Pull-ups at	29,850 27,700 29,850 30,150 30,000	30,000 29,850 30,050 30,100	30,000 30,200 30,400 29,300 27,000	28,850 28,850 28,550 28,150 28,150 28,150 28,150 20	28,550 28,250 28,650 28,650 23,000 23,000 23,050 28,650 28,650 28,050	Tur	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 8 8 8 8 8	%%%%%% %%%%%%% %%%%%%%%%%%%%%%%%%%%%%%	
c _{MB}		1.175 1.175 1.145 1.145 1.145	1.073 1.115 1.125 1.126 1.126	1.082 1.147 1.072 1.072 .956	.830 .691 .620 .522			1.181	1.175	1.160 1.128 1.105 1.105 1.075	
æ.		0.438 .461 .467 .481 .512	-514 -532 -556 -559 -559	.612 .614 .639 .666	147. 112 1726 1726	742 763 784 786 786 7786		0.289 .315 .315	S. F.		
Run		25103 2510 25103 2510 25103 2510 2510 2510 2510 2510 2510 2510 2510	45323	\$&128E	\$\$XXX\$	ୢଌଌୣଌୄଌଌୄୡ		68 68 68	<u>8</u> 6	122242	
Pilot's note (a)		2	2222 24 24 24 24 24 24 24 24 24 24 24 24	# # # # # #	a∽a, a	ala N N N N N N N N N N N N N N N N N N	1^			~ ^н н н н н	
CME		0.881	780.1 018. 875.	798 546 	.960 .980 	017. 017.				0.950 .700 .610 .831	
ME		0.321	.366 	194. 194.	15.585 1585 1585 1595	529. 529. 529. 529.	069.			0.321 1445 - 572 - 572	
Δt, sec	00 ft	3.62 2.60 5.18 2.30	2.60 2.60 3.10 1.40	1.58 1.38 1.50	1.1 1.40 2.35 2.35	1.10 2.10 1.32 1.15 2.10	2.35	0.00 0.11	000 ft	1.90 1.43 1.30 1.30	fcance:
:8 >	iltitude of 30,00	1.67 × 10-3 .ut 1.46 0 .94	1.288 1.148 59 59	9.5.58 8.5.58 9.7.58 9.68 9.68 9.68 9.68 9.68 9.68 9.68 9.6	2.52 .73 2.05 .63	.53 .16 1.10 1.52			altitude of 30,	4.35 × 10 ⁻³ 4.29 4.24 6.52 3.13	following signif
'n, g/sec	ns at an e	0.60 .15 .40 .55	1.55 	1.60 .61 .90 3.30	3.20	3.88 3.88 3.89			ups at ar	1.50 1.80 2.50 2.20	have the
ft ^p ,	Tur	29,200 30,730 30,500 30,600	29,800 30,100 20,900 20,900	30,500 20,500 20,500 30,500	31,500 31,900 30,000 29,500	29,700 21,800 21,800 27,700 29,000 30,400	20,500 21,830	20,000 29,300 30,030 29,930	TIN	29,900 30,000 30,050 30,050 29,750	is column
CNB		1.220 1.245 1.268 1.125	1.150 1.150 1.150 1.150 1.150	1.099 1.070 1.050 1.050 1.050 1.050	1.105 1.083 1.095 1.095 1.066	1.098 1.020 1.043 	.721	 244		1.274 1.196 1.202 1.189 1.1189	sed in th
ЧB		0.337 .241 .347 .357 .357	.367 .368 .570 .570 .570	.510 .510	-530 -542 -586 -595 -607	625 263 149 149 149 199 269 269	202	187. 077. 187.		0.339 .556 .420 .420	Letters u
Run]	10125	ၜႄႜၐၜႄၐ႞	13545	91 L 81 02	ដេងៈិភេះដែ ងស	-ଝ୍ <u>ଚ</u> ଝୁ	27 25 27 25 25		¥ጜ%ド%	đ

.

NACA TN 3080

left roll-off right roll-off no roll

Ц К Х

very light buffeting light buffeting moderate buffeting heavy buffeting

7 ~ E 다

Continued
AIRPLANE -
BASIC
1
LOADS
AND
CONDITIONS
BUFFETING
1
Ë
TABLE

(a) Operating Conditions - Concluded

	T	F					_	_					· · · · · · · · · · · · · · · · · · ·			
Pilot's note (a)	,	~~~		N E	д д	4	E 1 E		~~~~	ę	ය 다 타 CC 타		~~ 8 6	ם א ה ה ה ה ה ה ה ה ה ה ה ה	E	
c _{NE}		0.50			0.718	.870										
¥	eđ				914.0	.460										
Δt, aec	- Conclud	0.50 4.70 3.60 3.60	,000 ft	2.45 1.70	1.35	1.12 1.65	90 1.82 2.65	t o	1.35 1.65 1.67	2.47	2.52 2.52 2.52 2.52 2.60 2.52 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.6	0 ft	3.40 2.75 2.75	2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60	(1.2	
i3 ≻	ide of 20,000 ft	0.70 × 10 ⁻ 3	n altitude of 20	8.30 × 10 ⁻³ 8.60 8.60	2.17	5.30 1.98		altitude of 15,00	0.80 × 10 ⁻ 3 .75 1.70 2.10 .55	1.55	1.60 .80 1.20 1.20	altitude of 10,00	0.33 × 10 ⁻³ .57 1.01 3.17	1.1.0 1.1.3 1.1.3 1.1.1.1 1.1.	69.1	
Å, g/sec	en altitu	1.70	-ups at a	1.90 2.90 3.90	2.80	6.70 3.60	9, 10 8, 10	us at an	0.15 .20 1.08 .30	1.10	1.40 .80 1.70 2.10 2.10	ıs at an	0.40 .50 .86	00 110 00 00 00 00 00 00 00 00 00 00 00	6.2	
hp, ft	Turns at	19,650 18,950 19,900 19,400 20,600	IIN	20,100 20,250 20,100	80,120 80,60	20,100 20,200	20,050 18,950 20,000	Tur	15,550 15,550 15,650 15,650	15,400	15,550 15,850 15,650 15,600 15,600	Tur	10,250 10,400 10,050 10,450	10,450 10,450 11,350	10(3 (NT	
CMB		1.051 484 - 203 - 203 - 203		1.388 1.380 1.372	1.100	1.181	1.125 1.12 3.73 .373		1.421 1.356 1.340 1.285 1.285	1.232	1.202 1.190 1.167 1.145 1.102		1.385 1.313 1.320 1.320	1.234	201.1	
₩.		0.543 .741 .757 .757 .757		0.253		.500 .500	-726 -748 -759		0.225 247 .247 .212 .312	0.4. 0			0.227 249 278 278	515 566 578 578		
Run		911 711 8111 911 911 911 911		ផងរា	1 2 2 2	921	8 8 8 1 1 1 1		22242	136	138 159 141		142 145 145 145	944 111 111 111 111 111 111 111 111 111	2/-	_
Pilot's note (a)		हर्षस	ب م	,田 。 、	<i>ب</i> م	d ~ ₫ :	2 日 2 2 2	•	2A 2A		، ۲۷ ۳ ۲۷ ۳	, l	л е , В , В , В , В , В , В , В , В , В , В	E~ ~ E.	£~~	
CME		012 019 906	.816	89.	-710 301	2 1 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	.450		0.930 .775 .815 .521		0.570		. 655			
¥	eđ	512 142 142 152	163.	.702	4 5 5	8 2	-128		0.591 .617 .654		0.250		.395	991.		
Δt, sec	- Conclud	1.40 1.05 1.05 2.15	2.30	3.32 86.1 3.32	3.50	2.0.0 2.0.0 2.0.0	2.72	t1 000	4.50 .85 1.38 5.02	o ft	3.02 1.40 1.70 1.50	1.40	1.30 1.28 1.08	0.11 0.12 0.12 0.12 0.12 0.12 0.12 0.12	2.6	
;3 >	de of 25,000 ft	0.91 × 10 ⁻³ .79 1.39 1.83						n altitude of 25	0.23 × 10 ⁻³ 1.02 1.02	altitude of 20,00	0.45 × 10 ⁻³ 1.17 1.84 1.66	1.31	1.03 .81 1.28 .90	2.24 11.14 11.1 14 1.1 14 1.1 1	.95 .99	
'n, g/sec	an altitu	7.00 7.00 7.00 7.00 7.00 7.00	5.40					-ups at a	0.58 3.05 3.05	ns at an	0.10 .30 .62	02		2.10 	1.73 2.30	
hp, ft	Turns at	25,600 25,400 26,100 25,950	27,100 27,500	56,70 57,00 51,00 52,00 50,000 50,0000 50,0000 50,0000 50,0000 50,0000 50,0000 50,00000000	23,700	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	FLIM	25,500 26,100 26,100 26,700	Tur	20,100 20,100 20,500 20,500	20,550	20,400 20,500 20,500 20,600	20,550 20,450 20,200 20,200 20,450 20,450 20,450 20,450 20,450 20,450 20,450 20,450 20,450 20,450 20,450 20,4550 20,550 2	20,730 20,730 19,830	48.
c _{NB}		1.060 1.044 1.136 1.085 1.136	848.	-777 - 762 - 762	.680	86.4	8.7.8.8.		1.050 .982 .785 .578		1.295 1.260 1.221 1.237 1.199	1.215	1.206 1.220 1.220 1.40	1.149	1.075	ste a, p.
¥		0.511 .558 .565 .565 .565	.678 685	689 169 169 169	122.	1200	691. 178 8773	<u>,</u>	0.605 .645 .686 .725		0.248 .236 .236 .234 .234 .235 .235 .235 .235 .235 .235 .235 .235	.337	.345 .348 .399 .399	4044 4044 1474 18834	535	ee footno
Run		92 12 82 62 8	85	සු ස	86	8888	2288		48892 2892		98 99 101 102	103	40010	899111	149	S.

