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HIGH-SPEED SLIP FLOW BETWEEN CONCENTRIC CYLINDERS

By T. C. Lin and R. E. Street
SUMMARY

Schamberg was the first to solve the differential equations of
slip flow, including the Burnett terms, for concentric circular cylin-
ders assuming constant coefficients of viscosity and thermal conduc-
tivity. The problem is solved for variable coefficients. of viscosity
and thermal conductivity in this paper by applying a transformation
which leads to an iteration method. Starting with the solution for
constant coefficients, this method enables one to approximate the solu-
tion for variable coefficients very closely after one or two steps.
Satisfactory results are shown to follow from Schamberg's solution by

. using his values of the constant coefficients multiplied by a constant
factor 1, leading to what are denoted as the effective coefficients
of viscosity and thermal conductivity..

INTRODUCTION

The fact that a gas is not a continuum but actually s collection

"~ of molecules in rapid but random motion has begun to have more and more
importance in the aerodynamics of high-speed flow. This is due to the
expectation that flow through wind tunnels at low pressure or flight
at extremely high altitudes will not be amenable to analysis using
classical fluid dynamics. When the mean free path of the molecules 1
is negligible compared with the macroscopic dimension L, which may
be wing chord, tunnel diameter, and so forth, the classical Picture
should hold as the molecules are so tightly packed together the gas
behaves just like a mathematical continuum. Defining the ratio Z/L
as the Knudsen number Kn, it is a measure of the degree .of gas rare-
faction. In terms of the better known parameters Reynolds number Re
and Mach number M, the Knudsen number is proportional to M/Re.

" Hence, glthough not a new parameter, it is a convenient one to use
when 13 degree of rarefaction of the gas is of interest.

Gas dynamics is simply the ordinary continuous-flow regime or
Clausius gas regime for which the ordinary Navier-Stokes equations
together with the condition of no slip on the boundaries are valid,
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and the Knudsen number is extremely small, If the gas becomes more rare-
fied and the Knudsen number increases, the effect of slip along the
boundaries becomes noticeable, although the Navier-Stokes equations . '
remain valid so long as the Mach number remains small. This phenomenon
has been known for over 75 years and has been the subject of an exten-
sive 'study by physicists. Tsien (reference 1) has summarized this work
very well. During this same period of time the solution of Boltzmann's
integral equation by Enskog and Chapman, along linés laid down by
Hilbert, has led to the distribution function for a nonuniform gas as

an expansion in powers of the Knudsen number. This approach yields the
equations of flow in successive orders of approximation, the first

order being the Navier-Stokes equations, the second order, the Burnett
equations, and so forth. The third-order approximation has never

been carried out and the expected complexity of the result does not seem
to make the attempt worth while, especially as the restrictions on the
properties of the gas itself are not strlctly valid. Chapman and Cowling
(reference 2) have presented this theory in their well-known treatise.

Tsien (reference 1) presented the Burnett equatlons of motion and
pointed out that unless the product Mach number times Knudsen num-
ber (MKn) was significant any problem in flow could be theoretically
solved using the Navier-Stokes equations. The guestion of the proper
boundary conditions when the higher-order Burnett terms are included was
raised by Tsien but not answered until 2 years later when Schamberg, one
of Tsien's students, showed ih his doctor's thesis (reference 3) that
the number of boundary conditions required for the Burnett equations is
'the same as for the Navier-Stokes equations.l While being the same in
number, the Schamberg boundary conditions are considerably more complex,
being also expansions in powers of the Knudsen number. The first approxi-
mations for the slip velocity and temperature jump remain essentially the
same as those used by the physicists in their treatment of low-speed slip“
flows (reference 4, ch. 8). The second approximation which is required
when .used in conjunction with the Burnett equations for high-speed flows
is new and, like the Burnett terms, of considerable complexity.

The Burnett equations and the Schamberg boundary conditions apply
to the domain of high-speed slip flow that the aerodynamicist expects
to enter first when he leaves the domain of classical gas dynamics.
Their great complexity discourages expectation of a theoretical solu-
tion of any practically important problem. Hence, the solution of any
problem, even trivial so far as flows go, is difficult, but if the
problem can be set up experimentally, the attempt would seem worth while
in order to determine the validity of the expansions in powers of,Knudsen.
number and a possible delineation of the dividing line between g%f
dynamics and slip flow.

lThe correctness of. Schamberg's boundary conditions is not universally
accepted, but they are the only ones proposed so far.

*
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Experimental results have now been obtained for flow past spheres

(reference 5) and transverse flow past circular cylinders (reference 6)
— —=— both- of-which-are-almost—insurmountable—theoretical
’ (reference 3) solved the plane Couette flow problem and the problem of
the simple rotation between two coaxial cylinders. In order to linearize
his equations he assumed that the coefficient of viscosity and the coef-
ficient of heat conduction of the gas were absclute constants. Lin
(reference 7) removed the restriction of constant values of these coef-
ficients and recalculated the plane Couette flow for a perfect gas with .
constant specific heats and constant Prandtl number but with the coef-
ficients of viscosity and heat conduction varying-as a constant power
of the absolute temperature. The present investigation does the same
for the flow between coaxial cylinders. 1In contrast with the plane
Couette flow problem the flow between two coaxial cylinders rotating
relative to each other seems of more than academic interest, since an
experimental check is quite possible and no doubt will be performed in
the near future.

The problem is set up in its general form assuming only that the ;
Burnett equations and Schamberg boundary conditions are valid and the
flow is steady and stable. Thus the streamlines are circles and only
the flow in a single plane normal to the cylindric axis need be con-

. sidered. Whether such a flow can be stable at high rotary speeds 1s
qutside the dc domain of the method used-here. A consideration of the
stability criteria based upon the Navier-Stokes equations with slip at |!
the boundary is to be found in reference 8. While special laws of
dependence of the gas properties are assumed, the method is theoreti-
cally possible for, other laws as well as for varlable specific heats
and Prandtl number.

This investigation was carried out at the Uﬁiversity of Washington'
under the sponsorship and with the financial assistance of the National
Advisory Committee for Aeromnautics.

FUNDAMENTAL EQUATIONS AND EXPRESSIONS FOR STRESS
TENSOR AND HEAT-FLUX VECTOR

It is convenient to start from- the general equations of the mean

motion of a fluid all of whose physical properties vary; in Cartesian

tensor notation these equations are (reference 2, T, or 9):

The continuity equation:

D, , O ' (1)
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The momentum equation:

Du. © OP. .
i i

—L _poF, + —Xd - ¢ 2

b~ PFj + S= (2)
J
The ehergy equation:
du; Oq;

DE i i

— 4+ P ——+ —= =0

where p and E are, respectively, the density and the internal energy

per unit massj; X5 is the Cartesian coordinate in the physical space;

u;, Fy, and Qi are,'respectively, the compqnents of the velocity of
the fluid mean motion, the external force per unit mass, and the heat-

flux vector in the X; direction; Pij is the component of the pres-

sure tensor; and ’ '
-25_6_+uii (h)
Dt Ot ox; .

is the comoving time derivative or time derivative following the motion
as in hydrodynamics. (See appendix A for definitions of all symbols. )
The summation convention, summing over repeated subscripts, is used.

These general equations can be derived directly from Maxwell's i
equation of transfer by making use of the properties of the summational
invariants for molecular encounters without determining the form of the
molecular-velocity-distribution function. The more convenient Cartesian
tensor notation is used rather than the vector-dyadic notatidn preferred
by Chapman and Cowling (reference 2, pp. 51 and 52).

In terms of the stress tensor Tij,_which is defined by

Pij = PBij + Tij (5)

(p being the hydrostatic pressure and 81 j, the unit tensor), the

momentum equation, equation (2), and the energy equation, equation (3),
take the following forms, respectively:
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Du; . dp  OTij
QE‘- pF; +E+ BXJ =0 (6)
du du: dgq
DE 1 i i
QE-‘FPB Tij axj E—O (7)

On using the continuity equation, equation (l), and the first law
of thermodynamics

dQ = dE + p d(%)/ " | - (8)

together with the definitions dS = dQ/T and H=E + p/p, Q, S, and
H being the heat received, the entropy, and the enthalpy per unit mass
of the gas, respectively, it is easy to show that

du. '
DE i DS DH Dp
— . — == T — = — o —
P Dt P axi ° Dt P Dt Dt (9)

and energy equation (7) becomes

' du; dq; - '
s i i
pT‘Dt HIE & I waal (10)
3 i

or

du;  dqj :
DH _ Dp + Tes —t + —L = 0 11
Dt Dt lJ axi axi ( )

Adding to equation (11) the product of u; and equation (6) and’
considering that Tij 1is a symmetrical tensor, another form of the
energy equation is obtained

0q; '
D ( 1 ) op i )
p=—H+ Zuuy) - PGF; - ==+ — + —(r;:us) = 0 (12)
Dt C2 iTd iti dt axi axi( L] J)
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Equations (3), (7), (10), and (11) are the most familiar forms of the
energy equation. Neglecting terms containing the external force Fy
" and setting H equal to cT, equations (6) and (12) yield the general
momentum and energy equations given by Tsien (reference 1) and used by.

Schamberg (reference 3). The sign of Tij, being the same as that used
by Tsien and Schamberg, is opposite to the usualvconvention. '

It is only through the expressions for the stress tensor Tij and
the heat-flux vector Q; that the above momentum and energy equations
depend on the form of the moiecular-velocity-distribution function.

Let rTij .and rqi denote the rth-order approximations to the stress
tensor Tij and the heat-fluz vector Q;, respectively, and write

= (n)
r'ij = Tij i (13)
n=0
and
r
9 = }Z: q, () (14)
n=0

where Tij(n) and qi(n) are the nth-order corrections to Ty

and Oqi’ respectively. Then the first-order approximation to the

molecular-velocity-distribution function, that is, the Maxwellian dis-
tribution, gives (reference 2, pp. 112, 122, and 123)

071y = Ty =0 : | (15)

and
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which, together with equations (6) and (7), yield the Eulerian equation
of motion

Du; '
i o _
p_D‘.E"' pFi‘*"a:('.——O . (17)
1

and the corresponding energy equation

p%+paﬁ=o . (18)

X1

The second-order approximation to the molecular-velocity-distribution
function gives (reference 2, pp. 112, 122, and 123)

x .
1743 < Tij(l) = - ﬁ (19)
and
19 =9 - "‘% | (20)

where p and A are the coefficients of viscosity and thermal conduc-

tivity; respectively, and éEi is the nondivergent symmetrical tensor
. XJ'
. uq -
associated with the tensor S5 that is,
gh
‘auiziaui+auj _iaﬁs
ij 2 ij Ox5 3 Oxy 1

In general, any tensor Aij with a bar over it has the following

meaning (reference 1)

1

(B15 * As1) - 3 Aadi ' (21)

=
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Substituting equations (19) and (20) into equations (6) and (7)
yields the conventional Navier-Stokes equations

g L%, )
T R N 7 A (22)

1

and the corresponding energy equation of viscous flow .

> du; dus - :
DE uy u; duy (x BT) -0 (23)

P e Y S, %y S\ o

From the definition of the nondivergent symmetrical tensbr, equation (21),
DM\ () 1o (), 1 (%
Ox: \ Oxs 2 Ox;\ Ox; 3 Ox; \ Ox; 2 ox ox

J i J J

and -

oy 3w O
Ox: OX: Oxg ij

J J J
_ ) -
g Y, (e 35\ (w3 Y
3{_ ax2 ax2 Bx3 8x3 Bxl
%a_la_;a_ea_l Y BT | P
L_5x3 Bxl Bxl Bxg , axg .3x3 iR

Making use of these relations, it is readily seen that gduations (22)
and (23) check with the momentum and energy equations of viscous flow
(reference 10). In the present notation the dissipation function is
simply T

duy Juy Ju; Juy ,
S e e (24)
XJ- Xj Xj X,j.

which is always'positive and unaffected in form by the fact that the:
coefficient of viscosity u 1is a variable.
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The third-order correction to the molecular- veloc1ty-dlstr1but10n
function, as given by Burnett (reference 2 or 11), yields °the second-
- order corrections to the stress tensor and the heat- -flux vector for both
spherical and Maxwell molecules. These corrections are accurate to terms
of order (u/p)2. In Cartesian tensor notation they are (references 1,

3, and 7)°

2 du, ou.
() oy o2 2 T

T s
+d b axk BXJ'

o 2|2 fp 1) L Fmduy ) Sw dw )
2 P aXl J P aXJ aXi an Bxk aX
2 N 2 Nn  am
5 et e e
PT Ox; xj ppT X4 xj
2 2 du; du :
%Lw_i”%u_a_lg_k (25)
0. (2) - g 122y dm ~
i lpT XJ' X4
. )
egﬁg_a_(T&>+2_‘zaT_ .
pT3axi Xj Bxiaxj
o, B2, g B2 3, g A (26)
3 PP ij p ij 5 oT ax Bx ‘

2The'last term within the brackets in equation (25) differs from -
the one given in the references quoted. The correct form for the Burnett
terms has been given in reference 9. This error was pointed out to the
authors by Prof., S. A, Schaaf and confirmed by Prof. C. A. Truesdell and
Mrs., C. S. Wang Chang.
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The KX's and 6's are pure constants. Their correct values are given
below (references 7 and 9):

