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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3105

AFRODYNAMICS OF SLENDER WINGS AND WING-BODY COMBINATTIONS

HAVING SWEPT TRATLING EDGES

By Harold Mirels

SUMMARY

A general method, based on two-dimensional crossflow concepts, is
presented for obtaining the 1ift and moments on highly swept wings.
Emphasis is placed on obtaining solutions for wings having swept
trailing edges. The method is applicable for all problems where the
velocity boundary conditions can be made homogeneous by differentia-
tion in the streamwise or spanwise directions.

Lift, roll, and pitch solutions, for highly swept wings, are pre-
sented. Both direct problems (where the plen form is given) and in-
verse problems (where the shed vortex sheet is given) are considered.
The solutions of the direct problems are expressed in terms of fumc-
tions which are evaluated from integral equations. Some limiting
solutions of the integral equations are indicated. Numerical results
are given for wings having parallel leading and trailing edges.

The transformation of a wing-body problem to an equivalent iso-
lated wing problem is discussed and the application for finding the
1ift of a wing-body combination is indicated.

Application of the method for'solving unsteady two-dimensional
incompressible flow problems is also indicated. In particular, the
Wagner problem is formulated in terms of the techniques developed
herein.

INTRODUCTION

In 1924, Munk (ref. l) published a remarkasble peper concerning
the calculation of the aerodynamic forces on airships. His theory
was based on the idea that the velocity field induced by a slender
body is essentially two-dimensional in planes transverse to the
body axis. This reduced the complicated three-dimensional problem
to an equivalent two-dimensionsl unsteady-flow problem and permitted
the use of very elegant methods of solution.
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With the advent of transonic and supersonic flight, interest in
slender bodies was renewed. In 1946, Jones (ref. 2) revived Munk's
ideas and used them to compute the forces on low-aspect-ratio pointed
wings. He indicated that for such wings, compressiblility has no ef-
fect and his results applied equally at both subsonic and supersonic
speeds. Following Jones! .example, many papers were written on the
serodynamics of slender wings, bodies, and wing-body combinations.
See, for example, references 3 to 11. One of the most noteble of
these is Ward's paper (ref. 5) which provided a rigorous justifica-
tion for the Munk-Jones gpproach. Ward showed that their sclution
may be considered as the first term of an expansion in terms of a
"slenderness" parameter. Ward considered supersonic flight speeds.
More recently, Adams and Sears (ref. 10) gave a similar result for
the subsonic case.

Relatively few investigations have been made for cases where the
two-dimensional crossflow contains a shed vortex sheet. This occurs,
for example, when a slender wing has a swept trailing edge. In this
case the crossflow generally contains a shed vortex sheet of unknown
strength. The crossflow is not independent of upstream conditions
and the problem is considerably more camplicated than those considered
by the early investigators. References 6 to 8 considered wings having
swept trailing edges. In these references the distribution of vorticity
in the shed vortex sheet 1s assumed and the wing plan form which would
give rise to such a distribution is then found. This 1s the so-called
inverse problem of aerodynamics and is generally simpler to solve than
the direct problem. The direct problem is one in which the wing is
completely specified and the flow field is to be determined. Robinson
(ref. 11) appears to be the only one to have presented_a solution of
the direct problem for wings with swept trailing edgesl. He has
treated the 1ift problem. In reference 12 it 1s indicated that
Robinson's solution is applicable only when the tralling edge is
slightly swept.

In the present paper, a general method is developed for solving
low-aspect-ratioc problems involving shed vortex sheets. Both direct
and inverse problems are considered. The method is applicable for
all planar problems where the velocity boundary conditions can be
mede hamogeneous by differentiation in either the streamwise or the

1 private communication fram K. W. Mangler, in connection with
reference 12, served to call the author's attention to reference 13.
In reference 13, Mangler has independently obtained the 1lift, roll,
end pitch solutions for a highly swept wing (direct problem) by a
method similar to that used herein. A comparison of reference 13
with the present report is given in appendix E.
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spanwise directions. The 1lift, roll, and pitch solutions, for a highly
swvept wing, are presented and some numerical examples are worked out.
Applications to wing-body interference problems and to unsteady two-
dimensional incompressible flows are also indicated.

The research reported herein was conducted at the Graduate School
of Aeronautical Engineering, Cornell University. This paper is based
on material which was originally presented to the faculty of the
Graduate School of Cornell University, in June 1953, as a thesis for
the degree of Doctor of Philosophy. The author wishes to express his
sincere gratitude to Professor N. Rott for his advice and criticism
during the course of the study. The author also wishes to thank the
other members of the staff of the Graduate School of Aeronsutical
Engineering and Drs. H. K. Cheng and M. C. Adams (both formerly at
Cornell University) for stimulating discussions.

SECTION I - BASIC CONCEPTS

In the following section, the basic results of previous investi-
gators, primaerily reference 5, are summarized.

The essumption of slenderness is introduced into the equations of
motion. The general features of the crossflow and formulas for 1ift,
drag, and moments are discussed. Finally, symmetry of the velocity
camponents, in planar problems, is mentioned.

1.1 Equation of motion. ~ Consider a slender body in a free strean
of velocity Up, Mach number M,, pressure pg, and density pg (fig. 1).

The coordinate system is stationary with respect to the body and is de-
fined such that the x-axis 1s parallel to the free stream (i.e., wind
axes).

If the body is assumed to perturb the main stream only slightly,
the equation of motion can be linearized and reduced to the Prandtl-
Glauert equation:

2 2 2
2 0 3¢  oTp _
(l-Mo> ax2+8y2+822_0 (1.1.1)

where ¢ 1s the perturbation velocity potential. Thus, if u, v, and

w represent the perturbation velocities in the x, y, and 2z direc-
tlons, respectively, then

_ 09 _ -
u—‘d; V—a W—B—Z—
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Equation (1.1.1) applies for both subsonic and supersonic flight. To
as good an approximation, the pressure at any point in the flow field

is given by
dp 1 Bcpz Bcp2
P-Po=-p0300 5 *3 (‘55) *(‘a‘z‘) (1.1.2)

where py and pg are the pressure and density, respectively, in the
undisturbed flow.

A body is considered slender if
|4/ 2. 1|b
"o 0«1 (1.1.3)
o

where cg characterizes the length of the body and by characterizes
its width. Under this condition, equation (1.1.1) beccmes

2 .2
%;% + %‘% -0 (1.1.4)
zZ

which is the governing equation in slender body theory. Equation
(1.1.4) indicates that ¢ can be found, to within a function of

X, by considering the flow in each yz-plane to be e two-dimensional
incompressible flow. :

The boundary conditions for equation (1.1.4) are usually expressed
in terms of the perturbation velocities. Let Vv and @ be orthogonal
coordinates which are normal and tangential, respectively, to the curve
defining the body cross-sectional area in a particular yz-plane (fig.
2). Let vp = J0gfdov be the perturbation velocity in the v-direction.
Then, the condition that the resultant flow be tangent to the body sur-
face requires that, at the body surface (ref. 5),

'Vn = UO %—;—; ' (1.1.5)

1.2 Asymptotic form of crossflow. -~ Two-dimensional incompressible
flows are well understood end are most easily handled in terme of the
complex variable =y +iz. TLet W=9¢ + iy vwhere W 1is the com-
plex potential function, ¢ 1is the velocity potential, and ¢ 1s the
stream function for the crossflow. (The functions W, @, and ¥ con-
tain x as a parameter.) The Laurent expansion for W, valid every-
where outside the smallest circle, center at { = O, enclosing all
the singularities of the flow, is

3120
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W=f+fylnt + E A G (1.2.1)
m=1
where f, fy, £y, . . . are functions of x. The function f intro-

duces & constant pressure at each crossflow. Formulas for its evalu-
ation are given in reference 5 (for My > 1) and reference 10 (for

Mp < 1). Since f does not contribute to 1ift, and since only the

1lift problem is of interest here, those formulas will not be repeated.
The function £y is generally complex. The real part is proportiondl

to the source strength required to simulate the expansion or contrac-
Up.dAcg

tion of the body and equals Tr dx

sectiongl area of the body. The imaginary part equals -F/Zﬂ where T

is the net circulation at each section. Equation (1.2.1) can then

be written

(ref. 5) where A,g 1is the cross-

We=f+ 2_];[_ (UO d-Ad;s _ ) 1in g + E fm g—m (1.2.2)

m=1

The camplex velocity V= v - iw is found by differentiating
equation (1.2.2) with respect to ¢ and equals

V= Elg (UO % - iI') t]: - E m £ g'(m+l) (1.2.3)

m=1

Differentiation of equation (1.2.3) with respect to t glves

v 1 dAcg 1 2f) 6fp
BE_--Z-I_{ UO-TG_X—-iI‘ §—2+-—§—3+T4'+... (1.2.4)
Similarly, if equation (1.2.3) is differentiated with respect to x

v 1 d2h,g) 1 afy/dx dfp/dx
&=5(Uo axgs)f- 2 -2 & - .. (1.2.5)

where it has been assumed that dI/dx = O 8o as to satisfy the law of
conservation of circulation. Equetions (1.2.2) to (1.2.5) define the
asymptotic behavior of W and its derivatives. These expressions
will be useful in later developments.
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1.3 Lift, drag, and moments. - Expressions for computing the forces
acting on a body are summerized herein. They are based primarily on
the results of reference 5. It will be assumed that T = O, which 1s
the case for all problems treated in the present report '(except for
section 2.3).

The net force which has acted on a body upstream of any section
x = constant is obtained by a contour integration about the body

(fig. 2) and equals

F, + iF, = - ipgUp o at (1.3.1)
C1

Equation {(1.3.1) can be evaluated by Cauchy's theorem for the path

Cqy + Cp 1indicated in figure 2. The cut is introduced to make W

single-valued. The path C, 1s sufficlently far from the body so

that the Laurent expansion for W can be used along this path.
Since there are no singularities inside the path Cq + Cp, Cauchy's

theorem glves
k?g\ W at =&5£:\W’d§
C1 C2

Then equation (1.3.1) can be written

Fy + iF, = - ipgUy f Wwat - 1‘55 ¥ ag (1.3.2)
Ca Cy.

d'ACS

But

T
¥ af = LUy — - § ay (by parts)

3120
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where o is the point common to paths Ci; and C2, as indicated in
figure 2. Let {g= yg + izg be the center of area of the cross-
sectional area Asg. Then, by definition of the center of area

§g A.g t dy dz

ACS

ILet v and p be coordinates normal and tangential to the path Cj
end let v, be the local velocity component normal to the path. Then

%(chCB)=%~/:/ﬂgdydz=j§ 6 5 an
Acs C1

1 1
Ty £ vp dp = - T, £ ay

Cy1 Cy

Thus, equation (1.3.2) can be expressed in the form

Uo a4

Fy, + iF, = 2rpgUg | £1 + 5 3% (Acg gg) (1.3.3)
The force per unit x is
ar ar ar U 2
'S 32 . 1,0 4
= t1g = 2wl g5 + 5 =" (Aog ;g) (1.3.4)

The net moment about the 2z- and y~axes is then given by

® [ary dr,,
MZ+iMy=f x(E+iE)d.x (1.3.5)

which can be evaluated in terms of equation (1.3.4). Equations (1.3.3)
to {1.3.5) were first derived in reference 5.
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A similar expression can be obtained for the rolling moment about
the Xx-axis. Fram consliderstion of impulse, the net rolling moment
which has acted on a body up to a certain section x is

My = - poUp oy dy + z dz) (1.3.8)
Cy
The author was not able to evaluate equation (1.3.6) by a procedure

similar to that used for equation (1.3.1) except for the case of zero
thickness. Thus, when dz = 0O in the integrand of equation (1.3.8),

Mx = R.P. | -poUo t wat | =R.P. | -poUp t wadt

cq Cy

I.P. (2npqUgts) (1.3.7)

where R.P. and I.P. indicate the real and imaginary parts, respec-
tively. The rolling moment, per unit x, for this case, is then

am,

dfa
& = I-P- | 21p0Up g (1.3.8)

From equations (1.3.3) to (1.3.8) it is seen that the forces and
moments acting on the body can be obteined from a knowledge of the
asymptotic form of W and the cross-section geometry. The results
are equivalent to integrating the pressure distribution over the
body surface, providing the quadratic terms in equation (1.1.2) are
retained. The use of equations (1.3.3) to (1.3.8) is considerably
simpler than the surface integration of pressures.

