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sLIMMARY

A general method, based on two-dimensional crossflow concepts, is

presented for obtaining the lift and moments on highly swept wings.
Emphasis is placed on obtaining solutions for wings having swept
trailing edges. The methd is applicable for all problems where the
velocity boundary conditions can be made homogeneous by differentia-
tion in the streamwise or spanwise directions.

Lift, roll, and pitch solutions, for highly swept wings, are pre-
sented. Both direct problems (where the plan form is given) and in-
verse problems (where the shed vortex sheet is given) are considered.
The solutions of the direct problems are expressed in terms of func-
tions which are evaluated from integral equations. Some limiting
solutions of the integral equations are indicated. Numerical results
are given for wings having paraILel leading and trailing edges.

The transformation of a wing-body problem to an equivalent iso-
lated wing problem is discussed and the application for finding the
lift of a wing-body combination is indicated.

Application of the method for’solving unsteady two-dtiensional
incompressibleflow problems is also indicated. In particular, the
Wagner problem is formulated in terms of the techniques developed
herein.

INTRODUCTION

In 1924, Mu& (ref. 1) published a remarkable paper concerning
the calculation of the aerodynamic forces on airships. His theory
was based on the idea that the velocity field induced by a slender
body is essentially two-dimensional in planes transverse to the
body GiS. This reduced the complicated three-dimensionalproblem
to an equivalent two-dimensionalunsteady-flow problem and permitted
the use of very elegant methods of solution.

——. — —. — —. — -— — —— . .-



2 NACA TN 3105

With the advent of transonic and supersonic flight, interest in
slender bodies was renewed. In 1946, Jones (ref. 2) revived Munk’s
ideas and used them to compute the forces on low-aspect-ratiopointed
wings. He indicated that for such wings, compressibilityhas no ef-
fect and his results applded equally at both subsonic and supersonic
speeds. Following Jonest -example,many papers were written on the
aerodynamics of slender wings, bodies, and ting-bcdy combinations.
See, for example, references 3 to Il. One of the most notable of
these is Ward’s paper (ref. 5) which provided a rigorous justifica-
tion for the Munk-Jones approach. Ward showed that their solution
may be considered as the first term of an expansion in terms of a
“slenderness”parameter. Ward considered supersonic flight speeds.
More recently, Adams and Sears (ref. 10) gave a similar result for
the subsonic case.

Relatively few investigationshave been made for cases where the
two-dimensional crossflaw contains a shed vortex sheet. This occurs,
for example, when a slender wing has a swept trailing edge. In this
case the crossflow generally contains a shed vortex sheet of unknown
strength. The crossflow is not independent of upstream conditions
and the problem is considerablymore ccnnplicatedthan those considered
by the early investigators. References 6 to 8 consideredwings having
swept trailing edges. In these references the distribution of vorticity
in the shed vortex sheet is assumed and the wing plan form which would
give rise to sucha distribution is then found. This is the so-called
inverse problem of aerodynamics and is generally simpler to solve than
the direct problem. The direct problem is one in which the wing is
completely specified and the flow field is to be determined. Robinson
(ref. I.1)appears to be the only one to have presented a solution of
the direct problem for wings with swept trailing edgesl. He has
treated the 13ft problem. In reference 12 it is indicated that
Robinson~s solution is applicable only when the trailing edge is
slightly swept.

In the present paper, a general method is developed for solving
low-aspect-ratio problems involving shed vortex sheets. Both direct
and inverse problems are considered. The method is applicable for
alJ_planar problems where the veloci~ boundary conditions can be
made homogeneous by differentiation in either the streamwise or the

1A private cmmunication frcm K. W. Mangler, in connection with
reference 12, served to call the author~s attention to reference 13.
In reference 13, Mangler has independently obtained the lift, roll,
and pitch solutions for a highly sw&pt w@g (direct problem) by a
methcd similar to that used herein. A comparison of reference 13
with the present report is given in appendix E.

.
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spanwise directions. The
swept wing, are presented
Applications to wing-body

3

lift, roll, and pitch solutions, for a highly
and some numerical exsmples are worked out.
interferenceproblems and to unsteady two-

dimensional incompressible flows are also indicated.

The research reported herein was conducted at the Graduate School
of Aeronautical.Engineering, Cornell University. This paper is based
on material which was origi.naXlypresented to the faculty of the
Graduate School of Cornell University, in June 1953, as a thesis for
the degree of Doctor of Philosophy. The author wishes to express his
sincere gratitude to Professor N. Rott for his advice and criticism
during the course of the study. The author also wishes to thank the
other members of the staff of the Graduate School of Aeronautical
Engineering and Drs. H. K. Cheng and M. C. Adams (both formerly at
Cornell Universi@) for stimulating discussions.

SECTION I - BASIC CONCIN?I’S

In the following section, the basic results of previous investi-
gators, primarily reference 5, are summarized.

The assumption of slenderness is introduced into the equations of
motion. The general features of the crossfluw and formulas for lift,
drag, and moments sre discussed. Finally, symmetry of the velocity
components, in planar problems, is mentioned.

1.1 Equation of motion. - Consider a slender body in a free stream
of velocity Uo, Mach nuniber ~, pressure PO, ~d density PO (fig. 1).

The coordinate system is stationarywith respect to the body and is de-
fined such that the x-axis is partiel to the free stream (i.e., wind
axes).

If the body is assumed to perturb the main stream only slightly,
the equation of motion can be linearized and reduced to the Prandtl-
Glauert equation:

(1.1.1)

where q is the perturbation
w represent the perturbation
tions, respectively, then

velocity potential. Thus, if u, v, and
velocities in the x, y, and z direc-

..—.——.———.—— —.— —.—



4 NACA TN 3105

Equation (1.1.1) applies for both subsonic and supersonic flight. To
as good an approximation, the pressure at any point in the flow field
is given by

p.po=-po~o%++[%y+($] (1.1.2)

where PO and PO are the pressure and densi~, respectively, in the

undisturbed flow.

A body is considered slender if

wz=bo<<l
co

(1.1.3)

where co characterizesthe length of the bdy and bo characterizes

its width. Under this

which is the goverming
(1.1.4) indicates that

condition, equation (1.1.1)beccmes

equation in slender body theory. Equation
q canbe found, to within a function of

(1.1.4)

x, by considering the flow in each yz-plane to be a two-dimensional
incompressibleflow.

The boundary conditions for equation (1.1.4) are usualIlyexpres~ed .

in terms of the perturbation velocities. Let v and w be orthogonal
coordinateswhich are normal and tangential, respectively, to the curve
defining the body cross-sectionalarea in a particular yz-plane (fig.
2). Let vn~ &@ be the perturbation velocity in the v-direction.
Then, the condition that the resultant flow be tangent to the body sur-
face requires that, at the body surface (ref. 5),

‘n = Uo

1.2 Asymptotic form of crossflow.
flows are well understood and are most

av ,
7E

(1.1.5)

- Two-dimensional incompressible
easily handled in terms of the

complex variable ~ s y + iz. Let W = ~ + iv where W is the cmn-
plex potentisl function, Q is the velocity potential, and ~ is the
stream function for the crossflow. (The functions W, Q, and ~ con-
tain x as a parameter.) The Laurent expansion for W, valid every-
where outside the mnall,estcircle, center at { . 0, enclosing all
the singularities of the flow, is

.
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W. f+ folnc

where f, fo, fl, . . . are functions

(1.2.1)

m=l

of x. The function f intro-

duces a constant pressure at each crossflow. Fomml.as for its evalu-
ation are given in reference 5 (for ~ > 1) ad reference 10 (for .

~< 1). Since f does not contribute to lift, and since only the

lift problem is of interest here, those formulas will not be repeated.
The function f. is generally complex. The real part is proportional.

to the source strength required to simulate the expansion or contrac-
Uo.d&s

tion of the body and equals ~m (ref. 5) where Acs is the cross-

sectional.area of the body. The imaginary part equals -r/2fi where 17
is the net circulation at-each secti&.
be written

Equation-(1.2.1)-can then

..1

The complex velocity Vs v - iw is found by differentiating
equation (1.2.2) with respect to ~ and equals

‘ (“0=-$ i-2” f.@m+”“z
(1.2.3)

m=l

Differentiation of equation (1.2.3)with r~spect to ~ gives

Similarly, if equation (1.2.3]

av 1 ()&’Ac6

&=zTuo~2

is differentiatedwith respect to x

(1.2.5)1 dfl/dx2df2/ax..—-
C ~2 (3

dl?ldx= O so as to satisfy the law ofwhere it has been assumed that
conservation of circulation. Equations (1.2.2) to (1.2.5)-definethe
asymptotic behavior of W and its derivatives. These expressions
will be useful in later developments.

. ..—.—_ ——— . . . . . .—. _—
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1.3 Lift, drag, and mmnents. - Expressions for computing the forces
acting on a body are summarized herein. They are based primarily on
the results of reference 5. It will be assumed that r = 0, which is
the case for all problems treated in the present report ‘(exceptfor
section 2.3).

The net force which has acted on a body upstream of any section
x= constant is obtained by a contoux integration about the body
(fig. 2) and equals

$’Fy + iFz = - ipouo q d~ (1.3.1)

c1

Equation [1.3.1) can be evaluated by Cauchyts theorem for the path
c1 + C2 indicated in figure 2. The cut is introduced to make W

single-valued. The path C2 is sufficiently far from the body so

that the Laurent expansion for W canbe used along this path.
Since there are no singularitiesinside the path Cl + C2, Cauchy’s
theorem gives

Then equation (1.3.1) canbe written

Fy+~~-MoUo@’WdW(&)
.

(1.3.2)

But

(by parts)

.

——
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where ~0 is the point common to paths Cl and C2, as indicated in

figure 2. Let ~gs yg + izg be the center of area of the cross-

sectional area AC6. Then, by definition of the center of area

ht v ~d ~ be coo~tes normal and tangential to the path Cl

and let Vn be the local velocity component normal to the yath. Then

‘$f’vnd’=-wd’
(1.3.3)

Thus, equation (1.3.2) c=be expressed in the form

[ J

~ ~ (Acs ~g)Fy + iFz = 2Yt@U0 fl + 2fi~

The force per unit x is

~Y+imz

[

df~

dx
— = 2npouo ~
dx

1

+ ~ ~ (Acs ~g) (1.3.4)

The net moment about the z- and y-axes is then given by

(1.3.5)

which canbe evaluated in terms of equation (1.3.4). Equations (1.3.3)
to (1.3.5) were first derived in reference 5.

—. ——-——— __ —— —— - -



8 NACA TN 3105

A similar expression can be obtained for the rolling moment about
the x-tis. Frm consideration of impulse, the net rolling moment
which has acted on a body up to a certain section x is

The author
similar to
thickness.

Mx

Mx = - Pouo

$

Q(Y C@ + z dz) (1.3.6)

cl

was not able to evaluate equation (1.3.6)by a procedure
that used for equaticm (1.3.1) except for the case of zero
Thus, when dz = O in the integrand of equation (1.3.6),

=R.p.r-Pouof3w.Ll=R.p.[-PouoJ cw.J“
L UC.

