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A RAPID METHOD FOR ESTIMATING THE SEPARATION POINT OF A

COMPRESSIBLEIAMqflR BOUNDARYLAYER

By Laurence K. Loftin, Jr., and Homer B. Wibon, Jr.

SuMwRi

A method has been developed for rapidly estimating the separation
point of a lsminar boundary layer in a compressible flow. The method
consists of an extension of Von Doenhoff’s simplified solution for the
incompressible case (NACA TN 671) and makes use of a set of transforms
derived by Stewartson (Proc. Roy. Sot., 1949) which permit, under cer-
tain assumptions, the expression of compressible leminar layers in terms
of equivalent incompressible lsminar layers. The method developed is
generaldy applic~le to any two-dimensional flow in which the classical
boundary-lsyer assumptions sre satisfied. The dependence of the method
upon the boundary-lsyer assumptions, of course, means that it should
not be applied to determine whether the pressure rise through a shock
wave causes separation.

Calculations of the laminsr separation point for a wide range of
Mach number and velocity gradient indicate that, for all velocity gra-
dients, the amount of velocity recovery possible before laminar separa-
tion occurs decreases as the Mach ntier increases.

—

INTRODUCTION

The determination of the position at which the laminar boundary
lsyer separates has been the subject of much theoretical investigation.
For the case of incompressible flow, such methods as those of Howarth
(ref. 1), Von K&m& and Millikan (ref. 2), and Von Doenhoff’s simpli-
fied adaptation of the Von K&m&-Millikan theory (ref. 3) may be used
for determining the laminar separation point on bodies with velocity
distributions of arliitr~ shape.

For the case of compressible flows, several investigators have been
interested in determining the basic nature of the effect of Mach nuniber
on the laminar separation point. Such methods as those of Howarth (ref. 4)
and Cope and Hartree (ref. 5) provide means for determining the laminsr
separation point in a compressible flow. These methods are rather
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2 MACATN 2892

cumbersome, however, and are not readily adaptable for rapidly estimating
the effect of lhch number and velocity gradient on bminsr separation.
Stewartson (ref. 6) has .~cent~ shown that a vast simp~fication in
the theory of co~ressible laminsr bounda~ lsyers is possible if cer-
tain rather reasonable simplifying assumptions are made. On the basis
of these assumptions, he was able to develop transforms which express
the compressible laminar boundary layer in terms of an equivalent
incompressiblelaminar boundary @fer.

In the present paper the method of Von Doenhoff haE been combined
with Stewartson’s transforms to provide amesms for rapidly estimating
the sepamtion point of a laminar boundary layer in a compressible flow.
The method developed is genera13y applicable to any two-dimensional flow
in which the classicalboundary-lsyer assumptions are satisfied. With
the use of the method developed, the effect of Mach nuniberon the laminar
separation point has been calculated for a tide range of Mach number and
velocity gradient. The results of these calcuhtions are presented.
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P. ~SS density

v kinematic viscosity

k coefficient of heat

Subscripts:

o reference condition

3

conduction

taken at point of msximum veloci~

1 W/ point along

c compressible

i incompressible

body just outside boundary layer

ANALYSIS

Stewartson’s Transforms

Stewartson (ref. 6) showed that the equations governing the behavior
of two-dime.nEionallaminar boundary layers in a compressible flow are
identical to those governing their behavior in an inmmpressible flow if
the variables in the two planes are related by the fo120wing transforma-
tions:

% y 1
=%JC

(1)

(2)’

(3)
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4 NACATN 2892

where XC, yc, Uc and xi, yij Ui are the coordinates and the velocity .

just outside thk boundary layer in the compressible and incompressible
planes, respectively. The subscript o refers to some convenient refer-
ence condition and the subscript 1 refers to conditions at a variable ,

point @st outside the boundary layer. The detailed derivation of the
incompressible-boumkry-layer e@ation from the compressible equations
with the use of transforms (1) to (3) is treated in reference 6.

The transfomnation of the compressible-boundary-layerequation to
sm equivalent incompressible-boundary-layerequation with the use of
transforms (1) to (3) depends upon the following assumptions: The
boundary is thermally insulated, the viscosity is roportional to the

?absolute temperature, and the I’readtlnumber c-@ k of the fluid is
unity. By assuming the boundary thermally insulated, the basic problem
of motion of the compressibleboundary layer is isolated from extraneous
problems associated with heat trsmsfer through the boundary surface.
The assumption that the Prand.tlnumber is unity means that the stagna-
tion temperature is reached at the wall. The Prandtl number for air,
however, is actudd.y about O.w (ref. 4); therefore, the temperature
near the wsdl is lower than that predicted. Since the viscosity
increases with the temperature, the assumption that the Prandtl number
is unity would indicate that the effects of viscosity are overestimated.
With regsrd to the remaining assumption that the viscosity is propotiional
to the absolute temperature, experiments have shown that the viscosity “

for air varies as the eight-ninthspower of the absolute temperature
between go” and 300° Kelvin (ref. k). Thus, this assumption also results
in an overestimationof the effects of viscosilzY.