Maxwell molecules Rigid elastic'spherical molecules
_ M7 T ap) ] _h(7 T du ]
-3 - &) gl - ) oo
Ko =2 K, = 2 x 1.014
K3 =3 Ky =3 X 0.806 ,
>(27) ~ > (28)
Ky, =0 Ky, = 0.681
_ 2T d -2 T
Ks =318 =33 4 x 0.806 - 0.990
K6=8 K6=8XO.928
: =i_5(1_’_T_9ﬁ)“ 6 =2(1_2d_u)x1o35 7
177\ 4 ar 17 %\2  gar ’
o, = 5] 65 -5y .03s
8 8
63 = -3 63 = -3 x 1.030
>(29) ‘ > (30)
6y =3 | 6), = 3 x 0.806
_3(32, T _ 33 8.+Tdy 08 )
J 0.150 = , J

It is noted that the values of 6o and 65 for Maxwellian molecules

given above are different from those given by Chapman (reference 2,

pp. 267 to 270). These corrections together with the values of 6 for
rigid elastic spherical molecules are due to Wang Chang and Uhlenbeck
(reference 9). For ordinary gases (T/u)(dp/dT) has a value lying
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between 1/2 and 1. It follows from the corrected expression for 65

given above that all the coefficients K; and 65 are less than 117/4

instead of 45/4 as given by Chapman and Cowling (reference 2, p. 270).
With the expressions for the stress tensor and the heat-flux vector

accurate to the second order, the momentum and energy equations, equa-
tions (6) and (7), become

Duy dp 3 ouy 3 (2)
_ . -2 . s =
R N T AT N (31
: du; duy 4 () du (2)
pE L p N 2y o3 ), Tij(e) R AL R (32)
Dt axi aXJ’ BXJ axi axi an axi

where Tij(g) and qi(e) are given by equations (25) and (26), respec-

tively. Equations (31) and (32) are the momentum and energy equations
for slip flow and they reduce to the Navier-Stokes equations and the
corresponding energy equation on neglecting terms containing Tij(g)
and q; 2 . ;

From equations (19), (20), (25), and (26) it is seen that the ratio
: i (2) (2)
of a typical term of Tij to 1Tij or Q to 195 has the same
order of magnitude as either pU/pL or uzU/XﬁTL, where U and L are

the characteristic velocity and length of the flow, respectively. Making
use of the relations

%:7‘1 : o (33)
p 7

and
a2 = yRT | (34)

where R 1is the gas constéhi, Cps the specific heat at constant pres-
sure, 7, the ratio of the specific heats, and a, the adiabatic speed

e e e
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of sound, together with the definitions that the Reynolds number
Re = pUL/u, Mach number M = U/a, and the Prandtl number Pr = cpu/k,
it follows that

2
U
E- - (7 - 1)Pr M2/Re (35)
APTL . _
From equation (3%) and Eff;ffffiif:ﬁii_ifzﬂz)
' p = ReT (36)
it also follows that
U .
B2 - 9MP/Re (37)
pL

From the kinetic theory of gases (reference h, pb. 50 and 147)
p/p = a°/7 = T2/8 (38)

and

p = 0.499pT1 : (39)

+

where: © is the mean molecular speed and 1 1is the mean free path of
the gas. From equations (38) and (39)

- Ve , .
1 = u :_p = 1.25671/2 n/ap (ko)

0.998

Hence the Knudsen number is

Kn = 1/L = 1.25671/2 M/Re (k1)

Substituting equation (41) into equations (37) and (35),

BY = 0.79671/2 M kn (42)
pL ‘ :

| xafi = 0'796(—17ET>PT M Kn | - (43) -
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For ordinary gases the Prandtl number is approximately unity and /
5 $,3 2, therefore uU/pL and’ u2U/ker have the same order of mag- '

L[ 2y 2 35 therE

nitude as M Kn. Since the rarefaction of the gas increases with the
Knudsen number, it is evident that for the high-speed flow of a rare-

— T s — - — —_ -

fied gas the second-order terms Tij(2) and qi(g) of the stresses

TN and the heat flux become relatively important. For ¥ = 1.400 and
= 0.750, it follows from equations (41), (42), and (43) that

Kn = 1.486M/Re, uU/pL = 0.940M Kn, and u2U/ApTL = 0.201M Kn.

According to Burnett's expression for the molecular-velocity-

(3)

distribution function, Tij s the third-order corrections to the’

stress tensor, will contain terms of the form (p/p)3(3ui/8xj)3, the
ratio of which to lTiJ has the same order of magnitude as

2.
w22\ w0\ o2 ~
(ax) X (pL) ~ M®Kn (44)

Similar terms apply for qi(3)/lqi. Hence the slip-flow equations,
equations (31) and (32), cease to be valid if, for a given Mach number,

the gas is so rarefied that M2Kn2 is not negligible compared with
unity. :

The particular problem to be considered in this investigation is
the slip flow between concentric cylinders. This problem has recently
been solved by Schamberg (reference 3, ch. VII) for the case of constant
coefficients of viscosity and thermal conductivity. The present inves-
tigation extends Schamberg's solution to include the effect of variable
coefficients of viscosity and thermal conductivity.

Assume that the rarefied gas is confined between two concentric
cylinders. The inner cylinder, having radius a and the uniform tem-
perature Tyg, is rotating at constant angular velocity W,q, its sur-

face velocity being denoted by U = .5 whereas the outer cylinder,
having radius b and the uniform temperature Typ» is held fixed in

space. The flow field is conveniently described by the cylindrical

polar coordinates r, ¢, and 2z, with the z-axis as the axis of the \i
cylinders. Assuming that the flow is two-dimensional and steady and. ‘”
that the external force can bé’ neglected, P

L N

b

]

t
J
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’ ) 3
U.Z:O, $=O, §=O, Fi=O (Ll's)

u. =0, -0 (46)

3 | |

where u, and ur are the velocity components in the z and r direc-
tions, respectively.

The appropriate equations of motion are obtained by expressing the
continuity, momentum, and energy equations, equations (1), (31), and (32),
in plane polar coordinates. This is easily done by making use of the
formulas in general orthogonal coordinates (references 12 and 13). 1In
view of equations (45) and (46) it is found that the equation of con-
tinuity is automatically satisfied. The momentum equations in the tan-

gential and radial directions are, respectively (see appendix B),

e i) =0 “
W afap 4 _ 18
Tt ol @ e (e - )| < O (48)

.£L-q + EE + Tr¢G;EQ - i ) =0 . (L49)

In the above equations Tr¢ 'is the viscous shearing stress, Ty and

T¢¢ are the normal stresses in the radial and tangential directions,

respectively, and ar is the radial component of the heat-flux vector.
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The explicit expressions for the required components of the viscous
stress tensor and the heat-flux vector are obtained by transforming the
general expressions, equations (25) and (26), respectively, into plane
polar coordinates and making the reductions required by equations (45)
and (46). This is done in appendix B. The results are given as follows.

Trp = “C? ?) (50)

2T 1 RfAT\° . 2 . R 4T
ZKRE= - 2K =[] + Sk, 222 2
37 2 3K5T(dr) 3 3rdr} (52)
o= A& | - (53)
The expressions for Trr and T given in equations (51) and (52) are

slightly different from those used by Schamberg (reference 3, pp. 152- 153).

This is due to the correction of the last term in the brackets of equa-
tion (25) for the Burnett terms in the stress tensor.
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Substituting equations (50), (51), (52), and (53) into equations (47),
(48), and (49) and using equation (27) for the values of the K's for
Maxwell molecules give .

E. |J.I'3 i(&gﬂ =0 ‘ (for_ pr2 # O) (5)"')

dr dr\r

2 .
(ﬂ. %E-)+ ur3|£1d;(ir-5‘] =0 (55)

Ble

2 2 “\2
93=&“¢__£E21(1d_p>+3d_p_ (d ) +2(EQ) s 38 92T
dr r rp dr\P dr rp dr dr r dre
1T, 3 RETY?| 4 hafre), 21
3R T dr * 38 T(dr) dr'{]: 3 dr\P dr * 3 rp r_ir *
w2l 2fug ° ug 2. a2 14T R{dT )2
Sk 3 P + 2R —= - R = B —(——) (56)
p dr r dr r g T\dr
_ T du A ’ . , '
where B = 53T ‘Thus one has three equations, equations (54%), (5%),

and (56), which together with the perfect-gas law, equation (36), are
used to find the four dependent variables u¢, T, p, and p as func-

tions of r.
BOUNDARY CONDITIONS

It is seen from the previous section that the introduction of the
higher-order approximations to the stresses and the heat flux results
in an increase in the order of the momentum and the energy equations
of the fluid mean. motion. For instance, the first-order approximations
to the stresses 1Tij equation (19),  lead to the conventional Navier-

- Stokes equations, equations (22), of viscous flow, which are partial
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differential equations of the second order; while the second-order
approx1mat10ns to the stresses lead to the thlrd-order _partial differ-

ential equations, equatlon n (31), with the expression for Tij(e) given

by equatlon (25). Since_the relative 1mpoxtance of the higher-order
terms of the stresses and the heat flux increases with the rarefaction .l
of "the gas, this leads one to the expectation that the number of bound-,
&Fy conditions required for the complete evaluation of a slip-flow

‘préblem should 11kew1se depend on the degree of the rarefaction of the _.
‘gas. “Howevér, it was shown by Schamberg (reference 3) on both physical U

|

and mathematical grounds that the number of physical boundary conditions
required for a slip-flow problem is effectively the same as that for
the corresponding flow in the realm of gas dynamics.

In slip flow, as in gas dynamics, the condition of zero relative
normal velocity at the boundary still holds, but the relative tangential
velocity at the boundary is no longer zero and the gas temperature dif-
fers from the wall temperature.. These are known as the "slip velocity"
and the "temperature jump," respectively.

The expressions for the slip velocity and the temperature Jump at
low Mach number were investigated by Maxwell, Millikan, Smoluchowski,
Knudsen, and others (references 1 and Ly, If x and 2z are the dlS—
tances tangential and normal to the wall, respectively, u and u,

are, respectively, the velocity of the gas and of the wall in the
X direction, and T and T, are, respectively, the temperature of

the gas and of the wall, one has from the kinetic theory of gases (refer-
ence U4) the slip veloc1ty

) 2 - o\/du 3 ufor\
(W00 = 3 = 0-998( )(a—)ol sz(ax) om
énd the temperature Jjump
_ 2 A \(2 - a\[oT
(Ma0 = Tu = 0.998<7 + l‘>("‘°v)( @ )(az)z=0z =

where o 1s Maxwell's reflection coefficient, cy, the specific heat at
constant volume, a, the accommodation coefficient, and 1, the mean free
path.

For slip flow at high Mach number the above expressions give no
longer a true description of the physical relations and higher-order
approximations to the slip velocity and the temperature jump must be
used. A general method for the calculation of approximate expressions
for the slip velocity and the temperature jump, to an arbitrary degree
of approximation, is given by Schamberg (reference 3). The method

I
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applies the laws of conservation of  mass, momentum, and energy to the
infinitesimal layer of gas adjacent to the solid surface, referred to as
the "sublayer," and uses the nonuniform molecular-velocity-distribution
function. :

The first approximations for the slip velocity and the temperature
Jump thus obtained by the use of the first approximation to the velocity
distribution for a monatomic gas of Maxwell molecules agree with the
results given by previous investigators for low-speed slip flows.

The second approximations to the slip velocity and the temperature
Jump, which are required in conjunction with the second approximations
to the viscous stresses and the heat flux for high-speed slip flow, are
given as follows (reference 3): The slip velocity

N e =t 1/2(3 , W\, 353
UJ(X)YJZ)Z_>O uw,j = PE]-(RT) (az + axj> + )+ R ax'j:] +

w\2|. 5 gr (O . M ooy |, dw
(P) [6RT doz\0z +$J> * bR Bz(éz +3xj ,+

%Rﬂéw__iﬂap(aﬂ;@w_) ]

dz an 15 P 0z\0z an

3alR(RT)l/2 _ﬁ_ _ %alR gRTuzl/E(-g—;I%T é& .

5x; 0 7 52
23] L 2 3)
3a (RT)1/2%%T_(%@+%) .
3a, (R1)1/2 1 L %5 .
al(RT)l/g(gl;i +'g_;’;>%(1oge ;) -

LRDEO _ 5(M  dw \pwl
5 pDt Bx--6(az +Bx-Dt (59)
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where Jj = 1 and 2, and the temperature jump

T(x:y:z)z-—)o - Tw = ﬁEl(RT) / -a—z- - E -D-E- + (S) E]_T( z y‘j) -

1 3"’/3“3 )1/2 3 [us | ow
5T axj\éz Bx ) + eT(RT) BxJ\§z ij *

e3T( 1/2 + Bew +
aZ aXJ aXJ-

l/eaT/a“ - DY
e, (RT) ij\§z ij> 85(3T) 3 |t

1 .

g =BT g 33\ - * S

1 1/2 T du /a“J LG

3 2 (RD)VE 5 5, \07 * axj> * egRT Sx; oxy
or or\2 , LRT OT dp_

e7R ij 5;3 * 8R( z) * 8 p axj X5 *

Dt Dt \0oz
e~(rr)1/2 &L D E-oge(dl‘l/%] ; D°r _
Dt
1 _prov 1BaN |
Be3_(RT)1/2 Dt Dt 7 Oz Dt} (60)

where Jj = 1 and 2.
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In equation (60) but not in equation (59) the summation convention
over two indices is used. This notation has the meaning:

> - (61)

ulzu, U =V
so that
Su. 5 -
oh (45 | ov_} _ dh(du + éﬁ) + on (ov Lo . (62)
ij oz ij 0x\90z  Ox dy\dz - dy

The time derivative D/Dt, when expressed in the above notation, is

|

o, - . (63)

S

All of the derivatives in equations (59) and (60) are to be evaluated
at a point (x,y,z) as 2z-—>0. These boundary conditions are appli-
cable provided that the .pressure level and the motion of the gas are
such that the second approximations to the stress tensor 27ij and

the heat-flux‘vectdr Q3 are applicable. This means that the rela-

tion M°PKn° << 1 holds.