NACA TN 3080

TABLE III.- BUFFETING CONDITIONS AND LOADS - BASIC AIRPLANE - Continued

and Right Wing Loads

Left

e

At load, 2.46 2.96 1.45 1.45 1.71 1.45 20509 89.05 88838 8.8.9.4.1 8.8.9.4.1 -0.135 -.223 -.042 .098 .185 .274 .274 .274 55 -----...... **№**0 1.129 1.135 1.242 1.242 1.180 1.059 1.081 1.081 126-19-18-0 .936 .025 .028 .018 5° Concluded Right £ 77.0 99.3 91.2 111.5 110.2 116.4 125.0 138.2 158.0 159.6 166.4 182.0 213.1 194.4 203.6 214.1 217.7 252.0 225.3 222.6 2522.6 253.4 265.1 265.1 1010 24.8 80.5 100.5 11 1b/8q 34848 altitude of 25,000 ft ft -0.417 .451 .470 .457 299954 29995 690 682 742 742 742 742 742 742 742 52752 696 696 69 697 16 1967 Σ 30,000 1,091 1,037 1,452 1,764 1,764 2,181 3,943 1,131 1,019 1,236 2, 152 1, 051 1, 514 1, 738 1, 738 1, 738 1, 738 590 977 700 1,302 822 1,583 1,073 1,164 1,000 6448555 1382585 ส์ส ٩f At load, sec 85695 2.96 1.55 1.57 1.55 5.22 altitude 5 -0.223 -.046 - 059 - 059 - 054 - 059 - 050 - 059 098 185 282 282 282 282 282 282 282 282 282 ł at δ. Ha Turns 벎 .931 .987 .897 .920 0.937 .955 .989 1.194 -937 -937 -982 -982 .888 .792 .665 .647 .706 1211 L. 149 L. 078 L. 078 L. 059 986 914 813 813 801 801 č Pull-ups Left ft 94.9 94.9 95.8 156.0 162.0 182.7 211.2 225:3 250.4 250.4 268.9 268.9 268.9 204.2 44.02 22.5.6.0 22.5.6.0 110.2 117.1 126.2 144.8 137.0 186.4 203.6 214.2 239.0 252.0 74.0 80.4 90.3 105.3 1b/8q 693 663 663 125 0.407 596 620 637 649 65525586 85.55 192.51 192 Σ 2,349 2,349 952 598 315 1,046 1,200 1,299 2,250 452 458 016 820 052 22222Z *36688* ਸ਼੍ਰੰਚ Run 83433 792222 **** 36895 れなわれち すむみさる Δtload, sec 9.65.49.69 84 86 8 888 18488 -0.152 -.036 11. 641. -----.131 120. ----------ļ å 1.265 1.116 1.145 .933 018 0.999 .970 1.000 1.104 1.1020 1.021 945 018 .507 .603 ŧ 428.0 .811 S Right t 53.0 56.2 63.3 70.6 91.0 95.7 111.0 106.3 48.5 73.9 72.6 112.2 123.1 133.9 151.2 163.0 160.5 158.8 182.8 200.9 177.3 200.10 . q, lb/sq £ £ of 30,000 30,000 361 361 102 102 102 102 1503 1505 1505 53525859 5855555 \$888\$.350 .350 .351 Σ 779 818 877 1,001 822 793 663 735 1,032 1,51 1,51 1,519 1,519 606 537 591 613 613 612 318 728 902 ef ₽₽ altitude altitude At load, sec 0.32 .42 1.18 1.23 2.02 2.02 2.02 2.02 2.97 2.97 2.97 0.72 1.96 1.07 1.27 1.27 7.1.1 84.1 84.5 9.3.9.8.1. 멻 æ -.142 -.036 -.035 -.066 g 136 -0.170 .021 1 -----..... 1111 1111 l at **B**N Pull-ups Turns 1.124 .000 1.188 1.155 1.032 1.375 1.375 1.280 1.116 1.230 1.164 1.031 1.031 .976 .990| 1.054 1.015 1.004 118 -514 -552 955 L.033 ł ļ S Left ť 113.1 119.2 133.9 151.2 163.0 160.5 158.8 182.8 192.7 177.3 199.5 199.5 2216.5 224.0 224.0 2262.3 262.3 262.3 2262.3 2262.3 2262.3 2262.3 52.0 52.0 52.0 52.0 52.0 55.0 56.2 63.3 70.6 91.0 97.1 111.0 106.3 107.5 1b/sq 0.330 .328 .316 .316 .350 355 361 378 1400 1475 1497 1497 \$38865 668 693 693 693 668 693 668 668 755 755 755 755 Σ 524 619 727 1,146 975 428 1,332 883 1463 517 519 519 519 PF3881 \$%88%8 2623 825 72 825 74 72 74 34364 ส์ล Rus B ことうよう 96899 ***** コロワキワ 35858 ជេះដល់ដង