For lifting surfaces, there is an induced drag Dj associated

with the 1ift, which can be determined from a consideration of the
suctlon force along the airfoil leading edge. Thus

Dy =al + dFy (1.3.9)
.E.

where Fy 1is the suction force acting in the positive x-direction
and the contour integral is taken along the airfoll leading edge.
(The symbols I and F, will be used interchangeably to indicate

net 1ift.) The magnitude of the suction force is obtained by con-
sidering the flow at a subsonic leading edge to act locally like

3120
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that around a two-dimensional airfoil (fig. 3). In figure 3, the sub-
scripts n and +t represent components normal and tangent to the
leading edge. The suction force per unit span on the leading edge
of a two-dimensional airfoll in a free stream of Mach number Mb,n

is
n /
daE 2 2
— - p TC l - Mo I l[[]
dx 0 n “n *n
T ’7 %0

Assuming this to apply locally, for a swept wing in a free stream of
Mach number M,

ar
EE% = - pOnA/i - Moz sin%e 1lim unzxn
Xn

But, from figure 3,

&y _ IFx
S 4
0~ " coe 6

x, = (2 - Y)cos 6

Then

2 1.2

dFy AL - M2 sin?o

& = - Po" — lim v2(y, - ¥) (1.3.10)
2 2

Up to this polnt, the slender body assumption has not been made in
equation (1.3.105. Since v 1in equation (1.3.10) will be obtained
from slender body theory, it is consistent to expand

AJl - sz sinze/cos @ in terms of the slenderness parameter. Thus,

T (W)
¢o

cos O

vhere O( ) indicates order of magnitude. For a slender configuration,
equation (1.3.10) becomes
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dr

x . PoT
T, = pox lim Vz(Yz -y) =- VPR RY] uz(Yz -y)
2 ¥z (ayp/ax)* yoy, (1.3.11)

The suction force term in equation (1.3.9) is obtained by integrating
equation (1.3.11) along the airfoil leading edge. An alternate method
for computing Dy 1is to find the kinetic energy in the wake behind the

wing. Both methods give the same result.

1.4 Symmetry in planar problems. - The solution of aerodynamic
problems is greatly simplified by imposing, at an early stage, what-
ever symmetry the velocity field must have. The symmetry which ex-
ists in problems involving zero thickness wings will now be noted.

If a wing has moderate camber and twist and is at a small angle
of attack to the main stream, the solution can be obtained by speci-
fying the boundary conditions in the z = O plane rather than on
the surface of the wing. The w velocity is symmetric while the
u and v velocities are antisymmetric about the 2z = O plane.
That is,

- u(x, Y 'Z)

- v(x,y,-z) (1.4.1)

u(x:Y: Z)

V(x:y:Z)
w(x,y, Z) =W (X)Y: 'Z)

Thus the w veloclty is continuous while the u and v velocities
are discontinuous (equal and opposite) or zero for corresponding
points on the upper and lower surface of the 2z = O plane.

When the w boundary condition on the wing is symmetric with
respect to the y = O plane (as in the case of a 1lifting or pitching

wing) and the corresponding plan form edges have the same type singu-
larities, then the followlng symmetry also applies:

u(x,y,2z) = u(x,-y,z)
v(x,y,2) = - v(x,-y,2) (1.4.2)
w(x,y,2) = w(x,-y,2)

When the w boundary condition on the wing is antisymmetric with re-

spect to the y = 0 plane (as in the case of a rolling wing), then
equations (1.4.2) are replaced by

3120
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u(x,y,z) = - u(x,-y,z)
v(x:yJZ) = v(x,-y,2) (1.4.3)
w(x,y,z) = - w(x,-y,2)

again assuming that corresponding edges have the same singularities.

The symmetry of the derivatives of the perturbation velocities is
found by differentiating equations (1.4.1) to (1.4.3).

SECTION 2 - GENERATING FUNCTIONS

The functions OV/3{ and OV/dx are termed generating functions
herein since they are not of particular interest in themselves, but
their integration leads to the solution of flow problemsz. Generating
functions can be used to solve all planar problems for which the bound-
ary conditions in the 2z = 0 plane are made hamogeneous by differenti-
ation in the =x- or y-direction. Expressions for the generating func-
tions are derived in the following section.

2.1 Evaluation of branch points. - The functions which arise in
wing problems usually have branch points on the y-axis. It is essen-
tial to develop a systematic procedure for introducing cuts so as to
meke these functions single-valued. In all cases, the cuts will be
introduced along the y-axis to the left of the branch points.

As en example, consider the function ({ - yn)N+l/2 where N is

any integer (0, 1, #2, . . .) and ¥y, 1is an arbitrary point on the
y-axis. This function has a branch point at y,. To make the func-

tion single-valued, a cut is introduced along the y-axis from - w
to yn (fig. 4). Define the function to be real and positive for

2The application of generating functions to aerodynamic problems
wag first brought to the author's attention by Dr. H. K. Cheng who
used e similar approach in his thesis "Thin Wings in Conical Flow,"
Cornell University, 1952. The use of the generating function JV/dt
is a classical approach to solving Laplace's equation, for a certain
class of boundary conditions, by meane of the complex variable. To
the author's knowledge, the application of the generating function
BV/Bx does not appear explicitly in the literature except for
Mangler's use (ref. 13) of an equivalent function JU/Jt, (see
appendix E).
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{ =y >y,. To evaluate it along the cut, let § =y, + te1® and let
6 gofrom O +to tn. The result is

-y )™ Y2 - (v -y )2 for t=y>y,

=2i(y - 3 ) Af7y -7 for t=y<y, (2.1.1)

Thus the function goes from a purely real function for § =y > Yp to
a purely imaginary function (discontinuous across the cut) for
L =y <y,

2.2 Behavior of flow near boundary edges. - A boundary edge is
defined herein as a point in the 2z = 0 plane where the boundary

condition changes fram a specification of v +to a specification of
Ww. Such a point generally corresponds to the edge of a wing panel.

Consider a boundary edge y, Wwith the boundary conditions
w=0 for y>y, and v =0 for y< y, (sketch 1).

N

. -

Sketch 1

These boundary conditions are satisfied by V = ({ - yn)N+l/2 where N

is an integer. (Because of the uniform procedure prescribed for intro-
ducing cuts, this solution for V should be considered as valid for
the upper half plsne =z 2 0. The solution for the lower half plane

is obtained from symmetry considerations.) For physical reasons the
smallest permissible value of N is -1. A smaller value would make

W infinite at y, and this is unrealistic. If the v and w

velocities are to be continuous at yn'(Khtta condition), the minimum
permissible value of N 1is O.

3120
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The boundary conditions can now be generalized so that w = w(y)
for y >y, and v =v(y) for y <y, (sketch 2). In the immediate

N

= v(y) w = w(y)

[ ]

>y
In

Sketch 2

vicinity of the edge, V must have the form
v ~[v(yn) - iW(yn)] + B(g - y,)WHL/2 (2.2.1)

where B is a real constant. The first term of equation (2.2.1) sat-
isfies the inhamogeneous boundary condition at Yo while the second

term satlisfies the hamogeneous boundary conditions indicated in sketch
l. The exponent N has the same limitations as for the flow in
sketch 1.

Thus, the homogeneous part of V has at most a half-order singu-
larity at an edge and behaves like

B

v (t - y) /2
(2.2.2)
ov 1 B

" T2y, 3R

where B 1is real or imaginary, depending on whether the w boundary
condition 1s specified for y > yn or ¥ <yn- ITf the Kutta condi-

tion applies, the homogeneous part of V behaves like

V o~ B(g - Yn)l/z
(2.2.3)
oV 1 B

§§~E(§_yn)l;2
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Differentiation of V with respect to { increases the order of the
singularity at y,. If y, and B are considered functions of X,

differentiation of equations (2.2.2) and (2.2.3) yields, respectively,

dyn
1 B (Ex—)
3

v
& "2 )3
(2.2.4)
dyn

L (Kutte)

where only the leading term is retained in each expression. Thus,
differentiation with respect to x also increases the order of the
singularity. If y, does not vary with x, the derivatives in

equation (2.2.4) become, respectively,
4B
oV ax

ox " (L - yy)i/2
F B y)? (rutts)

80 that the order of the singularity is not increased by the
differentiation.

2.3 Petermination of generating functions. -~

(a) Specisl class of flows: In order to lead smoothly to the
discussion of generating functions, it is convenient to solve the
two-dimensional incompressible flow associated with one or more
flat plates in uniform translation.

Consider a flat plate to be, at a given instant, on the y-axis
between y; and Yy, and to be moving vertically downward with the

velocity w = - ally (fig. 5). The boundary conditions in the z =0
plane are indicated in the figure. The complex velocity must equal

C + A

AL - y1 A8 -2

V = - ialp + ialUp (2.3.1)
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where A d1s an arbitrary real constant which defines the net circula-
tion. (Fram the asymptotic form of equation (2.3.1) it can be shown
that T = 2mlp[A + (yy + v2)/2].)

Equation (2.3.1) is a well-known result. It can be constructed,
by inspection, in the following way. The second term on the right-
hand side setisfies the nonhamogeneous boundary condition w = - alp

for Y1 <7< vz The bracketed term on the right-hand side must

therefore satisfy the homogeneous boundary conditions w = O for
VY1 <¥y<yp and v =0 for y <y; and y >yp. From equation

(2.2.2) it is known that V can have half-order singularities at
y, end y,. These are introduced as the product i/a/t - vy At - g

so that, in the z = O plane, the term is purely real for y; < y <y2
and purely imaginary for y <y, and ¥y > yg, thereby satisfying the
required homogeneous boundary conditions. The factor aly(f + A) is

then introduced into the numerator to satisfy the condition that V
behave like 1/f{ for §{ - =.

The permissibility of introducing A into equation (2.3.1) cor-
responds to the fact that, mathemstically, the circulation about a
given airfoil is arbitrary. Taking A equal to -y; or -y, 1s

equivalent to applying the Kutta condition at y; or Yy, respec-

tively. Either choice gives the same value of T, but with differ-
ent signs. The net circulation is zero when A = - (yy + y2)/2.

Equation (2.3.1) can be generalized. This is the problem of m
wing panels, each moving downward with velocity w = - alUy (fig. 6(a)).

There are 2m boundary edges and the solution is

m-1

e +':E:,An§n

n=0

V = - ialy + ialg (2.3.2)

%Q% A& - ¥y

n=1

vwhere the A, are real. The construction of equation (2.3.2) is simi-

lar to thet of equation (2.3.1). The second term on the right-hand
side satisfies the nonhomogeneous boundary condition w = - ol for

points on the wing panels. The bracketed term satisfies homogeneous
boundary conditions in the z = O plane, (w = 0 on the wing panels
and v = O off the wing panels) since it is purely real for points
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on the wing panels and purely imaglnary for points off the wing panels.
The numerstor is s polynomial of order m since this is the highest
order polynomial which will stl1ll satisfy the boundary condition
Vael/f for § » e

Equation (2.3.2) has m arbltrary constents, which corresponds
to the fact that the circulation sbout each of the m wing panels is
arbltrary. The constants are determined by (1) specifying the circu-
lation sbout each wing panel, (2) specifying the Kutta condition at
m edges, or (3) combinations of (1) and (2). If the Kutte condition
is gpecified at m' edges, designated by yﬁ, and the remaining m"

edges are deslgnated by ¥, then equation (2.3.2) can be written
n) q

r-m' (m-m'-1) ]
ﬂ NE || gl Z Ao
V = - 1alp) =2k - =0 >+ dally
o ;l;l-l F __J (2.3.3)
Note that m' €« m and m! + m" = 2m. There are now (m - m') constants

10 be determined by satisfying the circulation boundary conditions.
(If the problem has symmetry in respect to ¥y = 0, the number of un-
known constants can be reduced by inspection.)

(b) The generating function dV/d{: The boundary conditions in
the 2z = 0 plane can be further generalized to the case where the
v and w velocities are constants on segments of the y-axis (fig.
6(b)). The problem is one with homogeneous boundary conditions, both
in the 2z = O plane and for § -+ w, if JV/d{ rather than V 1is
considered. The solution for OV/d{ can be found by inspection
and equals

~  3m-2 j
5 e
AV n=0
= i == ™ (2.3.4)
_11_1 (€ - yy) |

where the A, are real. The dencminator of equation (2.3.4) has
3/2-order singularities since differentiation of V with respect

to t increases the order of the singularity at an edge (eq. (2.2 2)).
The boundary conditions dv/dy = O and ow/dy = O, alternately, in

-3120
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the 2z = 0 plane, are satisfied since equation (2.3.4) becomes imsgi-
nary and real, alternstely. The boundary condition at infinity is sat-
isfied since the leading term of the asymptotic expansion of equation
(2.3.4) is of the form l/§2, which is eppropriate for problems having
a net circulation. There ere 3m - 1 constants in equation (2.3.4) of
which only m are erbitrary. The 2m - 1 constants correspond to the
m specified w Dboundery conditions on the wing panels, the m - 1
specified v boundary conditions in the segments between the wing
panels, and the m arbitrary clrculations which cen be imposed. The
circulation boundary conditions can be replaced by the Kutta condition
(now a half-order singularity) at m, or less, edges. If the Kutta
condition is imposed at m! edges (Qesignated by y!) and the remaining

n" edges are designated by yp, equation (2.3.4) becames

8 (3m-m'-2) ]
2 Ant™
% = 19 = n=0 — (2.3.5)
TT 6 -3 TT (¢ - yg):”/z]
n=1 n=1

As & further extension, the wing panels may have constant downwesh
specified but with a finite number of Jjumps in w occurring across
each wing panel (see fig. 6(c)). The solution can be found, from the
previous equations, 1f each Jump 1s artificislly separated by a vortex
sheet (with the Kutte condition applied at each edge of the sheet) and
the 1imit is then teken as the intervening vortex sheet width goes to
zero. Similarly, if there is a discontinuity in v at = point in a
vortex sheet, an intervening wing panel is intrcduced end then made
to go to zero. Thus, 1f such discontlnuities occur at n"' points
(designated by yg‘), equation (2.3.5) becomes

8 1/2(mt+3m"+2m " -4) R
Apt™
ov n=0 5
gg = ii e o i
T - ™3| TT ¢ - s3I ¢ - v
L_n:l n=1 n=1
(2.3.6)

It is noted that the discontlinuities introduce singulaerities of order
one in the expression for OV/df{. This is due to the fact that they
correspond to log({ - yf*) type terms in the expression for V.
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A Pinal generalization will be introduced. Equation (2.3.6) sat-
isfies homogeneous boundary conditions, for oV/df, both in the z = 0O
plane and at . A nonhoamogeneocus constant boundary condition in the
2 = O plane can be readily incorporated. Thus, if the w boundary

condition on the nth wing panel is w = Cp + (gg) y, where (%%g is
0 0

a constant and the same for all wing panels, equation (2.3.6) beccmes

~ 1/2(n +amt sz 2) )
(%g)o ¢1/2(m!+3m" +2mm) :EE: AytR
%-4 ,, = - (5
T - w2 1T & - w2 T @ - v
n=l - n=1 , n=1 (2.3.7)

where the additional constant introcduced into the numerator of the
bracketed term is eliminated by setting equal to zero the coefficient
of the 1/t +term in the asymptotic expansion.