The values-of aj;, the b's, cp, and the e's in equations (59)

and (60) are given on the following page (reference 3):3

3Scham.berg‘s values for these constants have not been changed to
agree with the corrected values of the . K's and 6's given by equa-
tions (27) and (29) because the corrections are negligible to the order
of approximation used later on. ) :
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s

bl'_- “5-16':{ '

b2 = O. 87’4’9

o - B )

_ 107
6 5__
eq = -7.9888
e8 = 5.4912
ey = -1.7183
. =@g)1/2 2 - a)
107 4 (2 ( a

>

21

(64)
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In general cl' is used instead of Cq- According to the kinetic
theory for monatomic gases (reference 2) .y = 5/3, M uc, = 5/2, and
cl' reduces to c,;. The values of o for air vary from 0.79 to 1.00

while o for air lies between 0.88 and 0.97 (reference.l).

To obtain the boundary conditions for the concentric-cylinder flow,
it is first necessary to express the general boundary conditions, as
given by equations (59) and (60) in the Cartesian coordinate system, .in
terms of the polar coordinate system. Following Schamberg (reference 3)
closely, let x and y be the Cartesian axes associated with the polar

~coordinates r and ¢ and the auxiliary coordinate systems x5, 2g

and Xy, 2y, by the equations

Xx=a+ 25 =r cos §

(65)
Y = %3 =r.sin § ‘
X=b -2 =rcos @

. y _ (66)
Yy = -%X, =r sin ¢ ' :

The velocity compoﬁents Ug, Wg and 1y, LS of the auxiliary
coordinate systems are related to the tangential velocity u¢ as shown

by figure 1 and equations (67) andv(68):

ug = u¢ cos ¢
' (67)

- ‘ Vg = -Ug sin @

Uy, = -ug cos 1)
(68),
Wy = u¢ sin ¢
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The partial derivatives with»reépect to the auxiliary coordinates are
expressed in terms of the partial derivatives with respect to r and
¢ by means of equations (69) and (70), which are easily obtained from

equations (65) and (66), respectively:

-

9 - sin o} 2., cos ¢ = 3 )
dx, r r og
} (69)
o _ 3 . 10
a = COs ¢ a—r- - 81in ¢ ; % )
o _ 13 )
-a—)-(; = -51n ¢ -—r- - COs ¢ ; a—¢-
> (70)
o _ 10
a—Zb- V— -COS ¢ g + S1n ¢ ; %
-~/

All of the first- and second-order partial derivatives appearing
in equations (59) and (60) for the boundary conditions can now be
transformed into polar coordinates by means of equations (67) to (70).
After all of the differentiations with respect to ¢ have been per-
formed, ¢ is put equal to zero in the resultant expressions, in
accordance with figure 1. Because of the condition of axial symmetry,
equation (46), the partial derivatives of u¢, T, p, and p with

respect to @ all vanish. °

The boundary-condition derivatives for both the convex (r = a)
and the concave (r =b) cylindrical surfaces are given in the table
on the following page. The transformations for the derivative D/Dt
are obtained from equations (63), (45), and (46), using the fact that
the velocity of the wall u, has the value U at r = a and zero

at r = b, respectively.
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Equivalent radial derivative at -
Cartesian
derivative Convex surface Concave surface
(r = a) {(r = b)
or
& 0 0
fei aT _dr
d2 dar dr
3 1ar 1ar
Bx2 r dr r dr
2r afr afr
dzz dr2 dr2
327 o o
ox dz
u 0 0
dx
& g '}
dz dr dr
Py 1(32) _i(EQ)
2 dr\r dr\r
d2y a2 d2u¢
Q dr2 ar?
%
D) 0 ©
il g el
ox r r
ow
5 0 0
> .
v 0 0
dx
v 0 0
322
2P &%) ()
dx dz dr\r dr\r
u u¢ —U¢
du , v 4 (“ ) d (u¢)
(a_li * 'a‘;) T I ‘? T FE\T
A, 4. af Saf a8
az(Bz * Bx) drE E;(r ):I : drlzdr(r ):l
o |du , ow ‘
Bsz * Ox ° °
DL 0 0
Dt )
.ﬁ (ﬁ)(ﬂ) [¢}
me T /\dr
3(92) uar 0
Dt \Ox r dr
D {or
E(-a—z) 0 0
DfOu , ow
26 %) ’ °
U
Dw g
It T 0
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With these substitutions one obtains from equations (59) and (60)
the following four boundary conditlons.

(1) At r.= a,

5
O e R TR
(2) At r =D,
2
(%), = © - al(RTb)l/e ol (:2] ;{3 X (72)
(3) At r =a,
' 'Ta = Tyg + cl(RTa)l/2 2_:(%); + %:—2 Zg ‘ (73)

.

(L) At r =0,

| | | .
Ty = Ty - oy (BTy)Y2 :_z(g_g)b ¥ % z, (7%)

The subscripts a and b denote the evaluation of a particular quan-
tity at r =a and r = b, respectively. The quantities Xar Xy
Zg, and Zy, -‘are defined by the following equations:

_2 mr _ d’I‘ du¢ )
6 Jlil:drr 5167R I:dr rJ
QRQ% -§—RT lggri(l_lg) +

8 dr r /= 15 alp ar dr r /|,

8 ug 5 1 4T
I—SREI' dr(rila —gRu(rdr _U[¢ dr rjl (75)
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xb=“'g

. 1(92)2 ] d2T i
8 Tb dr b' ]_l{. b

The values of the numerical constants
given by equations (64).

81, ©1»

NACA TN 2895

(76)

g_T_) _ 1 BRfar 3
drJ, ~ 14 Ta\dr A
aT
el @
14T
eGR(r dr)b ¥
(78)

€15 €gs and eg are

SOLUTION OF CONCENTRIC-CYLINDER FLOW

From the preceding sections it is seen that the probleﬁ of slip.
flow between concentric cylinders is reduced to that of solving the
three differential equations, equations (54), (55), and (56), and satis-

fying the four boundary conditions given by equations (71) to (Th).

For

this purpose it is desirable to introduce dimensionless constants and

variables as fdéllows:

k =a/b

(79)
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1.*

u*

T*

where

27
2 -
2 U
Myg™ =
_ "®Tva
pgUh
Re.._ = 80
. Na = I — S (80)
' . HywaC
Pr,, = Pya
Mea g
-
p* = P/pa A¥ = X/Xwa
P* = p/py . op* = opfop . (81)
. N wa
w* = pluos Pr¥ = Pr/Pr.,
-
h=>-a (82)

and pra’ “Va’ and Xwa are the properties of the gas based upon the

wall temperature Tya-

Making use of the perfect-gas law, equation (36),

and of equations (79) to (82), equations (54), (55), (56), and (36)
become, respectively, '

[(e13ur d;i*(:—jﬂ -0 (83)

- ‘ 2
di*(r*k* g:) + (7 - l)Prwa Mwag(r*)?)“.* E%G;B =0 (%)
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7Mw ) (U*)g (l - k)27Mwa “*)2 -2y ™, EE: .
a r¥*]* k2 (Ta 2Rewa_ r*( p*) 2 a dr*

£)2+3 aer* o 1 ar* | 3BdT)2
(ar*)2 r* dr* T*

5 a d loge p* * 4 loge p*
dr*T pEe +2_*.___*._ -
) r dr

(1 - k)%Mya” (u )
kap*(T ) 2 dr* MW& dr*

” (z)? L g 8P Lart @(@:)2 i
a ¥* . (dr*)2 r* dr* T*\dr*
| b a d logg p* o qx 4 loge p* '
i § dr* (T* dr* + § s dr* ' (85)
D¥T % = p*T* (86)

Velocity and Temperature Distribution

Integration of equation (83) gives

u¥* = Ar¥ - %r*f_dr_-*—_ . (87)
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where A and 2B are constants of integratlon. For u = Constant,
p*_= l and equatlon (87) yields
u* = Ar* + B (87a)
r*
which is Schamberg's solution.
From equations (84) and (87)
13
(88)

* .
(r*)3p* d @*}# dT ) + 4y - 1)Pr M °g2 -0
dr* ar* wa wva

It is convenient to transform the independent variable
or t. The latter are defined, respectively, as

loge r* 1

r*¥ into ¢

(90)

= ———— = =~ log T* m = log l/k (89)
log, 1/k @ € ©
and
C=n_/ﬂgg
o k¥
where’

(91)
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In terms of & equation (88) becomes

v ?-?E(X* g) + By - 1)Pry, M P8 < 0 (92)

while in terms of the independent variable € it is

E+a(8) _ o

g__(x_* dT*) b(y - 1) Pr., M, 2u2B2(k2)

dg\p* 4t e

if

A(t) =fog(*—‘$ - ) X =t -t | (93)

Equation (93) together with equatlons (90) and (91) gives A(0) = A(1) =

In general A(Q) << 1.

Integrating once

:‘—i gr'é‘—* = mC - E‘-Q—T]-;-i)- Pr, MwazmeBef (k2)5+A(E) g¢

and again

=D mcfi_:dc B i(ln,;__l) Prya Mwa2m232f% dgf(k2)€+A(C) dt
| (9%)
For constant p and A, p*¥ = =1, n =1, ¢ =.§, and equation (9k)

reduces to

* = * - 22 *—2
T D+ C log, T (7 l)Prwa M, B (r*)

vhich is Schamberg's solution.
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In terms of (, equation (87) becomes

Now 1let

(xk2)28) _ | +i _(ﬁlém A(gﬂn
. 4=7 n!

31

(96)

"~ This series converges for all finite values of m A({). Making use of

‘equation (96), equation (95) gives

where

ot = A+ %E% N f(gzl (97)
+1
__('22211 szcl__-A(Cﬂn at - (98)

- Similarly, from equations (96) and (9&);’assuming Pr/cP = Constant,

-

where

T* = D + mCE + ?

n2

Pr
wa

M, 282 [t 'g(cﬂ. (99

8(t) = 2mff<g> at

w* = w*, and T* = T _¥*;

a ’?

(100)

and, at r = B,

T,*. Therefore, from equations (97) and. (99)

*
G

wp¥)

1 - k%5 _ R(e)

1 - k° - F(1)

(101)-
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where

F(¢) = £(¢) - £(0) (102)
and
T* = Tg* - (To* - Tp¥)¢ +
{7 - 1)Pry, Mwae(wa* - wb*)g

[-e-ra)”

~

o(t) = &(t) - a(0) - [a(1) - &(0)]¢ (10%)

E- ¢+ 2t - 12 + G(gﬂ (103)

where

It is noted that F(0) = G(0) = G(1) = 0.

Equations (101) and (103) represent the exact solutions of differ-
ential equations (83) and (84). Since the latter did not contain any
Burnett terms, it was relatively simple to carry out the integration.
However, A({) depends on a knowledge of v and p* which are func-
tions of T* and so any numerical solution will reduce to an iteration
process of approximating A(f{) and hence F({) and G({). This is
also the method of determining the pressure distribution p* from
equation (85). Before proceeding to p*, it is advantageous to rewrite
the boundary conditions of the section "Boundary Conditions" in a similar

- . s * * * %
dimensionless form since the constants wg*, wp*, Tg*, and Ty in

equations (101) and (103) are precisely these boundary values. The
actual algebraic reduction is carried out in appendix C, leading to the
following results: :

Cwg¥ - rwp* 1-k v 2
1 e
(Ta¥)¥/2, kE- k2 - (1)

wg* = 1 - 1.592a

'
z

(wg* - %*)(Tb*)l/2 k2(1 |
Te*Pp* 1 - k% - F(1)

Cl)b* = 1.59231
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1-k
1-0796c1————- T*-Tb +
_ P — - —_ lm(Ta*)l/;eh R —— e e —_———— e — _— — _— k —_d

1-%2-2m-¢'(0 ~
(r - wa Mya ( - wb*)z o Kne + Za Kne®

[ - ¥ - r1))?

Tp* = T,p* + 0. 796c

(7 - 1)Pry, Mwaecba* - wb*)g Kne + % Kne?

where

Kng = nKng,, : (109)

and ia’ ib’ fa, and %b are the complicated expressions given.in
equation (Cl2). Actually, since X, . . . %, are multiplied by Kng2

above, it is only necessary to use the zero-order approximation to these
expressions given by equations (C32), (C33), and (C34). The reason for
this, of course, is that the differential equations and the boundary
conditions have been derived only to terms in the square of the Knudsen
number. Thus, it is probably clearer to write equations (105) to (108)
in the form (equations (C27)) .

£
*
I}

2
¥* * *
a 0%a (l T % K * 2% *Kng )

%,

Wo* + 19p* Kng + pup* Kng2

o 2
OTa*(l + 1Tg*Kne + pTa*Kng ),

-3
W
*
l

_ 2
* = ofp* (1 * 1Tp*Kne + oTp*Kng )

3.
o’
[
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which explicitly indicates an expansion in powers of Kng. The coef-
Ticients yw ¥, Lop*, Ta*, and Tpy* (h = 0, 1, 2)  are written out

in equations (C29) to (C31) of appendix C. The subscript written in
front of a symbol thus denotes the order of the approximation in the
expansion.