=1.P. (2YfPoU&2)

J
(1.3.7)

where R.P. and I.P. indicate the real and imaginary parts, respec-
tively. The rolling moment, per unit x, for this case, is then

~=1.P.(2fip@0:) (1.3.8)

Fran equations (1.3.3) to (1.3.8) it is seen that the forces and
moments acting on the body can be obtained from a lmowledge of the
asymptotic form of W and the cross-section geometry. The results
are equivalent to integrating the pressure distribution over the
body surface, providing the quadratic terms in equation {1.1.2) We
retained. The use of equations (1.3.3) to (1.3.8) is considerably
simpler than the surface integration of pressures.

For lifting surfaces, there is an induced drag Di associated
with the lift, which can be determined frm a consideration of the
suction force along the airfoil leading edge. ‘J!hus

P
Di =CiL+

J!?

dl?x (1.3.9)

.E.

where Fx is the suction force acting in the positive x-direction

and the contour integral is taken along the airfoil leading edge.
(The symbols L and Fz will be used interchangeably to indicate

net lift.) The maguitude of the suction force is obtained by con-
sidering the flow at a subsonic leading edge to act locally like

.
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that around a two-dimensional.airfoil (fig. 3). In
scripts n and t represent components normal and

9

figure 3, the sub-
tangent to the

leading edge. The suction force per unit span on the
of a two-dimensional airfoil in a free stream of Mach
is

Assuming this to
Mach number Mo,

But, from figure

dFn

–= - ‘Ofi=nm %2%dxt
Xn%

apply locally, for a swept wing in a

dl?n

q=-

3,

WJ=T=

dFn (II?X
—=—
13xt @2

-v
Un =-— Cos e

leading edge
mmiber ~,n

free stresm of

.-

% = (Y’ “ Y)cos e

Then

13Fx - ,Ofi 4L=a=1ti #(y2 -y)—=
dy2

(1.3.10)
Cos e

Y-W’

Up to this point the slender body assumption has not been made in
equation (1.3.10\. Since v in equation (1.3.10) will be obtained
from slender body theory, it is consistent to expand

1- Mo2 sin20/cos e in terms of the slendernessparameter. Thus,

-=1+0(’=4b)2
where O( ) indicates order of magnitude. For a slender cotiiguration,
equation (1.3.10)becomes

.—. .——.—.—.. -—_ —
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dl?x poll

%=-
Pofi~ V2(Y2 - Y} = - h U2(Y2 - y)

Y+Y2 (dy2/~) 2 y+y2 (1.3.11)

The suction force term in equation (1.3.9) is obtained by integrating
equation (1.3.11) along the airfoil leading edge. An alternate methcxl
for computing Di is to find the kinetic ener~ in the wake behind the

wing. Both methods give the same result.

1.4 Symmetry in planar problems. - The solution of aerodynamic
problems is greatly simplifiedby imposing, at an early stage, what-
ever symmetry the velocity field must have. The symmetry which ex-
ists in problems involving zero thickness wings will now be noted.

If awing has mcderate camber and twist and is at a small angle
of attack to the U strem, the solution can be obtained by speci-
fying the boundary conditions in the z = O plane rather than on
the surface of the wing. The w velocity is symmetric while the
u and v velocities are antisymmetric about the z = O plane.
That is,

1U(x,y,z) = - U(x,y,-z)

V(x,y,z} = - V(x,y,-z}) (1.4.1)

W(x,y,z) =W(x,y,-z) J

Thus the w velocity is
sre discontinuous [equal

continuous while the u and v velocities
and opposite) or zero for corresponding

points on the upper and lower surface of the z . 0 plane.

When the w boundary conditicm on the wing is symmetric with
respect to the y = O plane (as in the case of a lifting or pitching
~) mdthe correspon~gpl~ form edges have the same type singu-
larities, then the following symmetry also applies:

U(x,y,z) = U(X)-Y)Z)
1

V(x,y,z) = - V(x,-y,z)
}

(1.4.2)

W(X,Y,Z) =W(%-Y,Z) J
When the w boundsry condition on the wing is antisymmetricwith re-
spect to the y . 0 plane (as in the case of a rolling wing), then
equations (1.4.2) sre replaced by
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1
U(x,y,z) = - U(x,-y,z)

V(x,y,z) = V(x,-y,z)

l-l

(1.4.3)

JW(x,y,z) = - W(x,-y,z)

again assuming that corresponding edges have the same singularities.

The symmetry of the derivatives of the perturbation velocities is
found by differentiating equations (1.4.1) to (1.4.3).

SECTION 2 - GENERAT12iGFUNCTIONS

The functions aV/a~ and aV/bx are termed generating functions
herein since they are not of particular interest in themselves, but
their integration leads to the solution of flow problam2. Generating
functions canbe used to solve all planar problems for which the bound-
ary conditions in the z = O plane are made homogeneous by differenti-
ation in the x- or y-direction. Expressions for the generating func-
tions are derived in the following section.

2.1 Evaluation of branch points. - The functions which srise in
~problems usually have branch points on the y-axis. It is essen-
tial to develup a systematicprocedure for introducing cuts so as to
make these functions single-valued. In all cases, the cuts willbe
introduced along the y-axis to the left of the branch points.

As an example, consider the function (~ - Yn)N+l/2 where N is

any integer (O, *1, *2, . . .) and yn is an arbitrary point on the
y-tis . This function has a branch point at yn. To make the func-

tion single-valued,a cut is introduced along the y-axis from --
tO Yn (fig. 4). Define the function to be real.and positive for

2The application of generating functions to aerodynamic problems
was first brought to the author’s attention by Dr. H. K. Cheng who
used a similar approach in his thesis “Thin Wings in Conical Flow,”
CornelJ.Uuiversi@, 1952. The use of the generating function aV@[
is a c~ssical approach to solving Laplace’s equation, for a certain
class of boundary conditions,by means of the complex variable. To
the authorts knowledge, the application of the generating function
aV/ax does not appear exp~citly in the literature except for
=&sE;se (ref. 13) of an equivalent function at@~, (s&e

.

—. —.—
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along the cut, let ~ = yn+ &-eie and let

result is

Thus the function goes from a

a purely imaginary function (discontinuousacross the cut] for

yn)N+l/2 for ~ = Y>Yn

-yn)m~~ for ~=Y<Yn (2.1.1)

purely real function for ~ = y> yn to

(=y<yn.

2.2 Behavior of flow near boundary edges. - A boundary edge is
defined herein as a point b the z = O plane where the boundary
condition changes frcm a specification of v to a specification of
w. Such a point generally corresponds to the edge of a wing panel.

Consider a boundary edge yn with the boundary conditions

w.O for y>yn and v = O for y< yn (sketch 1).

z

t

Sketch 1

These boundary conditions are satisfied by V = (~ - yn)N+l/2 where N

is an integer. (Because of the uniform procedure prescribed for intro-
ducing cuts, this solution for V should be considered as valid for
the upper half plane z >0. The solution for the lower half plane
is obtained fran symmetry considerations.) For physical.reasons the
smallest permissible value of N is -1. A smsller value would make
W infinite at yn and this is unrealistic. If the v and w

velocities are to be continuous at yn’(Kutta condition), the minimum

permissible value of N is O.
.
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The boundary conditions can now be generalized so
for y > yn and v =v(y) for y <yn (sketch 2). In

z
A

v = v(y) w = w(y)

*Y
Yn

SkeLch 2

vicinity of the edge, V must have the fom

v.
[
‘(Yn) -

1
iw(yn]+ B(E - yn)N+l/2

that w = w(y)
the innnediate

(2.2.

where B is a real constant. The first term of equation (2.2.1) sat-
isfies the inhcunogeneousboundary condition at yn while the second

temn satisfies the hcnnogeneousboundary conditions indicated in sketch
1. The exponent N has the sane Imitations as for the flow in
sketch 1.

Thus, the homogeneous part of V has at most a half-order singu-
larity at an edge and behaves like

where B is real or imaginary, depending on whether the w boundary
condition is specified for y > yn or y <yn. If the Kutta condi-

tion app~es, the homogeneous part of V behaves like

(2.2.3)

.-— — —. .



14 NACA TN 3105

Differentiation of V with respect to { increases the order of the
singularity at yn. H Yn and B are considered functions of x,

differentiation of equations (2.2.2} and (2.2.3) yields, respectively,

()@n
‘Z7%+:(c_yn)3/2

4-Wn‘E

%“-+(c-yn)12
(Kutta)

(2.2.4)

where cmly the leading term is retained in each expression. Thus,
differentiationwith respect to x also increases the order of the
singularity. E Yn does not vary with x, the derivatives in

equation (2.2.4)beccme, respectively,

so that the order
differentiation.

of the singularity is not increased by the

%3 Determination of generating functions. -

(a) Special class of flows: In order to lead smoothly to the
discussion of generating functions, it is convenient to solve the
two-dimensional incompressibleflow associated with one or more
flat plates in uniform translation.

Consider a flat plate to be, at a given instant, on the y-axis
between yl and y2 and to be moving vertically duwnward with the

velocity w . - U.uo (fig. 5). ‘I’heboundary conditions in the z = O

plane sre indicated in the figure. The complex velocity must equal

Ej

(2.3.1)

.

—.— _——
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where A is an arbitrary resl constmt which defines the net circuJ_a-
tion. (Frcm the asymptotic form of equation (2.3.1) it can be shown
tht r = 21mUo[A + (Yl + Y2)/2].)

Equation (2.3.1) is a well-known result. It can be constructed,
by inspection, in the folluwing way. The second term on the right-
hand side satisfies the nonhomogeneous boundary condition w = - aUO

for yl< y< Y2. The bracketed term on the right-hand side must

therefore satisfy the homogeneous boundary conditions w = O for
yl<y<y2 aud v=O for Y<yl and y~Y2. From equation

(2.2.2) it is known that V can have haH-order singularities at

Y1 ~d Y20 These are introduced as the product i/dEl 4=2

so that, in the z . 0 plane, the term is purely real for yl< y < Y2

and purely imaginary for y < yl and y > y2, thereby satisfying the

required homogeneous boundsxy conditions. The factor aUo({ + A) is

then introduced into the numerator to satisfy the condition that V
behave like l/~ for ~ + -.

The permissibility of introducing A into equation (2.3.1) cor-
responds to the fact that, mathematically, the circulation about a
given airfoil is arbitrary. Taking A equal to -yl or -Y2 iS

equivalent to applying the Kutta condition at Y1 or Y2j respec-

tively. Either choice gives the same value of r, but with differ-
ent signs. The net circulation is zero when A = - (YI + Y2V2*

Equation (2.3.1} canbe generalized. This is the problem of m
wing panels, each moving downward with velocity w = - aUO (fig. 6(a)).

There are 2m boundary edges

v=-

where the An are real.

and the solution is

(2.3.2)

\ n=l /.

