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SUMMARY

The amount of cooling required to stabilize the two-dimensional
supersonic lsminar boundary layer for all Reynolds numbers is calculated
for flows with pressure gradients of a magnitude usually encountered
over slender aerodynamic shapes. Only two-dimensional disturbances are
treated in the stability calculations.

It is determined that small pressure gradients have an appreciable
effect on stabflity. The cooling due to radiation alone may suffice, at
moderate supersonic Mach numbers, to completely stabilize the boundary
layer over wings with favorable pressure gradients. For flows with
adverse pressure ~adients, the cooling required for complete stability
is considerably greater than that for flat-plate flows.

I%lROIXJCTIOIl

Because an appreciable portion of the total dxag of an airplane or
missfle can be attributed to friction, a sizable reduction in friction
drag is desirable. Such a reduction can be realized by delaying the
transition from laminar to turbulent flow.

Two possible explanations for the transition fram laminar to turbu-
lent flow have been advanced in the literature. Taylor (ref. 1) proposed
that the local.pressure gradients accompanying a disturbance in the flow
cause intermittent separation of the laminar boundary layer. Eddies
formed in the separated region soon diffuse and lead to turbulent flow.
Transition by this mechanism might be expected in high turbulence level
wind tunnel tests or for flows where the surface roughness is appreciable.

Tollmien and Scblichting (refs. 2 and 3), on the other hand, suggest
that infinitesimalwave-like disturbances in the laminar layer sre
directly responsible for transition. If conditions are such that these
inftiitesimal disturbances are amplified, they will undergo ticreasing

—.————..————



2 NACATN 3103

amounts of distortion and eventually lead to transition from laminar to
turbulent motion. Schubauer and Sbsmstad (ref. 4) have experimentally
verified the Toldmien-Schlichttig hypothesis for low speed flows. It iS

believed that transition is caused by lsminar instability of this kind
whenever the free-stresm turbulence level is very low, and no extraneous
disturbances such as excessive roughness =ist. Ih free flight the tur-
bulence level of the air is generally low, so that transition as a con-
sequence of laminar instability would be expected whenever the aircraft
surfaces are smooth.

Lees amd Lin (refs. 5 and 6) have developed a theory for the stabil-
ity of the compressible laminar boundary layer based on the Tollmien-
Sch.lichtingconcept. Their theory predicts that withdrawal of heat from
the boundary layer has a stabilizing effect, and suggests that sufficient
cooling wiJJ_stabilize the boq layer regardless of Reynolds nuniber.
Accuxate and detailed calculations by Van Driest (ref. 7) based on the
theory of Lees and Lti show that the lsadnar boundary layer on a flat
plate can be completely stabilized at Mach nunibersbetween 1 and 9.
These results have been qualitatively substantiatedby Ste~berg (ref.
8), who observed laminar boundary ~ers at Reynolds mmibers as high as

5oao6 .

The theory of Lees and Lin is limited to the flow over a flat plate
(zero pressure ~adient ). It was subsequently shown by Iarmann (ref.
9) and Cheng (ref. 10) that the criteria derived by Lees and Lin apply
also to flows over curved surfaces provided the local velocity smd ta-
perature profiles sre considered.

In the present report calculationsbased on the theory of Ices and
Lti are made for flows with smaJL constant pressure ~adients. h par-
ticular, the cool- required to completely stabilize the lsminar bound-
ary layer for flows with pressure gadients of a magnitude usually
encount=ed over thin aerodynamic shapes at supersonic speeds is calcu-
lated. The pressure .g’adientsare considerably smalJer than the pressure
gradients requtied for laminar separation. Velocity aud temperature
profiles for this calculation are obtatied from reference I-1. The caJ--
cula.tionswere made at the NACA Lewis laboratory dur@ the summer of
1953.

ASSUMECIONS AND LIMECATIOIJS

The present work employs the results of reference Xl and therefore
contati the same assumptions, discussed h detail therein, concerning
the boundary-layer flow. These ticlude constant specific heat, constant
Prandtl nunber (Pr = O.72), constant wall temperature, and viscosity
proportional to temperature. Van Driest’s calculations for the stabil-
ity of flat-plate boun~ layers show that these assumptions do not
lead to &urge errors at Mach nunibersless than 3.



NACATN 3103 3

The velocity at the outer edge of the boundary layer ~ is postu-

lated to dflfer only slightly from a reference velocity ~:

(All. symbols
tity &x is

used in this report
smald compared with

tity may be neglected. Equation

=1-1-ex (1)

are deftied in appendix A.) The quan-
unity so that the square of this quan-
(1) represents velocities which are

increasing or decreasing linearly along the body and requires that the
pressure gradient dp/dx be constant and equal to -Te~2. Equation (1)

leads to a pressure gradient parameter
x%
— — = 6x, which was used in
+ax

the stability calculations. This parameter is a function not only of
the pressure @?aiiient,but also of the distance over which the pressure
gradient acts.