The inverse problem of slender wing theory is to find the trailing
edge corresponding to a given shed vortex distribution. The generating
function BV/B§ will be used, in later sections, to solve such
problems.

(c) The genersting function oV/dx: .In the previous paragraphs
the v or w velocity was gpecified for all points in the z =0
plane. However, in the direct problem of slender wing theory, the
w 1is specified on the wing but the v distribution off the wing
is generslly unknown. Consider the case of a swept wing (fig. 7)
at angle of attack a in a free stream of velocity Ugy. Behind

the trailing edge there is a shed vortex sheet whose strength varies
only with y. The crossflow then contains two wing panels having the
boundary condition w = - allg with an intermediate vortex sheet of

unknown strength. Previously V was differentiated with respect
to € in order to obtain a homogeneous boundary-velue problem. It
is apparent that, for the direct problem, differentiation with re-
spect to x will yield the same result. Thus OV/dx has homogene-
ous boundary conditions and the solution for BV/Bx can be con-
structed in terms of the singularities at the boundary edges.

Differentiation of V with respect to x increases the order
of the singularity at an edge, provided the edge varies with x
(section 2.2). Thus, for e multiwing penel problem having the
boundary condition w = f(y) + g(x) specified for the wing panels,
and v = v(y) off the wing panels, the generating function is
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— 1/2(m'+3m"+2m ™ -2) 7
dgix} ¢1/2(m'+3m"+2m ™) | :E: Apt®
%% oy, _ n=0 _y q§£x)
. ot 1/2 T gt 3/2 L - ym
E (¢ -5) J []1 (€ - ym) 11 (¢ - ym) (2.5.8)

where the notation is the same as that used in equation (2.3.7). As
indicated by equation (1.2.5), the coefficient of 1/f, in the asymp-
totic expansion of equation (2.3.8), should be zero. This permits
elimination of one of the- A, in equation (2.3.8). Recall that

yp and y, are boundary edges, that is, points at which the boundary

conditions change from a specification of Bv/ax to a specification
of Bw/Bx. If a boundary edge does not vary with x, the correspond-
ing singularity in the denominator and the polynomial in the numerator
are each of one order lower than indicated in equation (2.3.8). The
symbol y/)" again represents points at which there is a discontinuity

in the v or w boundary condition. If vt does not vary with x,

however, the corresponding term does not appear in equation (2.3.8).
That this is the case may be verified by replacing the discontinuity
by a continuous change over a narrow interval and then letting the
interval go to zero. This process does not alter the form of the
generating function BV/ax and hence this generating function is
insensitive to discontinuities in the v or w boundary conditions
provided these occur along lines of comstant y. The discontinuities
are relntroduced into the flow field by the integration with respect
to x.

For the wing plan form shown in figure 7(a), with the general
wing boundary condition w = £(y) + g(x), equation (2.3.8) becomes
(for x > c)

s AO + Al§ + Azgz + __‘dgxx §4 i dEgKE (2 3 9)
N Y T N |

where T =0 1is assumed (which makes Az = 0) and the Kutte condition

is imposed at the trailing edge. Equation (2.3.9) is used in sections
4 to 6 to obtain the aerodynamics of swept wings.

For a semi-infinite swept win§ (fig. 8) with the general wing
boundery condition w = f(y) + g(x), the generating function is
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dg(x) .2
ov Ao + Alg + dx g -1 dg(x) (2.3.10)

=1
& VT (- vp)32 .

assuming the Kutta condition at y1- Moreover, Ay = - %.9%&&1 (yl+ 3y2)

so as to satisfy the condition of no net circulation. There is a dis-
continuity in v across the x-axis (edge of shed vortex sheet) which
does not appear in equation (2.3.10). This is due to the fact that the
boundary conditions on both sides of the x-axis are in terms of v
(i.e., ov/dx = 0) so that the x-axis corresponds to a ¥y} type

point which is independent of x. Equation (2.3.10) is used in
section 11 to solve unsteady two-dimensional airfoil problems.

SECTION 3 -~ INTEGRAL EXPRESSIONS FOR FLOW FIELD

As mentioned previously, the generating functions OV/dx and
BV/BC are used to solve the direct and inverse problems, respectively,
of slender wing theory. The final solution of a given problem involves
the integration of the generating function and the elimination of the
arbitrary A, 8o as to satisfy the boundary conditions. The integral

expressions for the direct and inverse problem are indicated in sec-
tions 3.1 and 3.2, respectively. The solutions should be considered
valid for only the upper half-plane (z = O) because of the arbitrary
.procedure used to evaluate the branch points (section 2.1). The
solution for the lower helf-plane is found from symmetry considerations.

The boundary conditions to be satisfied are that there be no 1lift
acting across the shed vortex sheet and that the specified w distri-
bution exist over the wing plan form. The condition of zero loading
across the shed vortex sheet can usually be imposed without difficulty.
However, 1n the case of a direct problem, satisfying the specifled w
boundary condition on the wing requires the solution of an integral
equation. Two forms of the integral equation are indicated in
section 3.3.

3.1 Integral expressions (direct problem). - Replacing x by £
as an integration variagble yields

w:f dgf (%9 ag (3.1.12)
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V = @—D dg (3.1.1b)

Note that W and V must be continuous functions of x for all three-
dimensional flow problems where slender body theory is applicable.

The complex velocity V 1is obtained by differentiating W with
respect to f. A corresponding complex function U can be defined
as the derivative of W with respect to x. That is,

oW
Us&=u+1(§§) (3.1.2)
g0 that the real part of U 1is proportional to the loading in the
z = O plane. Moreover, BZW/BX ot = %% = %g, so that
U= (-2%) at (3.1.3)

Equation (3.1.3) can be integrated directly and is used to satisfy the
condition of zero loeding in the shed vortex sheet.

3.2 Integral expressions (inverse problem). - The corresponding
expressions for the inverse problem are

v [u [ @

vV = M 4 > 3.2.1
(%) (8:2:2)

o3 [ [ @
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3.3 Integral equations (direct problem). - Assume that the cross-
flow at some section x = ¢ is known. This 1s true, for exsmple, for
the swept wing indicated in figure 7. Then, from equation (3.1.1b)

X

w(x,y,0) - w(e,y,0) = I.P.| - (%%) ar (3.3.1)

¢ z=0
where the notation w(x,y,z) means that w is evaluated at (x,y,z).
If the value of y 1s such that (x,y,0) corresponds to a point on
the wing surface (as in fig. 9(a)), then the left-hand side of equa-
tion (3.3.1) is known and equation (3.3.1) is en integral equation
for OV/dE.

An slternate form of the integral equation can be found by inte-
grating both sides of equation (3.3.1) in respect to y. ILet 1 be
the integration variable in the y-direction. Integrating both sides
between the limits y and y,(x) ylelds

2(x)
W(X;U;O)dn + [\V(C:Y2(x):o) - Ilf(c;Y:OE]

Yz(x)

= I.P. -f dgf (g—";)dn (3.3.2)
c v ‘ z=0

where the order of integration on the right-hand side has been re-
versed. The ares of integration is indicated in figure 9(b). Equa-
tion (3.3.2) can always be reduced to & function of x plus a func-
tion of ¥y equal to & function of x plus a function of y. The
functions of x or of y cen then be equated, providing an slter-
nete form of the integral equation for JV/Jd&.

Numerical methods are usually required to solve equation (3.3.1)
or (3.3.2). TFor the case of a swept wing, the numerical solution of
equetion (3.3.1) requires an integration by parts in order to reduce
the order of the singularlty of the lntegrand snd this introduces
derivatives of the umknown functions A, into the integrand. How-

ever, the numerical solution of eguation (3.3.2) does not require
the integration by parte since the order of the singularity in the
integrand is reduced by the n-integration. Thus the numerical
solution of equation (3.3.2) is usually more straightforward than
that of equation (3.3.1). The alternate forms of the integral equa-
tion, for the swept-wing lift problem, are derived in section 4.2.
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SECTION 4 - LIFT OF SWEPT WINGS (DIRECT PROBLEM)

The solution for a swept wing at angle of attack is derived in
terms of S, a function of x, which must be evaluated from an inte-
gral equation. Some limiting solutions of the integral equation are
obtained.

4.1 Load distribution. - For the 1lift case, the w boundary con-
dition on the wing of figure 7 is w = - alp. The solution for x < ¢
is well known and equals

W= - 1al, (/\/gz - yR2 - g) (4.1.1a)
V = - ialp S S\ (4.1.1p)

§2 - Yzz

dy

dV yz(ﬁ_)g

3% = - ialo (% - y22)3/2 (¢.1.1c)
arL dyz '
o = 4maay, (E) (4.1.18)

Equations (4.1.1a) end (4.1.1b) are valid at X =c since W and V
are continuous functions of x. However, OV/dx and dL/dx may be
discontinuocus at x = c.

For x > c, the generating function is (from eq. (2.3.9))
3V Ao + Apt?
&- = - i(I.UO
T it (€2 - 520l

where the symmetry with respect to y has been imposed (i.e., Ay = 0).
The functions Ay and A, are eliminated by satisfying the w bound-

ary condition on the wing and the boundary condition that there be no
loading in the wake.

(4.1.2)
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The load distribution in the 2z = O plane is proportional to u
(eq. (1.1.2))3. The value of u on the upper surface of the right-

hand wing panel is, from equation (3.1.3),

(ag + Agt2)at

 AEE - (12 - 3,23

The integration is conducted along the upper surface of the z =0
plene with a suitable indentation at y,. If 17 1is used as the

integration variable in the y-direction, equation (4.1.3) can be
written as

u = R.P. | - ialp (4.1.3)

3120

(8g + Azn?)an

(4.1.4)
NE - 3,2 (3,2 - n2)3/2

u = alp

Y2

where indicates the infinite part of the improper integral (appendix

B). Integration of equation (4.1.4) yields (see asppendix C)

u Ag + Agyq? Ao + Agyg?

= F(pr,x') -
2) ’ Yz(Ygz - le)

E(B',k') +
-2Uo Yg(Yzz -7

2 5
-y
Yo (4.1.5)

Yo yzz _ yz

Sstrictly speaking, equastion (1.1.2) is applicable when the bound-
ary conditions are satisfied on the wing surface. When the boundary
conditions are satisfied in the 2z = O plane, as is done herein, the

appropriate expression for pressure is
v2+w2)
2

for a configuration at angle of attack o. At any rate, the loading is
proportional to u, for a wing of zero thickness, since all the other
terms are symmetric with respect to z.

p—po=-po(uU0+cer0+
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where F(B!',k') and E(B',k') are incomplete elliptic integrals of the
first and second kind, respectively, with amplitude B! and modulus

k!. These have the wvalues
y
k! =A[1 -(—l) (4.1.8)

To satisfy the condition of zero loading in the wake, equation (4.1.5)
is set equal to zero for y = y;. This gives a relation between Ag,

and A,. If 8, a function of x, is lntroduced according to
2

(dyz) 5. _tot Agya®
dx Yz(YZZ - le)

then equation (4.1.5) becomes

2 - g2

dy Y
u = alp (5559 s |E(B',k') - F(B?, kt) o+ %% ;_E__—ié (4.1.7)
2° -

where K®! and E'! are complete elliptic integrals of first and second
kind with modulus k'. Equation (4.1.7) describes the spanwise vari-
ation of loading on the wing. The unknown function S appears only

as a scale factor. The generating function can now be written as

N _ (dyz) t2 - yi® g 1
62 - yp2 K] Af(£2 - y,2) (82 - y12)

(4.1.8)

Fram equations (1.3.4) and (1.2.5) and the asymptotic form of equation
(4¢.1.8), the 1ift per unit x is, in terms of S,

dy
% = 4nagyp (Ez) s (1 - %:—) (¢.1.9)

From equations (4.1.7) and (1.3.11) the suction force at the leading
edge is

ar v 2 _ y 2
___X - mzqsz ___2____.].'_

T, Yz (4.1.10)

The function S8 remains to be determined.
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4.2 Integral equations for S. - The function S 1is determined
from equations (3.3.1) or (3.3.2). Each of these equations is con-
sidered separately.