Pressure Distribution

. 5
From equation (85), neglecting the terms containing (Mwa ) , which
e
wa.

2 or Kne, the zero-ofder approximation to p¥* 1is

are the order of ®

I'* * 2 x . .

2 (u*)< dr :

Op* = exp (M, f _— (110)
1 r¥T*

N\

The superscript in front of a symbol denotes the order of the approxi-
mation to the solution of a differential equation.

From equations (89) and (90)

dr¥* s
arX Bk g
r*
Therefore
0
or
§ u*(w¥)@
ym 2 KW
Op* = exp |— M'Wa f §+A( ) dg (112)
1 0 T*(k2) < _ \

Since equation (85) does not explicitly contain terms of order Kn, the
zero- and the first-order approximation for p* can be obtained from
equations (110), (111), or (112). From equations (112) and (C29)
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' (d_loge P*> - ]
\___\_.___,__.__ﬁ_—r_‘_\ MW u* '
SR e

(d loge p*) -0
on  df 1

From equations (85), (C5), and (110), log, 2p* = log, Op* + OW K‘nwa2

or

. 2 M, 2 u*w*2 gt
%p ‘ (l * v ana>exp . Mia f T*(k2)§+A(§;| (11k)

with exp (OW Khwae) ~ 1+ OW ana2 where

. . * .
> *)2 g
o¥ = - 0:6336(1 - X) ofu*) — (_* _ du*) (3 w* du*) .
0

2 * * * *
k . -~ O(P*)z o\T dr r dr
d2r* dT*) , 38 (dT*>2 )
0 d(r* dr* oT* 0 dr*'
2 ™ (u*)2
0.6336(1 - k) arx a_(owH)7 )2 2 (u* du*) <5 u* du*) .
- a _— - — — ——
k2 | ] Op* dr*' Op* 3 3 ¥ ar* o ¥ dr*
* *\ 2 -
ar*\ , 2p (ar | (115)
d(r*) ™ Aar* oT* o\ ar*

is obtained from the second-order terms of equation (85) upon substitu—
tion of the zero-order approx1mat10n therein.
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In terms of {, equation (115) becomes

_ 06336(1- do*\ [ dw* hm
oot felta (-5

0

3 (k2)§+A t) (a%) () g+a(t) (QT__;J d'c -
at? . ag

‘O“ 'g 1 4 112y 2 (fuﬂ) ( dw* m )
_— _— = L ) [-=— - 6 = p¥*up*
m OP* dt Op*EmOT' Wa Odg o at n prw +

> %z(kz)cm(c)o(z_z%:) -3 RS (3?)] " (116)

Integrating by parts, using equations (C33) and (C34), and neg-
lecting A(f), equation (116) becomes :

g

0.6336 [on| om* ot o 2§> 2¢ '
V= - = 3N, - 6N-k“> - 8N, — k"’ )k -
° K2(1 + k)°\D® E(p*)2< 1 2 3 ou* ]o
o [* Jara o N 2t 2'g
- »d 2 —= _Y[3N, - 6Nk - 8N, —— K“°|k°> af +
2m.L[; d d’;[)(p*)?] ( 1oTe 3 ) .

" * 2
0
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where
Tt e — - e 5 -
N o= (1- )1 - KBS F O s Py M- 1) - o
% 7k2Mwa2m
Np Mwazm (r - l)Prwa = 37 * ’ (118)
, N3 = Ej7 + (7 - 1)Prw§.nwa2m
Ny = E— 7+ (7 - l)Pr";_‘IM"a m
: y
As a first approximation put op* = on and assume
= S = o + kP8 s anct (119)
olp*) :
with o
-2
1 - P, *
Ag =1+ (22 - 1) O(b), T
(1 - k2)2
1 - (P *\-2 )
Ay = -2k° 0( b ) > (120)
(1 - x®)%
P olpp*) 2
2 2
(1 - k)

-

Equations (119) and (120) insure thatl oP*¥ =1 at’ =0 and that
oP* = Py end dop*/dg =0 at ¢ = 1. Then from equation (117)

_o¥ _ 0.6336 3. , CLut
| N el T KK Ay + AOAM)(I k ) +

(Aph3 + A1A5)(1 - kég)‘ + A2A6(l - kBCH (121)
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-where
By = (7 - 1)Pryg M2 1_‘m_k2 + (1 - wa*)(1 -mk2)2 ]
8 iy, 2
3
Ay = % 7 ‘- 8(7 - l)Prw;leae. r (122)

28 23
A5 = [é' - ??'(7 - l)PTwé]Mwa2

A= [ -2 0 - Denglug?

Then for § =1

) = e {70 - e € - ) -

| E o(—piTE] [%(3 + 26k2 - 171&*) X

y -1 L7 -1 (1-k2)(2+k2)]

6

2 Prya m

Pr (3 + 2x® - lr(k‘*)

0.6336(1 - X)2(2 kz)(l _
2k2m

(123)

The integral in equation (llh) remains to be evaluated. It is
necessary to assume some relation between p* and T* which, to avoid
too much complexity, will be assumed to be the simple relation p* = T8
where B 1is a constant whose value lies between 0.5 and 1.0 (reference 4,
p. 150). Furthermore, in many cases B = 0.9 (reference 14) so the
assumption B =1 or p* = T* will be made in order to simplify the
evaluation of this integral as well as to enable a more direct expansion
of all distributions later on.
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Equation (11&), with the aid of equations (lOl) and (96), then gives
for =1

E:%;* + F(Laog* - ap* 2(1:‘2; S 1)+ J(g)'} (12L)

where

J(C).= hm(w * wb*)g\ng

o F(£) at - hm( * - wa)[g?ma* +

F(1)o wbaf QCF(Q ) at + em( - %* f -2t [(g:l at +
sfzgz:iu/t.{:w * [: * 4 F(l u*i]k § +
(w0p* - w¥)xCr(e } [a)]" « | (125)

Upon neglecting all terms containing A({), the first approximation
to J(¢) is

J-(é.) =13¢) =0 | ‘ (126)
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while, neglecting terms containing the second and higher powers of A(g),
the second approximation becomes

2% - o %\ _
25(¢) = (wa* - %*)2.11(;) + <k_“la;k§i’b_> I(t) -

?(wa* - o) (%* - ;%*)ke'zg r(e) (127)

where

¢
J.(L) = 2R(L) + b 2p(t) at
1 + mt-/; »

, | (128)

3(8)

.
2 f k28 25(¢) at
0 J

Equations (124) for the pressure distrlbutlon, (101) for the veloc-
ity distribution, and (103) for the temperature distribution in terms
of the independent variable { represent the solution to the problem,
valid to terms in the square of the Knudsen number, provided the assump-
tions of constant specific heat, of constant Prandtl number and coeffi-
cient of viscosity, as well as of heat conductivity proportional to the
first power of the absolute temperature, are valid.

The solution (equation (124)) for the pressure is more simple than
Schamberg's solution in the sense that the present assumption p* = T*
eliminates the explicit dependence of the integral in equation (11k)
upon T¥*, Flgure 2 shows the dependence of O\y(l) upon k as given

by equation (123) for the values of the phy51cal parameters selected for
air in the section "Case of Air" and discussed there.

The explicit détermination of the expansions of the coefficient 7.
and of the variables &, A(f{), F(f), G(t), and so forth in powers of
Knudsen number is carried out in appendix D.
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FRICTION COEFFICIENT, SLIP VELOCITY, HEAT TRANSFER,

. TEMPERATURE JUMP, AND PRESSURE RATIO =

Friction Coefficient

It is convenient to define the friction coefficient Cr as

.
o = —2 (129)
Lo 02

a

O\

The expression for T is obtained from equation (50) which, on using

equations (81), becomes

e - '(uf’r*“* (i) (130)

From equations (89) and (90)

x40 4
dr* m da¢
Therefore
Trg = - :%U gﬂ; (131)
where
He = MH, (132)

Substituting equation (131) into equation (129) and using equations (79),
(80), and (81),

__2(1 - k) do*

Re
e “f km at

(133)
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where
Reg = n Rey, ' (13%4)

From equations (C21), (C27), and (C29) the value at the wall of the
inner cylinder becomes

Ree Cpq = u[i.+ (12" - 195*)Kne + (owa* - poop*)Kng®
e Cfa I
k{l + k- [F(1)/(1 - k)l}

Similarly, at the wall of the outer cylinder

(135)

th+ (105* - 10p*) Kng + (2<.ua* - gwb*) Knea
Ree Cfb = - . (136)

1+k- Eg(l)/(l - ki]

Since there must be equal torque on both the inner and the outer cylin-
ders, . Cfb/cfa = kg, as shown by equations (135) and (136). If

then b
i ,
Ree oCra = (138)
k{}_+ k - [5F(1)/(1 - gZI}
NS -
Ree oCep = ' (139)

1+ k - [;F(l)/(l - QZ]



NACA TN 2895 - 43

Slip Veloc1ty

~From e equations*(lel), (81),_(028),_and_(029), the slip velocity at

the 1nner wall is —

ua_—U 2 . 2
— ¥* ¥* = 3* »*
u * Kn_ + su % Kn_ w ¥ Kn_ + o Kne (140)

Similarly, at the outer wall it is

Do %K+ qu* Kn 2 = (1% [6) Kng + (% )Kn, (1k1)
u 1 e 2"b e - \1% I e p e

where o *, jap¥%, . %, and o * are given by equations (c30)

and (C31).

Heat Transfer

It is of interest to calculate the heat transfer between the rare-
fied gas and the cylinders.  If the dimensionless heat transfer gq* is -
defined by

hq,, )
) g* = o (1k2)
o leTwa :
where
S L o (13)

then from equations (53) and (81),

g = (1 - k)A* aT* (14k)
m dr* : .

For Pr/cp = Constanﬁ, A* = p¥; s0 using equations (89) and (90),

1 - k 4aT*

kmr* df (145)

q*:..
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From equation (145) and using equations (C22), (C27), and (C29), the
dimensionless heat transfer at the inner cylinder is

G* = lk;l a1 - Typ™ + (lTa* - Typ* lTb*) Kng + (2Ta* - Typ* ET‘D*)KI‘:;2 +
2 '
R
(l“)a* - 1%*)2 Kne2 + 2(2(1)&* - Ewb*) Knezj} » (146)

Similarly, that at the outer cylinder is

1 -k ' 2
a,* = o 1 - Tgp*+ (lTa* - Typ* lTb*) Kng + (ETa* - Typ* 2Tb*) Kng™ +
2 2n '
21 - k% - 2km-G'(1)
(y - 1)Pr Mya S > 1+ 2(1%* - l‘bb*)Kne +
[1 - x2 - F(1)]
2 2 2
(lwa*.- 1%*) Kn.< + 2(2&&* - 2(%*) Kne]} (147)
If
g* = oq*(l +.19* Kng + oq* Kne2) (148)
then
2 .
' ' 1 -k -2m - ~G'(0)
1.-k 2 0
Oqa* T Tkm . 1- T‘v_lb* + (7 - l)Prwa Mia (1k9)

f- v gl
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Temperature Jump

From equation (C27), using- equations (C29) and (81), the temperature
Jump at the inner cylinder is

Ty - Twa | 2
= = 1Tg* Kng + Tg* Kng , (151)

wa

~ Similarly, the,temperafu:e Jump at the outer cylinder is

T, - T ,
b wb 2
—————— ¥* ¥*
1T Ko + oTp* Kng , (152)
wa

‘The expressions for T *, (Ty*, 2Tg*, and ETB* —are given by equa-
tions (C30) and (C31). -

Pressure Ratio

The ratio of the hydrostatic pressure at the wall of the inner
cylinder to that at the outer cylinder is obtained from equation (11%),
upon using equations (121) and (81), as follows:

Pb _ 2 I Meam M1 Lu(e) ag
2= [ e 1)) ep =% fo PN (153)
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For the case p ~ T, equations (124) and (81) give equation (153) the
form ' : '

Py,

p—a- = |1 + Kn§2 O'\F(lj exp E F(ljz{[l - k - bk m)

2(1 - X2 - 2m)F(1) + (k2 - 1)F2(1j (wa*)2 4
[-21 - %@) + 21 + ¥@)m + (1- 2+ 2m)P(1)] 2wy ey +

(k2 - k° - hm)(wb*)g + J(l)} | C(154)

In general J(1) is a small number and can be replaced by (E)J(l), which
. is given by equation (D41). From equations (154) and (C29)

1

1 - M2
(p—b-) = exp > - : 5 Kl -k l.Lkzm) +
2 o1 - ¥2 - AOF(].Zl

2(1 - x2 - 2m) OF(l) + (k-2 - 1) OF2(1) + gJ(lﬂ (155)

For the case of equal wall temperature, T ,,* =1 and, from equa-
tions (D23) and (C29), OF(l) = 0. Therefore

5 .
y .
l(?> - exp L MW& . 5 El o k)-l- _ hkgm) + (2)J( lZI (156)
. o\ a 2 OT](l - k2) '

Or in terms of ¢ '

1 7 2 o
(ﬂ):exp v K1+i€,+i€2+.l.e3+leh+...)-
Py 6 ' 2 10 > T

0 on

(7 - 1)Pr Mya®e
T 2 (l+-3-e +l—1§ 52+‘. . ) (156a)
120 8
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From equations (C28) and (154), using equations (81), (c29), and
(C27) and neglecting the first-order corrections to oF(1) and oJ(1),
~ ——- dt-follows_that _____

2
"Mia

* = _ (1_k”-hk2)+2(1-'k2—2)F(l)+
1Pb Oql-kz—oF(lﬂg{[ " » "ot

(k-2 - 1) OF2(1E] (lu)a* - % 11]*) + E2(l - k2) + 2(1 + ¥)m -

: (k'2 -1 - 2m) OF(:LZ] 1op* - %ln*,gJ(l.)} | . (157)

'For the case of equal wall temperature OF(l) =0 and

pb*_—__zl_w_wi_{(l_kh_ hk?—m)(w*-i T]*) +
b On(l—k2)'2- _ 1% " 31
2E1 + k% + (1 + k)m ¥ -%-ln*'gJ(l)} (158)

1Pp* = +—€+16€ +%'e3+$€u+ «)(1%*"51”*)*
%(l+€+2€2+%€3+%€h+ -)l"l)b*+
2
e (7 - L)Pr Mya®n 3 . 143 -2
% N Grserame (1562)
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The use of effective values ug and A, and hence of an effective.
Reynolds number Re,, similar to the effective Knudsen number Kng

"defined by equation (109), is a natural consequence of the form of the

expressions for the skin-friction coefficient, the velocity of slip, the
heat transfer, and the temperature jump. The use of these effective
values gives expressions closest in form to those of Schamberg and agrees
with his when the functions F and G' are zero. Since 1 as deter-
mined in appendix D will, for equal wall temperatures, increase with the
Mach number Mg, and "curvature" 1/k as shown in figure 3, so also

will pe and Ag.