naca tn 3080

TABLE III.- BUFFETING CONDITIONS AND LOADS - BASIC AIRPLANE - Continued

(b) Left and Right Wing Loads - Concluded

	Δtload, sec		0.42 .29 .10 .10 .10 .10	46.0 14.	8.5.4			4.0.01 4.0.016	2.54 2.54 1.25 1.25		3.5.4.4.5 8.5.4.4.5	1.68 1.68 1.60
	AC _N		0.022 .072 .024			0.073						
ght	сN		0.998 1.006 .572 .434	1.180	1.050	1.007 .992 .563 .539		1.309 1.313 1.303 1.303 1.049	1.133 1.068 1.077 1.059 1.059		1.158 1.158 1.174 1.238	1.008
R1	lb/sq ft	oncluded	195.8 203.2 388.4 589.9 108.1	53.1 53.1	90.3 126.5	127.5 154.0 395.5 384.5	ft	39.6 49.3 61.0 73.9 78.2	92.5 103.1 117.5 136.6 148.7 170.4	ft	74.4 66.3 89.6	0.121 0.141 0.141 1.271
	м	ft - C	0.534 .744 .744 .757 .757	20,000 0.237 .271		.1435 .478 .742 .742	000	0.219 245 .245 .301 .301	425 122 122 122 122 122 122 122 1	000,0	272.0 4445. 272. 272. 299.	337 345 376
	ÅĽ,	000'00	450 247 747	de of 714 805	1,003	7778 787 456 464	e of 1	4,38 4,78 4,50 5,70 665	700 857 1,023 1,112 923	e of 1(1,288 1,288	1,028 1,209 818 818
	∆t _{load} , sec	tude of 2	0.42 4.72 1.12 1.12	n altitu 0.82 .51	846	1.31 1.02	altitud	0.40 .17 .21 1.01 .82	2.75 2.75 1.86 2.73 2.73	altitud	2.19 1.17 1.06 2.39	5.27 1.53 .52
	ΔCN	n alti	0.005 0.024 .031 .026	ps at a		0.066	s at an			s at an		
t	сN	ns at s	0.998 	Pull-u 1.306 1.180	1.190	1.147 1.005 .566	Turn	1.309 1.350 1.333 1.070 1.197	1.153 1.077 1.079 1.059 1.059	Turn	1.133 1.092 1.182 1.241	1.041
a.	¶, lb∕sq ft	Lun	195.8 389.8 388.6 406.8 407.1	37.9 53.1	92.9 92.7 122.8	135.5 153.0 293.1 381.9		39.6 49.3 61.0 72.4 78.2	92.5 117.5 117.5 136.6 147.0		49.0 751.1 89.4 89.4	117.2 123.3 143.1 173.4
	×			1237		448 476 740 740		219 245 272 272 298 298	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		220 242 271 299	525 575 575
	,Jd b		259 tr 65	690 612	1,509	1,204 409 421		2375 567 551 531	235 426 964 426 978 426 978 426 979 426 970 420 970 420 970 970 420 970 9700 420 9700 4200 9700 4200 9700 4200 9700 4200 9700 4200 9700 42000 9700 420000000000000000000000000000000000		493 829 829 829 829 829 829 829 829 829 829	973 973 893 867
	Run		116 116 116 116 116 116 116 116 116 116	121	មិត្ត អ៊	% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	132	138 159 140 140 140		44444 4444 804409	147 148 150 150
	∆t _{load} , sec		0.81 .80 .57 .32 1.01	1.23 2.30	1.70	2.19 3.19 3.19		+ +	1.99 .57 .70 .68	66. 85	8.F.8 4	<u>7</u> 89844
	ACN		0.006	010	• .005 .251	121		0.050				
zht	c _N		0.955 1.029 1.026 1.026 1.026 1.929	.768 .768 .678	202. 168.	627 673 673 660		0.870	1.265 1.288 1.175 1.249 1.249	1.093	1.076	1.078 1.078 1.030 1.030 1.030
R16	1b/sq ft	oncluded	129.0 145.0 163.4 173.6 215.0	226.5 291.8 256.8	285.5 263.0 203.8	291.8 271.0 315.7 314.0 300.0	ft	24.8	1-4-1-1-0 1-4-1-1-0 1-4-1-1-0	68.7 77.1	8.0.0. 4	26.3 26.0 37.2 4.6.8 69.6 69.9
	Σ	-	52 255 7392 7392	00100				1 1 1 1 1 2	しょうどう		. AA A	алала
		ft	اعتذبذبذ وز	6.6	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	122 122 122 122 122 122 122 122 122 122	25,000	0,000 ft	0.237 2893 2893 2888 2888 2833 757 2838 237 237	320	747 793 797 1 797 1 1 004	.435 1 .438 1 .458 1 .458 1 .497 1 .507 1
	∆L, 1b	5,000 ft	1,132 0.4 822 .5 1,099 .5 963 .5 963 .5	842 .67 387 .69 1,334 .67	3,016 .715	823 .756 555 .739 583 .776 882 .774 1,114 .767	de of 25,000	1,316 0.667 2	460 0.237 5 348 .249 4 246 .283 5 246 .283 5 601 .288 5 655 .337 7	607 .320 719 .320	675 347 589 393 14 810 397 14 907 400 11	924 .435 1 779 .438 1 475 .458 1 934 .466 1 934 .466 1 934 .466 1 1,016 .507 1
	Atload, AL, sec lb	tude of 25,000 ft	0.77 1.132 0.4 .75 1.099 .5 .77 1.099 .5 .75 963 .5 1.36 1.981 .6		3.33 926 .704 1.65 3,016 .715	2.94 823 7756 1.12 823 7756 1.54 383 7756 2.91 822 774 5.43 1.114 767	m altitude of 25,000		2.29 4460 0.237 5 714 348 .249 4 .82 246 .283 5 70 601 .288 5 .73 7	.76 607 .320		.64 924 .435 1 .80 779 .438 1 .80 477 .458 1 .56 937 .456 1 .54 900 .497 1 .54 1,016 .507 1
	$\Delta C_{\mathrm{M}} = egin{pmatrix} \Delta t_{\mathrm{load}}, & \Delta L, \\ \mathrm{sec} & \mathrm{lb} \end{bmatrix}$	un altitude of 25,000 ft	0.77 1,1,132 0.4 0.77 1,1,1,132 0.4 0.77 1,0,90 55 0.75 963 55 0.7 1,0,901 65 0.1,901 65 0.1,901 65 0.1,001	02508 84.2 .67 .033 1.44 387 .69 023 2.83 1.53467	.023 3.33 926 .704 .253 1.65 3,016 .715 .017 2.35 000 7215		ps at an altitude of 25,000		2.23 460 0.277 3 771 346 249 4 172 348 249 4 173 248 5 173 7 173 7 174 7 175 7	76 607 .320		.64 924 .435 .80 779 .436 .81 779 .451 .82 477 .452 .83 477 .452 .84 477 .452 .86 934 .456 .97 .56 947 .900 .497 1 .50 1,016 .507
ft	$C_{\rm N}$ $\Delta C_{\rm N}$ $\Delta t_{\rm load}$, ΔL ,	18 at an altitude of 25,000 ft	0.958 0.77 1,132 0.4 1.029 0.77 1,132 0.4 1.015 2.7 1,093 -5 1.015 2.7 963 -5 267 0 1.36 1,981 -6		.748 .023 3.33 926 .704 .878 .253 1.65 3,016 .715 .650 047 2.37 000 721	.677148 2.04 823756 	Pull-ups at an altitude of 25,000	0.870 0.050 4.55 1,316 0.667 2 Thurns at an altitude of 20,000 ft 20,000 ft 1 2	1.256 2.29 460 0.277 3 1.245 2.29 446 0.277 3 1.242 28 246 2345 5 1.249 70 601 238 5 1.1249 59 655 .337 7	1.19476 607 .320 1.15042 719 .330	1.242 25 675 347 -980 76 589 393 1 1.111 30 810 397 1 1.105 52 907 400 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Left	$^{\rm 1b}/^{\rm Sq}$ ft $^{\rm CN}$ $^{\rm CM}$ $^{\rm \Delta C}_{\rm N}$ $^{\rm \Delta t_{load}}$, $^{\rm \Delta L}_{\rm 1b}$	Turns at an altitude of 25,000 ft	129.3 0.958 0.77 1,132 0.4 145.0 1.029 175 822 9 9 9 9 9 9 9 9 145.0 1.029 175 1,039 167 1,1026 175 963 -5 15	227.0 1830 025 .88 842 .67 250.2 1.768 .033 1.44 387 69 253.9 913 023 2.83 1.574 .67 253.9 913 023 2.83 1.534 .67	285.2 748 .023 3.33 926 .704 264.7 .878 .253 1.65 3,016 .715 203.0 65.9 017 2.33 2016 .715	291.5 .673 .148 2.64 823 .756 273.7 .644 .122 1.12 755 .779 213.3 .441 .001 1.54 823 .776 313.9 .4401 .010 2.91 823 .765 313.9 .467 .262 3.43 1,114 .767	Pull-ups at an altitude of 25,000	<td>36.2 1.256 2.23 4.60 0.27 3 42.4 1.245 24 245 4 55.3 1.245 24 245 4 55.3 1.249 24 245 245 4 55.3 1.249 24 248 3 7 76.3 1.249 55 .337 7</td> <td>68.9 1.19476 607 .320 76.9 1.15042 719 339</td> <td>79.8 11.24.2 29.0 29.0 29.7 29.7 29.7 101.0 29.7 101.1 101.2 101.1 29.7 101.1 29.7 101.1 200.1 29.7 101.1 200.1 200.1 200.1 200.1 200.1 100.1 200.1 100.1 200.1 100.1 200.1 100.1 200.1 100.1 200.1 100.1 200.1 100.1 200.1 100.1 200.1 100.1 200.1 100.1 200.1 100.1 200.1 100.1 200.1<!--</td--><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></td>	36.2 1.256 2.23 4.60 0.27 3 42.4 1.245 24 245 4 55.3 1.245 24 245 4 55.3 1.249 24 245 245 4 55.3 1.249 24 248 3 7 76.3 1.249 55 .337 7	68.9 1.19476 607 .320 76.9 1.15042 719 339	79.8 11.24.2 29.0 29.0 29.7 29.7 29.7 101.0 29.7 101.1 101.2 101.1 29.7 101.1 29.7 101.1 200.1 29.7 101.1 200.1 200.1 200.1 200.1 200.1 100.1 200.1 100.1 200.1 100.1 200.1 100.1 200.1 100.1 200.1 100.1 200.1 100.1 200.1 100.1 200.1 100.1 200.1 100.1 200.1 100.1 200.1 100.1 200.1 </td <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ieft	$M = \frac{q_{,}}{lb/g_{,}} f_{,t} = C_{,N} = \frac{\Delta c_{,load}}{\Delta C_{,N}} = \frac{\Delta t_{,load}}{lb}$	Turns at an altitude of 25,000 ft	0.492 129.3 0.998 1.1,132 0.4 518 145.0 1.029 1.029 1.2 1.1 1.2 0.4	.676 227.0 .830025 .88 842 .67 .699 250.2 .768 .033 1.44 387 .69 	-700 285.2 748 .023 3.33 926 .704 -717 264.7 .878 .253 1.65 3,016 .715 -729 263.0 65.9 04.7 2.37 0016 .715	776 29.1.5 673 1.148 2.64 823 776 741 273.7 .614 1.22 1.12 255 779 779 131.3 .401 .001 1.24 1.22 779 779 131.3 .401 .012 279 779 779 779 131.9 .401 .010 1.24 201 765 779 779 131.9 .401 .010 2.91 882 776 774 203.9 .100 2.91 882 776 7764 207.0 .627 .262 3.43 1,1114 767	Pull-ups at an altitude of 25,000	0.667 224B 0.870 -0.050 455 1,316 0.667 2 Thurns at an altitude of 20,000 ft	0.232 36.2 1.256 2.23 460 0.277 3 249 42.4 1.245 2.29 460 0.27 3 283 54.3 1.245 2.82 246 283 5 288 55.3 1.249 70 601 288 5 337 76.3 1.1289 59 655 337 7	.321 68.9 1.19476 607 .320 .338 76.9 1.150 42 719 336	Jür T9.8 Liziz Liziz <thliziz< th=""> <thliziz< th=""> <thliziz< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></thliziz<></thliziz<></thliziz<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
left	$ \begin{array}{c c} \Delta I, & M & \\ 1b/g_{q} ft & C_{N} & \Delta C_{N} & \\ \Delta f_{sec} & 1b \\ \end{array} $	Turns at an altitude of 25,000 ft	706 (0.492 129.3 0.958 0.77 1,132 0.4 946 .518 145.0 1.029 0.77 1,222 0.5 536 .552 145.0 1.025 77 1,099 .5 1536 .559 153.0 1.015 77 963 .5 980 .576 175.0 .965 77 963 .5 2,136 .659 215.5 .967 0 1.56 1,981 .6	734 .676 227.0 .830 025 .88 84.2 .67 442 .699 250.2 .768 .033 1.44 387 .69 1.204 .657 253.9 .913 .023 2.83 1,534 .67	1,025 .700 285.2 .748 .023 3.33 926 .704 2,524 .717 264.7 .878 .253 1.65 3,016 .715 .878 .253 0.05 .710	758 775 201.5 567 1148 2.64 823 775 619 741 273.7 .614 122 1.12 255 779 619 779 773.7 .614 122 1.12 755 779 710 771 713.3 .441 101 1.49 2.64 823 775 710 774 313.3 .441 0.10 2.94 823 775 710 774 313.5 .440 .10 2.94 823 776 710 776 313.9 .482 .110 2.94 822 776 1,228 776 287.0 .687 .262 .543 1,114 767	Pull-ups at an altitude of 25,000	1,219 0.667 224.8 0.870 -0.050 4.55 1,316 0.667 2 Turns at an altitude of 20,000 ft	ZTT 0.232 36.2 1.256 2.29 460 0.277 3 339 240 1.245 2.25 246 289 5 4 246 246 245 7 7	683 .321 68.9 1.19476 607 .320 451 .338 76.9 1.15042 719 .339	501 Júr 79.8 1.242 293 1242 276 579 347 479 393 104.0 -980 76 589 -393 1 678 397 104.0 -980 20 393 1 678 397 104.5 1.1.11 30 810 .393 1 700 .400 107.1 1.1.10 .52 907 .400 1	04:2 4.30 125.1 64 924 .435 627 .477 126.0 1.024 66 779 .436 627 .477 126.0 1.024 67 .452 12 924 .466 14.68 1.047 .56 934 .466 936 .497 168.6 1.030 .54 900 .497 936 .497 168.6 1.030 .54 900 .497