(a) Equation (3.3.1): Substitution into equation (3.3.1) ylelds

— X
(dyz) 2 - 312 g a
U daz 2 _ v.,2 K'
Y _ 1.p.< 1ar, Sl (4.2.1a)
CAJY2 - b2 Afzﬁz - ¥28) (L2 - y12)
(o]
- z=0

2 (v)

(dyz s yZ - ylz B! ax

y -

2 \a 72 - y,2 K

=alUy + (4.2.1b)

A2 - ¥,2)(¥2 - y,2)

vwhere b 1s the value of y, at x=c¢c and y> b 1is assumed. The

path of integration for equations (4.2.1) is indicated in figure 9(a).
Transforming from & to Yy, as the variable of integration gives

g2
yl - % dyz
- ve” (4.2.2)
z\/ /\FYZ - 7,21 (3% - ¥18)

Fram equation (4.2.2) it is found that S > 1 for yp » b. Thus oV/dx

and dL/dx are continuous functions of x at x = c. It is rather
remarksble that dL/dx is continuous at x = ¢ since it can be shown
that there is a pressure discontinuity at this section. Equation
(4.2.2) is a Volterra type integral equation for S, which must, in
general, be solved numerically. To permit numerical solution, the
finite-part operation must be eliminated. This can be done by inte-
grating the 3/2~order singularity by parts; the result is
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523z (;E_ LYo nfas W 9&)
A2 - 71232 - y52) \© Wz Ve Yz W2

(4.2.3)

It 1s noted that the integrand of equation (4.2.3) contains both the
unknown function S and its derivative.

(b) Equation (3.3.2): Substituting into equation (3.3.2) and
noting that y > b yileld

- ‘\/yzz(X) - b2 + Afy?

_ yiz - B dn
gz - Vo 2 Kt ( )
= I.P. d S dk 4.2.4
€ A/ﬁtz le)(§2 = Yzz)

— Z:O

It is desirable to express the right-hand side of equation (4.2.4) as
a function of x plus a function of y 8o that the functions of x
or y can be equated. Taking the imaginary part of the right-hand
slde and utilizing the finite-part technique result in an area of
integration as indicated in figure lO(a) This integration can be
decamposed into two separate integrations as indicated in figures
10(b) and 10(c). The right-hand side of equation (4.2.4) then
becomes

z(x)
e
ylz - % dn
dy -y
z 2
R.H.S. = s dg -
'\I(n ~ 72 - ¥12)
YZ(g)

z(Y) |
=—— (4.2.5)
yz ’\](n Yzz) (n? - y,8)
c ()
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The first term in equation (4.2.5) is a function of x only while the
second term is a function of y only. Equating the functions of ¥y

glves

2(y) 2
- yl _E_' an
. |'2 2 - sz «
- Dbl = -
Y yz '\/(nz - ¥52) (02 - y,2)
¢ 2(%) (4.2.8)

Integrating the inner integral and converting fram £ to y, as the
integration variable give

J 5 >
y -y
.’ 2 2 2 1
y& - bé = S dy, (& + — -5 (4.2.7)
I Y AYE - v

where
E!
o=\gr - 1) [K - F(B,x)] +E - E(p,k)
= E%T + (i - %;) F(B,k) - E(B,k) (by Legendre's relation)
B = vafy k = y1/vp

and K and E are complete elliptic integrals with modulus k. Equa-
tion (4.2.7) provides an alternate Volterra type integral equation for
S vhich does not contain the derivative of S in the integrand.

Equation (4.2.7) differs from equation (15) in reference 11. The
discrepancy arises from Robinson's treatment of his equetion (12). He
properly states that a function of x can be added to his equation
(12), but tekes this function to be zero. This function of x actu-
ally does not equal zero except for x = c. Hence Robinson's integral
equation is correct only for the limiting case of a wing whose trailing
edge is only slightly swept. This limitation of Robinson's work was
previously pointed out by this author in reference 12.
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4.3 Limiting solutions of integral equations. -

Lg) Special solution: It has already been established that S = 1
at x = c. A special solution of equation (4.2.3) is to assume that
S =1 for all x. Then

d;
B? Y1
T =k Tp (4.3.1)
Integrating
¥
Lk (4.3.2)

b Bt - kPR
which gives the equation of the tralling edge. This result was obtained
in reference 6, by other methods, and corresponds to the case where
there is no shed vortex sheet. A more detailed discussion will be
glven in section 7.2.

(b) k << 1: For k << 1, the solution for S is (eq. (D4b) of
appendix D

/4
at

2 3

l.2 4 k k

S =1+ 4 — _ + = k% +10(X + 00—+ 0=
TInt 2 (%) (7-2 1In k) (T‘)

© (4.3.3)

where y = dyy/dy, is the ratio of the trailing-edge slope to the

leading-edge slope. For y equal to a constant, the integral in
equation (4.3.3) becomes the logarithmic integral which is tabulated
in reference 14.

gc! Y 2+ @: When the ratio of the trailing-edge to leading-edge
slope is large, the solution for S is (eq. (D5))

S = (4.3.4)

N1 - x2

which is valid for all values of k. Equation (4.3.4) is equivalent to
that obtained by Robinson since his integral equation is correct when

T -

(d) Y =1, k> 1: This case corresponds to a two-dimensional
swept wing. The solution for S is S =1,
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4.4 Numerical solutions. - The y-coordinate will be nondimension-
elized with respect to b by means of the notation Y = y/b, Y, = yz/b,
and so forth. Equation (4.2.7) becomes

Y
N2 - 2
Y-l-deIg ® +

Divide the integration interval into m parts (fig. 11). Let M2,n
represent a mean value between Yz,n-l and Yz,n' Let M1,n TEPTe-

sent a mean velue between Y3 n-1 and Y3 n. When the mean value
theorem is used, equation (4.4.1) becomes

(4.4.1)

m
Vg o1 - Z Sn®n(Y2,n - Y2,n-1) +

n=1

____LM (VYZ _ y2 Afv2 - Y3 ) (4.4.2)

Sn T 2,n-1 -

where Sp and &% are evaluated at 12,n. Thus

ky = N1,0/" 2,0

and so forth. The values of 5y, Sy, Sz, . . . are found by succes-

sively letting m = 1, 2, 3, . . . in equation (4.4.2). The explicit
expression for S, is

m-1
N I \
N E BaNVY® - 0§, (
¥-1- ) 8@n(Ypn - Yo pa) v ——y > N2 - B, - NYE - Yz,n)
8y = L= (£.4.3)

'\/}2 - nf A2 _ vE -
m
&n(Y - Y2‘,111-1) + Y I -YZ,n-1

An alternate expression for Sp can be obtained from equation (4.2.3).

Equation (4.4.3) was evaluated for the y = 1 case with intervals
(Yz,n - Yz,n-l) = 0.20. The intermediate points n; n and np , were
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taken to be in the middle of each interval. The results are campared
with equation (4.3.3) in figure 12. The two agree within 2 percent for
yz/b < 2.5. According to figure 12, S decreases from 1 at yz/b =1

to a minimum value of 0.94 at yp/b = 2 and then increases slowly to
1ts asymptotic value of 1.

The aerodynamic forces can be found from a numerical integration
with the previously found values of S. Thus, the total 1lift is given
by

bo/b
L s=1+2 S(1 - B'/K' )Y4Y,
2xqab
1
m
= 2 2
=1+ E sp(l - BY/KR)(YS p - ¥5 5 1) (4.4.5)
n=1
bo/b - 1
where m = when equal intervals are used. Similar ex-

Yo n - I2,n-1
pressions can be deduced for pitching moment, center of pressure, and
induced drag. Same of these coefficients are presented in figure 13
for the case y =1 and dyz/dx = constant.

SECTION 5 - ROLLING SWEPT WING (DIRECT PROBLEM)

The solution for a rolling swept wing is presented using the pro-
cedure of section 4.

5.1 Load distribution and rolling moment. - The boundary condition
on the wing is w = - wyy vwhere wy 1s the angular velocity. The
solution for x < ¢ 1s

Weoiok (g N gz) (5.1.1a)

Veoo1X 2

(5.1.1pb)
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3(—dy2)
oV WDy Y2 \a&x
dy :
_axmx - nq a% 753 (__dxz) (5.1.1d)

where de/d.x is the rolling moment per unit =x. Again, equations
(5.1.1a) and (5.1.1b) are valid at x = c.

Fram equation (2.3.9), the generating function for x > c 1is

v _ X ek (5.1.2)
x 2 ’\Ig_z'—YJ:g (t2 - y22)3/2

For a point on the right-hand wing panel

0o 1 dny
2 A2 < ¥12 (y52 - 12)3/2
Jy2
2
-y
o %M v - (5.1.3)

Z(YZZ - Y]_z) Yzz - y?

Define R a function of x, such that

Y2 \& Y

Then equation (5.1.3) becomes

2 2

Wy (dyz) y* -

U = = y3 \=—] RA |———= (5.1.4)
2 dx yzz - yz

The generating function, in terms of R, is
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The rolling moment is (from eq. (1.3.8)).

y dy
& = 2 (y2 - le)(a‘xﬁ) R

5.2 Integral equation for R. - Substituting into equation (3.3.2)
and equating functions of y yield (for y > b)

2(y)

: dy
y.\{y_z - b2 = - v2(y2? - 71%) R (;EE) ak ndn (5.2.1)

AR? - 712 (n2 - 7,2)3/2
c 2(%)

Integrating the inner integral in respect to 1, and transforming fram
E to yz as the integration variable in the outer integral, gives

’z 2

e - Y3

4’;2 ~ b2 = L .
¥ b fR o yolys (5.2.2)

From equation (5.2.2) it is seen that R =1 at yg =b so that
dMy/dx and OV/dx are continuous at X = c.

5.3 Limiting solutiopns of integral equation. -

(a) k << 1: For k<< 1, the solution for R is (eq. (DTb) of
appendix D

R=1+ -é— k2 + [o(k'-’=) + o(k3/r§l (5.3.1)
gbl v +®: Tn this case, from equation (D8),
Roe———x (5.3.2)

N
valid for all k.

(¢) y =1, k> 1: The solution is R = 2.

5.4 Numerical solution. - When equation (5.2.2) is nondimension-
elized with respect to b, it becames ‘
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Y
2 2
—— ’Y - X
YANYZ -1 = R _2_____1§ YadYs (5.4.1)
Y2 - ¥,
1

Dividing the integration interval into m parts and using the mean
value theorem as in section 4.4 give

m
1S m A T, (W - AR )

n=1

m-1

2 2 2 2 2 2
TVYE - 1 - E Rn'\lly - Mi,n (‘\IY - Y¥2,p1 - VY - YZ,n)

n=1

Ry =

2 _ 2 2 _ 2
A¥? - 1,m '\IY - ¥2,m-1 (5.4.2)

Values of R were camputed from equation (5.4.2) for the v =1 -case,
with intervals (Yz , - ¥ 5 3) = 0.20. The results are campared with

equation (5.3.1) in figure 14. The two agree within 2 percent for
¥yo/b < 3.0. From figure 14 it i1s seen that, for y = 1, R increases

monotonically from a value of 1 at yz/b =1 +to its asymptotic value
of 2 at yg/b = =.

The total rolling mcment is
B bo/b

1+ 4 R(1 - ¥123/¥22)Y5° ayg
- 1

l,i.x_

|
%

[¢]

by b 'll n
=My, T Ry |1 - (Yz n - YZ a1l (5.4.3)
n=1

The rolling moment for the case y =1 and dyZ/d.x = constant was
computed and the results are in figure 15.
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SECTION 6 - PITCHING SWEPT WING (DIRECT PROBLEM)

The solution for a swept wing, pitching about the y-axis, is pre-
sented followling the procedure of section 4.

6.1 Load distribution. - The boundrry condition on the wing is
W= - Oy, The solution for x <c¢ 'is

- iy (ng - yp2 - g) (6.1.12)

W=
V = - iogx —t (6.1.1b)
gZ _ 2
y2
dya 2 3
v %g[wz(ﬁ-yz e 1 (6.1.1c)
ox (t2 - y,2)3/2
2
dL. Dy d{yqex)
I = 2nq To & (6.1.14)
where equations (6.1.1a) and (6.1.1b) are valid at x = c.
The generating function, for x >c, is (from eq. (2.3.9))
A + Agt? + t4
0 2 (6.1.2)

a} STy Atz - y12 (¢2 - yz2)5/2

From equation (3.1.3), the expression for u on the right-hand wing
panel is

Ag + Agyy® + 718y5?