The construction of equation (2.3.2) is simi-

lar to that of equation (2.3.1). The second term on the right-hand
side satisfies the nonhomogeneous boundary condition w = - aUO for

points on the wing panels. The bracketed term satisfies homogeneous
boundary conditions -inthe z = O plane, (w= O onthe wing panels
and v = O off the wing panels) since it is purely real for points

..-— —._—___ .—
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on the wing panelB and purely imaginary for points off the wing panels.
The numerator is a polynomial of order m since this is the highest
order polynomial which will still satisfy the boundary condition
v- l/~ for ~ + a.

Equation (2.3.2) has m arbitrary constants, which corresponds
to the fact that the circulation about each of the m wing panels is
arbitrary. The constants are determined by (1) specifying the circu-
lation about each wing panel, (2] specifying the Kutta condition at
m edges, or (3) combinations of (1) and (2). If the Kutta condition
is specified at m’ edges, designated by y:, and the remaining m“

edges are designated by y~, then equation (2.3.2) can be written

Note that m’ < m and mt + m“ = ti. There are now (m - mf) constsats
to be determined by satisfying the circulation boundary conditions.
(If the problem has symaetry in respect to y = O, the number of un-
known constants can be reduced by inspection.)

{b] The generating function ~V/a~: The boundary conditions in
the z = O plane can be further generalized to the case where the
v and w velocities are constants on segments of the y-sxis (fig.
6(b)). The problem is one with homogeneous boundary conditions, both
in the z = O plane and for ~~m, if &@L rather than V is
considered. T!hesolution for aV/~K can be found by inspection
and equals

r~

3m-2

An~n

L n=l

(2.3.4)

where the An are real. The
3/2-order singularities since
to ~ increases the order of
The boundary conditions &/by

denaninator of equation (2.3.4) has
differentiation of V with respect
the singularity at an edge (eq. (2.2 2)).
. 0 and bw[ay = 0, alternately, in

0
03

$

.

.
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the z = O plme, are satisfied since equation (2.3.4) becomee imagi-

& nary and real, alternately. The boundary condition at infinity is sat-
isfied since the leading term of the asymptotic expansion of equation
(2.3.4) is of the form 1/~2, which is appropriate for problems having

. a net circulation. There sre 3m - 1 constmts in equation (2.3.4) of
which only m are arbitrary. The 3m - 1 constants correspond to the
m specified w boundary conditions on the wing panels, the m . 1
specified v boundary conditims In the segments between the wing
panels, and the m arbitrary circulations which can be hposed. The

~ circtiationboundary conditions can be replaced by the Kutta conditio~
(now a hslf-order singularity] at m, or less, edges. If the Kutta
condition is imposed at mt edges (designatedby y~) and the remaining

mttedges are designated by y~, equation (2.3.4] beccmes

$.i (2.3.5)

y
L,

As a further extension, the wing panels may have constant downwash
G specified but with a finite number of @ups in w occurring across

each wing panel (see fig. 6(c)]. The solution can be found, from the
previous equations, if each j- is artificially separated by a vortex
sheet (with the Kutta condition applied at each edge of the sheet) and

. the limit is then taken as the intervening vortex sheet width goes to
zero. Similarly, if there is a discontinuity in v at a point in a
vortex sheet, an intervening wing panel is introduced and then made
to go to zero. Thus, if such discontinuities occur at mt~tpoints
(designatedby y:’), equation (2.3.5) beccmes

It is noted ‘thatthe discontinuities intrcduce singularities of order
one in the expression for wf’h~. This is due to the fact that they
correspond to log(~ - y~r) type terms in the expression for V.
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A
isfies

final generalization
homogeneous boundary

NACA TN 3105

will be introduced. Equation (2.3.6) sat-
conditions, for &@C, both in the Z = O

plane and at a. A nonhomogeneous constant boundary condition in the
z = O plane can be readily incorporated. Thus, if the w boundary

condition on the nth wing panel is w = Cn +
() ()%Oy’-ere $0 is

a constant and the ssme for alJ_wing panels, equation (2.3.6) becomes

$=1

l/2(m’+3m’’+2m~n-21 -

()-+0
(2.3.7)

where the additional constant introduced into the numerator of the
bracketed term is eliminated by setting equal.to zero the coefficient
of the l/~ term in the asymptotic expansion.

The inverse problem of slender wing theory is to find the trailing
edge corresponding to a given shed vortex distribution. The generating
function aV/ac will.be used, in later sections, to solve such
problems.

(c) The generating function ,In the previous para~aphs
the v or w velocity was specified for all points in the z = O
plane. However, in the direct problem of slender wing theory, the
w is specified on the wing but the v distribution off the wing
is generally unknown. Consider the case of a swept wing (fig. 7)
at angle of attack a in a free stream of velocity Uo. Behind

the trailing edge there is a shed vortex sheet whose strength varies
OIdy with y. The crossflow then contains two wing panels having the
boundary condition w . - aUO with an intermediate vortex sheet of
unknown strength. Previously V was differentiatedwith respect
to g in order to obtain a homogeneous boundary-value problem. It
is appsxent that, for the direct problem, differentiationwith re-
spect to x will yield the same result. mus aqax hIM3 homogene-
ous boundary conditions and the solution for aV/ax canbe con-
structed in terms of the singularities at the boundary edges.

Differentiation of V with respect to x increases the order
of the singularity at an edge, provided the edge varies with x
(section 2.2). Thus, for a multiwing panel problem having the
boundary condition w . f(y) + g(x) specified for the wing panels,
andv= v(y) off the wing panels, the generating function is

.

. .—
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[

1/2(m’+3m’’+2m1Y!-2)
.

dg(x) ~1/2(m’+3m;’+~~’)+

z

‘=’ [i(’-’’’’’jrTrt i”’i3’Trti ”-i ‘-i(:)
Q 2

where the notation is the same as that used in equation (2.3.7). As
indicated by equation (1;2.5),the coefficient of l/~, in the asymp-
totic expansion of equati~ (2.3.8), should be zero. This permits
elimination of one of the. An in equation (2.3.8). Recall that

Y; and y; are boundary edges, that is, points at which the boundary

conditions change from a specification of b/& to a specification
of aw/&. If a boundsry edge does not vary with x, the correspond-
ing singularity in the denominator and the polynmial in the numerator
are each of one order lower than indicated in equation (2.3.8). The
symbol y~i again represents points at which there is a discontinuity

in the v or w boundary condition. If y~ does not vary with x,

however, the corresponding term does not appear in equation (2.3.8).
That this is the case maybe verified by replacing the discontinuity
by a continuous change over a narrow interval and then letting the
interval go to zero. This process does not alter the form of the
generating function bV/& and hence this generating function is
insensitive to discontinuities in the v or w boundary conditions
provided these occur along lines of constant y. The discontinuities
are reintroduced into the flow field by the integration ~th respect
to x.

wing
(for

For the wing plan form shown in fi

r

e 7{a), with the general
boundary cdndition w = f(y) + g(x , equation (2.3.8)becomes
X>c)

[ 1w(x) ~4A()+AIL +A2C2 + ~

~=’
~-(c2-y22)3/2 “*

(2.3.9)

where r = O is assumed (which makes A3 = 0) and the Kutta condition

is imposed at the trailing edge. Equation (2.3.9) is used in sections
4 to 6 to obtain the aerodynamics of swept wings.

For a semi-infinite swept

?
(fig. 8) with the general wing

boundary condition w . f(y) + g(x , the generating function is

————__ .—
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1 u (Yl+ 3Y2)assuming the Kutta condition at yl. Moreover, Al = - ~ ~

so as to satisfy the condition of no net circulation. There is a dis-
continuity in v across the x-axis (edge of shed vortex sheet) which
does not appear in equation (2.3.10}. This is due to the fact that the
boundary conditions on both sides of the x-axis are in terms of v
(i.e., ?lv/b= 0) so that the x-axis corresponds to a y:’ type

point which is independent of x. Equation (2.3.10) is used in
section Il.to solve unsteady two-dimensionalairfoil problems.

SECTION 3 - INTE@ML

As mentioned previous~, the

EIIPRESSIONSFOR FLOWFIEIJ)

generating functions aptax and
&@~ are used to-solve the”d.irec;and inv&se problems, respectively,
of slender wing theory. The final solution of a given problem involves
the inte~ation of the generating func~ion and the elimination of the
arbitrary ~ so as to satisfy the boundary conditions. The integral

expressions for the direct and inverse problem are indicated in sec-
tions 3.1 and 3.2, respectively. The soluticms should be considered
valid for only the upper half-plane (z > O) because of the arbitrary
procedure used to evaluate the branch points (section 2.1). The
solution for the luwer h&LP-plane is found from symmetry considerations.

The boundary conditions to be satisfied are that there be no lJ.ft
acting across the shed vortex sheet and that the specified w distri.
bution exist over the wing plan form. The condition of zero loading
across the shed vortex sheet can usually be imposed without difficulty.
Howevef, in the case of a direct problem, satisfying the specified w
boundary condition on the wing requires the solution of an integral
equation. Two forms of the integral equation are indicated in
section 3.3.

3.1 btegral expressions (direct problem). - Replacing x by ~
as an integration variable @elds

(3.1.la)
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J( )v= i+%
(3.1.lb)

-m

Note that W and V must be continuous functions of x for all.three-
dimensional flow problems where slender bmiy theory is applicable.

The complex velocity V is obtained by differentiating W with

K
respect to ~. A corresponding complex function U can be

2
as the derivative of W with respect to x. That is,

so that the real part of U is proportional.to the loading

z = O plane. Moreover, ~2W/~X at ‘~ ‘~> so that

defined

(3.1.2)

in the

(3.1.3)

Equation (3.1.3) can be integrated directly and is used to satisfy the
condition of zero loading in the shed vortex sheet.

3.2 Integral expressions (inverse problem). - The corresponding
expressions for the inverse problem are

w=~’d~f ($)d~ ]

(3.2.1)
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3.3 Integral equations (directproblem). - Assume that the cross-
flow at some section x = c is known. This is true, for example, for
the swept wing indicated in figure 7. Then, from equation (3.1.lb)

dx)Y)o) - w(c,y,O) = I.P.

[-JX(%)’L ‘3”3”’}

where the notation w(x,y,z) means that w is evaluated at (x,y,z).
If the value of y is such that (x,y)O) corresponds to a point on
the wing surface (as in fig. 9(a)), then the left-hand side of equa-
tion (3.3.1) is known and equation (3.3.1) is an integral equation
for aV/3&.