NACA TN 3080

51

•

TABLE III.- BUFFETING CONDITIONS AND LOADS - BASIC AIRPLANE - Continued

(c) Left and Right Tail Loads

	T		T																					-
	∆tload, sec		0.22	55	;¥		ςų.	8;‡.	4- 1- 1-	5.5.5	ь.1	5.5 5.5	2.39 191	17.5	5.2 2 5	3.82 4.62	टा.ट		0.75	8.4	.61	8.6	÷Ŀ	<u>;</u> ê
	ΔCN											2001	925 825	.087	.127	410	.302 205							
pt	cN	- 	1.289 1.008	1.056	1.129	1.006	600.T	1.011	086.	1.001	766.	, 8, 8 , 8, 8	117.	.832	.783	-769 -2680	.132		1.256	1.193	1.220	1.157	- 010	1.032
Rig	1b/aq ft	Conc lude	82.2 97.0	91.8	11.5	2.111.2	129.5	148.5 134.5	159.8 152.9	1.101	6.605	210.2	258.0	231.0	20.0 2000	253.4	269.0 308.7		1.44	 55.1 51.6	59.5	73.5 81.0	92.9	- 2.11
	×	- 11 0	444.0	456	.505	502	13	556	.603 .596	639	ġ.	1269.	.729	969.	.719	742	<u>16</u>	5,000 1	0.286	-312	329	.359 389	414.	.465
	ÅL,	30,000	210 212	578	687	Ei	±99;	472	519	667	04	832 621	786 786	600	801	1,080 1,080	82	e of 25	132 0	- 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	538	1,38 570	266 167	55
	∆tload, sec	itude of	0.57	10	85	62.	92.	8.8	.18	1.18 1.18		2.57 1.23	2.0 <u>3</u>	3.82	2.65	4 v 9 2	5.12	altitud	1.17	.87 .76	.58		.87	.82
	ACN	an alt									060.0-	9990	36	960.	201	246	-315	a at an						
t1	сN	ups at	1.250	1.030	1.036	-942	016.	1.118	1.025	1.013	906	6.6	.700 .816	- 847	6	67- 129-	.728 .450	Turne	- £21.1	1.159	1.231	1.162 -	1.020	- 690.1
lef	lb/sq ft	Pull-I	78.4 97.0	91.0	108.7	2.09.5	156.5 126.5	0.751 137.0	164.0 153.2	170.3 183.0	(.602	209.4	238.6 250.0	229.7	1.64.5	249.0 269.5	270.0 308.7		т. ₄₄	55.1	59.5	73.5 81.2	6.5 6.5	1.911
	W		124.0	25	664.	499	122	260	.608 597	629	CHO.	673	4T2-	-695	161.	-765 -765	.755		.285	312	329	88 88	414 438	+ <u>70</u>
	, ₽b		571 513	719 875	730	831	619	805	651 613	901 783	4.70	2 2	472 926	124	9 <u>3</u> 9	000	9#0 655		151 0	278 282	265	181 577	270 503	1 ,66
	Run		39 40	45 F 7	43	4	121		<u>5</u> 6	225 2	R 1	227	52	26	396	260	\$£		99	286	22	12	54	Ŕ
	ed,		20	88	•	ភេទ	୍ଚନ	ರತ	<u>س</u> 0	500	u -	- ~ 0	0	~	- 01 1	• •	~				Т			0.01
ł	Δt lc se			a -	1		i -i c	2.4	ñ, ř,	ι÷ιζα	j T	νĿņ	5.0	ê	5.7	ŇŎ	94. 19	9.000 I -1	188	0.88 10.42		0.50	ġġ.	Ŵ.
	ACN Atlc														5.7	640.0	94.	1.6	1.82	.115 3.88 .093 10.42		0.50	ŧ.ŧ.	
ght	CN ACN At Ic		1.198 1.3 1.142 1.7	1.141 1.41. 1.141 1.41.		1.148	1.076	1.105 201.1	1.028	.985 	106. 14	1.003	.989 2.0	1.04463	.983	39. 640.0 400.1	9 ¹ .	1.65	1.22	-500 115 3.88 -533 -093 10.42		1.130 0.50	46. 006. 46. 896.	
Right	lb/sq ft CN AGN Stlc	ft	47.8 1.198 1.3 46.4 1.142 1.7	43.9 [1.141] 4.5		59.6 1.148 1	56.2 1.076	4 121.1 4 105	89.8 1.08521 93.4 1.02890	111.4 0.985 5 107.6 0.991 5 061	105. 2001 105. 105. 105. 105. 105. 105. 105. 105.	119.5 1.0037	152.9 .980 2.0 162.9 .989 2.0	160.5 1.04463	179.2 .983 2.7	178.1 1.000 0.049 0.049 .66	34 0.461 54 2. 601	216.8 1.65 214.8 1.65	224.9	264.3 .500 .115 3.88 264.3 .500 .115 3.88 287.9 .533 .093 10.42	ft	49.5 1.130 0.50	94.5	75.6 1.375 36 75.6 .990
Right	M Ib/sq ft CN ΔCN Δt_{1c} se	50,000 ft	0.338 47.8 1.198 1.3 .330 46.4 1.142 1.7	.348 43.9 1.141 $ 1.1$.368 59.6 1.148 1	-361 56.2 1.076 1.23	4 201.1 8.69 614.	.460 89.8 1.08521			.542 119.5 1.0037 .586 138.23	.595 152.9 .98044 .602 162.9 .989 2.0	.600 160.5 1.04463	.621 179.2 .983 2.7		.666 194.0 0.461 346	.694 216.8 1.65 605 244 8 772 622	719 224.9	.750 264.3 .500 .115 3.88 .750 287.9 .573 .093 10.42	50,000 ft	0.50 49.5 1.130 0.50	46. 060. 4.00 04. 4.00 4	-416 75.7 1.375 30 -413 75.6 -990 30
Right	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	de of 30,000 ft	365 0.338 47.8 1.198 1.3 164 .330 46.4 1.142 1.7	387 -348 43.9 11.141 4 182 -347 52.2 11.141 1		88 .368 59.6 1.148 1 1456 355 55.0 1 130		4 201.1 8.69 91.4. 201	462 .460 89.8 1.08521 311 .486 93.4 1.0289	376 .499 111.4 .9857 470 .500 107.6 .991		370 .542 119.5 1.003 .7 563 .586 138.2 .3 .5	587 .595 152.9 .98044 317 .602 162.9 .989 2.0	134 .600 160.5 1.0446		613 .650 178.1 1.004 0.049 .66	298 .666 194.0 0.461 394.0	521 .694 216.8 1.65 248 665 244 8 1.65	362 .719 224.9 1.22	24	de of 30,000 ft	520 0.335 49.5 1.130 0.50	920 963 966 968 94	749 .416 75.7 1.375 30 621 .413 75.6 .990 77
Right	$\left[\Delta t_{\text{logal}} \right]$ Δt_{sec} $\Delta t_{\text{log}} \left[M \right]$ $\left[1b/s_{\text{q}} t_{\text{f}} \right]$ $C_{\text{N}} \left[\Delta C_{\text{N}} \right]$ $\Delta C_{\text{N}} \left[\delta t_{\text{sec}} \right]$	n altitude of 30,000 ft	1.58 365 0.538 47.8 1.198 1. 1.76 164 .330 46.4 1.142 1.7	1.20 182 .347 52.2 1.141 1.		.26 88 .368 59.6 1.148 1	1.35 247 361 56.2 1.076 1.1.	4 121.1 0.00 01.0 01.0 01.2 02.2 0.02 0.0	.39 4462 .460 89.8 1.085 .28 .86 311 .486 93.4 1.028 .99	.27 376 499 111.4 985 77 73 470 500 107.6 991 55 74 555 555 107.6 501		.62 370 .542 119.5 1.00377 .24 563 .586 1.38.237	.37 587 .595 152.9 .980 2.0 1.92 317 .602 162.9 .989 2.0	-#8 134 .600 160.5 11.04463	2.59 130 .621 179.2 .983 2.7			1.98 521 .694 216.8 1.65 .64 24.8 655 244.8 1.65		10.58 248 7.50 287.9 533 095 10.42	n altitude of 30,000 ft	0.83 520 0.335 49.5 1.130 0.50	46. 066. 4.62 24.6 44.4	-41 749 416 75.7 1.375 33 -60 621 413 75.6 990 77
Right	$\Delta C_{\rm M} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	is at an altitude of 30,000 ft	1.58 365 0.338 47.8 1.198 1.7 1.76 164 .330 46.4 1.142 1.7	4.20 387 .348 43.9 1.141 4. 1.20 182 .347 52.2 1.141 1.		26 88 .368 59.6 1.1481		4 201.1 8.69 614. 706 82	39 462 .460 89.8 1.085 28 86 311 .486 93.4 1.0289	27 576 499 111.4 995 77 81 470 500 1076 991 55 81 420 500 1076 9	10 10 10 10 10 10 10 10 10 10 10 10 10 1		37 597 .595 152.9 .980 2.0	448 134 .600 160.5 11.04463		047 .36 613 .650 178.1 1.004 0.049 .65	94 0.461 666 1.94.0 0.461 999 .665 904 .571 100 7 51	1.98 521 .694 216.8 1.65 .017 .64. 248 665 214.8 1.65		.130 1.01 195 100 200. 100 100 100 100 100 100 100 100 100	os at an altitude of 30,000 ft	0.83 520 0.335 49.5 1.130 0.50	46. 966. 4.00 944. 960 944. 970	