- Ao + Agypl + 3ot v [38 - 42
53— F(B',K&') -
Yz(Yz -7 )

Ao + Aaw? + 3t 4 B o )
k') -
v2(¥2® - v,2) ¥2(722 - 112) Y2V 5,2 - 52

un-my

(6.2.3)
To satisfy the condition of zero loading in the wake,

Ay + Azylz + ylzyzz - _Ag + AZYZ + y24(l + k‘z)
Yg(YZZ - ylz) Yz(Yz - Y1 )

Define a new variable @ such that
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AO + Azyzz + YZ4(1 + ng)
Yz(Yzz - Y]_z)

2yoQ =

Then

Ap = ZYZZQ(YZZE'/K' - le) + y]_ZYzz

A, = 2y5% [a(x - B/k*) - 1]

and equation (6.1.3) beccmes

E! ¥ ye -y e -y
u = 2ysmR E(B',k') - = F(Bl’kl) + L -0y
K? ¥2 \’yzz - yZ \ Y yzz - yz

(6.1.4)
The generating function, in terms of Q, is
2 2 2
gz - yl El y - y
ZZYZZQ =2 -©/)* (t2 - }'22) - Yzz 2" L
- 2 2
v 1o, £° - vz £e - vz 1
x T )
(L2 - y22) (8% - »12)
(6.1.5)

and the 1ift per unit x, from equations (1.2.5), (1.3.4), and (6.1.5)
is

aL 2 2 2
I = 2™ 3,% 4y2°Q(1 - E'/K') - (y2° - N1 )] (6.1.6)

6.2 Integral equation for Q. - Substituting equation (6.1.5) into
equation (3.3.2), utilizing equation (6.1.1a), and equating functions
of y yleld, for y >,
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2(¥) 2Y22Q > + (02 - yza) - Yzz (ﬁ:y_lz)
c4y? - b2 - -f dﬁﬁ ) V-2 | aq (6.2.1)
g

\ﬂnz - ¥12)(n2 - y52)

Integrating the inner integral and transforming from & +to Yy, as the
integration variable of the outer integral give

- 2 2 _ yq2
c‘P-b2+yf (dyd—yvyz :;' fm{ .‘L—r::z}dyz (6.2.2)

where % is defined by equation (4.2.7). To investigate equation
(6.2.2), it is convenient to consider Q as the sum of two functions

a(1) ana q(2) derinea according to the relation

=lc dVZ) 1 2)
Q= 2 ¥5 (EE‘ (Q( ) 4+ gl ) (6.2.21a)
such that
v 2 2
2 _p2 = (1) bR LAt
ye-b Q e | - dys (6.2.3)
X ,
b - yl (2) -,
c f (dyz/dz)\/ T ,2 AN \/ 2 - 3,2 )72
b (6.2.4)
Comparing equation (6.2.3) with equation (4.2.7) shows that (1) = s.

Thus only equation (6.2.4) requires further study. It can be shown
that

_ }. E __dyz l +
Q=353 c(dy'é? ax)
at x =c 80 that dL/dx and OV/dx are continuous at that section.

6.3 Limiting solutions of integral equation. - It will be assumed
that dy,/de 1is constant so that dy,/d€ = b/e.
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(a) k << 1: From equation (D9b) of appendix D,
Q=1+ [O(kz) + 0(k/rﬂ (6.3.1)
(b) y +=: The solution for Q is (eq. (D10))

Q=3 [1 + ————-_l___]k:l:. (6.3.2)

() y =1, k+ 1: In this case, the solution for Q is Q = 1.

I

which is valid for all k.

6.4 Numerical solution. - In nondimensional coordinates, equation
(6.2.4) beccmes

{; 2 2
b (2) Yz JY° - Y31
-y b+ 24— }AaY
c u[! (dyglda Y2 - Ygz f Q YAYZ - vz /%2

(6.4.1)

In some cases, the integral on the left-hand side of equation (6.4.1)
can be evaluated analytically but it is convenient, and also consistent,
to evaluate it numerically. From the mean value theorem

2 SV s (T e )

dyg 2,n
n=1 o 12,1

o 2 2
E 2 ‘\}Y - M1 ,n 2 .2 2 2
= Qn( ) én(YZ,n = Yz,n-l)'" 2 (“'/Y - ¥Z,n-1 "\/Y - Yz,n

Y
n=1

(6.4.2)

The solution for Qm(z) is then
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h"yﬁ- ‘il‘fﬁ‘ _;r:l _L_ -l:} {0 N A'E_ _%?nf = ® = 3 A g
. T/ Ty m, %% M“V%H’t—ﬁwm J—T¢ﬂwhhmrw“qd 3
« ) ’\p "‘f.n'\lﬂ'!ﬁ,nﬁ ™
(T n - Tp,a1) + Y {6.4.3) lé'
8imilarly, the net 1ift is
bo/b m %
S (v.2 - ¥, %ay + 2 1.z (Y YS .} (6.4.4)
el 2 -1 3% 2,n - ¥2,n-1 -4
2qn -ﬁé— be J n=1
1
The pitching mament ebout the y-axis 1s, for dyg/dg constant,
bo/b m
4 2 2 4
Myc =1l-z (Y2" - ¥1%)¥2 a¥z + 3 E Qn(l— Il)(an—lfz,n-l)
é wy b2e
n=1

v’-\
p
U'I

o

2
i

Numericel values of Q were camputed, for the 1 = 1 case, with imtervals (Yz,n - Yz,n—l)
= 0.20. The results are indicated in figure 16. According to these results, Q atarta fram g

of 1 at /b = 1] increages very al '1a-'l—|+'lv end then decreases to a value of about 0. a0

4 8T }"'2,~ = L, 1lncrcages

for 3 <« yz/b < 4. The curve appears to have reached its minimum snd will then presumebly in-
creage to its asymptotic value of 1.

Numerical calculations of the net 1ift, pitching mament, ard center of pressure are pre-
sented in figure 17 for v =1 and dyz/dx constant.

6%
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SECTION 7 - LIFT OF SWEPT WINGS (INVERSE PROBLEM)

In the inverse problem, the shed vortex sheet is specified and the
corresponding trailing edge is determined. Since the shed vorticlty is
antisymmetric sbout the y = O plane (for a lifting wing) the general
form for v on the top surface of the shed vortex sheet is

oS v 2

n=1

vwhere v3, v2, . . . are constants. The solution corresponding to the
first term of the expansion is presented in the following sections.

7.1 Determination of crossflow. - The boundary conditions on the
upper surface of the 2 = O plane are:

For V18 < ¥2 < yp2 w = - alg
dw
¥ _0
dy
0< y2< y;2 v=viy/y
dv
& =0

The boundary conditions are homogeneous for the generating function
dV/dt. There is a discontinuity in v at y = O and the Kutta
condition is applied at ¥y = xyj. The generating function 1s then,

fram equation (2.3.6),

= - iaU 7.1.1
EE P T ALE - 312 (22 - y,2)302 (7:2-2)
cand the complex veloclity equals
2
(8o + 25872 (7.1.2)

V = - iaD
° ¢ /ng - le (§2 - y22)3/2
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where Ag and A2 are functions of x. Equation (7.1.2) can be inte-
grated directly to glve

y oo | 2lho + agve®) [ JF - mf
2 }'ZZ(YZZ - le) ’;2 - Yzz

Ag t* - (YJ_Yz + A/(Cz - Y]_z)(§2 - Ygz)) 2

(7.1.3)
Y1¥a® t2(yp - ¥1)?

02Te
E

When the appropriate branches are taken, equation (7.1.3) gives V at
all points in the flow field. The functions Ag and A2 are elimi-

nated so as to satisfy w = - alp on the wing and v = v1|yl/y in
the vortex sheet. The result is

V1

Ao 2
0 =~ % agg Y192

v Yo + ¥ v yiy
A2=—(y22—ylz)l-l llnz 1 2 "1 2
n alqg Y2 -y1 ®aly yzz - ylz

Substituting into equation (7.1.3) gives

N k2 - o2
V = - ial, (1-1v13_ny2 yl) e-nt ).

= \liz - ¥2°

ke CLUO YZ - yl

1 v ¢ - (y]_Yz + /\/(§2 - }’12)(52 - Yzz))z

1 1n (7.1.4)
= ol t2(yg - ¥1)°
For a point on the wing panel:
R
v Y2+ V¥ ye - ¥
v=onUo(l L n 28 1-1) S,
n alp Y2 - V1 yzz - yz
1 71 sl (2% + 71?) - 2 Pyg? +1 (7.1.5)
% alo ¥2(yo2 - y12)
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For a point on the vortex sheet:

Z 52
Vv +dalpql -2 T2
y2© - ¥
1 M| pi-yE vt (Ylyz - AP - 92 Afr? - vEf -t
malo | \[yz2 -y Y2 -1 y2(yz - v1)?

(7.1.8)

The equation of the trailing edge must now be determined.

7.2 Equation of trailing edge. - The equation of the trailing edge
can be found by calculating the potential at the trailing edge by two
different methods and then metching the solutions. The upper surface
of the 2z = O plane 1s considered.

The potential along the x-axis, for x 2 c, is constant and equals
alUpb. Integrating in the positive y-direction gives the following

formula for the potential at the right-hand trailing edge

¢ = alpb + v3¥q. (7.2.1)

The expression for @, obtained by integrating v from the leading to
the trailing edge, is

J1
1" Y2 t¥1
CP_]_= 'V'dy:.-C(,Uo yz(;dvUoln:Yg-yl-l(Et_sz')-l-
2
1 V1 :
?WO(ZK - x) (7.2.2)

BEquating equations (7.2.1) and (7.2.2) gives

¥
LA k (7.2.3)

AR e (=)
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where k = yl/yz a8 before. The right-hand side of equation (7.2.3) is
a function of k with vl/an appearing as a parsmeter. If vl/an

v
is specified, equation (7.2.3) defines the trailing edge. For aﬁ% = 0,

equation (7.2.3) beccmes

J1 k *
D (1.2.4)

which was the special result indicated by equation (4.3.2). For this
case the leading and trailing edges tend to become parallel as Xx > =.
The spacing is given by lim (yp - y1)/b = 2/x.

x—)m

The wing plan forms corresponding to several values of vldeo are
indicated in figure 18. For all nonzero values of v1/an the trailing
edge has a cusp at x = ¢ (too small to appear on the figure). This
result indicates that when the trailing edge is specified so as not to
have a cusp (direct problem), the sidewash v will be zero along the
x-axis (for all x) but, for x > c, will probsbly increase quite rap-
idly with y. Note that for w3 % 0, the apex of the trailing edge is

a triple point for v. As x> = (or yo—> =), equation (7.2.3) becomes

A
l_ T - (7.2.5)
o ~ g Lt E ZEK

I

vhich is an equation for the limiting value of k in terms of vy/alp.
Thus, a8 x = =<, the trailing edge becames straight (assuming the lead-
ing edge is straight) and the ratio of the trailing-edge slope to

leading-edge slope equals the limiting velue of k obtained from equa-
tion (7.2.5). 1In effect, the flow field tends to become conical as x
increases. From figure 18 it appears that taking the shed vortex sheet
equal to vl|y|/y is adequate to simulate a swept wing having straight

leading and trailling edges such that v < 1.

7.3 Lift. - The asymptotic form of equation (7.1.4) is

aU, v Yo + ¥ \[¥ g _y a v

0 1N 2 ¥ N1)(Y2 1 171
V-t T, By )( 2 - T am, Y|t -

€ o JY2-91 0
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The net 1ift acting on the airfoil is then

L (yo2 - g2 1 A
2nqa (Yz - Y1 )t - n aly yzz 5+ Y2 - V1

where y; and yp are evaluated at x = cg.

SECTION 8 - ROLLING SWEPT WING (INVERSE PROBLEM)

The shed vortex sheet, for a rolling wing, 1s symmetric sbout the
Y = 0 plene and v may be expressed as

(-]

v = E vn[y]n‘l

n=1

where vy, Vg, . . . are constants. In the following it will be assumed
that v = vy and the corresponding solution will be obtained.

8.1 Determination of crossflow. - The boundary conditions are that
W = - ®yy on the wing panels and v = vy 1in the shed vortex sheet.

