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TECHNICAL NOTE 3149

PREDICTION OF LOSSES INDUCED BY ANGLE OF ATTACK IN CASCADES
OF SHARP-NOSED BLADES FOR INCOMPRESSIBLE
AND SUBSONIC COMPRESSIBLE FLOW

By James J. Kramer and John D. Stanitz

SUMMARY

A method of computing the losses in total pressure caused by a non-
zero angle of attack at the 1nlet to a row of sharp-nosed blades is
developed for both Incompressible and subsonlc compressible flow. The
method is based on momentum considerations across a row of zero-thickness
flat plates and assumes that the blade force is normal to the plate sur-
face. The results of the analysis are presented in a series of figures
showing the variatlion of the total-pressure loss coefficient and the
static-pressure coefficient with upstream flow angle and angle of attack
for incompressible flow and with upstream flow angle, angle of attack,
and upstream Mach number for compressible flow. The Pigures indicate
for the range of variables considered that increases in upstream flow
angle cause sharp rises in total-pressure loss coefficlent and corre-
sponding drops in static-pressure coefficient for negative angles of
attack, but for positive angles of attack and upstream flow angles less
than 60° there is little variation in total-pressure loss coefficient
with upstream flow angle. Also, increases in upstream Mach mmber cause
only slightly higher velues of total-pressure loss coefficient for posi-
tive angles of attack. A maximum value of static-pressure coefficient
occurs for a given value of upstream flow angle at a certain positive
angle of attack, beyond which further increases in angle of attack re-
sult in decreases in static-pressure coefficient. The angle of attack
at which this maximum static-pressure coefficient occurs decreases as
the upstream Mach number increases.

INTRODUCTION

When a fluid enters a compressor or turbine cascade of sharp-nosed
blades at an angle different from that of the blade camber line at the
nose, potentiel-flow solutions indicate an acceleration to an infinite
velocity by the £1luid es it moves from the stagnation point arocund the



2 __ NACA TN 3149

sharp nose (ref. 1, pp. 122-124, for example). Real fluids cannot over-
come the resultant steep pressure gradient so that the flow separates

off the suction surface of the blade at the sharp nose. The separation
and subsequent mixing losses caused by the nonzero angle of attack, that
is, the angle between the relative flow direction far upstream of the
blade row and the tangent to the blade ceamber line at the nose, consti-
tute a major source of loss Iin the internal flow of centrifugal and axial-
flow compressors. This 1s indicated by the detailed experimental data of
reference 2 for a tentrifugal compressor.

A simple method of predlcting the magnitude of these losses for
incompressible flow only is presented in reference 3 (pp. 129 and 150)
and will be discussed herein. In reference 4 (p. 182), the losses are
correlated with the kinetic energy of the £luid associated with the up-
stream velocity component normel to the blade surface. The method is
dependent upon experimental data for the value of the correlation coef-
.ficients, and, hence, these values are influenced by other factors such
as blade-end effects. In reference 5, the inlet loss 1s assumed to be
equal to the kinetic energy of the fluid assoclated with the upstrean
velocity component normel to the blade surface. Good agreement with
experimental results of turbine performance was obtained. However, the
results of the analysis reported herein are not applicaeble to any row
of blunt leading-edge blades.

A simple method based on momentum comsiderations across an infi-
nite cascade of flat plates was therefore developed at the NACA Lewis
laboratory. This method will predict the maximum total-pressure losses
caused by nonzero angle of attack at the inlet to a row of sharp-nosed
blades. The analysis was carried out for both incompressible and sub-
sonic compressible nonviscous flow. The results are presented in a

series of figures showing the variations in total-pressure loss coeffi- =

cilent and static-pressure coefficlient with angle of attack and upstream
flow direction for incompressible flow aend with angle of attack, up-
stream flow direction, and upstream Mach number for compressible flow.