The limiting values of all expressions when k=1 or € —> O
agree exactly with the plane Couette flow solution of reference 7.

CASE OF AIR

Assuming that the gas is air and that the cylinders are made of
metal such as aluminum or brass, the required physical constants are
given as follows: .~

For the ratio of the specific heats take

‘

y = 1.400 : (159)

a value which is reasonably accurate and has the advantage of computa-
tional simplicity. -It also agrees with the value given by the kinetic
theory for a diatomic gas whose molecules have five degrees of freedom.

The kinetic theory gives, for the Prandtl number, Pr = 47/(97 - 5) =
0.737 at 0° ¢ for a diatomic gas with 7 = 1.400 (reference k4, p. 182).
For air, various values have been used in the study of the laminar bound-
ary layer in compressible flow by different investigators. The value
Pr = 0.725 was used by Crocco and Conforto (references 15 and 16) in
1941, Pr = 0.733, by Brainerd and Emmons (references 17 and 18) in 1942,
Pr = 0.750, by Schamberg (reference 3) in 1947, and Pr = 0.715, by Cope
and Hartree (reference 14) in 1948. The value Pr = 1 was also used by
several writers (references 19 to 21) for mathematical simplicity. In
the calculations to follow the value used will, be

Pr = 0.715 ' (160)

as suggested by Cope and Hartree in 1948, based on the latest data for
air given by Kaye and Laby (reference 22), 1941.
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Maxwell's reflection coefficient o 1is given for air on machined
brass by R. A. Millikan (see reference 4, p. 299) as

The accommodation coefficient a has, according to M. Wiedmann
(see reference 1, p. 658) the average value of
)

a = 0.900 ) (162)
for air on metal. This yvalue is also used by Schamberg (reference 3).

With these physical constants, equations (64) give the following
constants for slip flow: .

a; = 1.253
c ' = 2.498
e, = 0.251 L (163)
eg = 1.911

eg = -5.h91 |

It is noted that, since air is not a monatomic gas, _cl' is used instead

of Cl'

For the case that p ~ T,

. B=1 4' (164)
On using equations (C29), (159), and (160), equation (D16) gives

1
ol

N =

0.143 L+ k2 1\ »
(- To*) * 1 - k2(} 2 %)Mwa (165)
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For the case of equal wall temperatures,

(166)
oF(1) =0

Similérly, using equations (C29), (159), (160), (164) to (166), and (p28),
equation (D9) gives

> 1 Mwau 0.02045 |1 - 8k + x* .

o L a- ¥2)2| 21 - ¥3)2 WL - K¥)m ©°

S0k L3 (1ey)

‘The variations of both én and gn for various values of the

ratio k of the radii of the cylinders at various Mach numbers and
equal wall temperatures with the ratio of the specific heats 7y = l.hOO,
Prandtl number Pr = 0.715, and the viscosity index B = 1 are given .in
figure 3. ~

It is seen that for 'k > 0.40 and M < bk, én and gn have prac-

tically the same value, and therefore equation (165) can be used for
calculating gn instead of -equation (167). ' '

At smaller values of k and higher Mach number. gn < én; that is,

the correction tends to decrease the value of 1.

From equation (156), on using equations (Dk1l), (159), (160), (164),
and (166),

2
log. lp * = fva _0.7000 (1 Sk 4k2m) -

€ 0b On (l-_k2)2
b ' :
2 2
Mya 0.2002 _ L1+ k) + 2k°m 1 -k (168)
on? (1 - %2) 1- K2 m ‘
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The: variations of épb* with the ratio k at varioﬁs Mach num-

bers and at equal wall temperatures with 7y = 1.400, Pr = 0.715, and

B =1 are given in figure 4. It 15“5&55‘EBEE*EEE"ﬁzéégﬁfE‘fé&is“—gggg- _
increases rapidly with the curvature 1/k, especially at high Mach

numbers.

On using equations (C30), (166), and (163}, equation (1k0) gives

"1.995

u ¥ = - — , 16
e k(1 + k) | (169)
Similarly, eqﬁation (141) gives
' _ 1.995k
19" = T+ o (170)
0'b

The variations of u_* and lub* with the ratio k are given in

17a

figures 5 and 6, respectively. It is noted that lua* is independent of
o * - *

the Mach number Mwa’ while 1Y% depends on Mwa through oPp ™ - As

k decreases or the curvature increases, it is seen that wu_* becomes

a
more negative or the slip velocity at the inner cylinder increases in
magnitude while the slip velocity at the outer cylinder decreases.

‘Equations (C29), (166), (159), (160), (163), (D31), and (C30) give

- 0.569 [ 2 1\, 2
T * = - . +
e k(e O\ - K2 m) 2

0.163 1+ k2 K2 l_l M,

+ -

k(1 + k)(1 - k2) M1 - ¥¥)m (7 _ x?)2 Qmil én
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and

o % = 0:969(1 22 \Mya® _
' 1+ k\m g _ g2 oPp
0.163 [— 1+ ko kP 1| M (172)
(1+x)(2 - k2)l5§1 -x)m (1 -%2)2 o2l |
< o Opb

The variations of lTa* and lTb* with the ratio k for various

Mach numbers and equal wall temperatures with 7 = 1.400, Pr = 0.715,
and B =1 are given in figures 7 and 8, respectively. It is seen that
as k decreases (T ¥ becomes much more important than (Ty*, the

latter going to zero w1th k for all values of M.

In figure 8 the anomalous behavior of the curves for small and large
values of k dis due to the large exponential values of Opb* for

increasing Mach number at all values of k exceﬁt in the neighborhood
of k =1, In fact, for k =1, Tp* =0. 2845Mwa » independent of p,*.

This is seen upon expanding equation (172) in powers of ¢ =1 - k° . and
letting ¢ —> O.

" From equation (D10), the variations of |n* with the ratio k for

various Mach numbers and equal wall temperatures are found and plotted
in figure 9. Since n* >0, it follows from equations (C28) that 7

increases with the Khudsen number. ,

Making use of equations (DU41l), (159), (160), and (166), equa-
tion (158) gives

2
x = 0.700 1 - kM - 4xPm Myg o o 3 .
Pyt = Y ‘ ( 1% - M )
1°b (l _ k2)2 On - -
. oo ~L* K2+ (1 + k%) Mea®
_ 2.000 1Wp* +

(1 - k2)2 N

. i 2 Y '
0.2002 — % 5(1 + k2) + ckm _1-kfwa n¥* (173)
1



NACA TN 2895 53

The variations of lpb* with the ratio k for various Mach num-

bers are given in figure 10. Since lpb* < 0, it follows that the
pressure ratio” ﬁb*"decreases—as~the<rarefacbion—o£-the-gas,—that_is,,_

the Knudsen number, increases.

From equations (135) to (139) and (146) to (150), the variations
of Ree cha and Ree chb’ lea and leb, Qqa*‘, and qu* with
the ratio k are found and plotted in figures 11, 12, 13, and 1k,
respectively.

) A \ _

The zero-order values of both the skin friction and the heat trans-
fer are observed to increase in absolute magnitude at the inner and
decrease at the outer cylinder with increasing curvature.

Upon using equations (159), (160), and (166), equation (123) yields

2
oW(1) = i—;—irj"—;é (1 - K4) + E- O(pb*)ﬂ Eo.136‘- 1,660k +

0.169k" + 0.06061 - k?)(2 + k%/ﬂ} | (17%)

The variations of O'II?(l) with the ratio k for various Mach num-

bers and equal wall temperatures are given in figure 2, It is seen that
oW(l) > 0, for sufficiently small k, and it increases rapidly as k

decreases. It follows that the effect of the Burnett terms in the dif-
ferential equation tends to increase the pressure ratio pb*.

. The coefficient of the last term in equation (123) is plotted.

against k in figure 15. For the case of equal wall temperature, this
term becomes zero.

Consider in more detail the special case

k = 0.5 ' (175)
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From equations (C33), (C34), and (113)

9""""“\
jol)
N
] O
v | 0Q
[0}
o}
. *
o—
1]

CEAR
o\t /o
da*N - L0.k6
o\
(de‘;*) - 2.19
o\dg< /o
2%
(d ‘é’) = 0.55
0™ /1 ‘
(9?1) = 1.30
% ‘o
(ﬂ*) - -0.81
o\& Ay
asrx\ -
=) = -3.90
o\at™ /o
(£ -
o\at< /3

3.32

55

S (178)
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Equation (C32) gives then

o = 5.46

dib = -0.16
) e (179)
OZa = 10.0

7o = -0.1h4

o%p = -0.1%

and equation (C31) gives‘
2@a* = 17.8
énb* = -0,08
r (180)

2Ta* = -27.0

2Tb* = 0,38 _j

From equations (D9) to (D11), using equations (177) and (180),
N = i.17(1 + 0.96Kn, - 5.0Kh62) (181)

Neglecting the rarefaction correction to ln ‘and F(1), equations (135)
and (136) give the friction coefficients

Reg Cr, = 5-32(1 - 2.79Kn, + 17.9kn,?)

> (82

Reg Cgp, = 1.33(1 - 2.79Kng + 17.9kn,2)
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Similarly, equations (140) -and (141) give the slip velocities

—

———_—— - — — — ey - — = ———
B —— = -2.67Kn, + 17.8Kn_°
u : . (
2 - 0.24Kn_ - 0.16Kkn 2
U e e
-

Equations (146) and (147) give the dimensionless heat transfer

-

g, * 1.85(1 + 10.5Kn,_ - 83.7Kne2>

*

a o.59(1'~ 1.3Kn, +‘8.2Kne2)'
-~/

Equations (151) and (152) give the temperature jumps

Ta - Twa 2
= 3.73Kn, - 27.0Kn,
Twa
>
Ty, - T
b~ Wb 0.42Kn, + 0.38Kn 2
wa ' J
p ,

Equations (C28) and (15k4) give the pressure ratio

;3 - 2.77(1’a 6.3kn + . . .)

a

57

(184)

(185)

(186)

The variations of 7, Re, C and Re_ Cp, (ua - U)/U and

fa

up[U; Gg* and @y, and (T, - T,.)[T,, and (T - Tyo)[Twa  with
the effective Knudsen number Kn, for Pr = 0.715, 7 = 1.400, B =1,
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Typ* =1, @=0.900, o=1, k =0.5,and M, =2 are given in fig-

ures 16, 17, 18, 19, and 20, respectively. Similar results could be
" calculated and plotted for any other choice of the parameters but the
enormous amount of work required to do so for any range of parameters
does not appear to be justified at present. This is especially true
in that no experimental data exist for a check.

The effect of the Burnett (second-order) terms or the Kne2 terms
"in equations (181) to (185) is seen to counteract the effect of the
first-order slip terms or the terms in Kn, in all cases except the
temperature jump at the outer wall. The latter would show the same

behavior if In and F(1l) were not neglected.
SUMMARY OF RESULTS

A study was made to determine the effects of variable viscosity
and thermal conductivity on the high-speed slip flow between concentric’
cylinders. The results are summarized as follows:

1. Satisfactory estimates of the effect of variable viscosity and
thermal conductivity upon the velocity and temperature distributions
were obtaipned from Schamberg's solution for constant values of these
coefficients by basing the friction coefficient and the coefficient of
heat transfer on the effective coefficients pg = nuy, and Ay = i ,.

These effective values of the coefficients He @and Ag, in the case

of equal wall temperatures, increased with the Mach number M and the
"curvature" 1/k. .

2. Only the expression for the pressure ratio' pb/pa was signifi-

cantly different in this case from Schamberg's solution with constant
p -because of the use of effective values of Reynolds number and Knudsen
number.

3. The effect of the Burnett terms in the differential equation
was more pronounced upon the pressure ratio pb/p&. This effect

increased with the effective Knudsen number Kng, the Mach number Mwé,

the temperature difference (Twa - wb)/Twa’ and the curvature l/k; it
" was measured by the factor OW of equation (123) as used in equa-

tion (124) and plotted in figures 2 and 15. Effect of the Burnett
terms could best be seen by an experimental determination of the pres-
sure ratio Pb/pa'

1
i
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L. The effect of the Burnett terms both in the differential equa-
tion and in the boundary conditions tended in all cases considered to
cgpg&gggg&_ﬁhg_ﬁirst;order_effect_of_s;ip—veleei%y~and—temperature‘—‘ T T
Jjump on the boundary.