An alternate form of the integral equation can be found by inte-
grating both sides of equation (3.3.1) in respect to y. Let q be
the integration variable in the y-direction. Integrating both sides
between the Mmits y ~d Y2(x) yields

(3.3.2)

where the order of integration on the right-hand Bide has been re-
versed. The area of integration is indicated in figure 9(b). Equa-
tion (3.3.2) can always be reduced to a function of x plus a func-
tion of y equal to a function of x plus a function of y. The
functions of x or of y can then be equated, providing an alter-
nate form of the integral equation for dv/a.Ej

o
N
A
N-)

Numerical.methcds are usually required to solve equation (3.3.1)
or (3.3.2). For the case of a swept wing, the numerical solution of
equation (3.3.1) requires an integration by parts in order to reduce
the order of the singularity of the integrand and this introduces
derivatives of the unknown functions An into the integrand. How-

ever, the numerical solution of equation (3.3.2) does not require
the integration by parts since the order of the singularity-inthe
integrmd is reduced by the ~-integration. Thus the numerical
solution of equation (3.3.2) is usually more straightforwardthan
that of equation (3.3.1). The alternate forms of the integral equa-
tion, for the swept-wing lift problem, are derived in section 4.2.

.-

.
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SECTION 4 - = OF _ ~GS (D=CT PROBLJ3M)

The solution for a swept wing at angle of attack is derived in
terms of S, a function of x, which must be evaluated fran an inte-
gral equation. Some limiting solutions of the integral equation are
obtained.

4.1 Load distribution. - For the lift case, the w boundam con-
dition on the wing of figure
is weld known and equals

w=-

v=-

av

7i6w=- aUo. be solution for ‘x < c

23

WJO (4/- -C)

‘auo(m%
[()]*2Y2#

~= - iaUO
(!2 -Y22)3/2

L
—

-1

dL ()@2— = 41T~y2 ~
dx

(4.1.la)

(4.1.lb)

(4.1.lC)

(4.1.ld)

“Equations(4.1.la) and (4.1.lb) are valid at x = c since W and V
are continuous functions of x. However, aV/ax ~d dL/dx maY be
discontinuous at x = c.

For x> c, the generating functionis (fromeq. (2.3.9)+)

av

[

#i. +A2~2
~= - iaUO

1- (C2 - y22)3/2

(4.1.2)

where the symmetry with respect to y has
The functions A. and A2 are eliminated

ary condition on the wing and the boundary
loading in the wake.

been imposed (i.e., Al = O).

by satisfying the w bound-

condition that there be no

—— .—
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The load distribution in the z = O plane is proportional to u
(1.1.2))3. The value of u qn the upper surface of the right-
wing panel is, from equation (3.1.3),

u = R.P.

[J

- iuuo

m

The integration is conducted along the upper surface of the Z=o

.

(4.1.3)

plane with a suitable indentation at y2. If q is used as the

integration variable in the y-direction, equation (4.1.3) can be
written as

u

f

= @()

Y2

(~ + A2V2)M

d- (y; - ,2)3/2
(4.1.4)

P

Jwhere indicates the infinite part of the improper integral (appendix

B). Integratim of equation (4.1.4)yields (see appendix C)

(4.1.5)

3Strictly speaking, equation (1.1.2) is applicable when the bound-
ary conditions are satisfied on the wing surface. When the boundary
conditions are satisfied in the z = O plane, as is done herein, the
appropriate expression for pressure is

P- PO=-PO
( )
uuo+mwuo+~:~

for a configurationat angle of attack a. At any rate, the loading is
proportional to u, for a wing of zero thickness, since sll the other
terms are symmetric with respect to z.
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where F(~*,k’) and E(~t,kt) are incomplete e~iptic integrals of the
first and second kind, respectively,with smplitude j3~and modulus
kt. These have the values

(4.1.6)

To satisfy the condition of zero loading in the wake, equation (4.1.5)
is set equal to zero for y = yl. This gives a relation between ~

aud A2. If S, a function of x, is intrduced according to .

()W2 A. +A2y22

z
s=

Y2(Y22 - Y12)

then equation (4.1.5) becomes

where K’ and E* me complete elliptic integrals of first and Eecond
kind with modulus k!. Equation (4.1.7) describes the spanwise mri-
ation of loading on
as a scd.e factor.

the wing. The unlmown function S appears only
The generating function can now be written as

1
6

A/(P - Y22W - Yf’)

Fran equations (1.3.4) and (1.2.5) and the asymptotic
(4.1.8), the lift per unit x is, in terms of S,

From equations (4.1.7) and (1.3.11] the suction force
edge is

dFx ()Y22 - Y12
—= _
Q2

~2@2 Y2

The function S remains to be determined.

(4.1.8)

form of equati~

(4.1.9)

at the leading

(4.1.10)

.———- ———— — —.—. — .
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4.2 Integral equations for S. - The function S is determined
fran equations (3.3.1) or (3.3.2). Each of these equations is con-
sidered separately. -

(a) Equation (3.3.1): Substitution into equation (3.3.1) yields
.

..oy=l.p.{i.uo/’*](4.2,
P

J ..0

(4.2.lb)

where b is the value of y2 at x . c and y> b is assumed. The

path of inte~ation for equations (4.2.1) is indicated in figure 9(a).
Transforming from ~ to y2 as the miable of integration gives

Fran equation (4.2.2) it is found that S +1 for y2~b. Thus &@x

and dL/dx are continuous functions of x at x = c. It is rather
remarkable that dL/dx is continuous at x = c since it can be shown
that there is a pressure discontinuity at this section. Equation
(4.2.2) is a Volterra type integral equation for S, which must, In
general, be solved numerictiy. To permit numerical solution, the
finite-part operation must be eliminated. This canbe done by inte-
grating the 3/2-order singularityby parts; the result is
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L ‘5Y@Y2
o= (‘Et

y2 . Y& W

)

Y1 dyl
—+ .—

(Y2- Y~2)(yz - y22) “
SY2 6-Y2W2

b (4.2.3)

It is noted that the integrand of equation (4.2.3) contains both the
unknown function S and its derivative.

(b) Equation (3.3.2]: Substituting into equation (3.3.2) and
noting that y > b yield

-11-+11-

= I.P.

.

i

L

+ {2(4

$s+
K2-Y12HC2 -Y22)

.

(4.2.4)

Z=o

side of equation [4.2.4) asIt is desirable to express the right-hand
a function of x plus a function of y so that the functions of x
or y can be equated. Taking the imaginary part of the right-hand
side and utilizing the finite-part technique result in an area of
integration as indicated in figure 10(a). This integration canbe
decomposed into two separate integrations as indicated in figures
10(b) and lO(c). The right-hand side of equation (4.2.4) then
becomes

-----——— .—. ..— — — —. —— .—
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The first term
second term is
gives

Integrating
integration
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in equation (4.2.5) is a function of x only while the
a function of y auly. Equating the functions of y

the inner integral and converting frm ~ to Yz as the

where

()=*+ 1- : F(~,k) - E(~,k) (by Legendre’s relation)

and K and E are complete elliptic inte~als with mdulus k. Equa-
tion (4.2.7)provides an alternate Volterra type integral equation for
S which does not contain the derivative of S in the integrand.

Equation (4.2.7) differs from equation (15) in reference Il. The
discrepancy arises from Robinson’s treatment of his equation (12). He
properly states that a function of x can be added to his equation
(12), buttakes this functi.onto be zero. !!l’hisfunct ionofx actu-
ally does not equal zero except for x . c. Hence Robinsonfs integral
equation is correct only for the 13miting case of a wing whose trailing
edge is only slightly swept. This Imitation of Robinsonts work was
previously pointed out by this author in reference 12.
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4.3 Limiting solutions of integral equations. -

a) Special solution: It has already been established that S = 1
atx=c. A special solution of equation (4.2.3) is to assume that
s = 1 for all x. Then

Integrating

Y1 k
b-‘–Et - k2K~

(4.3.1)

(4.3.2)

0

which gives the equation of the trailing edge. This result was obtained
in reference 6, by other methods, and corresponds to the case where
there is no shed vortex sheet. A more detailed discussion w3JILbe
given in section 7.2.

ww.W: For k<< 1, the solution for S is (eq. (D4b} of

where y s dyl/dy2 is the ratio of the trailing-edge slope to the

leading-edge slope. For y equal to a constant, the integral in
equation (4.3.3)beccmes the logarithmic integral which is tabulated
in reference 14.

.kk32 When the ratio of the trailing-edge to leading-edge
slope is lsrge, the solution for S is (eq. (D5))

‘=& (4.3.4)

which is valid for all values of k. Equation (4.3.4} is equivalent to
that obtained by Robinson since his integral equation is correct when
y+-.

(d)y=l, k+l: This case corresponds to a two-dimensional
swept wing. The solution for S is S = 1,

—
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4.4 Numerical solutions. - The y-coordinate will be nondimension-
alized with respect to b by means of the notation Y ~ Y/% Y2 F y~b,
and SO forth. Equation (4.2.7)becomes

(4.4.1)

Divide the integration interval into m

represent a mean value between ‘2,n-l
sent a mean value between Yl,n-l and
theorem is used, equation (4.4.1)beccmes

parts (fig. n). Let ~z,n

and Y2,n. ~t Vl,n repre-

Yl,n. When the mean value

-1 = ~ %@n(y2,n - y2,n-1) +

n=l

where ~ and

and SO forth.

sively letting
expression for

@n are evsluated at ~2,n. ThUS

The values of S1, S2, S3, . . . ae fond by succes-

m=l,2,3, . . . in equat:on (4.4.2}. The explicit
~ is

(4.4.3)

An alternate expression for ~ canbe obtained from equation (4.2.3).

Equation (4.4.3)was evaluated for the T = 1 case with interval-s

(y2,n - Y2,n.1) = 0.20. me intermediatepoints ~l,n ~d ~2,n were
.
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taken to be in the middle of each interval. The results are compared
with equation (4.3.3) in figure 12. The two agree within 2 percent for
y2/b < 2.5. According to figure 12, S decreases from 1 at y2/b = 1

to a minimum value of 0.94 at y2/b = 2

its asymptotic value of 1.

The aerodynamic forces can be found
with the previously found values of S.
by

~b@

and then increases slowly to

from a numerical integration
Thus, the total lift is given

L
=1+2

2fiqab2
J 1

S(l - E’/K’]Y#Y2

m

‘l+~sn(l-~~)(y~,n-y~,n_~)(4.4.5}
n.1

b~b - 1
where m = Y2,n

- ‘2,n-l
when equal intervals are used. similar ex-

pressions canbe deduced for pitching moment, center of pressure, and
induced drag. Some of these coefficients are presented in figure 13
for the cas~ T = 1 and dy2/dx = c~st~t. -

SECTION 5 - ROUG - ~G (D-cT ~~w)

The solution for a rolling swept wing is presented using
cedure of section 4.

the pro-

5.1 Load distribution and rol~n moment. - The boundary condition
on the wing is w = - ~ where w is the angular velocity. The

solution for x< c is

w=-i:(, ~--c+ (5.1.la)

(5.1.lb)

——.
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J7-
.

dy2 -
Y23 ~

(C2 - Y22)3 2
&

—

d% (-)‘%s~z
—=%p dx13x

where @dx is the rolling moment per unit x.
(5.1.la) and (5.1.lb) are valid at x = c.

(5.1.lC)

.