METHOD OF ANALYSIS
Preliminary Considerations

The first potentisl-flow solution for flow past an isolated zero-
thickness flat plate was similar to that shown in figure 1(a) (see
ref. 6). This so-called Dirichlet flow was symmetrical and indicated
zero 1ift and drag. Physically unrealistic infinite velocities were
Indicated for both the nose and tail sections. The flow was more accu-
rately described when the Joukowski condition was specified for the tail
section (fig. 1(b)). The addition of this condition eliminated the in-
finite velocity at the tail and resulted in a 1ift force, normal to the
undisturbed-flow direction, but the drasg remained zero. Also, in this
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Joukowski flow the velocity at the nose remained infinite. (This infi-
nite velocity gives rise to a "suction force" that results from the hy-
pothetical, infinite, negative pressure acting over the zero area of the
nose. This suction force cancels the drag force that would otherwise
exist as a result of the finite pressures acting normal to the plate.)
The next attempt to describe the flow was by the free-streamline, or
cavity-flow, method of Kirchhoff and Helmholtz (refs. 7 and 8). This
method avoids infinite velocities at the nose by assuming separated flow
at that point (fig. 1(c)). For this solution the suction force is zero;
the resultant force, now due to finite pressures only, is normal to the
plates so that a drag force, parallel to the undisturbed-flow direction,
exists (fig. 1(c)). (In the free-streamline solution for a flat plate
at sn angle of attack, the size of the separated region is much larger
than that which is found experimentally, so that the drag forces indi-
cated by the theory are excessive.)

The method used in this report approximates the cascade of arbitrary
sharp-nosed blades by a cascade of zero-thickness flat plates and assumes
that the flow separates at the nose, with the result that infinite ve-
locities are avoided at the leading edge. Therefore, the resultant force
on the plate is caused by finite pressures only, and this force is per-
pendicular to the plate since skin friction is assumed to be zero. These
assumptions together with momentum and continuity considerations deter-
mine the inlet loss.

Physically, the results of the analysis presented herein can be in-
terpreted in two ways. First, this analysis yields the losses in total
pressure, exclusive of those associated with skin friction, caused by non-
zero angle of attack in a .cascade of zero-thickness flat plates. Stalling
of the plates does not alter the validity of the equations derived herein.
In this analysis the effect of stall is reflected in the magnitude of the
exit deviation angle, that is, the angle between the downstream flow di-
rection and the blade direction. The numerical results obtained assum-
ing zero deviation angle would apply for cascades of high solidity or
small angles of attack or both. The effects of deviation angle are dis-
cussed after the development of the equations for the total- and static-
pressure changes across the blade row.

Secondly, the analysis can be interpreted as indicating the trends
in losses caused by nonzero angle of attack in a cascade of arbitrary
sharp-nosed blades. The loss induced by nonzero angle of attack is de-
fined as that which occurs when the separated flow, which occurs &t the
sharp leading edge, mixes with the unseparated flow in a constant-ares
channel with no turning. This loss is, therefore, independent of solid-
ity, camber, chord length, and blade thickness distribution downstream of
the leading edge except insofar as these variables affect the flow direc-
tion Just downstream of the blade leading edge. Stalling of the blades
does not affect the validity of the equations derived herein within the
limitetions of the assumptions. The effect of stall is reflected in the
magnitude of the flow devistion angle, which in this case would be the
angle between the flow direction Just downstream of the leading edge and
the tangent to the blade camber line at that point. The numerical results
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obtained assuming zero deviatlion angle represent the losses that would
occur if the fluid were perfectly gulded by the blades in the inlet region.

Thus the theoretical results indicate a maximum loss which would be
decreased in an actual cascade becasuse of the smaller amount of turning
accomplished in the inlet section. Also, in &an actual row of sharp-nosed
blades, the blades will sustain some suction force before the flow sepa-
rates. Therefore, the loss presented in thils report represents a maxi-
mum pressure-logs limit, in two respects, toward which actual cascades
of sharp-nosed bledes tend.

If the flow direction is known by some means just downstream of
the leading edge, then the deviation from the tangent to the camber line
just downstream of the leeding edge can be accounted for by substltuting
this known value of the deviation engle into the equations.

Equations are derived for the total- and static-pressure changes
across the blade row as well as for the downstream veloecity. These
equations are derived for incompressible flow in the next section and
for compressible flow in appendix R.