5. For equal wall temperatures the effect of the Burnett terms
was to increase the pressure.ratio and to increase the skin friction
on and the heat transfer to both cylinders. :

6. The curvature effect on the behavior of the friction coefficient,
the slip velocity, and the temperature jump as k decreased was such
that they all increased at the inner cylinder and decreased at the outer
cylinder. When k approaches unity, the values of all quantities reduce
to those for plane Couette flow.

University of Washington
Seattle, Wash., December 20, 1951
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APPENDIX A

SYMBOLS

’

v adiabatic speed of sound, equation (34)
a determinant of metric tensor, appendix B

radius of inner cylinder

a) numerical constant in boundary conditions, equations (6lk)
aij fundamental metric tensor, appendix B
A constant of integration, equation (87)

Ags Ay o v A6 numeriéal»constants, equations (120) and (122)

_ 1 90p
P ox
Aij ’ tensor
Kij ‘nondivergent symmetrical tensbr associated with Aij’
equation (21)

b ' * radius of outer cylinder
b, b, numerical constants in boundary conditions; equations (6k4)
B constant of integration, equation (87)
< mean molecular speed, equation (38)
cys ' ‘numerical constants in boundary conditions, equations (64)
C : constant of integration, equation (9k)
gCO’ gC1 constants of integration

Ce friction coefficient, equatjon (129)
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Dx

€17 €ps « - - B,

ij

Kl, K2,.. .K6'

61

specific heat at constant pressure

_specific heat at constant volume

constant of integration, equation (9u)

convective time derivative of hydrodynamics,
equation (4)

covariant derivative operator, appendix B

numerical constants in boundary conditions,
equations (64) :

symmetric rate of deformation tensor, appendix B

internal energy per unit mass of gas, equation (3)
funéfion,'equation (98)

function, équatioh (102)

component of external force per unit mass, equation'(E)

function, equation (100)

‘function, equation (104).

- gap between cylinders (b - a)

enthalpy per unit mass of gas, equation (9)
function, equation (D27)

funétion, equation (125)

numerical constants of stress tenéor, equations (27)
and (28)

Knudsen number, equation (41) (1/L)
effective Knudsen number, equation (109)
mean free path of gas, equation (39)

characteristic length of flow
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oo

, equation (89)

M Mach nupber

N5 Ny, N3, N, numerical constants, equations (118)

D static pressure of gas, equation (5)

Pij componen% of stress tensor, equation (2)

Pr ‘ " Prandtl number, equation (35) . (cpp/k)

qy | component of heat-flux vector, equation (3)

95 - rth-order approxiﬁation to a9y

qi(n) nth-order corréction‘to od;» €quation (14)

Q heat received per unit mass of gas, equation (8)
r radial distance ffom center of concentric cylinders
R gas constant

Re Reynolds number

S } entropy perluniﬁ mass of gés, equation (9)

t time, equation (1)

T absolute temperature of gas, equation KQ)

Tw | absolute temperature of wall

u, v, w components of .macroscopic velocity in x, y, and

z direction, respectively

uy component of macroscopic velocity, equation (1)

U - surface velocity of inner cylinder (amwa)

X, ¥, Z Cartesian coordinates of physical space

b4 ‘component’ of Cartesian coordinate of physical space
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X, 2 functions, equations (75) to (78)

a _ﬁ;_;_%____ accommodation coefficient, equation (58)

B viscosity index, equation (56)

¥ A ratio of specific heats of gas (Cplcv)

piz Christoffel symbol of second kind, appendix B
5 thermal conductivity index

8 3 _ . unit tensor, equation (5)

A function, equation (93)

¢ =1 - k%, equation (D18)

M ' constant, equatibp (91)

61, 62, P 95 numgrical constants in heat-flux vector, equa-
tions (29) and (30)

) ‘ divergence of velocity, appendix B

P ‘ coefficient of thermal conducti&ity, equation (20)

u cogfficient of viscosity, equation (19).

o S density of gas, equation (1)

g - Maxwell's reflection coefficient, equation (57)

T , _ shearing stress

Tij component of viscous tensor, equation k5)

rTij rth-order approximation to Tij

Tij(n) nth-order correction tov OTij’ equation (i3)

¢ angular coordinate in cylindrical coordinaﬁes

) dissipation function, equation (24)

63
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<2

Dya

w*

€l

- Subscripts:

0, 1,2, ... .

a, B, i, s k,
e

wa

Superscripts:

O) 'l’ 2, . . .

a, B, i, j, k,

NACA TN 2895

function, equation (115)
function, equation (121) (OW/ﬂz)
angular vélocity of inner cylinder

diménsionless angular velocity, equation (95)
numerical constant, equation (C5) .
variable, equation (89)

variable, equation (90)

in front df any symbol, order of approximation to
boundary conditions

l, m covariant vector and tensor -indices, appendix B .
effective value

conditions at wall temperature Twa

indicates covariant differentiation, appendix B

in front of ény symbol, order of approximation to solu-
tion of differential equation, equation (110) .

’

1, m contravariant vector and tensor indices,
appendix B

exponent in viscosity-temperature relation
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APPENDIX B

~ TRANSFORMATION OF EQUATIONS OF MOTION TO POLAR COORDINATES

The equations of fluid mechanics have been written in Cartesian
tensor form in this report as in references 1 and 3. However, the
problem considered had to be set up in cylindrical coordinates and
Cartesian coordinates were abandoned in the process. In order to take
into account all possible systems of curvilinear coordinates, it is
best to express the equations of fluid mechanics, including the Burnett
terms, in general tensor form for any space with a metric form of the
type (reference 23)

2 _ i 4.9
ds€ = a;; dx* dxJ

By the principle of covariance all that one has to do is to express
each term in the equations as the proper invariant (scalar, vector, or
tensor), which reduces to the known form when the coordinates are
Cartesian. The method and notation used are to be found in reference 23.
The distinction between superscripts and subscripts is necessary.

There is no difficulty with the equation of continuity. It ié
almost in the form of a scalar equation already. Redefine the comoving

time derivative

D .

where Dy 1is now the covariant derivative operator. For any scalar such

as p the covariant derivative is the same as the ordinary partial deriva-
tive. The divergence of the velocity is the scalar

' duk 1
@=Duk=uk = ,pk @m_ -

k7 )k 3K T km ﬁaxik(\rauk)
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In other words, take the covariant derivative of the contravariant
velocity vector uE  and contract the result; a = laijl’ the determi-
nant of the metric tensor 8y 3je By definition the covariant derivative

is

~

Where the ﬁerms f%m .are the Christoffel symbols of the second kind.

The continuity equation is then

22 + pe =0  7
v Dt
or L (B1)
’ dp k
S; + (pu )|k 0

for, when covariant differentiation becomes ordinary differentiation,
these expressions reduce to the known equation, equation (1) (refer-
ence 23, p. 196).

Similafly, the momentum equation is a vector equation and the energy
" equation is a scalar equation. All that is needed to give them general
tensor form is to place the indices properly and to use covariant dif-
ferentiation., They are obviously

3
p—— - pF, + —— + T =0 (B2)
Dt k dx k |Ja
p_EE + DO +'TaBu + % =0 (B3)
Dt olB fo

which replace equations (6) and (7). ,
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Expansions (13) and (14) remain the same as long as it is borne in
is a covariant

vector. Equations (19) and (20) for the secomd= order approximations —

remain the same:

ou;
1715 = -2 —
Oxd
lqi = _X é‘l‘_i
ox
ouj
provided §_l is redefined as the covariant tensor
- X. . .
J
du; 1
i 1
3%, = Cid §(ui|j * ujli) - 39%;

One must use ajj here as it is the fundamental tensor of the space;

ald is the fundamental contravariant tensor, and 9j J

mental mixed tensor.

By continuing this process the expressions for the thifd-order

Burnett terms become

=

(@) o w2 WMLy )+ agy) - 2ao Lfym B
Tij Ky > @e1J+K2 o 2(/_\1|3+A,JI1 - 3A la 8ij -2u li Yjlm * W |5 Yilm) *+

— ——_mind_that each Ti-(n) is a covariant tensor and qa; (n)

67

is the funda-

1l x m m m ) 2 _km
3 W Wk 845 - (ei Uniy ey Uplg) * 3T gy Byl *

, .
u= oL 9 (km gz o7 L
E DTEHJ axk<a S me>a ] A oo DPT (pli le TPy ‘TH) B

1 gkm S LN
3% Pix Tl aiﬂ 5 2<T|i 3 73% Tk o aij) *

2

.2 ‘2
2) " 2 9
q;(2) =6, ESoTyy + 6p T[ —=(OT) + 2uk; T|] + 63 ’;—P

al

2 2
us x K k
Oy 5 ik * 95 57 Tk €%

Pig €75

k

+
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where the covariant vector A; = Fj - i ég?, Ti = QZT’ Pji = 927,
' ‘ 0 dxt ox?t oxt
and
)
Ty —ok k&

Ay

In order 'to obtain equations (54) to-(56), it is necessary to intro-

duce plane polar coordinates r = x1 and ¢ = x°. The metric form is

ds® = ar® + r2 agl

11 1, app = r2 = —%5, and all other values of a;; are
a

80 a;; =a i3

r2. The only nonvanishing Christoffel symbols are

zero while a

Denote the physical components of the velocity vector by w, and u¢,

) u
where uw, = u; = ul, u¢ = rul = ;?. Similarly, the physical components
of the vector qi' are q, and q¢ and, of the stress tensor (refer-

ence 23, pp. 145 to 1k6),
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Then

==+ ?; + % - (BY4)

and the equation of continuity beéomeq

3 19 19 )
5 + = S;(rpur) + = ga(pu¢) =0 (BS)

Written out, equations (B2) and (B3) become equations (31) and (32)

in covariant form DK = a¥® Dy»
Duk ’
= _ - op® a (2) _
P 5r - OF * Ppy - 2D (peka) + %7, 0. (B6)
o LBy pe - 2ue® 4 - DG(XT' ) + (2)aB + q(z)a =0 (BT)
Dt Bla la a|B e

Du
The components of BEE become, using covariant derivatives and the

nonvanishing Christoffel symbols,
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Du 1 _ aul k _ aur aur E-Q Bur u¢2
ﬁ‘¥+uwﬁ$ﬂ%$”r$f7
Du du ou du
Mo _ %Mo, Lk P 2 e
Dt ot T el T F ot " ar(ru¢) T op

' d : 3 .
Let Fy = Fp, Fo = rF¢, Dlp = 35, and Dop = E%u The covariant com-

ponents of ejj are

Since

1% Cue Ty Y

oug dug
g1 Tt 5 Yelz T T\SE- + Ur
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it follows that in equation (B7) the dissipation term is

‘ - : co— — —_ - — -
iy =(?3)2+;;5ﬁ+332_3@)+ 1w\ 1 2
k|1 or 2\r ¢ or T r 3¢ T 3

Consequently, the eQuations of motion'andvenergy-in two-dimensional
polar coordinates are

du,. du,, u¢ du,. 'u¢2> dp d <Bur 1 >
g — s £ 2 ) poF, + B0 2 (E L) -
p<at+ur8r+r8¢ r )T T T RS T3

p(%-{-uré%.{-u_ﬁ%.f%)_pl? +i.a_
dt dr T df ry

dud- S dur w .
22| (1% u.r.-a)-mﬁ oug g\, o (@) _
- 8¢E<r 5 - = 3 ®:| — (r v + - r> D" Ty, | 0 (B9)

: 2 d 3 2
,pa_EJ,ur_a_E_J,u_ﬁ_ag)J,p@_g“(:z) +£(£i+ﬁ_i¢£ .
Jt or r of r 2\r ¢ or r
19w\ 1 2| 13f o) 19 aT>
e + —— -9 - = TN =) - = — — ] +
Y r 3 T or or r2 g\ ¢

[(2)k1 uyp + q_(2)ka . : (B10)

For ©® =0 and p = Constant these reduce to the well-known equations
for an incompressible fluid (references 12 and 13). It still remains
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to find the components of qk(2) and Tkl(2) and substitute into these

equations. For the former the result is immediate:

2 3r . u2l2 2 ou. 37 2 9ug p
(2) = o 2L Bole 2 Lol e _¥YOoL
%y % m@8r+.62 QTE’ Br(gT) ¥ 281' 3r | T or og ¥

u2lfouy - \3 a Ju 81;1 u-)'
we|(dr J1g\op, 1 Opf1ur oup ug
63 op (ar 3®>8r = 6;25(1' op T r:|+
32 du, 1 d
Gl‘ﬁaur.;i ur_i.j_u_r_li@ +
o [or2 r or r2 of 2 30r
(e N )
dI'LBr 3 /or 2r og\r op or r

2 2 o
FONPLIEE LE%Q(@T)+2<EE_%>§+
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A longer, more tedious calculation leads to the stress components

1 ¥ w2 f23par 1 dpor w2 e(arr)2 1@ aT)2
;J)*“ﬁ(iaa';ea‘m”‘ﬁﬁ“m T3 o

(@) |y w2 1w, ur 2 u2(2 O oA 13
T¢¢ ! e(r6¢+r 39 +K2p3r23¢ 3 r 3 or

2|4 oy, o ug\2 d ug\2  Ju.fou }
pIL T L T U (1 O ug\e owfour e
ke ?I;(Br r of * r> (r op r ~ dr \or 3@ +9@