(5.1.ld)

Again, equations

Frcm eqmtion (2.3.9), the generating function for x > c is

For a point on the right-hand wing panel

dY2

Define R a function of x, such that

()@2 Al
y2ER=

Y22 - Y12

Then equation (5.1.3) becomes

The generating function, in

E=- iyY2(Y22 -

terms of R, is

(5.1.2)

(5.1.3) .

(5.1.4)
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The rolllinnmoment is (from eq. (1.3.8)).

% ()W2
— = W ‘+ (Y22 - Y12) ~ Rax

5.2 ktegral equation for R. - substituting into equation (3.3.2)
and equating functions of y yield (for y> b)

Integrating the inner inte-~al in respect to q, and transforming frcm
~ to y2 as the titegration -iable in the outer integral, gives

Frcm equation (5.2.21 it is seen that R = 1 at y2 = b so that

dll~dx smd ~V/~x are continuous at x = c.

5.3 Limiting solutions of integral equation. -

wf=.W’ For k <<1, the solution for R is (eq. (D7b) of

[ 1R = 1 + + k2 + O(k4) + O(@/T) (5.3.1)

-’ b this case, from equation (D8),

‘=+% (5.3.2)

valid for all k.

c Y=l,k+l: The solution is R = 2.

5.4 Numerical solution. - When equation (5.2.2) is nondimension-
alized with respect to b, it becomes

.-
1



34 NACA TN 3105

Y.$2-l=J%I?%
(5.4.1)

Dividing the integration interval into m parts and using the mean
value theorem as in section 4.4 give

-n)

.

%=
n.1

~-m +-~
(5.4.2)

Values of R were computed frcm equation (5.4.2) for the y = 1 case,
with intervals (Y2,n - Y2jn-~) = 0.20. The results are compared with

equation (5.3.1) in figure 14. The two agree within 2 percent for
y,/b c 3.0. From figure 14 it is seen that, for T = 1, R increases

monotonically frmn a value of 1 at y~b = 1 to its asymptotic value

of 2 at y~b + ~.

The total rolling mcment is

[J’
b~b

%b3 1+4
Mx=fiq ~04—— R(l - 1Y#/Y,2)Y,3 dy,

1

‘fiq~~~+~~(l-~(y~,n-y;,n-l~ (543)

The rolling moment for the case T = 1 and dy~dx = constant was

computed and the results are in figure 15.
.

.

— .- — ..— —_ —___ _
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SECTION 6 - p~G s- ~G (D~cT ~oBm)

The solution for a swept wing, pitching about the y-axis, is pre-
sented following the procedure of section 4.

6.1 Load distribution. - The boundary condition on the wing is
w=- ~. The solution for x < c is

w= -w(J--c) (6.1.la)

35

where equations (6.l.la) and (6.1.lb) are valid

(6.1.lb)

a

(6.1.ld)

atx=c.

The gener@ing function, for x > c, is (from eq. (2.3.9))

From equation (3.1.3), the expression
panel is

for u on the right-hand wing

{

Ao + A2Y12+ Y1~22 ~(p,,k,) - b + A2Y22+ Y24(1+ k’2)

m

A13+A2Y22+Y24X 2-Y12
u=- ‘% E(j3’,kl)-

Y2(Y22- 712) Y2(Y22- Y12) YJY22 - Y12) ‘2 m

(6.1.3)

To satisfy the condition of zero loading in the wake,

Define a

A(I+ A2Y12 + Y1%22 K, . AO + A2Y22 + Y24(1 + k’2) ~,

Y2(Y22 - Y12) Y2{Y22 - Y12)

new variable Q such that

.. ——. — .—. _— -_ ___ —.. .
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Ao + A~y~2 + Y24(1 + k’2)
2y2Q z

Y2(Y22 - Y12}

Then

Ao = 2Y22Q(Y22E’/K’ - Y12) +Y12Y22

A2 = 2Y22 [Q(1 - E’/K’) - I.]

and equation (6.1.3)beccnnes

(6.1.4)

The generating function, in terms of Q, is -

[(d)~2-y~2 Et

2Y22Q ~2
- Y22

‘-)1

- ~ + (C2 - Y22) - Y22 ‘:: -::

g=-q -1

(~2 - Y22)(~2 - Y121
(6.1.5)

and the lift per unit x, from equations (1.2.5), (1.3.4), and (6.1.5)
is

a

[ 1~ 4y22Q(l - E’/K’) - (y22 - Y~2)— = 2flq*O
ax

(6.1.6)

6.2 Integral equation for Q. - Substituting equation (6.1.5) into
equation (3.3.2), utilizing equation (6.1.la), and equating functions
of y Yieldj for y > by
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Integrating

integration

I

=+3+,

the inner integral.and transforming

variable of the outer integral give

A

from ~ to y2 as the

where .@ is defined by equation (4.2.7). To investigate

(6.2.2)

equation
(6.2.2), it is convenient to consider Q as the sum of two functions

Q(l) W Q(2) defined accor~ to the relation

.

(6.2.2a)

(6.2.3)

Comparing equation (6.2.3)with equation (4.2.7) shows that Q(l)s S.
Thus only equation (6.2.4) requires further study.
that

It can be shown

( )[W2
Q=;;=

1%&7@
atx=c so that fi/ti and ~V/~x are continuous at that section.

6.3 Limiting solutions of integral equation. - It will be assumed
that dy~~ iS constant SO that dy~d~=b/c.

.—c..
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~’ Frcnnequation (D9b) of appendix D,

[ 1Q =1 + 0(k2) + O(k/T)

~’ The solution for Q is (eq. (D1O))

which is v-slidfor all k.

(6.3.1)

.

(6.3.2)

(c) T=l, k+l: b this case, the solution for Q is Q = 1.

6.4 Numerical solution. - In nonckbnensionalcoordinates, equation
(6.2.4)becanes

%J%5J5Z=JQ4+WZ).Y2

(6.4.1)

In some cases, the integral on the left-hand side of equation (6.4.1)
can be evaluated analytical.ybut it is convenient, and also consistent,
to evaluate it numerically. Frcnnthe mean value theorem

m

m

=
1[

“~(2J @n(Y2,n

n.1
(6.4.2)

o

The solution for W(2) is then

.

— .- ——
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SinUarly, the net lift Is

The pitching manent about the y-=im is, for dy2/~ constant,

Lh

Numerical values of Q were caquted,

Y12)Y2 U2 +: 2%(1 - ~(Y2,n - Y2,1J

(6.4.5)

for the r = 1 case, with intervals (yz,n - Yz,nq)

= 0.20. The results are indicated in figure 16. According to these remlta, Q starts frm a

value of 1 at y~b = 1, increases very slititly and then decreases to a value of about 0.90

for 3 <y~b < 4. The curve appeas to have reached its minimum and @.Jl then presumably in-

creaae to its asymptotic value of 1.

Numerical calculations of the net l.Mt, pitching manent, and center of pressure are pre-

sented in figure 17 for y = 1 and dy~dx constant.
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SECTION 7 - moFSWE.PrmGs(~ PROBIZM)

In the inverse problem, the shed vortex sheet is specified and the
correspondingtrailing edge is determined. Since the shed vorticity is
antisymmetric about the y = O plane (for a lifting wing) the genersl
form for v on the top surface of the shed vortex sheet is

where ~, v2, . . . are constants. The solution corresponding to the
first tezm of the expansion is presented in the following sections.

7.1 Determination of crossflow. - The boundary conditions on the
upper surface of the z . 0 p~e are:

For ylz< yz< y22 w=- Uuo

O<yz< ylz v=vllq/Y

The boundary conditions are homogeneous for the generating function
aV/a~. There is a discontinuity in v at y .0 and the Kutta
conditton is applied at y = +yl. The generating function is then,

fran equation (2.3.6),

and the complex velocity equals

(7.1.1)

.

—
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where AO and

grated directly

‘1

A2 are functions of x. Equation (7.1.2) can be inte-
to give

v=q;!Qz;;(d--J-
%J’ (- Y1Y2 + ‘1@-Yl%2-Y22) 2

(7.1.3)
Y1Y23 C2(Y2 -Y1)2

When the appropriate branches are taken, equation (7.1.3) gives V at
sll.points in the flow field. The functions AO and A2 are elimi-

nated so as to satisfy w = - aUO on the wing and v = YllY1/Y ~
the vortex sheet. The result is

2 VI
Ao=-–—

m auo YlY23

(Y22 -

(

1 ‘1 Y2+Y1 2 V1 Y1Y2
A2=- ylql___ In _——

I’cauo yz-yl
).

IIauo Y22 - ~12

Substituting into equation (7.1.3) gives

v=- [( )(J--’-)-1 vlh Y2+31iauo l-–—
X auo Y2 - Y1

lVIM
[4 - YlY2 + ‘1&2-Y12)(C2 -Y22) 2——

Y’(auo
E2(Y2 -Y1)2

(7.1.4)

For a point on the wing panel:

[( )J—l~lhy2+yl_l Y2-Y12+
V=a.uo –—

m aUO Y2 - Y1 Y22 - Y2

Y2(Y22 + Y12) - 2Y~2Y22

+ + cOs-’- Y2(Y22 - Y12) 1+i (7.1.5}

—. .—



42 NACA TIV3105

For a point on the vortex sheet:
t-

{+-+

L

F(Y2 - Y1)2

(7.1.6)

The equation of the trailing edge must now be determined.

7.2 Equation of trailing edge. - The equation of the trailing edge
can be found by calctiting the potential at the trailing edge by two
clifferent methcds and then matching the solutions. The upper surface
of the z = O plane is.considered.

The potential along the x-sxis, for x > c, is constant and equals
auob. Integrating in the positive y-direction gives the following
formula for the potential at the

(pI.

The expression for ~, obtained

the trailing edge, is

~yl r

right-hand trailing edge

aUob + Vlyl (7.2.1)

by integrating v from the leading to

I 1(1 ‘1 yz + yl
~. vdy= in

)
1 (Er - k%’) +. auo Y2 m aUO Y2——

-Yl -

UY2

1%&K’-’)
Equating equations (7.2.1) and (7.2.2) gives

Y1 k—=.
b

) (
lm~l+k(E1-k~s)-~ ~~f-——
mauol-k 7(W()

(7.2.2}

(7.2.3)

.

.

— _—
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where k = y~y2 as before. The right-hand

a function of k with vl/aUo appearing as

43

side of equation (7.2.3} is

a parameter. If v@Jo

is specified, equation (7.2.3) defines the trailing edge. For
VI
—= o,
aUO

equation (7.2.3)becomes

Y1 k—=
b

(7.2.4)
El - k~:

whichwap the special result indicated by equation (4.3.2). For this
case the leading and trailing edges tend to become parallel as x+=.

The spacing is givenby

me wing plan f0rm8
indicated in figure 18.

lin-(y2-- yl)~b = 2/z.
X+*

corresponding to several values of v~auo are

For all nonzero values of ~aUO the trailing

edge has a cusp at x = c (too small to appear on the figure). ‘I’his
result indicates that when the trailing edge is specified so as not to
have a cusp (directproblem), the sidewash v will be zero along the
x-axis (for all x) but, for x > C, will probably increase quite rap-
idly with y. Note that for VI # 0, the apex of *he trailing edge is

a triple point for v. As x+~ (or y2~0’), equation (7.2.3) becomes

V1 l-t

~= ~l+k 2kKt
l-k+Et_k2K~

(7.2.5)

which is an equation for the limiting value of k in terms of v~aUO.