Von Doenhoff’s Method

Since the transforms (1) to (3) permit the expression of the com-
pressible laminarboundery layer in terms of an equivalent incompressible
laminarboundery layer, it is apparent that all methods for calculating
the lsminar separation point in incompressible flow are eqzil-lyapplicable
in the case of compressible flow. The ladnar separation point is

defined es the point along the surface at which —= O d y = O. Of
;epuation point ~

all methods available for calculating the bmina.r
incompressibleflow, that due to Von Daenhoff (ref. 3) is perhaps the
simplest over-a13 method to apply and is used herein as a basis for
developing a method for rapidly estimating the lsminer separation point
in a compressible flow.

With the use of the theory developed by’Von K&m& and Millikan for
computing the separation point of a lsminar bound~ layer, Von Doenhoff
calculated the lsminar separation point for a series of velocity dis-
tributions which consisted of a region of uniform velocity (flat-plate

.
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flow) followed by a region of
calculationswere generalized
tributions of arbitrary shape

5

linearly decreasing velocity. These
to the case of bodies with velocity dis-
on the basis of the fundamental assump-

tion that the shape of the boundary-layer velocity distribution at the
point along a body at which the outside velocity is a maximum, that is,
at the point of application of the adverse velocity gradient, is ve~
nearly the same as that of a Blasius flat-plate distribution. Thus,
the condition of the boundary layer at the point of application of the
adverse velocity gradient can be represented by the flow over an equiva-
lent length of flat plate with a uniform velocity equal to the maximum
velocity. The assumption was also made that, for purposes of estimating
the lsminar separation point, any velocity gradient likely to be encoun-
tered could be approximatedby a straight line. Von Doenhoff presented
the results of his calculations in the form of the decremeni in velocity
necessary to cause separation AUil/Uio as a function

Li dUil
sional velocity gradient Fi = — — where Li is

Uio axi ‘

flat-plate length, Uio is the maximum velocity, and

velocity gradient. The relationshipbetween Auil/Uio

of the nondimen-

the equivalent

dUil/dxi is the

and Fi given

in reference 3 is presented herein as figure 1. The equivalent length
of flat plate corresponding to the flow at the point of application of
the adverse velocity gradient canbe found with the use of the following
equation (ref. 3, eq. (l)):

(4)

where Uil/Uio is the veloci~ ratio at any point on the body W the

integration is carried from the beginning of the flow to the point of
application of the adverse ~adient. Equation (4) was obtained from
an integration of the Von F&m& momentum relation by making the
assumption that the boundary-layer velocity distribution at every point
along the body in the region of accelerating flow is the same as a
Blasius flat-plate distribution. Calculations of the laminar separa-
tion point on the NACA 0012 airfoil at zero lift made by the use of
Von Doenhoff’s rapid method and calculationsmade by the use of the more
elaborate Von lC&m&-Millikan theory me shown in reference 3 to agree
very closely.
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AppUcation of Stewartson’s Transforms to Von Doenhoff’s Method .

In order to find the position on a body at which lsminar separation
occurs, the distribution of veloci@ outside the boundary layer and the
Mach number at some typical point must be lamwn. With this information,

,

the laminar separation point canbe calculated through the direct appli-
cation of transforms (2) smd (3) - Von Doenhoff:s relation given in
figure 1. Although relatively easy to apply, this method does involve
a rather tediou point-by-point t~formation from the compressible to
the equivalent incompressibleplane.

For this reason, a more rapid procedure has been developed for
estimating the separation point of a compressible lsminar boundary
hyer. This procedure consists essentiti in the direct application
of Von Doenhdff’s methd to the compressiblevelocity distribution, the
effect of llachnumber being accomted for by a shpl-e ~tiPWU3 fac-
tor applied to the measured velocity

Consider the velocity gradient

@ent in the compressible plane.

dUc/dxc in the compressible plane. )
37-1

From eqya.tion(2) it canbe seen that hi =
()
~y-l~ and equation (3) - ~

.
states that Uil = ~Ucl. Consequently, the “compressibleand incompres- .

al

sible velocity gradients are related as follows:

or

1

3y-1

()al
7-1

G

.

‘,
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.