Tr¢ = T¢r _

3 Y du. 3
Y e s A T L R R _“¢._ﬁ>_
2K1p@<r’8¢ +Bi‘ r>+K2p2(r~B¢ +rar) 2 3}6 Y +Br T
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Since for the symmetrical case considered in this report u. = 0

and all partial derivatives with respect to ¢ vaniéh, e = 0,

Ay = - %%E—, and Ap = 0, it follows that these expressions simplify.

considerably, becoming simply

12 dr r aré r dr
2
2 u2 dpar , 2 " d‘I‘>2 , '
g, BB, 2k Rl : Bl1l
3 " poT dr ar ~ 3 2 pT \ar (B11)

T
¢¢ dr\p dr pr dr dr Tr r
L u2(du¢-112)2+£1( P_EREQ_@_
12 p \dr r 3 3 P r dr dr2
2 2 a2
1 K B dp dT _ 1 K5 E_.R(§2> (B12)
3 pel dr dr 3 pT \dr
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Equations (B8), (B9), and (B10) reduce for this symmetric case to

2 )
g™ ap  drpp 1 2 (2)
-pr+dr+ dr +;(rrr T Tgg )=O

a ?u__zz)+g 3*2-1‘2)-0

dr dr r r H r r -
du u, 2 | . -

u<__2__¢) PIim ) g
dr r r dr dr/
. . du, u
But 7., = Trr(2)’ Trg = Tr¢<l) ) —“<dr¢ ) ;T>’ T8¢ = T¢¢(2)’

qQ. = qr(l) = -\ g%, and dy = q (2) in this case, so these dre pre-

cisely equations (47) to (49) while: equations (B12) and (B11) agree
with equations (51) and (52). No second-order terms occur in equa-

tions (50) and (53) since Tr¢(2) = 0 and qr(e) = O0." The second-
(2) v .

order term for q¢ does not occur because its derivative with

respect to @ is zero in the problem considered.
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APPENDIX C
REDUCTION OF BOUNDARY CONDITIONS TO DIMENSIONLESS FORM

Making use of equations (79) to (81), the boundary conditions,
equations (71) to (74), can be written in dimensionless form as follows:

2
ng® d * — n* -
¥ = 1+ 8y ———|r (E—EJ w+(a) Xg* B (c1)
a

(Ta.* )1 /2 dr*\r*

(Tb*>1/2 by 1 * “b )2 _ .
2
Ta* S 14 .\ ug* (%T*) T+ (“a*) Za*EEQ - (c3)
. (Ta*)1/2 ar* /. (Ta*)g
ey . 4
T * = Ty - 1 (Tb*) ub*/‘,iT*> T + (+")° 2 %@ (ch)
T ,*Pb* ar*/y (pb*)g(T *)2
ﬁhere
_ Y2 T, _ Q- K)y1/2 Mg 6 796(1 - k)K ' (o5)
ap, (T{;a )1 /2 k Re, . Tva

using equation (41).
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The functions Xg¥*, Xp*, Z5*%, and Zyp,* are obtained from equa-
tions (75) to (78) by use of equations (80) and (81) and are

X * = aexa A
% T RTU
.2 ar* d fu* 9 far* u*
= - 2T % - g (v o2& vt
6@ {dr* dr* r*]} 5 167 )(dr*> l:* dr*(r*ﬂa B(dr* r* Jo B
8 1 dp* | u* dT* LD 2 da fu*
5 e E* ar* * dr*(r ] ) _(r* ax) "8 ™Mia E* Erz(r_*]
o a
xp* = 2K
RT, U
) i __ dT* u* 9 ar* u*
{dr*[ dr* } 5.167 dr* l: dr*(r:l - g _; r_‘; B
R T
15 o p* dr* ar*\r*/|y
) c6
- | F( )
a* = .
RT,4
=ely%zr*r*i(:_*)2+_7Mw2T*u* ldT-)(- .
a8 dr* \r¥* a dr* r* ar* /o
2
S BeEEy 1 a2r+ 2ffr .18 \1 ar*| -
(38 lh)(dr*)a l)-lr Ta* (dr*);J -t 7Mwa KE * 7 v )1‘* dr*
a a
2
al
Zb* = Zb
RT, 42
' 2
- 4 E’: 1 1 4dT*
17M¥n’8.2T e dr*(r*) b 7MW52T ¥ Ju* ﬁ(}‘ ] + e6Tb ;.: E;)
o, - BY(am\ 1 g e
8 14/\ar+ P (ar*)2 .
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On using equations (89), (90), (91), and (C5), equations (C1)
to (Ck) become, respectively,

0.79681(1 - k)
ua* =1+ 1 Cﬂb*> Kn_ + ia Khez' (cT)
m(Té*)l/e at /oy
S 1/2
0.796a; (1 - k)(‘l‘b*) - N ‘
u* = 0 - < ) Kne + X, Kng® - (c8)
kT * py* dt /1

0.796c, (1 - k) -
T, = 1+ - 1/2 <§T*> Kne + Za.»Kne2 (c9)
k(T * ) & /o
0.796¢, (1 - k)(Tb*)l/2 . o |
Tb* = wa* - < ) Kne + Zb,Kne2 (c10)
mTa* pb* -.dg 1

where

Kn, = nkn_, (c11)



NACA TN 2895

and

0:6336(1 - K)%(1g%) 2 xa*

9

X = -
Kon?(1,%)2
_ 0.6336(1 - ¥)2} 5., a%w
k2m2 (Ta.*) 2 6 at 2

w.a*(9 ox 4T 5 aT*- 5
Rl

. 0.6336(1 - k)z(ub*)exb*
2

= 22 (Ta*)E (pb*)

%, =

_ 0.6336(1 - k)2 | 5 ., d%x
- (Ta*)2 (Pb*)2 at?

s _ 0.6336(1 - K)2(u )P zr

k%2 (%) 2

2
_ 0.6336(1 - k) e M 2p x
ke_me(Ta*)e va “a

mig ¥ (1 aw* (1
= M 2!11 *¥ —, [
1 E we a¢ <1l+

5 _ 0.6336(1 - ¥)2(up¥)3z,*
A

- _ _0.6336(1 - k)? 2 2 *
- 33 ( k) {elymazr*(%) + k238<.d£*.> - -]% keT* d2T +

K2m? (Ta*)2 (Pb*) 2

m“b*‘l 2T dm*. X dT¥ '
TEyMW& *m*§—+ (ﬁ-& e6)k2‘11*;%}
€

because of equations (C6),

-<u63u-ie>"“’ aTx 8 g dux

2, d¥ ‘
8 ag "8ag g Ma? d§>§=o

2 2 ;
Aot o f3aTXN2 1 aPrx
dg) * eS(dg> T

(log, p*) -

at at " 15 at d§

- fu.g3y - 2 gt amr 8 g dexa ]
< *-% B)dg X T aa (log_e 7

r(cm)

, aT* 1,18 \arx
RS B dc]}
. §=O

G

(89), (90), (91), and (95).
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From equations (102) and (98)

2 _ n+l
PO =0 =) S gmir e (€13)
n=1 *
' . n+1l - .
o) =y L EREOT ma) - ama]] (o)
: =i n. , .

" where the prime denotes the derivative with respect to ¢. Equation (93)
gives

F'(0) =0 ‘
- (c16)
F'(1) =0

g (c17)

MQ=%-1 | | (c15)

Therefore

F'(1) = hk2m2<-L?])—* - 1)

and from -equations (104) and (100)

6 () = g'(8) - g(1) + g(0)

ouf(t) - g(1) + g(0) (c18)

G"(8) = 2mf*' (§) : _ (c19)

whence

G"(0) =6"(1) =0 (c20)
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From equation (101), using equations (C16) and (C17),

dZT*> ) (r-1)P Twa Mwa (a *)2 ()-l»mg)
0 [L-x2-r(x)°

(dgTj _ (7- l)Prwa Mva2 (wa.* B %*)2 (ukZmQ)
1

|:l—k2_F(l):|.2' ]

B - e
€ Jo 1 -x2-FQ) '
(dﬂ)*> _ (Da* - a)b* (-2k2m)
a6 /1 1- %2 - r1) |
‘ ? (ca1)
de(l)* d)a* - (l)b*
= 1 *
(dce)o T /n>
B\ e e o
<d§2 )1 - 1 - k2 - F(l)()-#k ™ /W)
W,
while from equation (103), using equation ('CEO),
' ) | 20w x\2 ]
() o N
. dg 0 ' E_kg_F(lB2
2
A\ g s gy LTV M (2 ~007)" [ k2 - 2k%n - ' (1)]
at ( a b) me
1 E K2 — F( 1J2 .
7 (c22)
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Putting equations (C21) and (C22) into equations (CT7) to (C10)

yields . ,

Wwa* - wp¥ 1-k

(Ta*)l/2 _kE S k2 - F(lﬂ

wg* =1 - 1.592a, Kneg +

(05 - o) (%)

wp* = 0 + 1;592al

* *
Tg™ Py 1 - k2 - F(1)
T,% = 1 - 0.796c, 1ok To* - Tp* +
km(Ta*>l/2

a

Kng®  (c23)

(7 - 1)Pry, Mwagcbé*' wﬁﬁe Kng + Z, Kne2
' [1-x2-r(1)]? |
(c25) .
. (1 - x)(T.* 1/2 _
Tb*’= Tub* + O.796cl E b 2 Tp* - Tb* +
a Pp

1 - k2 - 2k°m - G'(1) ~ 5

(7 - 1)Pry, Mwa?é“a* - wb*)g > Kng + 2, Kng
[ -2 -r(1)
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: : : ; *, * *
It is convenient to express wg*, “b s T Tb 3 ua 3 ub 3

Pp*, and 7 in ascendlng powers of the effectlve Knudsen number Kn,

Thus write

A
* = * yy ¥ 2
Wy %y (} + 19, Khe + gwa* Kng )
- 2
Wp¥ = oWp* + qwp* Kng + % Kng
> (car)
Ta* = OTa*(l + 1Ta* Kng + ST * Khea)
Tb* = OTb* (l + lTb* Kne + ETb* Kne2>
J
-~ i j
ug* = Oua*(l to1Ua” Kng + ouy* Khee)
R * x =" 2
BT T 0%t Wyt Kog + o ou X Kng |
) > (c28)
% - 2
Pp* = Opb*(l *1Pp* Kng + opp* Kng )
= 1+ * Kn + T]* Kn e
T] N On l"] e 2 e
-t

where the subscript 'O 1, or 2 written in front of a symbol’ denotes
the order of the approxlmatlon to the boundary values.
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Equations (C23) to (C26) give in successive steps the zero-order
approximation:

S
dma 1 -1

* =
o9t = 0

L ‘ (c29)°

¥ = .

dTa 1
= *

OTb* wa

) J

the first-order correction terms:

_ 1.592al(1-k) h
1™ = - "
kE-kE- OF(lZl
W2 1/2
1.592a, (1 - k)k2(T,%)
1% =
E- K= - oF ( 1] oPp*
>(C30)
~ 0.796¢c1(1 - k) C1-k2-2m- 4G'(0)
1Ta* = - — 1- wa*+.(7 - l)Pr‘h,aM‘,,-a2 0 5 :
: E - k2 - OF(lﬂ ‘
0.796c7(1 - k) i . 1-k2- 2k°m- (G'(1)
1Tp* = 1/2 1-Tp* +(7-1)Pryg Mwa? 5
™ oPy (wa*)  [-k2- OF(lﬂ
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where oF(1), G'(0), and (G'(1) are obtained from equations (102)
and (C18) using the zero-order approximation, equation (C29), to deter-

. ~~
1.592a,(1 - k) 1 -
¥ - _ * * _ .
2% 5 (1) (lwa lw'b 2 lTa*> * Oxa
kE— k® - F 1]
0
1.592a, (1 - k)ke(wa*)l/g
p* = 2 (1) * (lwa* - 19" - 1T +
E'k ~of 1] 0P
1 2 ~
5 - 1Pp*) * k ofp
0.796¢c,(1- k) 1 1
e T T ('2' 1Ta* -5 1Ta* Tup* - Typ® 1Tb*) *
> (C31)
2 ' '
1-k®-2m- 4G'(0)
2 0 * 1 ~
(7-1)Pr My, ~ ( -2 -3 lTa.*) * 0%
[ K2 R 1:| ’ - .
O.796cl(l- k) . 1
2To™ = 7z Mo 1Ta” “2‘(1 = 3T %) 1" -
Opb (wb )
' 5 1-k2- 2k%m - ,G' (1)
- * - * .
(l wa> 1Po +(r-1)pr Mwa l: k2 l:|2 ( 1%,
0%
219+ 5 1Tp* - 1Ta™ - 1Pb*> e
Tyb
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From equations (C12) and (C29), with p* = T*B,

~ 0.6336(1 - ¥)2 | 5 <d2u>*) ( 5
X, = 2 (=) - 1+.631+-—B)

(oY }V)]
=
.
)

n
o/‘\
[o7Q o7

=

8 (da)*) <d loge p*) .\ m 7' (d’l‘*)
—_— —_— — —_— - = _ +
15 0\d¢ Jo o at o on| ¥ odt

AN\
S
oﬁll
wl%
F—‘\/
o/\
Q
m|%
) %*
F—‘\I_/

~.  0.6336(1 - k)2 gy |
km O(pb*)_ adt= /p

81 » (L‘D*) (d loge P*)
b
15 " o\ Sy o dt 1

> (C32)