It should be .~ted that the pressure gradients used in this report
are the s@lest case of the more general pressure distributions treated
in reference 11. Although the stability analysis could be carried out
for the more general pressure gxadients, it was believed that the rela-
tive effects of pressure gradients on lsminar boundary layer stabflity
could adequately be demonstrated for the special case of a constant
pressure gradient.

Because the calculations of Van Driest indicate that the assumption
of a linear viscosity-temperaturerelation leads to appreciable errors
h the stability calculations for ~ch nmibers greater than 3, and
because the method of reference 11 becomes questionable at ~ > 3 for

x d%
the values of — — considered herein, ~ calculations were limited

‘% -&
to values of ~ < 3.

The assumptions util.izedin the solution of the stability cliffer-
ential equations are discussed in references 5 and 6. Although these
assumptions originated from a study of the flow over flat plates, it
was shown in references 9 and 10 that the eqgations derived by Lees and
Lin apply eq~ well to flows with pressuxe gadients provided that
local velocity and temperature profil.essxe co~idered in the analysis.

Lees (ref. 6) suggested the possibility that, if sufficient heat is
withdrawn from a supersonic landnar boundary layer, the flow will be
stable at alIlReynolds nuribers. This means that no self-excited disturb-
ances can exist that satisfy the stability differential-equations~ their

— — .—— ——_— —— .—— —-—————— .—-— ——
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boundary conditions, and the physical requirement that the

phase velocity of the disturbance c be greater than 1 -

w m 3103

dimensionlesss
1
~.
L-Le

The stability clifferential equations are obtained by linearizing the
equations of motion and energy for a flow with time-dependent fluctuating
components superposed on the steady mean flow quantities. E the effect
of viscosity is neglected in the solution of these equations, the stabil-
ity of the fluid is found to be governed by the distribution of the pro-
duct of density and vorticity through the boundary layer. This “inViscid”
solution applies only at White Reynolds nuribers. It was shown in ref- 3

m
erence 6, however, that the effect of viscosity is destabilizing; a flow
which is stable at Re = “ my not be stable at all other Reynolds num-
bers. In the so-called viscous solution of the stability differential
equations, the effect of viscosity is considered to the first order;
these solutions therefore apply at large, but finite, Reynolds numbers.

Because the purpose of the present report is to find a wild.temper-
ature ratio below which the flow wilJ.be stable at sll flight Reynolds
m.nibers,the viscous solution of the stsbility equations is required.
The problem reduces to finding a wall temperature ratio tw which, for

a given free-stream Mach nuniberand pressure ~adient, simultaneously
satisfies the follotig equations:

(& {(TX9%.1}.*3-Cc u* u*’(o)
v=- (2)

)’! +=C
%2

v=
O.sao(l + k)

(3)
1- 0.960k + 0.570X2

where

equa;%%t &$
erence 6, as
are valid in
of relations
of reference

u*’(0) It*(~c)
x= -1

u~ %* c
(4)

c = l-t (5)

(2) is equivalent to equation (24) of reference 6, while
is obtained by conibiningequations (19) and (20) of ref-
suggested by Bloom (ref. I-2). Equations(2),(3), and (4)
the transformed coordinate system of reference 11. A table
between the terms appearing in the present report and those
6 is presented in appendiixB.
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Once the free-stream llachnumber aad pressure gradient sre specified
and awalJ temperature ratio is assumed, all terms h equations (2} and
(3) csn be found from reference Xl. (me relations between these terms
.&d the functions tabulated in
correct wall temperature ratio

trial and error.1

EFFECT OF PRESSURE CiRAD=

g
Equations (2) and (3) were

and for values of the pressure

ref. M are presented in appendix C.} The
satisfying both equations was found by

ON COOIJ3’?GREQ~ s FoR EmAEmmn

solved for Mach numbers between 1 and 3,
x d%

gradient parameter ~ ~ of O, _@ .05,

and +0.10. The limiting wall temperature ratio for &nplete stability
twjt; is presented in figure 1 as a function of local stream Mach num-

ber Me. At a given pressure gradient the ~ boun&ry ~er iS

stable for sillReynolds nuaibersH the wall temperature ratio is less
than the value given on the curve for that particular gradient. If
twjte is geater than that value, se~-excited disturbances wiJl exist