If the reference velocity of sound % is taken at the point of maximum
velocity Uco, that is,

ity gradient, then U%

()

Uil

‘m .
dx~

at the point of app~cation of the adverse veloc-

= Uio and.

—

Uclu qa.d—
Ucl al a. d% 1_._.__+q tic
Uco % 37-1

(5)

L

By the use of the one-dimensional energy equation, the terms alf~ and

()/
d$dxc can be written in terms of the Mach number ~ and the

velocim ratio Ucl/Uco:

(6)

(7)

An examination of equations (5) to (7) indicates that a linesr velociti
distribution in the compressible plane transforms into a nonlinesr dis-
tribution in the equivalent incompressible plane. The basic asswption

.
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8 NACATN 2892

is made, however, that the determination of the approxhate laminar
separation point in the equivalent incompressibleplane can be made
from a knowledge of the transformed adverse velocity gradient at the
petit of msximum velocity. This assumption presupposes that there is
a discontinuity in the compressible velocity distribution at the point
of application of the adverse gradient or> at least, that the velocity
distribution csm be approximated in this manner. On the basis of ttis

al
resumption, —= 1.0 and

%

() {)Ucldb
al 7

r

—=+%2+axc
(8)

.

Substitution of equation (8) into equation (5) and the value 1.0 for
the terms Uclfico and ~/a~ yields the following relation:

()Uil (-)Ucl
d—

Uio

( )

Uco

axi
=1+7 +M02 ~

c
(9)

Thus, the value of the veloci~ gradient at the point of maximum veloc-
ity in the incompressibleplane is obtained by nmltiplying the measured
value of the velocity gradient in the compressibleplane by the fac-

tor l++ - 1~2, where it shouldbe remembered that ~ is the Mach

number at the point of application of the adverse gradient in the com-

7-1 2 is plotted as a functionpressible plane. The factor 1 + ~%

of lQch number in figure 2.

me velocity gradient in the equivalent incompressibleplane (eq. (9))
must be made nondimensional in terms of the equivalent flat-plate length
in the incompressibleplsme if it is to be used with the relation given
in figure 1 for finding the velocity recovery before laminar separation
occurs in sm incompressibleflow. The equivalent length of flat plate in
the incompressibleplane canbe determined from the relation

.

.
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.

(lo)

or, in terms of variables in the compressibleplane, from the relation

(n)

For air, y = 1.4; therefore,
37-1

= 8.o and equation (n) reduces to
Y-1

% .(y~)’”’’(:j””% (12)

Equation (12) canbe used directly with the compressiblevelocity distribu-
tion to detemine Li. In mny cases, however, it would appear that the

a. 0.17
value of

()
would be so near unity as to have a negligible effect

q

on .i. In this case, the equivalent fla~late length .i canbe

determined from the equation

(13)

The complete expression for the nondimensional velocity gradient in the
equivalent incompressibleplane in terms of variables in the compressible
plane is therefore

..— —-——— .— —— —.— —-—-. —.
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CiIc1 &In the determination of Li and — ~ the value of
Uco

course, be expressed in terms of a reference length in the
plane.

,,

(14)

xc can, of

compressible

The determination of the laminar separation point correspondingto
a known velocity distribution at a given Mach number involves the fol-
lowing steps:

(a) Graphical measurement of the velocity gradient dUc/~ in

the compressibleplane. This process may require fairing of the given
veloci~ distribution in such a way that the adverse velocity gradient
begins at a distinct point and is approximatedby a straight line.

(b) Calculation of the equivalent flat-plate length by the use of

L

eqyation (13).

(c) Determination of the factor 1

The nondimensional velocity gradient in
plane may then be determined by the use

.

+y-’-— %2 from figwre 2.
2

the equivalent incompressible
of equation (14). The velocity

ratio correspondingto laminar separation in the incompressibleplane
maybe found fran the curve of figure 1 which expresses the velocity
decrement necessary to cause laminar separation in terms of the non-
dimensional velocity gradient. The veloci~ ratio correspondingto
laminar separation in the compressibleplane is found with the use of

the relation

Ucl/Uco for

In some

Uil ao Ucl
_= —— . The relationshipbetween Uil/Uio and
Uio al Uco

different Mach numbers is plotted in figure 3.

cases, considerable fairing of the given velocity distribu-
tion maybe required in order to obtain what appesrs to be a reasonable

r)/

c1 ~
measure of d — Under such circumstances,the position of the

Uco c“

calculated lsminar separation point with respect to the given velocity
distribution may indicate that a somewhat different fairing of the

—– ..— -— - ————.. — _— -. . ——— .— — ———— _.. — _
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.

velocity distribution would-give a more realistic approximation of that
portion of the velocity gradient along which laminsr se~a?mkion occurs.
A second calculation of the laminar separation point msy then be
indicated.