ft Right	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Turns at an altitude of 30,000 ft	1.180 1.58 565 0.338 47.8 1.198 1.7 1.142 1.76 164 .330 46.4 1.142 1.7	1.141 4.20 387 .348 43.9 1.141 4. 1.141 1.20 182 .347 52.2 1.141 1.		1.14526 88 .368 59.6 1.148 1.020 1.69 456 355 55.0 1.130		triangle triangle	1.07839 462 .460 89.8 1.08520 1.02586 311 .486 93.4 1.0289	••••• •••• <t< td=""><td></td><td>1.00562 370 .542 119.5 1.0037 </td><td></td><td>1.045 448 134 .600 160.5 1.04463</td><td></td><td>1.000047 .36 613 .650 178.1 1.004 0.049 .6</td><td>94 0.46 298 .666 19.4.0 0.46 304 1.56 304 1.56</td><td> 1.98 521 .694 216.8 1.67 .017 .64 248 665 244 8 777 629 64</td><td></td><td>-222</td><td>Pull-ups at an altitude of 30,000 ft</td><td>1.015 0.83 520 0.335 49.5 1.130 0.50</td><td>46. 1096. +0.02 640. 640. 640. 1060. 4</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></t<>		1.00562 370 .542 119.5 1.0037 		1.045 448 134 .600 160.5 1.04463		1.000047 .36 613 .650 178.1 1.004 0.049 .6	94 0.46 298 .666 19.4.0 0.46 304 1.56 304 1.56	1.98 521 .694 216.8 1.67 .017 .64 248 665 244 8 777 629 64		-222	Pull-ups at an altitude of 30,000 ft	1.015 0.83 520 0.335 49.5 1.130 0.50	46. 1096. +0.02 640. 640. 640. 1060. 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Left Right	$\frac{q_{\rm J}}{{\rm lb/sq}~ft} \begin{bmatrix} C_{\rm M} & \Delta C_{\rm M} & \frac{\Delta t_{\rm load}}{{\rm sec}} \end{bmatrix} \frac{\Delta L_{\rm M}}{{\rm lb}} \begin{bmatrix} \Delta L_{\rm M} & \Delta L_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \begin{bmatrix} q_{\rm J} & q_{\rm J} \\ {\rm lb/sq}~ft \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta C_{\rm M} & \Delta L_{\rm M} \\ {\rm sec} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & \Delta L_{\rm M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & C_{\rm M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{\rm M} & C_$	Turms at an altitude of 30,000 ft	47.7 1.180 1.58 365 0.538 47.8 1.198 1.5 46.4 1.142 1.75 1.64 .330 46.4 1.142 1.7	45.9 [1.141] 4.20 387 348 43.9 [1.141] 4. 52.2 [1.141] 1.20 182 347 52.2 [1.141] 1.1		59.5 1.143 .26 88 .368 59.6 1.148 .355 33.0 1.130 .361 .375 33.0 1.130 .361 .375	56.2 1.102 1.35 247 .361 56.2 1.076 1.6 6.1 1.110 2.26 6.18 777 5.0 1.076	4 201.1 8.69 614. 705 82 201.1 8.07	89.1 1.078 .39 462 3.460 89.8 1.085 .28 93.7 11.025 .86 311 .486 93.4 11.028 .90	111.7		121.1 1.005 6.2 370 542 119.5 1.003 7. 138.2 24 553 596 138.2 7.	152.9 .98037 587 .595 152.9 .980 2.0 162.8 1.020 1.92 317 .602 162.9 .989 2.0	162.1 1.045 4.8 1.34 .600 160.5 1.04463		181.7 1.000047 .36 613 .650 178.1 1.004 0.049 .6	193.4 238 298 .666 124.0 4.6 198.9 1.666 2041 .674. 100 3 1.64	2217.0 1.98 521 694 216.8 1.98 521 1.694 216.8 1.98 244 216.944 216.	228.3 1.66 362 .719 224.9 1.20 26.9 .719 224.9 1.20	25.5 5.7 5.2 1.30 4.01 1.57 7.60 261.3 5.60 1.15 3.80 261.2 261.3 5.00 1.15 3.80 261.1 251 1.50 1.15 3.80 261.1 1.50 1.15 3.80	Pull-ups at an altitude of 30,000 ft	48.7 1.015 0.83 520 0.335 49.5 1.130 0.50	46. 406. 4.5. 444. 444. 400. 400. 406. 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Left Right	$M \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Turms at an altitude of 30,000 ft	0.324 47.7 1.180 1.38 365 0.338 47.8 1.198 1.3 .330 46.4 1.142 1.76 1.44 .330 46.4 1.142 1.7			.366 59.5 1.14326 88 .368 59.6 1.1481	361 56.2 1.102 1.35 247 361 56.2 1.076 1.6 371 62.1 1.119 2.35 247 361 56.2 1.076 1.6	4. 1.108 1.108 2.0 307 4.19 69.8 1.105 2.0	.456 89.1 1.078 .39 4.62 1.069 1.065 .21 .467 93.7 1.025 .86 311 .466 93.4 1.028 .9	.500 111.7 .979 27 376 .499 111.4 .985 7. 498 106.7 .986 73 470 .700 107.6 .991 5. 505 108.0 .901 87 4.70 .708 .061 55	.524 112.6 .048 440 505 530 112 4 038	-537 121.1 1.005 62 570 542 119.5 1.003 7 -566 138.2 24 563 568 138.2 3	-589 152-9 .98037 587 .595 152-9 .980 2.0 .601 162-8 1.020 1.92 7.17 .602 152-9 .989 2.0	.603 162.1 1.045 448 134 .600 160.5 1.044 65	.621 179.2 .993 2.59 130 .621 179.2 .983 2.7 610 200 6 1 000 2.59 130 .651 179.2 .983 2.7	642 181.7 1.000047 .36 613 650 1781 1.004 0.049 .6	.669 193.4 38 298 .666 194.0 4.670 198.9 .612 198.9 1.66 204.1 614.0	.693 217.0 1.98 521 .694 216.8 1.67 .695 244.8 .772 .017 .64 24.8 665 244 8 770 0.02 1.67	720 228.3 1.66 362 719 224.9 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	760 265.6 552 1.30 4.01 155 776 264.5 500 1.16 3.07 10.42 7.0 10.4	Pull-ups at an altitude of 30,000 ft	0.222 48.7 1.015 0.83 520 0.255 49.5 1.130 0.50	46. 096. 4.00 64.0 64.0 64.0 100.0000 100.0000 100.0000 100.000 100.000 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Left Right	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turns at an altitude of 30,000 ft	402 0.324 47.7 1.180 1.38 365 0.338 47.8 1.198 1.3 120 .3330 46.4 1.142 1.76 154 .330 46.4 1.142 1.7	421 .515 45.9 1.141 4.20 387 .348 43.9 1.141 4 148 .347 52.2 11.141 1.20 182 .347 52.2 11.141 1.1		74 .366 59.5 11.14326 88 .368 59.6 11.1481 468 349 53.0 11.020 11.69 4456 345 55.0 11.360 11.69	208 .361 55.2 1.102 1.35 247 .361 56.2 1.076 1.5	4 10.0 11.108 90.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	509 \456 89.1 1.078 39 462 462 460 89.8 1.085 3. 252 467 93.7 1.025 386 311 486 93.4 1.028 39	293 - 500 111.7 - 979 27 - 376 - 499 111.4 - 985 7 452 - 498 106.7 - 986 73 - 470 - 500 107.6 - 991 55 1779 - 505 108.7 - 961 73 - 106 - 506 - 108 - 561 55		301 537 121.1 1.005 .62 370 54.2 119.5 1.003 .7 501 .586 138.2 .24 553 .566 138.2 .3	550 .589 152.9 .98037 587 .595 152.9 .980 2.0	215 .603 162.1 1.045448 1.34 .600 160.5 1.04465	272 .621 179.2 .993 2.59 130 .621 179.2 .983 2.7	614 .642 181.7 1.000047 .36 613 .650 178.1 1.004 0.049 .64	1446 .669 195.438 298 .666 194.0 4.66 302 .672 198.9 1.66 201 674 100 3	658 .693 217.0 1.98 521 .694 216.8 1.672 216.8 1.672 214. 695 214.8 1.672 214.8 216.8 1.672 214.8 216.8 1.672 214.8 216.8 1.672 216.8	1440 .720 228.3 1.66 362 .719 224.9 1.22 206 750 264 1	229 .7760 265.6 .522 .130 4.01 195 .761 264.5 .500 .115 5.88 259 .7148 287.1 .604 .149 10.58 248 .750 287.9 .550 .115 5.80 10.42	Pull-ups at an altitude of 30,000 ft	415 0.332 48.7 1.015 0.83 520 0.335 49.5 1.130 0.50	74	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE III.- BUFFETING CONDITIONS AND LOADS - BASIC AIRPLANE - Concluded