The generating function BV/BQ has the nonhomogeneous boundary condi-
tion dw/dy = - Wy on the wing panels and therefore must be expressed

as (eq. (2.3.7))

v Ao + Agt? + t*
= - - 8.1.1
ot mx[,\/gz 2 (€2 - y,2)3/2 * ( )

Since there is no net 1ift, OV/O{ behaves like 1/t* as L+ so
that

1
B2 = - 5 (y1% + 3y2%)

The function Ap is eliminated by integrating equation (8.1.1) and
satisfying the w boundary condition on the wing. The result is

v (v22 - y12)2 (g)

Y27 (a2 L 2
Ao = - (3y1% - ¥2°) + 3
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The expression for v on the wing can then be shown to equal

v = =yt 2 [F(pr k1) - B(pt,k)] £ - F(Bt,kt) -

ﬁ;z ;2
WLl K _ 2 -1
yz[E kt;l o 2 (8.1.2)

The value of v at the trailing edge is

2
x Oxyak’
VI=Z T ® (8.1.5)

8.2 Determination of trailing edge. - If vy 1is specified, equa-

tion (8.1.5) provides an expresslon for the trailing edge. Considering
the limiting case of X = ¢, however, shows that vy must equal w,b/2,

which is the value of v for the basic wing at x =¢ and y = 0.
Thus vy 18 no longer a free parameter. The reason for this is as

follows. The 1ift is zero along the x-axis of the basic wing. Hence,
no modification of the trailing edge, at X = ¢, can change the span-
wise lift distribution on the wing sufficiently to change the value of
the shed vorticlty at x = c¢. Thus v 1s continuocus along the x-axis,
at x = c, and must equal wyb/2. The equation for the trailing edge
is then

J1_2B_k
b x (kt)z

which is plotted in figure 19. As x - =, equation (8.2.1) becames

(8.2.1)

Equations (8.2.1) and (8.2.2) were previously obtained in reference 7
by other methods.

8.3 Rolling moment. - The asymptotic form of JOV/df is

2 2
v oy (y2% - y1°) K
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The net rolling moment is then, utilizing equation (1.3.7),

My _ (Yzz - le)

wy 12
:nfq-ﬁ.a

K
Ty52 + y12 - 4(y52 - ¥128) 3 (8.3.1)
E

where y; and Yy, are evaluated at x = cg.

SECTION 9 - PITCHING SWEPT WING (INVERSE PROBLEM)

The shed vortex sheet is assumed to be v = vl|y|/y, ags in the 1lift
problem, and the resulting solution is obtained.

9.1 Determination of crossflow. - The crossflow is obtained by
replacing aly by @y in equations (7.2.1) to (7.1.8).

9.2 Equation of trailing edge. - The potential along the x-axis,
for x>¢, 18 ¢ = wycb. The potential at the right-hand trailing

edge can then be expressed as

¢y = @ycb + viyy (9.2.1)

Integrating v <fram the leading edge gives

1 V1. 1+k , 200y o 9L VL1 o0
‘P:L:f“’yx yz(Ea)yxlnl-k—l)(E _kK)"—atwyx(ZK—ﬂ)
(9.2.2)

Equating equations (9.2.1) and (9.2.2) and assuming that the leading
edge is a straight line Yy, = bx/c glive

y v t
S gy CP et S - S
b 2% dhy- 1 - k E! . szl

: L.I}.z 1n 2k, 2K )2+ = (9.2.3)
21 coy 1 -k ®E' . k2K* E' - k2K! o

which is an expression for the trailing edge in terms of k and the
parameter v Dy« The plan forms corresponding to different values

of v are plotted in figure 20. As in the 1ift case, the
Cdy y
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trailing edge has a slight cusp at x = c (except for vy = 0). How-

ever, for x -+ , the trailing edge approaches the leading edge. ¥Vhen
vy = 0, equation (9.2.3) beccmes

y1 k

Gl 1kp - K2K!
which i8 one of the curves included in figure 20.

9.3 Pitching moment. - The net lift acting on the wing upstream of
a glven section X 1is obtained by replacing aUp in equation (7.3.1)

by WX and equals

L - 1 1 2Y1Y2 Y2+ V1

—=— =x(y22 - n®) |1 -= g+ In >
2 ot'd y yz - Y1 2 1
™ Fo

(9.3.1)

The pitching moment is obtained by integration. Thus, the pitching
mcment about the leading edge is

X—CO €0
M, = dx Lx] L éx (9.3.2)
0

which can be evaluated by means of equation (9.3.1).

SECTION 10 - WING-BODY COMBINATIONS

To solve nonplanar problems, such as the flow about wing-body
combinations, it is necessary to transform the given problem into
one with planar boundary conditions in order for the previously
developed generating functions to be applicable. In the following
section the Joukowski transformation is discussed. The solution
for the flow about a highly swept wing mounted on & circular cylin-
der is then indicated.

The x,y,z-coordinate system is considered, herein, as a body axis
system rather than a wind axis system in order that the developments
parallel those of the isolated swept wing problem. The perturbation
velocities u, v, and w are considered as parallel to the x, y,
and 2z coordinates, respectively. This creates no essential change
except for the fact that the pressure formula (eq. (1.1.2)) becames
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2 2
p—po=-po(qu+cero+-‘%)

when the body axis is at angle of attack o in respect to the free
stream. Also, the 1ift and moment formulas (egs. (1.3.3) to (1.3.5)
and (1.3.7)) must be evaluated after transforming from the body axis
system to a wind axis system.

10.1 Joukowskl transformation. - Consider the problem of a highly
swept wing on a circular cylinder of radius a (figs. 21(a) and 21(Db)).
The Joukowskl transformation

T=t-a2t (10.1.1)

transforms the configuration such that the body becomes a vertical cut
(of width 4a) on the z-axls of the C-plane (fig. 21(c)). The wing

panels remain as cuts in the 2z = O plane. The velocities at cor-
responding points in the two planes are related by

V=7 (g—g) (10.1.2)’

where V = v - iw 1is the coamplex velocity in the {-plane. But

%E-:l+-§—2—=[1+(%)2 cos 29]- i(%)z sin 260

wvhere r and 6 are defined by the relation § = rel®, fThus
- 2 - 2
v=v[l+(§) cos 29] -W(E) sin 20
T r
— a\2 — fa\2
w=w|l+|Z] cos20|+¥ (;) sin 26 (10.1.3)
- — a — fa\2
vr =[v cos 6 + w sin 9][1 +(;)2] -2 w(;) sin 0

vwhere vy is the radial velocity in the {-plane. Equations (10.1.3)

are particularly useful for relating the velocity boundary conditions
in the {- and {-planes.

Since body axes are being used, the boundary condition on the body
surface, in the {-plane, is that vy = 0. The corresponding boundary

condition in the {-plane is that v = O along the vertical cut
(- i2a < T = 1z < i2a). This boundary condition is automatically
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satisfied, by symmetry, for all problems when the ;ﬁ boundary condi-
tions on the wing panels are symmetric about the y = 0 plane (i.e.,
1ift and pitch problems). For these problems, only the boundary con-
ditions in the z = O plane and at infinity require attention. Thus,
the wing-body problem is transformed, by equation (10.1.1) into an

equivalent isolated swept-wing problem (for the symmetric case)4.
The asymptotic form of the camplex velocity in the {-plane is
_ 5" col L
()2 (T)3

The 1ift in the T-plane is then (from eqs. (1.3.4) and (1.3.3))

<l

I.P. (2npgUgdf/ax) (10.1.4a)

18

L =1I.P. (Zzt;aoUofl) (10.1.4b)

Equation (lO.l.4b) corresponds to a configuration which is pointed at
its upstream end. The complex welocity in the physical plane is

_ 2 ¥
v=v(1+f‘—)=-—%-+o<%)
g ¢ 4
Note that the coefficient of the leading term in the asymptotic expan-

sion for V 1is unaffected by a transformation from body axes to wind
exes. The 1lift per unit x in the physicel plane is then (eq. (1.3.4))

at aza. .t
dL _ 1 2 cs8>g
& = LI-B- | 2mpgUp g + polo® —5— (10.1.5)
But Cg = - ilax + constant and A, 1s constant since a cylindrical

body is assumed. Equation (10.1.5) then beccmes

YYhen ¥ is not symmetric about the y = O plane (as in a roll
problem) the boundary conditions along the vertical cut are not auto-
matically satisfied. In these cases 1t may be advisable to use the
transformation ¢ = § + a2/{ which transforms the circle into a cut
(- 2a < T = ¥ < 2a) along the J-axis. Thus the problem is transformed
into one wherein the boundary conditions are specified along the F-axis
and at infinity. The problem 1s now completely planar but involves
three "panels." In some cases 1t can be handled by the methods of
section 2.
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aL —_
% = I.P.(2npgUodf; /ax) (10.1.6a)

L = I.P.{2npgUu%7) (10.1.6b)

Equation (10.1.6b) represents the net 1ift of the configuration in the
physical plane provided the body remains cylindrical upstream of the
wing. For pointed forebodies, the additional term ﬂpOUozaZa, repre-

senting forebody 1lift, must be added to the right-hand side of equa-
tion (10.1.6b). Camparing equations (10.1.4b) and (10.1.6b) shows
that L = L. That is, the 1ifts of the configurations in the physicel
and transformed planes are equael (providing the body remains cylindri-
cel upstream of the wing). This result was derived in reference 15
by another method.

10.2 Lift of swept wing on cylindrical body. - A swept wing is
mounted on a circular cylinder and the configuration is at angle of
attack «. The x,y,z-coordinate system is based on the boedy axis,
and the following transformations are made:

(1) The flow is transformed from the {-plane to the {-plane by
equation (10.1.1).

{2) A uniform flow W = - aUy 1is added so that the configuration
0]

is translating, in the {-plane, with velocity w = - ally in a fluid
otherwlse at rest.

The solution to flow (2) can be found by the methods of sections 4 and
7. The solution to the original problem is then found by reversing
this procedure.

(a) Direct problem: The generating function for flow (2) is, fram
equation (4.1.8),

- _ @, [@2- Gz
= - ialU S -
& TG T2 (5,)2

2

ol

1
d A2 - G2A002 - GoE
(10.2.1)

where K?! and E! are complete elliptic integrals of first and second
kinds with modulus X' = Al1 - (7;/3,)%. The 1ift of the configuration

is (eq. (4.1.9))
%% = 4mgy, (g;g) s (} - g;) (10.2.2)
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The unknown function 8 is found from the integral equation
(eq. (4.2.7))

y
=3 _ . [(5)2 - (71)?
«Kﬂ NE —vL\ S dyp [1»+ =\ BT - G2 (10.2.3)

where
7 =(Z - 1)[E-7GE)] + F - 2(6.8)
- o7
k = §i/§2

and K and E are complete elliptic integrals with modulus k. ILim-
iting solutions for S are given in section 4.3. The solution of the
original problem is found by reversing steps (2) and (1). Note that

T=1¢-a2/t
b=b - al/
v1 =y - a8/yy
Y2 = ¥z - 8°/vz
u=u
25/

L =L
The details need not be given.

(b) Inverse problem: From equation (10.1.2), the relation between
the shed vortex sheets in the physical and transformed planes is

vev[is (3)2]
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Therefore the sidewash on the top surface of the shed vortex sheet in
the physical plane will be assumed to be

AIE Tl

where v 1is a constant. The shed vortex sheet in the transformed
Plane is then

y
and the solution follows directly frcom the results of section 7.

SECTION 11 - UNSTEADY TWO-DIMENSIONAL INCOMPRESSIBLE FLOWS

The flow field due to the motion of a two-dimensionsal body 1n an
incompressible fluid, otherwise at rest, is discussed. The application
of generating functions for the solution of unsteady airfoil problems
is indicated.

11.1 General considerations. -~ The equations which arise in studies
of unsteady two-dimensional incompressible flows are closely analogous
to those employed in slender body theory. The analogy between these two
classes of flow will be established by compaering the classicel equations
assocliated with two-dimensional unsteady incampressible flows to the
equations, derived by Ward, for the flow around a slender body.