if the Reynolds nunher is sufficient~ high. Also shown in figure 1 are
the wall temperature ratio for zero heat transfer and the wald tempera-
ture ratio 5 feet aft of the leading edge of a flat plate for black-body
radiation at an sltitude of 50,000 feet. (Both the zero heat transfer
curve and the radiation curve are al.tered only slightly by the pressure
gmdient. ) The wdl temperature ratio for radiation is obtained from a
bslance of the heat lost by the surface through radiation and the heat
gained by the surface through convection and conduction. It was assumed,
as is conventional, that the surface radiates to a mean receptor temper-
ature equal to the ambient temperature. As a comparison, this heat bal-

ance was also made for a point ~ feet tit of the leading edge, and it

was found that the result@j equilibrium wall tqerature ratio at
Me = 3 was 4 percent higher than at the 5-foot station. This difference
h temperature ratios decreases as the Mach number decreases.

%lr. C. C. Lin and Dr. D. W. Dunn have hformed the author that
they have obtained improved viscous solutions of the stability Uff er-
ential.equations, but that cal.culations based on these solutions -e
to withti 2 percent with the present results for the case of zero pres-

~ d%
sure gradient. For the case of — — = 0.10 and ~ = 3.06, the new

~dx

solutions yielded a wald.temperature ratio 0.5 percent higher thau re-
ported herein. It is therefore believed that alJ the present results.
are in error by no more than about 2 percent.

——— .— .—— - -- —-
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The ~ressure _ents represented in this figure are of a magnitude
might be encountered over thin wings at supersonic speeds. For

~ due
example, the value of — — at the midchord station of a 5 percent

~dx
thick circular arc a~oil at allachnmiber of 2 is 0.06. The adverse

(

~ d%
pressure ~adients ——

)
negative might be found on compression

~dx

-s Of supersonic en@ne inlets.
5

It should be noted that the parameter ~

x d%
—~ will not be a constant along a surface when the pressure gradientu

i: constant. Thus a given stabili~ limit, as plotted in figure 1,
applies only at one point on a wing, and the boundary ~er msy be more
stable (or less stable) at other chordtise stations.

It is evident that the effect of a smald.pressure gradient on the
cooling requirements for coqlete stabili~ is appreciable. At a local

x%
stream Mach nunlberof 2, and for a value of — —

%&
equal to 0.10, the

walJ-temperature ratio for stability is not far below the zero-heat-
transf~ temperature ratio. For this pressure gradient the cooldng due
to radiation alone is seen to stabilize the boundary layer for ~> 1.7.
For flows with adverse pressure ~adi&ts, the wall tempemture ratio
for complete stability is considerably lower than for fht -plate flows.

The effects of pressure gradient may be demonstrated in terms of the
relative rate of heat transfer required, in the absence of radiation, to
stdilize flows with pressure gradients as compared with flat-plate flows.
The ratio of heat-transfer rates g/ , as obtained from the temperature

ratios of figure 1 and from equationY)63 of reference U., is plotted as
a function of 1OCSJ-stresm Wch ntier ti figure 2, and applies at an
smbient air tanperature of -67° F. At a Mach nuuiberof 2.5, only 5 per-
cent of the cooling requtied to stabilize the flow over a flat plate

x due
wiJIlsuffice to stabilize the flow over a wing when — — = 0.10.

~dx

For the most adverse pressure gradient considered, on the other hand,
the ratio q/~ reaches a peak value of about 2.2.

There appears to be an optimum &h nmber, in the neighborhood of 2,
where pressure gradients have a large effect on the cooling requirements
for complete stability. At higher Mach nunibersthe frictional heating
terms in the boundary layer energy equa%ion beccme of geater @ortsmce,
and the relative effect of pressure @ient becomes less hportant.
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A possible shortcmdng of the present calculations, in comon with
the shortcoming of previous papers, is that only two-dtiensionkl disturb-
ances are treated. It was shown by Squire (ref. 13) that, for incompres-
sible flow, two-dhensional disturbances are always more destabilizing
than three-dimensional disturbances. Since the present calcul.ations
have been completed, however, it has been reported by Dunn and M
(ref. 14) that Squire’s theorem cannot be extended to supersonic flows,
and that under certain conditions three-cUmensional.disturbances will
be more destabilizing than two-dimensiond disturbances. The trends of
the two-Mnensional theory have, however, been verified experhentally
(ref. 8). It is believed, therefore, that the present results at least
qualitat;.rely describe the effects of pressure -ents on boundary
layer stab~ty.

coIvcLuDmG ImMARxs

The smount of cooling required to con@etely stabilize a two-
dimensional lsminar boundary layer with small pressure gadients h
supersonic flow has been calculated. It was found that the wall temper-
ature ratio for complete stahility approaches the zero-heat-transfer
temperature ratio for reasonably small favorable pressure gadients.
At a local stream l&ch nuniberof 2.5, for example, only 5 percent of
the cooltig reqtied to stabilize the flow over a flat plate will suf-
fice to stabilize the flow over a wing when the pressure gradient param-

d~
.—

‘ter & b ‘q- 0“10”
Under these conditiom the cooling due to

radiation may be adequate to stabilize the boundary layer for W
Reynolds numbers.