(c) Left and Right Tail Loads - Concluded

	tload, Bec		2.9 2.5 2.9 2.9		10.94 1.23 1.23	ક્ષેટ છે	-78 		\$\$. \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	5	6.5.8.8.5.9 1.5.5.8		54-8	69 - 50	+3 +3
	CN DI	1	0 2 0 2 0 2 0 0 0 0 0 0 0 0				1200	1							
		-	998 026 512 0 545 562			010	992 559 0		30t 233 231 231 231		8053865 111111		284	22	
		lded	<u>ຜ</u> ກຜູກ,ຜູກ 04		1.4.4 1.44	<u>, , ,</u> , , ,	0140	-		<u>.</u>	0000000			<u></u>	
	1b/8c	Concli	200 200 200 200 200 200 200 200 200 200	00 ft	865.53 865.53	e 124.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 ^t	300 8 0 4 4 0 7 4 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	<u>.</u>	261 156 156 157 157 157	ft	358	88	1111 1111
	×	- 11 0 Lt -	0.44.55 2.44.55 2.44.55 2.57	r 20,00	0.236 276 276 276	.43a		15,000	0.220 242 294 294 200	? 	562 478 478 478 478 478 478 478 478 478 478	10,000	0.233	317	352 376 114
	Į a	50,00	114 94 1255 12667 1156	tude of	255 256 377	<u>-</u>	195 177 181	rde of	54245 F845	!	5685 385 542 5685 562	ide of	318 273 436	8 8 9	361 363 293
	∆t _{load} sec	ude of	0.37 .12 4.39 3.0	n alti	0.87 05.1 66.6	•52 69		altitu	19.0 17. 17. 18. 19.0		1.17 2.83 1.75 1.28	altitu	0.60	1.26 .79	2.09 1.23 1.89
	AC _M	a altit	0.003 0.070 0.022	ps at a			0.049	at an				at an			
	, s	s at a	0.998 1.029 .505 .450	Pull-u	1.237 .879 1.119	1.038 -	- 574 - 574	Turns	L. 193 L. 238 L. 238 L. 158 L. 158		- 1124 - 1112 - 1075 - 041 -	Turns	205-	<u>न भ</u>	- 058 - 097 - 072 - 096
Taf	9, 19, ft	Tur	5.8 5.8 5.9 5.7 7 7.7 7		1.5 1.5	4 5 6 3	7.0		80008-5 6-1-0-1-5		4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		5.3 1.2 7.6	19.0	
	TP/		735 40 26 26 26 26 26 26 26 26 26 26 26 26 26		504 4 508 4 508 4 9 6 9 6 4 9 6 4 7 3	12 IS	73 1 5 7 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		234 64 93 93 93 93 93 93 93 93 93 93 93 93 93		8489224 934525		752 7021		17775 17775
	- 	-	8.84834		8585		6 1 2 2		0	·	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		0 0 0 0	9 F- 8 W	۲-000
-	Run	1	112 112 112 112 112 112 112 112 112 112		12122	125 8 14 921	<u>6122</u>		17 27 27 25 27 25 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		8228234 8228234 822888		221	19 19 19 19	47 40 48 45 49 50
F	bady		58506 5		<u>୍</u>	9 rl at 9			1110		00000				
	At 10				2 2 2		<u>8058</u> 1122					τι 	<u>,</u> ,,,,,,,,,,		
	AC _N								0.03						
teht	C ^R	ק	1.02	8.7		8666	3,7,7,0		0.84		1.182	1.158	1.140	1.103	1.063 1.081 1.081 1.026
	lb/sq f	onclude	129.5 145.0 172.0 163.6 175.0	225.6	266.8 253.9 284.2	261.0 292.0 291.5	268.7 316.0 312.4 300.8	ft	238.6	در	38.3 54.5 55.0 55.0	68.9 76.3	79.4 103.0	1.701	125.9 146.8 168.3 168.3
	×	ft - C	0.492 .518 .555 .576 .576	674	687 673 698	1217	102 102 102 102 102 102	5,000	1 1 189.0	0,000 f	. 287 289 283 283 283 283 283 283 283	.321	.392 .392	.400 151	452 452 467 508
	Ъ́ч	5,000	167 165 165 165 165 165 714 314	1 <u>7</u>	198 I	527 226 212	843 843 843 843 843 843 843 843 843 843	đe of 1	1 1 919	e of 20	187 172 236 180 180	163 130	182 282 611	412 714	169 152 152 160
	tload, sec	de of 2	0.40 .80 .85 .52 .72 .72 .72	1.18	22. 09.2	555	0.28	altitu		ltituð	.40 .69 .75 .83	રુંવું	64. 64. 75.	<u>6</u> .4	<u> </u>
	Z N ²	altitu		9-0-0-	0638	<u></u>	2260112	at an	1 020	at an a					
	N D	at an	037	- 930 771	828 828 828	728 659	04.0 4.58 4.51 658	11-ups	0 1 1 1 2 1 2	Turns a	165 261 256	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11266	<u>6</u>	050 058
Left	2 2	Turns	80004 8	 t.v			-0.41-	ት	1110		44000 11111	<u></u>	<u></u>		
	1b/81		8 175 175 175 216 216 216 216 216 216	8 220 250	975 88 88 10 10	\$\$\$ \$ \$ \$ \$ \$ \$ \$ \$	201- 201- 201- 201-				76.5	<u>89</u>	6.5 <u>5</u>	195	169. 169.
	×		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.6	86 6	26.55	PEE.		0.705		0.231 245 283 2837 287 .287	.325		1,30	504 504 508 508
-	में भ म		1 939 153	3 397	4 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	9 557	352 352 734 734				8 167 9 146 201 201 201 201 201 201 201 201	<u>न</u> ्ह	경영북 	236	278 278 191
	Ru		~~~~~ @	000	യയ് ത്ര്	ათ თ' შ	<u>v v v v v</u>		<u>7</u> 8787		<u>9</u> 993333	ыğ	222	361	<u> 1225</u>