Thus, as x+”, the trailing edge beccmes straight (assuming the lead-
ing edge is straight) and the ratio of the trailing-edge slope to
leading-edge slope equals the limiting value of k obtained from equa-
tion (7.2.5). In effect, the flow field tends to become conical as x
increases. From figure 18 it appears that taking the shed vortex sheet
equal to ~11~/Y is ~eqwte to simulate a swept wing having straight

leading and trailing edges such that T< 1.

7.3 Lift. - The asymptotic form of equation (7.1.4) is

aUo

[(

___ y2+yl)p2;yf)-** y1y2+ . . .1 ‘1
v=-i —

C2 1 ‘auo%-yl 1

——.
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The net lift acting on the airfoil is then

[(
*’(Y22-Y12) 1-AZ

]

2Y1Y2 + ~ Y2 + Y1
Ytauo Y22 - Y12 Y2 - Y1

(7.3.1) -

where yl and Y2 are evsluated at x = co.

SECTION 8 - ROLLING SWEPT WING (~ PROBIEM)

The shed vortex sheet, for a rolling wing, is symmetric about the
y = O plane and v maybe expressed as

a

~. z
n.1

where Vl, V2, . . . are constants.

that -v= VI and the corresponding

8.1 Determination of crossflow.

In the following it wi12 be assumed

solution wELL be obtained.

- The boundary conditions are that
w= - ~ on the wing panels and v = ~ in the shed vortex sheet.

The generating function &TnC has the nonhomogeneousboundary condi-
tion dw/dy = - ~ on the & panels and the~–fore

as (eq. (2.3.7))
must be e~ressed

Since there is no net lift, ~V/b~ behaves like 1/(4 as ~+= so
that

A2=-~ (Y12 + 3Y22)

The function Ao is eliminatedby inte~ting equation (8.1.1) and
satisfying the w boundary condition on the wing. The result is

(Y22- m2)2 K
AC) = g (3& - yzz) + z (E)
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The expression for v on the wing can then be shown to equal

-w
v=—

[
y~k’2 EF(ll’,k’)- E(13’,k’)]~ - F(P*,k’) -2

L

The value of v at the trailing edge is

I’c%y2k’2
vl=~ ~

(8.1.2)

(8.1.3)

8.2 Determination of trailing edge. - If VI is specified, equa-

tion (8.1.3)provides an expression for the trailing edge. Considering
the limiting case of x = c, however, shows that vl must equal ~b/2,

which is the vslue of v for the basic wing at x = c andy=O.
Thus VI is no longer a free parameter. The reason for this is as

follows. The lift is zero along the x-axis of the basic wing. Hence, -
no modification of the trailing edge, at x = c, can change the span-
wise lift distribution on the wing sufficiently to change the value of
the shed vortici~ at x =
at x=c, andmustequal
is then

which is plotted in figure

Equations (8.2.1)
by other methods.

Thus v is continuous along the x-axis,
~b/2 . The equation for the trailing edge

(8.2.1)

19. As x+”, equation (8.2.1) becomes

and (8.2.2)were previously obtained in reference 7

8.3 Rolling moment. - The asymptotic form of avjb~ is

~ @x(Y22 - Y121

%= [
7y22 + Y12 - 4(Y22 - 1Y12) ;8~4

—. ——
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The net rollinn moment is then, utilizing equation (1.3.7),

%—=
%

*q &

where yl and Y2

SECTION

(Y22 -Yp’)

12 [
7y22 + y12 - 4(y22 - 1Yp’) : (8.3.1)

are evaluated at x = Co.

9- PITCHING SWEET WING {~ PROBLWM)

The shed vortex sheet is asswd to be v = vIIY1/Yj as in the ~ft

problem, and the resulting solution is obtained.

9.1 Determination of crossflow. - The crossflow is obtained by
replacing dJO by ~ tiewtiOns (7.1.1) to (7.1.6).

for

edge

9.2 Equation of trailing edge. - The potential along the x-axis,
X>C,iS q=~cb. The potential at the right-hand trailing

can then be expressed as

(9.2.1)

Integrating v frm the leading edge gives

L’-
(9?2.2)

Equating equations
edge is a straight

(9.2.1) and (9.2.2) and assuming that the leading
line y2 = bx~c give

Y1 [(1 ‘1 )l+k+ 2kK~ +———=
‘1‘2z~ ,-k E~_ k2Kl

2

, (i’=) (

V1 =l+k

)

~t 2+ 1
1 -k+E:_k&~ 1 (9.2.3)El - k% 1

which is an e ression for the trailing edge in terms of k and the

Jparameter v %“ me pl~ fo=
corresponding to different values

of v~~ are plotted in figure 20. As in the lift case, the

.— . — _—-
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trailing edge has

ever, for x+-,

a slight cusp at

the trailing edge
VI = ‘O, equation-(9.2.3)bec~es -

Y1

47

x = c (except for V1 = 0). How-

approaches the leading edge. When

k

which is one of the curves included in figure 20.

9.3 Pitching moment. - The net lift acting on the wing upstream of
a given section x is obtained by replacing aUO
by ~ and equals

in equation (7.3.1)

L

[(

1 V1

]

2Y~Y2 + ~ Y2 + Y1

%=
X(yzz - Y&) l-–—

Zflq=
Jf~ y22_y12 Y2-Y1

The pitching
moment about

U(J (9.3.1)

which can be

moment is obtained by integration. !Thus,the pitching
the leading edge is

evaluated by means of equation (9.3.1).

SECTION 10 - WINGBODY COMBINATIONS

To solve nonplanar problems, such as the flow about wing-bdy
combinations, it is necessary to transform the given problem into
one with planar boundary conditions in order for the previously
developed generating functions to be applicable. b the following
section the Joulmwski transformation is discussed. The solution
for the flow about a highly swept wing mounted on a circular cylin-
der is then indicated.

The x,y,z-coordinate system is considered, herein, as a body axis
system rather than a wind axis system in order that the developments
p&raIlel those of the isolated swept wing problem. The perturbation
velocities U, V, and W are considered as parallel to the x, y,
and Z coordinates,respectively. This creates no essential change
except for the fact that the pressure formula (eq. (1.1.2)) becomes

. . —— .————.——.—-— __——._——_ _—__ ____ ___ ___
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P- P()=-P()
(
Uuo+awuo+

~2 + ~2

2 )

when the body axis is at angle of attack u in respect to the free
stream. Also, the lift and moment formulas (eqs. (1.3.3) to (1.3.5)
and (1.3.7))must be evaluated after transforming from the body axis
system to a wind sxis system.

.

10.1 JouAowski transformation. - Consider the problem of a highly
swept wing on a circular cylinder of radius a (figs. 21(a) and 21(b)). 8

The Joukowski transformation $

~=[-a2/c (10.1.1)

transforms the confi&ration such that the body becomes a vertical cut
(of width 4a) on the z-axis of_the ~-plane (fig. 21(c)). The wing
panels remain as cuts in the z = O plane. The velocities at cor-
responding points in the two planes are related by

(10.1.2)

where ~ = ; - i; is the ccmplex veloci~ in the ~-plane. But

d~

2 ‘[1+(:)2 Cos2’1-‘(:)2‘h2’ “~=l+L2
where r and e are defined by the relation ~ = reio. !rhUs

-v.7[, + (:~ Cos 26’]- ;(:)2 sin 2,

‘=++(:)2c0s2el+wsti2e
[ 1[(:)3-2+)2SfieVr=;COSG+FSiIl el+

(10.1.3)

where V’r is the radial velocity in the ~-plane.

are particularly useful for relating the velocity
in the ~- and ~-planes.

Since body axes are
surface, in the ~-plane,

condition_in t~e ~-plane
(- i2a< ~ = iZ<i2a).

bei~used, the boundary

Equations (10.1.3)

boundary conditions

condition on the bcdy
is &t Vr = o. The correspondingboundary

is that ~ = O along the vertical cut
This boundary condition is automatically
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satisfied,by symmetry, for all problems when the ; boundary condi-
tions on the wing panelg are symmetric about the ~ = O plane (i.e.,
lift and pitch p~oblems). For these problems, only the boundary con-
ditions in the z = O plane and at infinity require attention. Thus,
the wing-body problem.is transformed, by equation (10.1.1) into an
equivalent isolated swept-wingproblem (for the symmetric case)4.

The asymptotic form of the

T=-

The Mft in the ~-plane is then

dZ.

ccmrplexvelocity in the ~-plane is

[1

21

m+o (;)3

{from eqs. (1.3.4) and(l.3.3))

—=
dx

1.P.(21’rpouoM</ti)” (10.1.4a)

~= l.P.(2flP0@) (10.1.4b)

Equation (10.1.4b~ corresponds to a configurationwhich is pointed at
its upstream end. The complex velocity in the physical plane is

() a2 21

()
V=71+—=-—+O>

!.2 C2 [3

Note that the coefficient of the leading term in the asymptotic expan-
sion for V is unaffected by a transformation from body -es to wind
axes. The lift per unit x in the physical plane is then (eq. (1.3.4))

f

(IG ( al )d2-%sLg
— = I.P.
ax 2Ycpouo~ + POU02 d&

But gg = - iox + constant and Acs iS

body is assumed. Equation (10.1.5) then

constant since

becanes

%hen ; is not
problem) the boundsry
matically satisf~ed.

sYmmetric about the ~ = O plane
conditions along the vertical cut

(10.1.5)

a cylindrical

(as in a roll
are not auto-

In these cases it may be advisable to use the
transformation ~ = ~ + a2/~ which transforms the circle into a cut
(- 2a < ~ = ~ < 2a) along the ~-axis. Thus the problem is transformed
into one wherein the boundary conditions are specified along the ~-axis
and at infinity. The problem is now completelyplanar but involves
three “panels.” In sane cases it can be handled by the methods of
section 2.

—.——.-————.— — _ — ——— —
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(10.1.6a)

L = 1.P.(2fi@J&) (10.1.6b)

Equation (10.1.6b)represents the net llft of the configuration in the
physical-plane prov5ded the body remains cylindricalupstream of the
wing. For pointed forebcdies, the additional te~ WOU02a2% repre-

senting forebody lift, must be added to the right-h~d side of eP-
tion (10.1.6b). Cmparing equations (10.1.4b)and (10.1.6b) shows
that L = E. That is, the Mfts of the configurationsin the physical
ad transformed planes are equal (providingthe body remains cylindri-
cal upstresm of the wing). This result was derived in reference 15
by another method.

10.2 Lift of swept wing on cylindricalbody. - A swept wing is
mounted on a circular cylinder and the configuration is at angle of
attack a. The x,y,z-coordinate system is based on the body axis,
and the follm-transformations are made:

(1)
equation

(2)

The flow is transfomned from the (-plane to the
(10.1.1).