Comparison With Results of Pretious Analyses

The effect of Mach number on the position at which laminar separa-
tion occurs ip a boundary-layer flow progressing against a linearly
decreasing velocity from the leading edge has been investigated by
Howarth (ref. 4) who employed a Von K&m&-PohMausen type of analysis,
and by Stewartson (ref. 6) who applied his transforms to the incompres-
sible solution developed by Howarth in 1938 (ref. 1). This type of
velocity distribution has a value of Fc equal to zero since the
equivalent length of flat plate is zero. In order to provide a com-
parison between the method of the present investigation and those used
in references 4 and 6, the lsminar separation point has been calculated
by the method presented herein for the case of Fc equal to zero for
a range of Mach number. The results of these computations sre presented
in figure 4 together with the results obtained by Howarth and Stewartson.
Examination of figure 4 indicates that considerable difference exists
at all Mach numbers between the predictions of the three methods. For
zero Mach nmiber, the value of the decrement in velocity ratio of 0.12
given by Howarth in reference 1 is probably the most exact. The magni-
tude of the differences between the three methods, however, appears to
be roughly the same for all Mach numbers. This result can be seen more
clearly in figure 5 in which the difference in AUcl/Uco at Mach num-

ber zero and at some arbitrary Mach number is plotted against Mach num-
ber. The trends shown in figure 5 indicate that the predicted effect
of Mach number on the laminar separation point as determined by the
method of the present investigation is in substantial agreement with
the results obtainedby Stewartson and Howarth for the case of linearly
decreasing velocity from the leading edge.

EFFEC!TOF MACH NIJMEERON THE LAMINAR SEPARATION POINT

In order to show the effect of Mach nuniberon the position of
laminar separation for a series of values of Fc, the nondimensional
compressible veloci~ gradient, calculations have been made far Mach
numbers varying from O to 10 and for nondimensional compressible veloc-
ity gradients Fc varying from O to -0.12. These calculations are for
velocity distributions represented by a region of uniform velocity equal
to the maximum velocity followed by a region of uniformly decreasing
velocity. The results of these calculations are presented in figure 6
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and show that the velocity recovery obtainable before laminar separation
decreases as the Mach nuniberincreases”for all nondimensional velocity

.

gradients. For a given velocity gradient, therefore, the laminar separa-
tion point moves forward as the Mach number increases. Figure 6 also
shows that the shape of the curves of velocity recovery against Mach I
number is not influenced to any large extent by the value of the velocity
gradient.

It is important to point out that the individual curves presented
in figure 6 show the effect on the laminar sepamtion point of increasing
the Mach nuriberfor fixed values of the velocity gradient. The problem
of most practical.interest, however, is that of a body having fixed
geometzy. In this case, the velocity gradients vary as the Mach rnmiber
varies. Thus, when the laminar separation point on a given body for
different Mach nunibersis calculated, the value of the compressible
velocity gradient Fc varies with ~ch nuder. In general, adverse
velocity gradients become steeper as the Mach number increases so that,
for a given body, the forward movement of the ladnar separation point
with increasing Mach nuniberwouldbe greater than is indicated in fig-
ure 6 for a given velocity gradient.

A word of caution should be added with regard to the type of flow
field to which the method developed herein should be applied. It will
be recalled that the method developed is based on the classical boundary-
lsyer assumptions.

.
These assumptions state that the rate of change of

velocity in the x-direction must be small with respect to its rate of
change in the y-direction. The method obviously cannot be applied in
the vicinity of a discontinui~ in velocity (pressure) such as that
associated tith the presence of a shock wave.

COI?CLUDII?GREMARKS
.

A method has been developed for rapidly estimating the separation
point of a kninar boundary layer in a compressible flow. The method
consists of an extension of Von Doenhoff’s simplified solution for the
incompressible case (NACA ’TN671)andmakes use of a set of transforms
derived by Stewartson (Proc. Roy. Sot., 1949) which permit, under cer-
tain assumptions, the expression of compressible laminar hyers in terms
of equivalent incompressible laminar layers. The method developed is
generally app~cable to any two-dimensional flow inwh.ich the classical
boundzug-~er assumptions are satisfied. The dependence of the method
upon the boundary-~er assumptions,‘ofcourse, means that it should
not be applied to determine whether the pressure rise through a shock
wave causes separation.

.
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Calctitions of the
Mach number and velocity
gradients, the amount of

13

laminar separation point for a wide range of
gradient indicate that, for all velocity
velocity recovery possible before lsminar

separation occurs decreases as the Mach number increases.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Vs., November 19,1952.
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