NACA TN 3080

TABLE IV. - BUFFETING CONDITIONS AND LOADS - MODIFIED AIRPLANE

(a) Operating Conditions

Run	мв	c _{NB}	h _p , ft	'n	v V	∆t, sec	ME	c _{ne}	Pilot's note (a)
			Pull-v	ups at ar	n altitude of 30	,000 ft			
1 2 3 4 5	0.275 .287 .287 .298 .327	1.194 1.201 1.197 1.250 1.226	29,900 29,900 29,900 29,900 29,900 29,800	0.10 .50 .20 .60 .50	0.53 × 10 ⁻³ 2.35 .94 2.51 1.58	4.25 1.90 8.12 1.85 3.80	0.236 .273 .249 .287 .298	1.177 0 .984 .701 .601	l, L, R vl vl l
6 7 8 9 10	.354 .377 .421 .452 .469	1.147 1.154 1.083 1.093 1.094	30,300 29,900 30,300 30,400 30,900	.60 .80 1.10 1.10 1.10	1.52 1.65 1.65 1.36 1.24	.2.90 3.50 3.53 3.30 4.13	.327 .324 .357 .387 .368	.765 .791 .728 .863 .815	m l m m m
11 12 13 14 15	.474 .476 .479 .480 .483	1.103 1.115 1.128 1.100 1.088	29,800 30,200 30,100 30,400 30,200	2.40 2.20 7.70 1.60 1.50	2.48 2.28 7.80 1.64 1.49	3.00 2.60 2.40 2.60 2.70	.405 .403 .416 .414 .381	.524 .840 .951 1.023 .902	h, R, L m, R, L h, R, L
16 17 18 19 20	.490 .511 .513 .516 .516	1.092 1.107 1.085 1.080 1.072	31,400 29,600 29,200 30,300 30,300	2.20 2.80 1.70 .90 1.00	2.22 1.17 .69 .75 .90	4.00 2.20 3.20 2.00 2.70	•399 •469 •443 •465 •466	.848 .783 .644 1.050 .758	m h h m h
21 22 23 24 25	•537 •541 •548 •716 •743	1.078 1.072 1.087 .629 .512	30,700 30,900 31,900 28,800 28,500	1.40 1.00 2.10	1.04 .73 1.55 	2.40 4.2 2.00 1.50 3.10	.493 .436 .505 .691 .708	.858 .941 .648 .705 .667	h, R, L m, R, L m, R, L l
26 27 28 29 30	.758 .763 .768 .769 .771	.400 .332 .385 .423 .340	29,000 28,200 29,000 29,300 28,600		 	5.70 5.40 7.00	.696 .724 .708 .697 .705	•739 •580 •671 •720 •690	m h l m
31 32 33 34	.771 .773 .777 .796	.429 .279 .334 .273	29,700 28,900 28,300 28,700		 	5.50 6.50	.695 .696 .704 .716	.677 .740 .720 .638	1 1 1, R 1
			Turn	at an a	ltitude of 30,0	00 ft			
35	0.350	1.170	28,000	0.10	0.23 × 10-3	1.60	0.349	0.977	R
			Pull-u	ps at an	altitude of 10	,000 ft	1		<u> </u>
36 37 38 39 40	0.168 .205 .207 .261 .267	1.241 1.308 1.482 1.284 1.435	10,100 10,200 9,950 10,100 9,950	0 .40 1.50 .70 2.00	0 2.06 × 10 ⁻³ 7.48 1.75 4.63	4.00 3.40 2.40 1.60 1.70	0.174 .178 .184 .232 .241	0.699 .904 .620 .862 .821	vl l l m h
41 42 43 44	.267 .332 .337 .342	1.593 1.229 1.271 1.338	10,150 10,700 10,400 10,100	4.00 .70 1.60 7.60	9.33 .87 1.88 8.44	1.55 1.35 2.22 1.15	.247 .299 .280 .329	.468 .781 .700 .298	h h h

^aLetters used in this column have the following significance:

vl	very light buffeting	L	left roll-off
1	light buffeting	R	right roll-off
m	moderate buffeting	N	no roll

moderate buffeting heavy buffeting h

•

NACA TN 3080

ΔL, 1b

.425 .453 .458 .468 .467

605 640

810

735 730

.

Run

1

2

3 4

5

6

78

9 10

11

12

13 14

15

TABLE IV.- BUFFETING CONDITIONS AND LOADS - MODIFIED AIRPLANE - Continued

		Ie	ft					Rig	ht	
ЪL,	м	q, 1b/sq ft	CN	∆c _n	$\Delta t_{load}, sec$	ΔL, 1b	м	q, lb/sq ft	CN	∆c _N
			Pull	-ups at	an altitu	de of 3	0,000 f	t		
445 405 300 445 445	0.261 .271 .277 .287 .323	30 32 33 36 46	1.208 1.050 1.007 .857 1.175		1.98 1.25 1.92 1.54 1.92	363 420 500 670 370	0.262 .278 .282 .294 .318	30 34 35 38 44	1.198 1.341 1.190 1.248 1.090	
386 500 560 613 695	.328 .351 .384 .402 .440	46 54 68 81	.890 1.146 .861 .920 .894	 	2.45 1.85 2.09 2.80 1.40	344 575 540 421 705	.349 .357 .394 .432 .441	53 56 67 80 81	1.140 1.073 1.056 1.112 1.022	

1.70 .76 .75 .56 .54

1.025

1.067

.983 1.048

1.093

.417 .458 .463 .448 .431

79

•973 1.068

1.005

1.065

1.102

(b) Left and Right Wing Loads

16 17 18 19 20	600 965 800 710 650	.454 .487 .450 .497 .493	84 106 92 108 105	1.001 1.020 1.109 .967 .957	 	1.42 1.18 2.59 .70 1.28	640 820 725 845 560	.434 .481 .449 .497 .492	76 104 91 [.] 108 104	.988 1.106 1.061 .966 .949	 	2.13 1.45 2.71 .70 1.34
21 22 23 24 25	607 825 715 272 355	.530 .501 .516 .714 .718	110 105 106 236 243	1.010 .966 .971 .651 .657	 0 .030	1.50 1.76 1.39 .20 2.48	543 600 595 140 245	.530 .502 .520 .714 .730	112 105 108 236 251	1.001 .960 .977 .662 .584	 0.011 .029	1.30 1.75 1.24 .20 1.64
26 27 28 29 30	325 214 220 440 382	.752 .724 .721 .721 .721 .763	267 260 256 237 280	.513 .579 .607 .660 .451	.080 012 002 .051 .076	2.44 5.70 6.57 4.01 3.10	455 265 295 430 142	.756 .740 .752 .759 .763	267 272 279 263 280	.487 .586 .421 .540 .452	.075 .086 015 .145 .080	1.14 4.70 3.32 1.08 3.10
31 32 33 34	805 795 228 600	•747 •770 •747 •753	252 283 269 278	.638 .478 .588 .583	.175 .148 .125 .156	2.32 2.20 3.60 5.72	620 650 227 510	.746 .754 .759 .767	251 275 278 287	.635 .578 .513 .520	.166 .157 .118 .169	2.39 4.54 2.60 4.61
				Tu	rn at an	altitude	of 30,	000 ft				
35	480	0.350	59	1.156		0.40	391	0.350	59	1.145		0.40
				Pull	-ups at	an altitu	de of l	0,000 f	t			
36 37 38 39 40	315 510 785 655 710	0.165 .196 .200 .246 .253	27 38 41 61 65	1.273 1.254 1.411 1.150 1.082	 	2.22 1.01 .62 .80 .91	435 585 510 810 830	0.165 .187 .199 .247 .261	27 36 40 61 69	1.180 1.194 1.174 1.150 1.175		2.76 1.88 .69 .79 .46
41 42 43 44	850 450 905 1,380	.257 .319 .327 .336	67 100 90 114	1.130 1.225 1.028 1.150	 	.69 .50 1.39 .39	805 1,450 1,085 1,210	.257 .313 .316 .337	67 96 99 114	1.130 1.182 1.120 1.160	 	.72 .76 .83 .38

 $\stackrel{\Delta t_{load}}{\operatorname{sec}}$

1.82

.32

.38 1.20

.60

1.42 1.54

1.34

2.02

•59 •60

1.20

1.65

_ _ _

.

TABLE IV.- BUFFETING CONDITIONS AND LOADS - MODIFIED AIRPLANE - Concluded

. .