Incompressible Flow

In this section, the equatlons for the downstream veloclty and the
static- and total-pressure changes are derived for incompressible non-
viscous flow. In the following analysis all varisbles are made dimension-
less by expressing them ag ratlos of upstream-flow paremeters. Thus, the
velocity W with components U and V in the x- and y-directions (Car-
tesian coordinates), respectively; the static pressure p; the total pres-
sure P; the blade force F,, thet is, the force exerted on the alr by the

blade; and the £luid weight density p are defined nondimensionally by
the following equations (all symbols are defined in appendix A):

Wo=W'/W \

U =u/w

V=Vl

x =x'/L

y=y'/L > (1)
p=2'/(P} - p{)

P =P'/(P! ~ p])

Fy = F%/(Pi - p'l)L

p=0p"/p} J
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The primed quantitlies refer to dimensional values, the subscript 1
refers to conditions far upstream of the cascade where flow conditions
are uniform, and I 1is the distance normel to the x-axis between two
adjacent stagnation streamlines far upstream of the cascade (fig. 2).

The guantities to be determined are the downstream velocity Wo,
the static-pressure coefficlent Cps and the total-pressure loss coeffi-

cient ®. The superscript "bar™ does not, of course, in this case in-
dicate a vector quantity. The two coefficients Cp and o are defined
as the dimensional static-pressure and total-pressure change, respec-
tively, across the blade row divided by the difference between the up-
stream total and static pressure, or

PS - Pl

2 1
9=F =Pz M1 (22)
_ P{-P3
“’:f"i——p{:Pl'PZ (2p)

where the subsecript 2 refers to conditions far downstream of the leading
edge. Expressions for these quantities as functions of the geometry of
the blade row are derived in the following analysis:

From the definition of nondimensional W and the fact that the
fiow is two dimensional, it follows that the equation of continuity is

cos Bl = Wz cos B, (3)

where B 1s the angle between the x-direction and the flow dirthion
(positive in the counterclockwise direction). The angle of attack a
is defined as the difference between the upstream flow direction and the
blade angle Bb, or

a":"Bl‘B'b (4-‘)
The deviation angle & is the angle between the blade direction and

the downstream flow direction, positive in the counterclockwise direc-
tion, or

8 = Bs - By (5)

The subscript & appended to @ and p will Indicate that the devi-

ation angle is considered in the computation of that parameter. Thus,
from equations (3), (4), and (5), 1t can be seen that cos Bl/cos(Bl-a+8)
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is greater than 1 for flow that 1s accelerated by the cascade and less
than 1 for flow that is decelerated by the cascade.

In order to determine the change in static pressure from far up-
stream to far downstream, the momentum change across the blade row 1s
considered. In figure 2 let DEFGHIJ be a control surface in the flow
where DE and JI are adjacent stagnation streamliines, FG and HEI
are adjacent flat plates, F is the leading edge of the flat plate, E
and I are stagnation points, snd DJ and GH are normal to the x-
direction far upstream and downstream, that 1s, at stations 1 and 2,
regpectively. Noting that for incompressible flow the difference be-
tween the upstream total and statlc pressures is equal to the upstream
dynamic pressure, the momentum equation can be written nondimensionally

in vector form as
Poai - Ti-- ¢ e (&)

where dA 1is the nondimensional ratio of the differential area of the
control surface to L Xunit span, and the superscript "bar" denotes a
vector quantity. The surface integral on the left side of equation (6)
is the flow of momentum across the control surface, and the line inte-
gral on the right is the resultant of the pressure forces acting on the
fluid. The negative sign occurs because the pressure 1s inward, whereas
the posgitive direction of the area vector 1s outward. There is, of
course, no flow of monkntum scross the lines DEFG and HIJ since
there is no velocity component normal to these lines. The sum of the
integrals of the pressure forces along EFG and HI is equal to the
blade force Fﬁ, whose scalar is a dimensionless quantity defined by

equation (1). Thus,
55‘ pa:s+3§ pdk = F, (7)
EFG HT

The integral of the pressure forces from D to E 1s numerically equal
but opposite in sign to the integral from I to J, or

SEJ;EP(ﬂ=' SgIJ?dI (@)

Thus, these two parts of the complete line Integral cancel each other.