A uniform flow ; = - aUo is added so that tie

is translating, in the ~-plane, with velocity ~ = - aUO

~-plane by

configuration

in a fluid
otherwise at rest.

The solution to flow (2) canbe foundby
7. The solution to the original problem
this procedure.

a Direct problem: The generating
equation (4.1.8),

1

the methods of sections 4 aud
is then found by reversing

function for flow (2) is, frcm

(10.2.1)

where ~: and ~: are complete elliptic integrals of first and second

kinds with modulus ~; = ~. The lift of the configuration
is (eq. (4.1.9))

g=4mX@2(2)s(l -%) (10.2.2)

_.-. .—
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The unknown function S is found from the integral equation
(eq. (4.2.7))

n~
I

where

and~and~are
iting solutions for
original problem is

51

i+%l%%]‘100203)

F=Yfi

ii= 5/72

complete elliptic integrals with modulus E. Lim-
S are given in section 4.3. The solution of the
foundby reversing steps (2) and (l). Note that

~=L

The details need not be given.

(b) Inverse problem:
the shed vortex sheets in

From equation (10.1.2), the
the physical and transformed

relation between
planes is

.——- ——.. .—
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Therefore the sidewash on the top surface of the shed vortex sheet in
the physical plane will be assumed to be

v= v- p +($y#
where VI is a constant. The shed vortex sheet in the transformed

plane is then

and the solution follows directly fra.uthe results of section 7.

SECTION U - UNSTEADY TWO-DIMENSIONAL INCOMPRESSD3LEFLOWS

The flow field due to the motion of a two-dimensionalbody in an
incompressiblefluid, otherwise at rest, is discussed. The application
of generating functions for the solution of unsteady airfoil problems
is indicated.

11..1General considerations.- The equationswhich arise in studies
of unsteady two-dimensional incompressibleflows are closely analogous
to those employed in slender body theory. The analogy between these two
classes of flow will be establishedby cmparing the classical equations
associated with two-dimensionalunsteady incompressibleflows to the
equations, derived by Ward, for the flow around a slender body.

Assume a two-dimensional coordinate system, fixed in space, such
that the fluid, far from the body, is at rest. The velocity potential
satisfies

(11.1.1)

where q contains the the t as a parameter. The velocity potential,
in this case, is not a perturbation potential and the velocities v
and w represent the net velocities in the flow field. The boundary
condition & the body is that

dv
‘n ‘a

where vn is the velocity normal to the body

normal coordinate of an orthogonal coordinate

(11.1.z)

surface and V is the

system chosen to be

.

.
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normal and tangential to the body surface at a
sure at any point, from the Bernoulli equation

53

given instant. The pres-
for unsteady flow, is

P- p’ ‘p?x+(w’]1p(t) =-Po =+2

where p(t) is an arbitrary function of time.
for W smd V sxe

(U.1.3)

The Laurent expansions

@l.1.4)

(11.1.5)

where f, fl, f2, . . . are functions of t.

generate the motion, at any instant, is found
about the body and equals (assuming ‘ = 0)

The impulse required to

from a contour integral

~+iIz=-iPo

!

q d~ (11.1.6)

c1

Equation (11..l.6)is a-classical result derived by Kelvin. Neumark
(ref. 16) appears tohavebeen the first to evaluate equation (lJ_.1.6)
by replacing Q by W and using Cauchyls theorem. However, Nwmark
solved the special case of a nondeforming body. For the general case,
following the procedure used to obtain equation (1.3.3) from equation
(1.3.1), equation (U..1.6)becomes

The force per unit span (2Y + i2z), at any instant, is then

(11.1.7)

(11.1.8)

—.—— .—
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Equations (11.1.1) to (11.1.8] are s~lar to equations (1.1.4),
(1.1.5), (1.1.2), (1.2.2}, (1.2.3), (1.3.1), (1.3.3), and (1.3.4).
The two sets of e&ations become identical if the transformation
x = Uot + constant is introduced provided the arbitrary functions

p(t) and f in equations (1.1.l.3)and (U..1.4) sre taken equal to
p. and f in equations (1.1.2) and (1.2.2), respectively. The

equivalence of equations (33..1.6)and (1.3.1) is establishedby

t

J
t

Iy+iIz= (2Y + i2z)dt = ~

J

(2Y + iz.)dx = ‘y ;Ow’

-- -m

Thus. the steady three-tiensional flow about a slender body can be
tran~formed int~ an equivalent twodbnensional unsteady flow about a
cytider whose cross section varies with UOt in the same way that
the cross section of the original slender body varies with x and
tice versa, provided p(t) and f (eqs. (11.1.3) and (lJ-.l.4)jj
which are essentially boundary conditions, are taken equal to PO

and f (eqs. (1.1.2) and (1.2.2))5. Note that p(t), PO, and f

do not contribute to the lift. Muds used this equivalence in his
studies of airships and many researchers have since referred to it.

The generating function approach can thus be used for solving
unsteady two-dimensionalairfoil problems. The generating function
iS now aV/at. When ~ is used as the integration variable for t,
equations (3.1.1)beccme

5Another approach to this analog is to consider the differential
equations and boundary conditions for the problem of two-tiensional
unsteady motion in a slightly compressible fluid. In this case p(t)
and f are no longer arbitrary boundary conditions and the analog
with the three-dimensional.steady flow past a slender body is even
more striking. For example, the wave drag of the slender body cor-
responds to the energy radiated as sound in the equivalent unsteady
two-dimensionalproblem.

3105

.
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CN

(U.1.9)

~
o Moreover, U is now defined as U s aw~t so that equation (3.1.3)

becomes

One complicationarises; namely, a finite impulse can be @arted to the
system so that W and V may be discontinuous functions of t. Such a
discontinuity occurs at t = O for the problem discussed in section
11.3. The integrals in equations (ld..l.9)must then be considered as
Stieltges integrals.

Assuming that the flow at time t = ta is lmown, the integral

equations, correspondingto equations (3.3.1) and (3.3.2), are

(J’)
t

W(t,y,o) - w(tajy,O) = I.P. -
% ‘T

(1.1.l.11)

a Z=o

.,.p.[~td.f(’)(:)d] (1.1.l.12)

Z=o

U.2 Two-dimensional airfoils. - The flow about a zero tmchesi
airfoil, moving with velocity V. along the y-axis in the positive

y-direction, will be discussed. For convenience, let the chord of
the airfoil be b and let its trailing edge be the origin of the
coordinate system at t = O. If, at t = 0, the airfoil starts to

—. ..— .—....— .——.—.——
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move with veloci~ VO, it occupies a strip of width b in the ty-plane

(fig. 22). The w boundary condition on the strip is defined by the
prescribed motion of the airfoil. There is a vortex sheet of unlmown
strength behind the trailing edge. Therefore, the generating function
~V/at is applicable. For many problems the w“ boundary condition on
the wing is of the form w=f(y)+ g(t). The generating function for
these cases canbe written, frm equation (2.3.10),

where the Kutta condition has been applied at yl and r = O is

assumed. If w = f(y), the generating function is

(U.2.2)

The problem of an airfoil starting impulsively from rest, and maintain-
ing a constant angle of attack, canbe solvedby equations (11.2.1) and
(1.1.2.2). (Iftheairfoil is accelerating, dg(t)/dt =-adV~dt in

eq. (U. 2.1), and if the airfoil moves with constant velocity, eq.
(11.2.2) is used.)

11.3 Wagner problem. - The problem of an airfoil.,starting impul-
sively from rest, and moving with constant velocity and angle of attack,
was first solved-by Wagner (ref. 17}. Recently, it was discussed, from-
the point of view of slender wing theory, in reference 18. The present
approach differs from reference 18 in that the generating function is
used to formulate the problem.

If the motion is considered to start impulsively, at t . 0, as
indicated in figure 23, the crossflow is discontinuous across the
y-axis. Approaching the y-axt.sfrm t< O gives a zero velocity
field. Approaching the y-axis from t >0 gives a velocity field
equivalent to that about a flat plate translating with velocity
w=- aVo. The solution for this flow field is

w=- ioivo J~ - - (SL.3.la)

‘=- ‘vo[A-r~

(11.3.lb)
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For t > 0, the generating function is

w

[

A.
- - iavo

a- 1m“.k-YJ12

The loading on the wing is proportional to a~/at. For
upper wing surface, from equation (IJ..1.1O),

(1.1.3.2) ~

a point on the

[

Y

ag V
2avoAo

a
= d70Ao

r
‘Y1 (11.3.3)

G1:Y2-T)312= b ‘2-Y

Substituting equation (11.3.2) into equation (10.1.12),with ta = O,

utilizing equation (11.3.la), and equating

~-=-

J!o “J2(.,
hrbegating the inner integral
integration variable yield

functions of y yield

and transforming from ‘c to yz as the

~b

Equation (11.3.4) is an integral equation for Ao.

foil, frm equations (U.1.5} and (11.1.8) and the
equation (11.3.2), is

()%Zz = Yrpovozba
q

% (11.3.4)

The lift on the air-

asymptotic form of

(11.3.5)

It canbe shown that
2A0 1
— = – for t = O, and increases monotonically
bVO 2’

to the value 1 for t +=. Equation (11.3.4) has been inverted,.by the
Laplace transfomn, and the results are identical to those of
reference 19.

.———._ —. .- ———. --



58 NACA TN 3105

It is noted that the problem is formulated, from the beginning, in
terms of lift, which is the variable of primary interest. In reference
18, the shed ~ortex
gration is required

The use of the

skeet is first deter&ed &d an additional inte-
to obtain the lift.

SECTION 12 - CONCLUDING REMARKS

generating functions aV/aC ~d aV/ax IU3Sbeen
described for a wide vsxiety of applications.

Problems for which aV/aL is applicable may possibly be solved,
with equal facility, by other methods. But, the use of the generating
function ?N/ax seems to have seversl advantages over other possible
approaches to the direct problem of slender wings having swept trailing
edges. First, the dependence of the flow on upstream conditions is
initiaUy removed and certain general features of the flow field can
be determined immediately. Thus, for the lifting and rolling wing,
the pressure distribution at each chordwise station can be expressed,
to within a scale factor, without consideration of upstream conditions.
Second, the problem is formulated directly in terms of quantities which
define the lift and moments. FinalILy,the method delays until the last
stages the problem of solving an integral equation.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, December 14, 1953

— .——. .-— ——-— -—
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AITENDIXA

59

SYMBOLS

The folbwing symbols are used in this report:

AJ43>A@2, . . . functions of x (or t)

ACs

Apf

a

b

bo

C,C1,C2, . . .

cL

cl

%

c

co

D,D1,D2, ● . .