Assume a two-dimensional coordinste system, fixed in space, such
that the fluid, far from the body, is at rest. The velocity potential
satisfies

d%p % _
52 *t 35T 0 (11.1.1)

where ¢ contains the time + as a parameter. The velocity potential,
in this case, is not a perturbation potential and the velocities v

and w represent the net velocities in the flow field. The boundary
condition on the body is that

av

Vn = 3% (11.1.2)

where vy 1s the velocity normal to the body surface and Vv 1is the
normal coordinate of an orthogonal coordinate system chosen to be
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normal and tangential to the body surface at a given instant. The pres-
sure at any point, from the Bernoulli equation for unsteady flow, is

p - p(t) = - pg %(p + %[(%’;;)2 + (g_g)z]} (11.1.3)

where p(t) is an arbitrary function of time. The Laurent expansions
for W and V are

_ 1 (Pes R < m
W-f+g(-?—11)ln§+é b (11.1.4)
m=1
1 [dAcs 1 i : ~(m+1)
V=S (—d%— - 11‘) F - mfp (11.1.5)
m=1
where f, £y, f5, . . . are functions of +t. The impulse required to

generate the motion, at any instant, is found from a contour integral
sbout the body and equals (assuming T = 0)

I, + 11, = - ipg ¢ dat (11.1.8)
c1

Equation (11.1.8) is a classical result derived by Kelvin. Neumark
(ref. 16) appears to have been the first to evaluate equation (11.1.8)
by replacing ¢ by W and using Cauchy's theorem. However, Neumark
solved the special case of a nondeforming body. For the general case,
following the procedure used to obtain equation (1.3.3) from equation
(1.3.1), equation (11.1.6) becames

i d(Acgly)
= 1 cs>g
Iy + iI, = 2mpg | £ + 5o —¢ (11.1.7)

The force per unit spen (1y + il,), at any instent, is then

af a2(A..t.)
_ d — 1 1  Vessgl
Zy + ilz = - ipo 3T P dg = 21‘[00 [d.'b + o7 q62

1
(11.1.8)
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Equations (11.1.1) to (11.1.8) are similar to equations (1.1.4),
(1.1.5), (1.1.2), (1.2.2), (1.2.3), (1.3.1), (1.3.3), and (1.3.4).
The two sets of equations beccme identical if the transformation
x = Ugt + constant is introduced provided the arbitrary functions
p(t) and f 1in equations (11.1.3) and (11.1.4) are taken equal to
po and f 1in equations (1.1.2) and (1.2.2), respectively. The

equivaelence of equations (11.1.6) and (1.3.1) is established by

t T

1 Fy + 1Fy
Iy + iIp = (1 + 115)at = 5= (1y + 11z)ax = L ==

Uo

Thus, the steady three-dimensional flow about a slender body can be
transformed into an equivalent two-dimensional unsteady flow about a
cylinder whose cross section varies with Upt in the same way that
the cross section of the original slender body varies with Xx, and
vice versa, provided p(t) and f (eqs. (11.1.3) and (11.1.4)5,
which are essentially boundary conditions, are taken equal to pg

end f (egs. (1.1.2) end (1.2.2))°. Note that p(t), pg, and £

do not contribute to the 1lift. Munk used this equivalence 1n his
studies of airships and many researchers have since referred to it.

The generating function approach can thus be used for solving
unsteady two-dimensional airfoil problems. The generating function
is now OV/dt. When T 1is used as the integration variable for t,
equations (3.1.1) become

5Another approach to this analog is to consider the differential
equations and boundary conditions for the problem of two-dimensional
unsteady motion in a slightly compressible fluid. In this case p(t)
and f are no longer arbitrary boundery conditions and the analog
with the three-dimensional steady flow past a slender body is even
more striking. For example, the wave drag of the slender body cor-
responds to the energy radiated as sound in the equivalent unsteady
two-dimensional problem.
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S (11.1.9)

it

Moreover, U is now defined as U = JW/dt so that equation (3.1.3)

becomes

U= g% at (11.1.10)

One complication arises; namely, a finite impulse can be imparted to the
system so that W and V may be discontinuous functions of t. Such a
discontinulity occurs at t = 0 for the problem discussed in section
11.3. The integrals in equations (11.1.9) must then be considered as
Stieltges integrals.

Assuming thet the flow at time t = tg5 1s known, the integral
equations, corresponding to equations (3.3.1) and (3.3.2), are

b

w(t,y,0) - w(tq,y,0) = I.P.{- -2% at (11.1.11)
a z2=0

Yz(x)

w(e,n,00an + [¥(ta, (8),0) - ¥(ta,7,0)]

\ ya(t)
= I.P. _I d’t\’[ (g%)dn (11..1.12)
a 2=0

11.2 Two-dimensional airfoils. - The flow about a zero thickness
airfoil, moving with velocity Vy along the y-axis in the positive

y-direction, will be discussed. For convenience, let the chord of
the airfoil be b and let its trailing edge be the origin of the
coordinate system at t = 0. If, at t = 0, the airfoil starts to
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move with velocity Vg, it occupies a strip of width b 1in the ty-plane
(fig. 22). The w boundary condition on the strip is defined by the
prescribed motion of the airfoil. There is a vortex sheet of unknown
strength behind the trailing edge. Therefore, the generating function
dV/dt is applicable. For many problems the w - boundary condition on
the wing is of the form w = f(y) + g(t). The generating function for
these cases can be written, fram equation (2.3.10),

dg(t) dg(t
v _ . |20 - % gét (yq + 3yp) + dt) ¢ _ ag(t)

i
3% NT =71 (6 - 35)3/2 at

where the Kutta condition has been applied at y; eand T =0 1is
assumed. If w = f(y), the generating function is

(11.2.1)

v Ao
E AT -y (€ - y5)3/2 (1-2.2)

The problem of an airfoil starting impulsively from rest, and maintain-
ing a constant angle of attack, can be solved by equations (11.2.1) and
(11.2.2). (If the airfoll is accelerating, dg(t)/dt = - adVp/dt in
eq. (11.2.1), and if the airfoil moves with constant velocity, eq.
(11.2.2) is used.)

11.3 Wagner problem. - The problem of an aeirfoil, starting impul-
sively from rest, and moving with constant veloclty and angle of attack,
was first solved by Wagner (ref. 17). Recently, it was discussed, from
the point of view of slender wing theory, in reference 18. The present
approach differs from reference 18 in that the generating function is
used to formulate the problem.

If the motion is considered to start impulsively, at t = 0, as
indicated in figure 23, the crossflow is discontinuous across the
y-axis. Approaching the y-axis fram +t < O glves a zero velocity
field. Approaching the y-axis from t > 0 gives a velocity fleld
equivalent to that about a flat plate translating with velocity
w = - aVy. The solution for this flow field is

W = - iaVg [Q/EIE‘i"ET - (t - b/zﬂ (11.3.1a)
V = - iaV, [}‘ﬁ’:‘%¥%§‘ -1 (11.3.1b)
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For t > O, the generating function is
Ag

Ve g (6 - y5)3/2

The loading on the wing is proportional to Btp/at. For a point on the
upper wing surface, fram equation (11.1.10),

(11.3.2)

oV
Bft- = - i(I;Vo

2aVpAg -V

y

%0 _ an - 11.3.3

B? (I:VOA-O\_][\ /-——'n - (Yz _ 1])3/2 b Yo - ¥ ( )
Y2

Substituting equation (11.3.2) into equation (10.1.12), with t5 = O,
utilizing equation (11.3.1a), and equating functions of y yield

t2(y)

ANY(ly - b) = - dr ’ Aon
AN -y (n - Yz)3/2
0 ya(t)

Integrating the inner integral and transforming from T to Yy, as the
integration variable yield

y
Ay(ly - D) = (ﬁgg ~ N dyso (11.3.4)

Yy - 32

Equation (11.3.4) is an integral equation for Ag. The 1ift on the air-

foil, fram equations (11.1.5) and (11.1.8) and the asymptotic form of
equation (11.3.2), is

2A0
1, = 1pgVo2 ba (SVB (11.3.5)
2A
It can be shown that bV_O = %, for + = 0, and increases monotonically
0

to the value 1 for t -+ ». Equation (11.3.4) has been inverted, by the
Laplace transform, and the results are identical to those of
reference 19.
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It is noted that the problem is formulated, from the beginning, in
terms of 1ift, which is the variable of primary interest. In reference
18, the shed vortex sheet is first determined and an additional inte-
gration is required to obtain the 1ift.

SECTION 12 - CONCLUDING REMARKS

The use of the generating functions OV/3{ and JOV/dx has been
described for a wide variety of applications.

Problemes for which BV/BQ is gpplicable may possibly be solved,
with equal facility, by other methods. But, the use of the generating
function OV/dx seems to have several advantages over other possible
approaches to the direct problem of slender wings having swept trailing
edges. First, the dependence of the flow on upstream conditions is
initially removed and certain general features of the flow field can
be determined immediately. Thus, for the lifting and rolling wing,
the pressure distribution at each chordwise station can be expressed,
to within a scale factor, without consideration of upstream conditions.
Second, the problem is formulated directly in terms of quantities which
define the 1lift and moments. Finally, the method delays until the last
stages the problem of solving an integral' equation.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, December 14, 1953

3120



02T¢e

" CY-8 back

RACA TN 3105

APPENDIX A

SYMBOLS

The following symbols are used in this report:

A,AG,A7,A0, .

€0
D’Dl’Dz’ . e

E!

E(B,k)

F(B,k)

functions of x (or t)

cross-sectional area

plan form area

radius of circular cylinder

semispan of swept wing at x = c (fig. 7)
maximum semispen of swept wing (fig. 7)
constants

1ift coefficient (= L/q Apf)

rolling moment coefficient (= My/q boApr)

pitching mament (ebout x = 0) coefficient
(= My/a cohpe)

root chord of swept wing (fig. 7)
over-all length of swept wing (fig. 7)
constants

induced drag

complete elliptic Integral of second kind with
modulus k

complete elliptic integral of second kind with
modulus k!

incomplete elliptic integral of second kind with
amplitude B and modulus k

incomplete elliptic integral of first kind with
amplitude f and modulus k
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FysFysFy
f’fo’fl,fz’

I.P.

Kl

lys iz
My My, My
Mo

P

Po
Q,a(1),q(2)

R.P.

NACA TN 3105

net forces in x,y,z-directions, respectively
functions of x (or t)
Imaginary part of complex function

complete elliptic integral of first kind with
modulus k

complete elliptic integral of first kind of modulus
kl

Yl/YZ (k' = 1/I_j—£§3

net 1lift force acting on configuration
sectional force in y,z-directions, respectively
moment about x,y, and z-axes, respectively
free stream Mach number

pressure

free stream pressure

functions of X arising in solution for pitching
swept wings (section 6)

dynemic pressure (poUoz/Z)

function of x arising in solution for rolling
swept wing (section 5)

real part of complex function

function of x arising in solution for 1lift of
swept wing (section 4)

time

derivative of W in respect to x (or t)
free stream velocity

perturbation velocity in x-direction

complex velocity (v - iw)

3120



octe

NACA TN 3105

61

flight velocity in y-~direction
perturbation velocity in y-direction
potential function (= ¢ + 1y) '
perturbation velocity in z~direction
coordinate axis parallel to free stream
center of pressure

coordinate axis in span direction
coordinate axis

angle of attack
Yoy
yzz _ ylz
net circulation in yz-plane
ratio of tralling edge to leading edge slope
dylydx

(i)

¥y + iz

centroid of cross-sectional area (= Yg t izg)

integration varieble in y-direction
in (4/k)

integratién variable in x-direction
free stream density

integration variable for t

see equation (4.2.7)

perturbation velocity potential




Wx , Dy

Special notation:

J

)
¥ = yp(x)
X = xl(}')

¥ = ya(x)
Xz(Y)

M
]

NacA TN 3105

crossflow stream function

angular velocities about x~ and y-axes, respectively

finite part of improper integral (appendix B)

quantity in T plaze

equation of tralling edge

equation of leading edge
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APPENDIX B

FINITE PART OF IMPROPER INTEGRALS

Many of the integrals occurring in the body of the report are of

the form
I, = R.P. f (_ng%)%E at (B1)

to be evaluated for y < yp. The path indicated in the following fig-
ure is chosen

(7,0)—e—" D —at—a—

T2 o

(assuming £(¢) analytic along the path), and equation (Bl) beccmes

Yo-€

2te
- .P. _(E_H,f a J)_Tf
I Jg_i,'é R.P TEEREE C+f 0 v, dn| (B2)

yote

Letting § = Yo + ¢el® in the first of the integrals, integrating, and
taking the real part give

+e
_ 2f (v2) ‘ £()
no e vs+f CEAECh (=)

Equations of this type (eq. (Bl)) occur quite frequently and the ex-
plicit representation of equations (B2) and (B3) becomes tedious.
Therefore, to econamize, the "finite part" concept is introduced.
The finite part of en improper integral, having a 3/2-order singu-
larity at a 1limit of integration, is defined by
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a B a-€ 7
£(&) _ - 2f(a) g (S
f ﬁgﬁﬁmﬁﬁ A I (‘%ﬁﬁd‘j
pd - ( b'e
£(& _ - 2f(a £(&
f (z- )32 =5 Uo7k +f (2 - a)3/2
a at+-€

(B4)

Equation (Bl) can then be written

J2 .
_ £(

Similarly, for y < Yo,

¥ ¥
P. £(g)at  _ _f(m)
-F f EQ__-iE%E f; (yz - 1)3/2 an (26)
- 2

Thus, the finite-part technique is essentially mathematical short-
hand, in the present report, since it avoids an explicit representation
of the limiting processes required to obtain the real or imaginary part
of complex integrals. The finite-part technique can be generalized and
has ma?y applications in aerodynamics (see, for example, refs. 20
and 21).
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APPENDIX C

ELLIPTIC INTEGRALS

(2) Interval Yp< y< : Leb

B = yZ/y k = yl/yz k! =m

Then:

dn, 1
E a0 v vz

y

Y2 yz - ylZ

) - B(B,k)
Sk'2| Y 2 _ g2 ’
f n2 - 312 (02 - y,2)3/2 Y k R
y

-E

f N 3 (2 - v 2yle vE
Y2

y
_ n2dn _ ) & -
A2 - 3,2)(n2 - y;2) vy [x - ¥(ox) - [E - m(ex] +
J2
'\/(yz - ¥22) (3% - y18)
Jyy2
¥y

ARz - 5.2

[E(e,x) - E] + \j(yz - ¥22) (3% - ¥12)
yy2

dn = yo
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(b) Interval yj< y < yp: Let

Then

y2
dn 1

Y2
2 _ 4.2
“_2_3’1_5 an = yp [E(B‘,k') - 8 F(B’,k’ﬂ
y2e -1
y

F(B',k') - E(B',k") -

y
2 dn 1
- 2
W2 - 718 (322 - 72)3/2  y25Kk'
y

2 _ v.2
e 2 ylz’
V2N yo* -y

Yo [

2
n<dn . - k2 F(B*,k') - BE(B',k') -
= ’ ’
A2 - 32 (3,8 - 12)3/2 ypKt?
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2
nan f

— 2 t 1 - 12 t t) _
Voo =37 (2~ n2)3 " 2 k% F(p', k') - (1 + k%) B(p' k")

(c) Expensions: For

A = 1n (4/k) (x = y1/v2)
@ = gin~1 B (B = Yz/Y)

Then:

vy
|
>
+
>
1
l_l
b
[aV]
+
|
S
'
~

—)k4=+.