OE = ——0.6336(1 _ k)2 e. 7'M 2 (M.)e + e (E)2 - _l_ dET* +
? k°n?- va Nt fo 8oty 1k o\at2 /o
m|l o fdw* 1 43 2\ o ar*
—|z ™, <—> +(e 5 M )(—)
o2 T \at ) 6 1k 1k Twa AT

2 2
~  0.6336(1 - k)2 5 (dm*> 5 (dT*)
0Zp = —— oM 2T % () 4 kP (=) -

P O(pb*)e 1™ya” Top AT 8 N\t

. K N
e (1) S e ()
1 RIS oh 1L 0 a¢ 1
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Also equations (C21) and (C22) give, on using equations (C29),
- ~
NG o 1 - %% - R(1) '
(dw*) _ 2k°m
A R (¢
> (€33)
(dew* ~ ll»m2
=] -
odC 0 »E.—kg-oF(lﬂ on
< d%b*) ) hkgmeuwb*
=] =
d 2
o\dg™ /1 E-k ‘oF(lZIo”
| (y - 1)Pr._ M 2 - ]
<2T_-)(~> _ _(l _ wa*) _ wa wa E_ k2 - 2m - OGl(oﬂ
o\d€ /o [ -2~ r(0)]?
(y - 1)Pr E
(§¥> = -(1 - T*) - wa Mva E k° - 2k°m - OG'(J.ﬂ
Adb/y E_kg-oF(lﬂ‘? '
' f (c3h)
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APPENDIX D
DETERMINATION OF APPROXIMATE EXPRESSIONS FOR DISTRIBUTIONS

From equations (90) and (91)

X .
n'=L u* af - (D1)

§=

f w* dg (p2)
0

The kinetic theory of gases (reference L) gives
) 4

S|

b TP
that is, (D3)

p.* = T*B

Experiment shows that for most gases the value of 8 1ieé between 0.5
and 1, and it varies slightly with temperature. Substituting equation (D3)
into equations (D1), (D2), and (93) yields

1
= ™P at (D4)
EENA | |
¢ |
_1 x _
g’n_fO'TBdC (p5)

A(t)

fC (ﬂ- ) at ‘ (p6)
0 n _ ‘
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It is customary to assume f constant and for most gases its value is
quite close to unity. While the calculations can be carried out for any
constant value of B, it is.much h simpler to take > B =1 as is done 1n
the text from equation (l2h) on. ’

Substituting equation (103) into equation (D5) and taking B =

(v - 1)Pr * *x\2
Y R L SLY, (G
[Z - 2 -4F(%ﬂ

nt _
where I(¢) =‘Jﬁ G(¢) ag.
0]

Substituting equation (103) into equation (D4), with B = 1, gives

* * 2
=50 ) - (0 D, E(‘” = “’: i] 2+ a2) -

1 ;mge + I(lg] _ 4 (08)

On neglecting the rarefaction correction to F(1) and I(1) and using
equations (C27), (C28), and (C29), this yields as successive approxima-
tions to nq

(D9)
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2
y - 1)Pr M,

x = 1 * * * _ * ( a 1 2y _
o' 1" 2(1Ta * lTb> * 2(1‘“a 1‘“b) 5 > (1 + k)
[ - - 1)

2 .
L 01(1Z| : - (p10)

| C(y - 1)Pr M2 42 ,
2(2a>a* - gwb*i) - E(l + x29) - 12m <, oI(1)

E - k2 - gF(1)]°

Now A(0) =A(1) =0 and, for 0<¢ <1, |A(L)| << 1. As a
first approximation assume (superscripts denote order of approximation
to solutions of the differential equations regardless of the boundary
conditions)

(D11)

A(L) = lA(C) =0 ~ (D12)

It follows from equations (98), (100), (102), and (104) that

le(t) = 1g(8) = Ww(g) = *a(t) = 0 (D13)

Substituting these into equations (101), (103), (D7), and (D8) gives

* _ * ’
L = w* - wa_"_wb_(l - kEC) ’ (D1k)
1 - ¥° :
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-1 2 % — g *)2
B L S (R O 1o (7 - )Pr Mya® (0 - wp¥) h--we W
2(1 - k2)= “
(D15)
, - 1)P 2w, * - w *)2 ‘ 2
ln=%(Ta*+Tb*)+(7 JPr Myp” (o %)<l+k2 l-k)
2(1 - x2)2 m
(D16)
In = 3(r% + Tp*) + =(7 - 1)pr M2 (wg* - %*)2(1 £ 2o
where
€ =1-k° (D18)
and
1 1
lg = ﬁ Ta*g - E(Ta'* - Tb*)ce +
-1 2w * - gy *)2 2
(7 )Pr My, (wa Bp ) E_ %(,1 _ k2)§2 _ 12ch§ (D19)

(1 - x2)2

For the second approximation, equation (D6) gives

¢/ LB -
2 = -
A(E) fo < I 1) at
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which, upon using equations (D15) and (D16), yields for B =1

2 = __1__ * o P * - :
A(L) oI (To* - T¥)E(1 - §) +

(7 - 1)Pr M 2(w.* - w.*)? e 2 2
4 Mya Q”a ) ) ((1-t) - 1-¢+ k¢ -k %] (p20)
(1 - x°) - (1 - x3)m

where I is given by equation (D16). It is noted that 2A(0) = 2A(1) = O.

Neglecting the second and higher powers of A({), equation (98) yields

2¢(t) = 4m2fk2§ 2A(t) dt

which, upon using equation (D20), gives

*m+u-mc+mﬂ+
2m |

2f(¢t) = fﬁ{(Ta* - T%’*)E

(y - 2w, * - %) 2 i 2 2 '
(7 - VPr M (a)a mb) -mg(l - &) + 1 k2 - 6 +
(1 - k2) L 2(1 - %2

Constant ' (p21)
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It follows from equation (102) that
2F(t) = {% (Ta* - Tp¥)|20Q - m)(l k%) . (1 - m)tx26 + u@ekgg] +
(7 - DPr M2 (w* - a*¥)2| - 2t \(p2 _ 2t
7 Mua®(@a* - wp¥) B (1 - 128 )(x2 - x?0)
1 - k° | 2(1 - k)@
(D22)
and
2 1 o 1 -%° -
F(1) = ——(Tg* - Tp¥)(1 + k2 - 22 (D23)
2™

2 1
2F(l) = £ (Ta* - Tb*)(} + -6+t — ¢ + — 63 +.. 0. .

12 Iy

where ¢ =1 - k2 as before.

Substituting equation (D21) into equation (100) yields for

Pr/c_ = Constant

b

26(¢) = 2n [ 22(0) at

%*)2 y

_k° * » |3 -.m+ + mtl| - (7 - ‘l)Pr MV&2(wa* -
= ?{'(Ta - Ty )l:2n1 (2 m)‘§ C:I Y

1-x2+ 2k > k20
———————+ (1 -m)f + mf" - ————| >+ Co+ Cq ¢
[2(1 - K%)m mhe Y1 - ke]} e

(p25)
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From equations (D25) and (10k4)

- 2
2G(g)__<a-)<'-Tb {[ Lok +l+k]§+

(i - )(1 - k20) - (2 - m)tx?s - mgzkeg;} +

2m

2m L

(y - 1)Pr Mwaé(a)a* - ap*)? (_ 1 - k2 Ll k2>§ N
1- k2

1 k2 2 : ot .
(5 = _}k2>(1'- k) (1 - mt

N
nt2i2t 1_§i]> - (026)
TR o

The integrals I({) defined in equation (D7) for ¢ and I(1) in
equation (D8) for 7 can now be found from equation (D26). They are

=f§ 26(¢) at
0 .
ge-i—)o - k2€> 3 > 3 }

(7 - 1)Pr M2(wg* - ap*)2 l: 1 - b2 1]
In(1 - x2) i

1+ K2 1-k2)2 1(1-3%2 3\(, _ .2t) _
( 8  Lm C+1+m<1-k2 m(l k)

' ' N )
: (% - %)ng’:? + 2 £228 _l_km} (D27)
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(D28)
3
AU S R
120 -
(y - 1)Pr Mwae(wa* - %*)2(0 + —l% €+ . . ):] (D29)

The derivatives G'(0) and G'(1) needed in the coefficients T_*

1"a
1Tp*s 2Tg*, and ,Ty*  in boundary conditions (C27) are also found from

equation (D26) as follows:

261 (¢) = ?SZ 26(¢) |

b

2m2(1 - ¢)k2E - B 4 ‘ : (D30)
. 1 - k°
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Thus .
2'2)_1 (T* T*)2+k2-m—3(l-k2) +
GO—_l_-,_{ a"b ' 2m
2/ £\ 2 i+k2 . km 1
(7 - 1B o™ (o -%)E(l—ke) (1-k2)2_g?_]} (p31)
3
el == - *“—T*l'+-l—:L +ﬂ2+ +
G' (0) eu%[(Ta b)( 296 )
2y - 1)pr M2 (0% - *)2(1+§;+ ﬂ (p32)
35 a(a W L+ 3 |
and

, | +. )
(y - 1)Pr Mwag(coa* - wb*)gl;l K + k°m - Elm:] (D33)

%6(7 - 1)Pr Mwa.?(%* - %*)2(1 + —g- €+ .. i] "~ (D3k4)
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Using equation (D22) for 2F(g) and equation (D20) for 2a(t)
integrals J; and J, in equations (128) become

R

3

the

1 - k2

£‘<?_ L 1> (1 - x28) + w2t 4 (2 - m)ckﬂ}
2B 1P

2 ¥ _ oo %)\2
(3 - m)ex?l « m;%@{l L 7 m DPr M (wg* - wpX) li&zm ‘.
' 1

o
: 17 2,21 -3,
Jl(l)_lganTa*-Tb*)(l+%e+ﬁe 4'%-6 + ..

97

(D35)
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_1f3-x2 2
1 - k2 b;- x° 2\1 - x2 -

(2 R m) tk~26 - mggk'egl}

2 11 3, . )

60 120

€ 1

§B(l+-2-€+ ..)] (Dko)

NACA TN 2895
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From equation (127), when use is made of equations (C29),

99

2
J (1) + I -2 OF(;)

01

() = (31(0) + (I,(8) - 26228 2r(y)

(Dk1)

(Dk42)
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Figure 1.- Coordinate systems.
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Figure 2.- Burnett terms correction to pressure ratio * against

diameter ratio k for various values of Mach number My,.
Pr = 0.715; 7 = 1.400; B = 1; T3, = 1; a = 0.900; ¢ = 1.
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Figure 4.- Variations of zero-order pressure ratio with diameter ratio k
for various values of Mach number. Pr = 0.715; 7 = 1.400; B = 1;
T = 1 > :
wb T ¢
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Figure 5.- First-order slip velocity at inner cylinder against diameter
ratio k., Pr = 0.715; 7y = 1.400; B = 1; Typ* = 1; o = 1.
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Figure 6.- First-order slip velocity at outer cylinder against diameter
ratio k. Pr = 0.715; y = 1.400; B = 1; Typ* = 1; o = 1.
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Figure 7.- First-order temperature jump at inner czlinder against diameter
ratio k. Pr = 0.715; 7 = 1.400; B = 1; Typ* = 1; a = 0.900.
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Figure 8.- F:irst-order temf)erature jump at outer cylinder against diameter
retio k. Pr = 0.715; 7 = 1.400; B = 1; Typ* = 1; a = 0.900.
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Figure 9.- First-order correction to parameter 'n against diameter
ratio k for various values of Mach number Myz. Pr = 0.715;

7y = 1.500; B = 1; Tp* = 1; a = 0.900; o = 1.
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Figure 10.- First-order correction to pressure ratio lpb* against
diameter ratio k. Pr = C.715; 7 = 1.400; B = 1; T.p* = 1;

a=0.900; 0 =1,
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Figure 11.- Zero-order friction coeffiéient at inner and outer cylinders
against diameter ratio k. Pr = 0.715; y = 1.400; B = 1; Top* = 1;

a = 0.900; o = 1.
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Figure 12.- First-order correction to friction coefficient for both
inner and outer cylinders for various values of diameter ratio k.
Pr = 0.715; 7 = 1.400; B = 1; Tyb* = 1; a = 0.900; o = 1.
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Figure 13.- Zero-order heat transfer at inner cylinder against diameter
Pr = 0.715; 7 = 1.400; B = 1; T % = 1; a = 0.900; ¢ = 1.

ratio k.
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Figure 14.- Zero-order heat transfer at outer cylinder sgainst diameter
ratio k. Pr = 0.715; v = 1.400; B = 1; Typ* = 1; a = 0.900; o = 1.
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against diameter ratio k.
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Figure l6.-tParameter n against effective Knudsen number. Pr

= 0.715;
7 = 1.400; B =1; Typ* = 1; a = 0.900; 0 = 1; k = 0.5; Myg = 2.
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Figure 17.- Friction coefficient against effective Knudsen number.
Pr = 0.715; 7 = 1.400; B = 1; Typ* = 1; a = 0.900; o = 1;
k = 0.5 Myg = 2. :
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Figure 18.- Slip velocity against éffective Knudsen number, Pr = 0.715;
7y = 1.4b00; B = 1; Tp*¥ = 15 @ = 0.900; 0 = 1; k = 0.5; M, = 2.
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y =1.400; B =1; Typ* = 1; a =

0.900; 0 = 1; k = 0.5; Mya = 2.
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7 = 1.400; B =1; Tp* = 1; a = 0.900; 0 = 15 k = 0.5; Mg = 2.
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