Lewis Flightl%opulsion Laboratory
National.Advisory Committee for Aeronautics

Cleveland, Ohio, I’?oveniber3, 1953

—-—— ——— —.—— ..-
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APPENDIX A

SYMBOIS

The follotig synibolssre used in this report:

phase velocity of disturbance divickd by Ue

&h number

local rate of heat transfer

static tanperatuxe

t/tr

velocity

ul~

function

distance

ratio of

inx-direction

appearing in eqs. (2) and (3)

along suxface measured from leading edge

specflic heats

small quantity
tribution at

characteristic

wave length of

S@scripts:

- measure of shape and magnitude of velocity dis-
outer edge of

variable (see

disturbance

c value of function when ~ =
‘e

boundary layer

appendix B)

c

e conditions at outer edge of boundary layer

FP equivalent fl.at-plate value

r reference condition (see ref. 11)

v conditions at waJJ or surface
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Superscripts:

t differentiationwith respect to ~

* tiensionless quantity

Special notation:

The syoibol I preceding a quantity indicates integration from zero
to q; for example,

—. ——. . —.. .— — -—
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APPENDIXB

REXATION BEJ?WXN I?OI!ATIONOF REFERENCE 6 AND N(YI!ATION

EMPlmYEOINPRESENT~

Because the present stability calculations are based on the velocity
and temperature distributions of reference 11, it was necessary to obtain
the stability equations in terms of the vsriables used in that reference. ~
A table of e ivslent relations which are required in order to obtati

?%equations (2 , 3 , and (4) from the equations of reference 6 is there-
fore presented:

Lees’ notation Present notation
(ref. 6)

c c

T t*/t:

v v

v U+ju:

Y It*(q)

A 1

r &_l&
‘% ~ ‘=% dy-~dq

~z ~2 *2 ~2 t*t d

“=2 “=* G=+ G-m~

Subscript 1 S&script w

Stiscri@ O Subscript e

.
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DEFl%lTION OF TERMS

The terms required in the
sure gradients are related to
as follows:

F ~*=4
4 ~ f’(~) + &x

‘Ad
o
3’

3

stability calculation for flows with
the functions tabulated h reference

g’(v)

g“(v)

pres-
U

where

All fUnctions of q with the exception of f”1(7) @ g“’(h)
=e tabulated in reference ld. The function g‘“(q) is presented in
table I of the present report, while f ‘“ is obtained from the Blasius
equation

fm= - fflt

—

.. ...—— .——. ._ .—. —.
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The relation

ence Mach nwiber
equation for the

between the local stream lfachnuniber ~ and the refer.

~ is obtained frcm equation (1) and the corresponding
local stresm temperature

t: = 1- (r-l) %2 &x

Thus

%=++.. (1+%%2)]
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TAELE I. - TEE mTIoN OF &’”(q)
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.7
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.9

1.0
1.1
1.2
1.3
1.4

1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2.3
2.4

2.5
2.6
2.7
2.8
2.9

3.0
3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9

4.0
4.1
4.2
4.3
4.4
4.5

%’i

4 .0Jw3
-4.0000
-3.9996
-3.9972
-3.9887

-3.9670
-3.9219
-3.8409
-3.7105
-3.5178

-3.2538
-2.9147
-2.5047
-2.0358
-1.5283

-1.0080
-.5037
-.0432
.3501
.6597

.8780
1.0060
1.0522
1.0306
.9583

.8527

.7299

.6033

.4828

.3748

.2828

.2074

.1485
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-.1781
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.1757
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.0270
-.0078
-.0336
-.0503

-.0587
-.0603
-.0571
-.0508
-.0430

-.0348
-.0271
-.0204
-.0147
-.0103

-.0071
-.0047
-.0030
-.0020
-.0012

-.0006
-.0004
-.0CK)2
-.0001
-.0001
0

-8.2990
-7.8084
-7.3179
-6.8275
-6.3352

-5.8374
-5.3284
-4.8016
-4.2507
-3.6715

-3.0637
-2.4326
-1.7898
-1.1526
-.5428

.0163

.5023

.8973
1.1902
1.3781

1.4661
1.4663
1.3957
1.2738’
1.1202

.9525

.7850

.6284

.4894

.3712

.2746
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.0960
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.0175
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.0040

.0024

.0014
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0
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