Di

E

El

E(~,k)

F(~,k}

cross-sectionalarea

plan form area

radius of circular cylinder

semispan of swept wing at x = c (fig. 7)

nwcimum semispan of swept wing (fig. 7)

constants

lift coefficient (= L/q ~f )

ro~g moment coefficient (= @q bdpf)

pitching moment (about x = 0) coefficient

(= My/q C*f)

root chord of swept wing (fig. 7)

over-all length of swept wing (fig. 7)

constants

induced drag

complete elliptic inte~al of second kind with
modulus k

complete elliptic integral of second kind with
modulus k’

incomplete elliptic integral of second kind with
amplitude ~ and m~ulus k

incomplete elliptic integrsl of first kind with
amplitude ~ and modulus k

.——__ —— ——.—— ——.——.
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FX,FY,FZ

f,fo,fl,fz, . . .

I.P.

K

K:

k

L

Zy,2~

%JJ$J!Z

MO

P

Po

Q,Q(1),Q(2)

q

R

R.P.

s

t

u

Uo

u

v

I?ACAm 3105

net forces in x,y,z-directions,respectively

functions of x (or t)

imaginary psrt of complex function

complete elliptic inte~al.
modulus k

complete elliptic integral
k~

of first kind with

of first kind of modulus

Y1/Y2 (k’ = ~-)

net lift force acting on configuration

sectional force in y,z-directions, respectively

moment about x,y, and z-sxes, respectively

free stream Mach number

pressure

free stream pressure

functions of x arising in
sw’ePt@ngs (section 6)

dynamic pressure (PoU02/2)

solution for pitching

function of
swept wing

real part of

function of
swept wing

time

x =ising in solution for rolling
(section 5)

complex function

x arising in solution for lift of
(section 4)

derivative of W in respect to x (or t)

free stream velocity

perturbation velocity in x-direction

cmplex velocity (v - iw)
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Vo

v

w

w

x

xC.p.

Y

z

a

P

r

r

!’

‘5

Po

T

fli@t velocity in y-direction

perturbation velocity in y-direction

potential function (= ~ + iv)

perturbation velocity in

coordinate axis parallel

center of pressure

coordinate axis

coordinate axis

angle of attack

YJY

rY22 - >2

Y22 - Y12

net circti”ation

z-direction

to free stream

in span direction

in yz-pl.ane

ratio of traildng edge to leading edge slope

()dy@ - -

‘w

y+iz

centroid of

integration

in (4/k)

inte~ation

free stream

integration

cross-sectionalarea (=

variable in y-direction

yariable in x-direction

density

variable for t

see equation (4.2.7)

perturbation velocity potential

_——.. ——
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Wdqy

Special notation:

J’
(-)

Y=

}

Yl(x)
x= X1(Y}

Y=

1

Y2(x)
x= X2(Y)

crossflow stream function

angular velocities about x- and y-axes, respectively

finite part of improper integral (appendixB)

~tity ti ~ plarie

equation of trailing edge

equation of leading edge

.—
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APPENDIX B

FINITE PART OF IMPROPER INTEGRALS

Many of the integrals occurring in the body of the report are of
the fomn

(Bl)

to be evaluated

we is chosen

(assuming,.

11 =

Letting i

taking the

for y< y2. The path indicated in the following fig-

I(YN)
Y2

_ic ~ong the path), and equation (Bl) becomes

.

[J
yz-e OY?+c I

l.im R.P.
E-HI

y2+&

= y2 + &eie in

real part give

11 = lim

u. J

the first of the integrals, integrating, and

Equations of this type (eq. (Bl)) occur quite frequently au. the ex-
plicit representation of equations (B2) and (B3) becomes tedious.
‘i!herefore~to econcmize, the “finite part” concept is introduce..
The finite psxt of an improper in.tegial,having a 3/2-order singu-
larity at a Mm3.t of integration, is defined by

(B3)

—— —— .—. .——- .-
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Eqution (Bl) can then be written

‘.f’am
smikly, for y ~ Y2j

(B4)

(B5)

(B6)

Thus, the finite-part technique is essentiallymatheraaticd short-
hand, in the present report, since it avoids an exy13cit representation
of the lhit~ processes re@red to ob~ the red or @g_ p~t
of camplex inte~als. The finite-part technique canbe generalized and
has many applications in aerodynamics (see, for example, refs. 20
and 21).

o

2
m
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Then:

J’
-

Y

Y

JY2
Y

J 2

$j-.E,p,j

dY2

~(Y2 - Y22)(Y2 - Y12) \

dq = y2

YY2

.

[E(&@-E] +

.

J{Y2 - Y22)(Y2 - Y12)

YY2
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Then

42-Y’
pl = y“

Y’ - Y12

nY2

d

r’lr~’ - Y12

Y“ - T’

1 F(@’,k’).—
Y’Id d~

(Y” - V’}(n’ - Yp)

dq = y2
[ 1E(~:,k’) - k2F(13t,k’]

f

Y’

1m:2’-@)3/’=y2’2 ‘(’’’k’) ’E(’’’k’)-

Y

L r]Y’ - Yf

Y’ y“ - y’

rY’

f q’dq

1m (y” - ~’)’i’ = * ‘2 ‘(’’’k’) - ‘(’’’k’) -

~ T_Y’ --Y12

Y’ y“ - y’

.

—— —
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Y2

~

q4dq Y2

- (Y22 - 72}3/2 = = [

k2F(j3’,k’) - (1 + k’2) E(j3’,kt)-

c Expansions: For k2 <<1: Let

1 = In (4/k) (k = Y~Y2]

~ = sin-1 p
(P = Y21Y)

Then:

E-
(-:’) [+

E(~,k) =E 1 -sinqcoi3q

@= (COS Q)/k+ O(k2 COSQ)’

1k2 + 0(k4]

1k2 + O(k4)

—.—— —-——-. ——
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APPENDIX D

IJMITING SOLUIIONS OF INTEGRAL EQUATIONS

Sane 13miting solutions of the integral equations occurring in
sections 4 to 6 are obtained. The coordinates are nondimensiotized
with respect to b so that Y = y/b, Y2 = y2/b and Y1 = y~b.

(a) ILft case: Equation (4.2.7) may be written

.c=fs.2(+?i-)
For Y1/Y2 a k <<1, @ . *~~/Yx + 0(.2 J-/y), ff~

appendix C. Equation (Dl) can then be written as

Yr{ rs-+~2 Y2 -%2 Y,
o= dyz

Y?L 3- y, .
Y22 --+

htegrating the term contahing 1 by parts fields

(;+==7 -1 + o ‘k2(y2y-’22))j

%’
A
to

(Dl)

0

(D2)

.

Define T z dyl/dy2, where T is the ratio of the trailing-edge slope

to the leading-edge slope. Then, for k << 1,
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k

r

Y@k
Y2 =1+ —

()
=l+o~

r-k 7
do

Y@k
dY2===:[l

m
~

[)
Assume S = 1 + O ~ ~ k + 0(k2), which

o
(D4)). Then

ly2~u2=-$k’4,~;

+ O(k/y~

will.be verified later (eq.

Equation (D2) can then be written

The solution of
equal to zero.

equation (D3)
The resulting

is obtained by setting the integrand
expression for s is

H
k/4

‘=&’+’

dt + 0($)+ ‘(,~;k~
ylnt

o (D%)

k/4

=1+4

J
&+~k2+O(k4)+o f;)+ ‘(T2 ~ k)

o

(D4b)

which is the solution for S valid for small k.

-. .—— .—— ———- ..— ——————.— –.—. .
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For the case where the trailing edge is only slightly swept
(r~ “), equation (D4a) gives

which can be shown to be valid for all k.

(b) RoD case: Equation (5.2.2) canbe written

The solution of equation (D6) is

()IF=l++k2+O(k4)+0 ~

(D5) -

(D6)

(D7a)

(D7b)

For y+ ‘n,equation (D7a) becomes

“d+= (D6]

which can be shown to be valid for all k.

(c} Pitch case: It will be assumed that dy2/fi is constant.

Then equation (6.2.2a)beccmes

Q = : ~ [Q(l) + Q(2!

where Q(l) s S. The integral equation for Q(2) may be written, from
equation (6.2.4) and with the expanded form for X,*

—. — .—.
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the solution for Q(2) is then Q(’) =1 + O(k/T). But

Q(1) =

()
A/A+o k

y in k ; ‘hen’ ‘or ~ ‘~

For T + m, equation—

[

Q++ & (]+0:
-k

= ()l+ O(k2)+O:

(D9a) yields #

valid for all values of k.

(D9a)

(D9b)

(D1O)

_ —._ .— — ——c. — . .
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APPENDIX E

COMPARISON WITH REFERENCE 13

In reference 13, Mangler finds the lift, rolJ, and pitch solutions
for highly swept whgs (directproblem) by a method similar to that of
the present report. The two papers are ccmrpsredherein.

From equation (3.1.3}

so that the generating function aV/b can also be considered as ~ au
i x“

I au
Mangler writes, by inspection, the expression for ~ ~ for the lift,

roll, and pitch problems. Each is in terms of a single unknown function
of x which is determined from an integral equation. The integral
equation is, in effect, the one that is obtained by using
equation (3.3.1).

The basic lift solution in both papers is identical. Mangler’s H
is the ssme as the S introduced in section 4.
also in agreement. Mangler’s

The pitch solutions are
~ is related to the Q of section 6by

(E2}

His integral equation for the pitch case can be obtained from equation
(3.3.1)but does not appear in the present paper. For the roll problem,
_er*s gene~t~ tiction is the same as that used herein and his
4 is identical to the R of section 5. However, Mangler appears to

have made an error in determining his final integral equation for the
roll case. His equation

Py

(72) should be (in the present notation)

-= / &/-dy2- [ij~)i-jyz-Y12 - Y22
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Equation (E3) differs from Mangler’s equation (72) in that
side of the latter is zero. Equation (E3) can be obtained
(3.3.1) or by the direct integratim of Mangler’s equation

73

the left-hand
from equation
(71), using

R =1 for y2sb. (The numberless equation which precedes equation

(72) in Mangler’s report is valid only for y g b and is thus used
incorrectlyby Mangler to obtain his equation (72).) Equation (E3) ‘is
considerablymore comp~cated than equation (5.2.2) in section 5.

The trealment of the swept wing problem in the present paper dif-
fers from Manglerls in several other respects. For example, expkicit
expressions for bV/bx are given herein which permit the solution of
all.problems which can be handled by the generating function approach.
“(Mangler does not discuss how he goes about getting his expression for
the generating functions. However, he does show that they satisfy the
boundary conditions and are unique.) Also, the forces and moments are
evaluated, herein, by considering the leading terms in the asymptotic
expansion of the generating function. This is considerably simpler
than integrati~ pressures over the wing surface, as is done by Mangler.
On the other hand, Mangler has presented numerical results for a wider
range of plan forms.
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(a) Two-dimensional wing.

(b) Swept leading edge.

Figure 3. - Notation for obtaining suction force.
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(b) Boundary conditions.

Figure 8. - Semi-infinite swept wing.
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(a) btefgation path for equation (3.3.1).
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(b) Area of integration for equation (3.3.2).

Figure 9. - Integrations in equations (3.3.1) and (3.3.2).
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Figure10. - Integrationof equation(4.2.4).
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