N A _1_3)4
E—l+2(k z)k +16()‘ lzk""

B! _1 A_l, 1),z 4]
K—,-X[l+(2-2+4x)k + 0(x*%)
2 l.2 4
K - F(B,k) =K 1--0)+singcosg|7k + 0(k%)
2 1.2 a4
E"E(ﬁ:k)—-E(l-;CP) - 8in @ COSCP[ZK +0(k)]

3 = (cos ©)/\ + 0(x2 cos )
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APPENDIX D

LIMITING SOLUTIONS OF INTEGRAL EQUATIONS

Scome limiting solutions of the integral equations occurring in
sections 4 to 6 are obtained. The coordinates are nondimensionalized

with respect to b so that Y = y/b, Y5 = yp/b and ¥; = y;/b.

(a) 1Lift case: Equation (4.2.7) may be written

Y
2 2
Yy [¥° - X
2 2 1
A2 -1 - S @y (& + = \\=5—= (D1)
\_[ 2 ’ - Yzz
For yi/yp= k <<1, &= W - Y 2/TN + O(kz N YZZ/Y), from

appendix C. Equation (D1) can then be written as

4
o o 15 Aft2 - 1,2 , St Y2 - Y42 2
a YA Y \v2 - ¥,2 Y2 Yzz

O(Skz Y2 - Yzz)
Y

Integrating the term containing X\ by parts yields

4 ~ Yo
Y2d¥o
oo | 2l | S,
¥z~ yp2
| J1
2(v2 2

s Sk&(Y4 - Yp°)
7 Yz-le-l+O( 7 (D2)

Define 1 = dyl/dyz, wvhere Y is the ratio of the trailing-edge slope
to the leading-edge slope. Then, for k<<1,
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k
Y2 k
Yo = 1 + 7r_k=1+o(—)
0
Yodk dx
dIz=Y_k=?[l+O(k/*r)]

k
Assume S =1+ 0 (r o k) + 0(k2), which will be verified later (eq.

(D4)). Then

12 S e/ dt k2 k3
ﬁdI2=-4J Ylnt+o(yzlnk)+o(rlnk
0

o[22 o )

AL - (y1/9)2 = A1 - k2 + o(x3/y)

Equation (D2) cen then be written

Y k/4
Yod¥p dt N Y X3 k2
0= W-‘i m+s l-—kz—l+0(?)+0(rzlnk) (DS)

The solution of equation (D3) is obtained by setting the integrand
equal to zero. The resulting expression for S 1is

/4

3 2
s-— L |1, i_w(k_)wL)
AL -2 Yint Y Y2 1n k
0 (D4a)
k/4 5 5
_ at 1.2 4 (k_) k
=1+ 4 ‘rlnt+2k + 0(x%) + 0 Y+Or21nk
0
(D4b)

which is the solution for S wvalid for small k.
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For the case where the trailing edge is only slightly swept

(y + =), equation (D4a) gives
1

S = ——
A1 - k2
which cen be shown to be valid for all k.

(b) Roll case: Equation (5.2.2) can be written

¥
Y
\/Y2-1=I RW/%—'_%I}ﬁLO(E;)JﬂZ

The solution of equation (D6) is

_»\[_11-=k2 1+o($i|

1+lk2+o(k4)+o(:}fri)

R

2
For y - =, equation (D7a) beccmes

1
'\’l - k2

which can be shown to be valid for all k.

R =

(D5)

(D8)

(D7a)

(D7b)

(p8)

(c) Pitch case: It will be assumed that dyp/d%x is constant.

Then equation (6.2.2&) becomes

where Q(l) =
equation (6.2.4) and with the expanded form for &,

S. The integral equation for Q(z) may be written, from
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Y PR
2
oo | _ Yotz Q(z)ﬂw[;(z)__JiE o ()
A2 Y, 2
1
Y
Y,ay
= ’\/_2_2 Q(z)-l)’\ll-kz+0(5}
1
the solution for Q(2) is then @(2) =1 + o(kfy). But
1 1 k
(1) =T§+o(rlnk ; then, for small k,
_1 1 x
Q—2|EL+ 1-k+0(7)] (D9a)
=1+ 0(k2) +0 (%) (D9Db)

For y + =, equation (D9a) yields .

-1 N S
Q_ZE-F'\E—“—]{E:I (p10)

valid for all values of k.
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APPENDIX E

COMPARISON WITH REFERENCE 13
In reference 13, Mangler finds the 1ift, roll, and pitch solutions
for highly swept wings (direct problem) by a method similar to that of
the present report. The two papers are compared herein.

From equation (3.1.3)

oV 93U 19U
=" "I (E1)
80 that the generating function OV/dx can also be considered as % %g.
z

Mangler writes, by inspection, the expression for % gg. for the 1lift,
roll, and pitch problems. Fach is in terms of a single unknown function
of x which is determined from an integral equation. The integral
equation is, in effect, the one that is obtained by using

equation (3,3.1).

The basic 1ift solution in both papers is identical. Mangler's H
is the same as the S dIntroduced in section 4. The pitch solutions are
also in agreement. Mangler's Hq is related to the Q of section 6 by

=%(%j_j’g+l) (2)

His integral equation for the pitch case can be obtained from equation
(3.3.1) but does not appear in the present paper. For the roll problem,
Mangler'!s generating function is the same as that used herein and his
EP is identical to the R of section 5. However, Mangler appears to

have made an error in determining his final integral equation for the
roll case. His equation (72) should be (in the present notation)

(ES)

/S0
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Equation (E3) differs from Mangler's equetion (72) in that the left-hand
side of the latter is zero. Equation (E3) can be obtained from equation
(3.3.1) or by the direct integration of Mangler's equation (71), using
R=1 for ys<b. (The numberless equation which precedes equation

(72) in Mangler's report is valid only for y € b and is thus used
incorrectly by Mangler to obtain his equation (72).) Equation (E3) is
considerably more complicated than equation (5.2.2) in section 5.

The treatment of the swept wing problem in the present paper dif-
fers from Mangler's in several other respects. For example, explicit
expressions for OV/dx are given herein which permit the solution of
all problems which can be handled by the generating function approach.

'(Mangler does not discuss how he goes about getting his expression for

the generating functions. However, he does show that they satisfy the
boundary conditions and are unique.) Also, the forces and moments are
evaluated, herein, by considering the leading terms in the asymptotic
expansion of the generating function. This is considerably simpler
than integrating pressures over the wing surface, as is done by Mangler.
On the other hand, Mangler has presented numerical results for a wider
range of plan forms.
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X = Constant

(a) Coordinate system.

(b) Crossflow.

Figure 1. - Slender body in free stream Ub.
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—>»— Path C

Figure 2. - Contours for obtaining forces on body.
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(a) Two-dimensional wing.

y=y,(x)

(b) Swept leading edge.

Figure 3. - Notation for obtaining suction force.

NACA TN 3105
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Z
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Figure 4. - Evaluation of function (§-yn)N+l/ 2
z
i
w=-c1U0
v=0 NERREER v=0__
pAY Yo ¥

Figure 5. - Plate translating in fluid otherwise at rest.
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w=-aU0 W= -an w=-an
v‘:o < o V‘=0 v":o 4 1 V=O L.
Y1 o Yh Yom ¥y
(a) Uniform translation of m wing panels without intermediate vortex
sheets.
z
oW ov ow ov ow
, 5;— 0 a;- 0] B_y— 0 =0 .3§'= 0
V=0 Tﬁ‘-=Cl V=Dl w= Cz v=Dm-l w:Cm v=0
Yl Yo Yh yZm Yy

(b) m Wing panels with constant values of v and w specified in
z=0 plane.

N

v=0 w:Cl w-:C2 v=D W= C3 v=D w=C v=0
- s
Yz:ys Y

Iy

b‘<1

o
o

B8
<Y

"t
)

(c) Discontinuity in w boundary condition on wing panel.

Figure 6. - Notation and boundary conditions for solution of multiwing
panel problems.
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v=0 w=F(y)+g(x)

(a) Notation.

v=[ v(y)

w=f(y)+g(x) v=0

~Y2 -

(b) Boundary conditions.

Figure 7. - Swept wing.

Y1 Yo
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\ y=yg(x)
x=x,(y)

y=yq(x
*=%4 ()

(a) Notation.

N

v=0  v=v(y) w=F(y)+g(x) v=0

5 Y2
(b) Boundary conditions.

Figure 8. - Semi-infinite swept wing.
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[¢]

3,1
y=y,(x)
x=x,(¥)

(c{y)

(x,(¥),¥)

\

X,

(a) Integration path for equation (3.3.1).

Banlt X!
¥=y,(x)
x=x,(¥)
(C:Y)
(x5(¥)»¥)
(x’y):' (x,yz(X))

\

X, E

(b) Area of integration for equation (3.3.2).

Figure 9. - Integrations in equations (3.3.1) and (3.3.2).
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y=y,(x)
x=x,(¥)
(8.) (C,b) —
x',E, (x,(¥) 5y =
(
(53] \x,yz(X))
NN
(b) (C,b) \\ ~‘
Y
xE (=, (v), 7))
(x:yz(x))
(X:Y)
y,n
(e) (c,b)
Y
X,
(xz(y),y)
(X;Y)

Figure 10. - Integration of equation (4.2.4).

((a) = (b) - (e)).
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Flgure 11. - Notation for solution of Integral equations.

SOTE ML VOVM

S8



—0—— Equation (4.4.3)

1.00

(0 = calculated points)
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1.0 1.4 1.8 2.2 3.0 3.4 3.8 4.2

2.6
¥p/0

Figure 12. - Numerical calculetion for 5 and comparison with equation (.3.3), (y=1).
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Center of pressure and 1lift coefficient

3120

0 Calculated pointe
1000 \‘\
<3
-90 \
L
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.80 21 (E
.70
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—0—a 45 o 0
xc.R.
o
1.0 l.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2

co/c
Figure 13. - Center of pressure end 1ift for swept wing at angle of attack (1=l, dyz/dx = constant).
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1.10

—0— Equetion (5.4.2)
(0 = caelculated points)
— — — Equation (5.3.1)
/
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o il
D i A
o] -~
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-
’,’
/.a-
/f |
b
1.4 1.8 2.2 2.6 3.0 3.4 3.8 &.2
Yg/b

Figure 14. - Numerical caleculation for R &nd comparison with equation (5.3.1), (n=1).
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Rolling moment
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Figure 15. - Rolling moment for swept wing (y=1, dyz/dx = constant).

4.2

SOTE N4 VOVM

68



O Calculated points

1L.02

ﬂu
>

56—\

.94
o ]
O
00 —~—1T—0—to0-—"-o01 o010l olo
.86
1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8

¥ /o

Flgure 16. - Numerical calculation for Q based on section 6.4 (v=1).
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xcP
Co
o
%y
Yo

aca
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Figure 17. - Swept wing in steady pitch (r=1, dyz/dx = constant).
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Figure 18. - Trailing-edge shapes (inverse 1lift
problem).
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Figure 19. - Trailing-edge shape (inverse roll problem).
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a
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2
y/b

Figure 20. - Trailing-edge shapes (inverse pitch

problem).
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X

(2) Top view (physical plane).

zZ

(b) End view (physical plane).

9]

+1i2a

-i2a

(¢) End view (transformed plane).

Figure 21. - Transformation for solution of swept wing on circular cylinder

(E=t-a2/t)-

95
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y:yz(t)=f V. dt+b

t, y=yl(t)=f v dt
0

Figure 22. - Motion of two-dimensional wing.

pEA

o

t=t,(y)
=y, (t)=Vyt+b

b7 _
l y=y, (£)=Vt
|
z
w=-aV 0
0 | Jv/dt=0 - | v=0
' Yo 7

Figure 23. - Formulaetion of Wagner problem.
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