(c)	Left	and	Right	Tail	Loads
----	---	------	-----	-------	------	-------

		Left				Right						
Run	∆L, 1b	М	q, lb/sq ft	CN	∆c _N	$\frac{\Delta t_{load}}{sec}$	·ΔL, 1b	м	q, lb/sq ft	CN	∆c _N	$\Delta t_{load}, sec$
				Pul	L-ups at	an altitu	de of	30,000 f	t		I	4
1 2 3 4 5	266 238 310 350 365	0.261 .276 .278 .287 .309	30 33 34 36 42	1.209 1.390 1.012 .886 1.075		1.97 .45 1.76 1.42 2.30	285 375 355 450 450	0.261 .275 .277 .287 .318	30 33 33 36 44	1.214 1.402 1.008 1.190 1.090		2.02 .51 1.81 .94 1.20
6 7 8 9 10	308 400 415 420 495	•335 .342 .397 .411 .405	48 52 68 74 68	1.037 1.085 1.050 1.054 1.035		1.85 2.37 1.36 2.20 2.81	546 415 485 405 515	•335 •364 •396 •410 •421	48 58 68 71 74	.988 1.106 1.051 1.036 1.000	 	1.85 .88 1.41 2.30 2.16
11 12 13 14 15	682 572 760 513 643	.443 .462 .463 .470 .422	86 92 93 94 76	1.089 1.080 1.012 1.047 1.107	 	1.06 .41 .58 .50 1.98	770 605 705 539 705	.426 .419 .473 .462 .418	79 75 97 80 74	1.030 1.040 1.085 1.096 1.109	 	1.66 1.94 .23 1.76 2.13
16 17 18 19 20	572 591 591 353 495	.440 .484 .505 .471 .476	79 105 116 96 96	.980 1.011 1.100 1.028 .930	·	1.92 1.33 .43 1.50 2.25	704 770 660 361 690	.440 .483 .470 .471 .481	79 105 101 96 98	.980 1.010 1.010 1.028 .935	 	1.92 1.37 1.61 1.50 1.98
21 22 23 24 25	366 540 566 206 260	.535 .489 .518 .714 .736	112 106 107 236 256	1.000 .960 .974 .662 .585	 0.011 .061	1.10 1.71 1.30 .20 1.01	212 470 517 109 165	.524 .511 .520 .714 .717	116 110 108 236 241	1.018 .973 .975 .661 .663	0.010 0	.70 1.38 1.26 .20 2.59
26 27 28 29 30	365 192 280 435 165	.713 .740 .768 .756 .763	240 272 284 262 280	.675 .589 .380 .560 .451	.018 .089 0 .150 .079	6.03 4.7 .47 1.28 3.10	300 275 220 409 177	.712 .740 .761 .741 .763	239 272 284 251 280	.677 .589 .410 .610 .451	.014 .089 .027 .115 .079	6.08 4.70 2.02 2.58 3.10
31 32 33 34	487 345 415 409	•748 •754 •750 •772	253 275 271 290	.640 .578 .580 .478	.183 .147 .135 .162	2.26 4.56 3.40 4.12	526 475 473 374	•746 •770 •750 •763	252 283 271 285	.636 .475 .581 .538	.167 .145 .136 .168	2.37 2.13 3.40 4.87
	······	T		Tu	rn at an	altitude	of 30,	000 ft				
35	173	0.350	59	1.085		0.90	269	0.350	59	1.083		0.90
		r		Pul	l-ups at	an altitu	de of	10,000 f	t			
36 37 38 39 40	295 435 505 540 520	0.165 .190 .200 .247 .262	27 36 41 61 67	1.290 1.218 1.410 1.160 1.138		2.04 1.65 .62 .74 .61	310 517 660 440 640	0.165 .194 .199 .253 .259	27 37 40 65 68	1.180 .898 1.380 1.210 1.147		2.77 1.20 .69 .43 .56
41 42 43 44	595 495 700 915	.263 .309 .324 .334	70 86 104 113	1.380 1.100 1.198 .910	 	.30 .94 .52 .64	715 430 595 715	.262 .311 .320 .336	69 95 101 113	1.320 1.160 1.160 1.080		•39 •82 •69 •45

.

.

TABLE V.- SUMMARY OF WING-LOAD ANALYSIS - STALL REGIME

Equation number	Equation	Sum of squares of residuals, $\sum_{\epsilon} \epsilon^2$	Standard error of estimate, s, lb
(1)	$\Delta L_W = a_1$	585 × 10 ⁴	255
(2)	$\Delta L_{W} = a_2 q$	770	293
(3)	$\Delta L_W = a_3 \sqrt{q}$	461	226
(4)	$\Delta L_W = a_4 \sqrt{q \log_e(11.7 \Delta t)}$	386	206
(5)	$\Delta L_{W} = \left(a_{5} + b_{5}e^{-\dot{\alpha}\overline{c}/0.004V}\right)\sqrt{q}$	341	196
(6)	$\Delta L_{W} = \left(a_{6} + b_{6}e^{-\dot{\alpha}\overline{c}/0.004V}\right)\sqrt{q \log_{e}(11.7 \Delta t)}$	287	178

Constants

al	=	749 ± 27					
^a 2	=	6.54 ± 0.27					
az	=	74.4 ± 2.4					
aj	=	44.4 ± 1.3					
a5	=	111.5 ± 6.9	b	; =	-55.1	<u>+</u>	9.9
a6	=	65.6 ± 3.8	be	; =	-31.6	±	5.4

Equation number	Equation	Sum of squares of residuals, $\sum \epsilon^2$	Standard error of estimate, s, lb
(7)	$\Delta L_{T} = A_{7}$	304 × 10 ⁴	184
(8)	$\Delta L_{T} = A_{8q}$	384	207
(9)	$\Delta L_{\rm T} = A_{\rm S} \sqrt{q}$	280	176
(10)	$\Delta L_{T} = A_{10}\sqrt{q \log_{e}(11.7 \Delta t)}$	257	170
(11)	$\Delta L_{T} = \left(A_{11} + B_{11}e^{-\alpha c}/0.004V\right)\sqrt{q}$	174	140
(12)	$\Delta L_{T} = (A_{12} + B_{12}e^{-\dot{\alpha}\overline{c}/0.004V})\sqrt{q \log_{e}(11.7 \Delta t)}$	161	135

TABLE VI.- SUMMARY OF TAIL-LOAD ANALYSIS - STALL REGIME

Constants

$A_7 = 414 \pm 19$	· · · · ·
$A_8 = 3.59 \pm 0.19$	
$A_9 = 41.0 \pm 1.8$	
$A_{10} = 24.4 \pm 1.0$	
$A_{11} = 75.4 \pm 3.5$	$B_{11} = -51.2 \pm 5.0$
$A_{12} = 44.1 \pm 2.9$	$B_{12} = -29.2 \pm 4.1$

TABLE VII.- SUMMARY OF WING-LOAD ANALYSIS - SHOCK REGIME

Equation number	Equation	Sum of squares of residuals, $\sum \epsilon^2$	Standard error of estimate, s, lb
(14)	∆I _W = a _{l4}	834 × 10 ⁴	578
(15)	∆L _W = a ₁₅ q	1,224	715
(16)	∆L _W = a ₁₆ √q	1,009	648
(17)	$\Delta L_W = a_{17}P$	133	238
(18)	$\Delta L_W = a_{18}Pq$	192	283
(19)	$\Delta L_{W} = a_{19} P \sqrt{q}$	125	228

Constants

$$a_{14} = 940 \pm 116$$

$$a_{15} = 2.81 \pm 0.28$$

$$a_{16} = 52.2 \pm 7.3$$

$$a_{17} = 2500 \pm 107$$

$$a_{18} = 9.68 \pm 0.51$$

$$a_{19} = 153.5 \pm 6.4$$

TABLE VIII.- SUMMARY OF TAIL-LOAD ANALYSIS - SHOCK REGIME

Equation number	Equation	Sum of squares of residuals, $\sum \epsilon^2$	Standard error. of estimate, s, lb
(20)	$\Delta L_{\rm T}$ = A ₂₀	218 × 10 ⁴	295
(21)	$\Delta L_T = A_{21}q$	334	365
(22)	$\Delta L_{T} = A_{22} \sqrt{q}$	270	335
. (23)	$\Delta L_T = A_{23}P$	67	167
(24)	$\Delta L_T = A_{24}Pq$	71	173
(25)	$\Delta L_{\rm T} = A_{25} P \sqrt{q}$	73	174

Constants

A ₂₀	=	508 ± 59
A21	=	1.52 ± 0.24
A22	=	28.2 ± 3.8
A23	=	1254 ± 76
A ₂₄	=	4.59 ± 0.28
A25	=	75.2 ± 4.6

Figure 1.- Three-view diagram of test airplane.

.

NACA TN 3080

יוויין בבוני וייר איר די

Ż

Ī

#

irace 2----

Z

66

NACA TN 3080

(b) Altitude, 25,000 feet.

(d) Altitude, 15,000 feet.

Figure 7.- Continued.

(e) Altitude, 10,000 feet.

(b) Altitude, 25,000 feet.

(c) Altitude, 20,000 feet.

(d) Altitude, 15,000 feet.

Figure 8.- Continued.

I

(b) Altitude, 10,000 feet.

Figure 9.- Wing buffeting loads - modified airplane.

(a) Altitude, 30,000 feet.

(b) Altitude, 10,000 feet.

Figure 10.- Tail buffeting loads - modified airplane.

Figure 11.- Correlation between left and right wing buffeting loads - basic airplane.

Figure 12.- Correlation between left and right tail buffeting loads - basic airplane.

78.

NACA-Langley - 5-17-54 - 1000