Equation (5) can be split into components in the x- and y-directlons.
The equation for the momentum change in the x-direction l1s

(4;2pWU cos(n,W) dA = —(4; p cos(n,x) dA (9a)
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and in the y-direction is
§ 20WV cos(n,W) dA = -§ p cos(m,y) dA (9v)

where (n,W), (n,x), and (n,y) are the angles between the outer normal
to the control-surface boundary and the flow direction, the x-axis, and
the y-axis, respectively.

The density p 1is egqual to 1 for incompressible flow, and the as-
sumption has been made that the suction force on the blade nose 1s zero,
that is, the blade force 1s normal to the blades. Therefore, by using
the relations expressed in equations (7) and (8), equations (9a) and
(9b) become, respectively,

Fp sin(B; - @) =Py - P31 (10=)

and
- Fp cos(BL - «) = 2 cos B[y sin(By - @ + 8) - sin By] (100)
By combining equations (2a), (3), (4), (5), (20a), and (10b), the fol-

lowing equation for the dimensionless static-pressure change across the
blade row, the static-pressure coefficient, is obtained:

2 tan(B; - a} cos B4 sin (a - B)

Cp,5 = cos(B; - @ + B) (11)

Thus, the static-pressure coeffilclent is a function of the upstream flow
angle, the angle of attack, and the deviation angle.

Bernoulll's equation for upstream and downstream conditions states
that

Py =1+pp (12a)

_ o
P, = W5 + Dy (12p)

By means of equations (2b), (3), (4), (5), (11), (12a), and (12b), the
total-pressure loss coefficient E% is found to be given by

2 tan(py - «) cos By sin(a - B) cos? By
cos(py - a + B) ) cos?(By - « + B)

oy =1 - (13)
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If & 1is taken as zero, this expression for the total-pressure
loss is equivalent to that obtained by Spannhake (ref. 3, pp. 129 and
150), which is -

& = cosZBl[%an B1 - ten(py - m?}z

Spennhake's equation for the total-pressure loss coefficient was de-
rived under the assumption that the total-pressure loss was equel to the
kinetlic energy assoclated with the veloclty vector difference between
the upstream and downstream velocities called the "shock" velocity in
reference 3 and denoted by Wy in figure 3 of this report.

At the outset it was pnot apparent that the two approaches would
lead to the same result. It sppears that the approach used herein lends
itself more readily to the development of the equations for compressible
flow. The compressible case was not treated in reference 3.

Effect of 5. - The deviation angle & cannot be predicted in
genersel for flow of a real fluid. However, the deviation angle for in-
compressible potential flow can be obtalned by means of the method de-
scribed in reference 9. The results of the analysls presented in ref-
erence S indicate that

2% sln o

- By
cos(a + By) IJ'K4' + 2x2 cos 2By, + 1

) =.tan'l[%an(m + By) -
(14)

The parameter x® 1s relsted to the cascade solidity o and the blade
angle by the following equation:

;\[14 + 2" cos 2B+ 1 + 2% cos B,

7
5 0 =co8 By In +
2 1 - xZ
2% sin B
sin By tan-1 D _— (15)

¥ 1 2%% cos 2B, + 1

Thus, & 1is & functlon of o, By, and a, since By 1s related to By

and o by equation (4). The variation of & with o for various
velues of By and o 1s shown in figure 4. The curve for f; equal

to 80° extends only to o equals -5°, since the solution beyond this
value is difficult to obtaln and is of little interest.

The ratios cp,S/cp and 55/5 indicate the effects of & 1n that
these are the ratios of the pressure coefficlents with & taken into



cr-2

NACA TN 3149 9

account to the pressure coefficients with & assumed zero. These ratios
are given by the following equations for incompressible flow:

e, 5 ) sin{a ~ 8) cos(Bl - a)
cy sin o cos(Bl - a + 9)

(16)

cosz(Bl-a)[Fosz(ﬁl-a+8)—Zcosﬁlﬁan(ﬁl-m)sin(m-ﬁ)cos(ﬁl-a&S)-coszﬁl]

e1]op?

cosz(Bl-m+6)[cosz(Blfm)-Zsin(Bl-a)cosﬁlsinarcoszﬁll
(17)

As « approaches zero, & also approaches zero and the right sides of
equations (16) and (17) become indeterminate. These indeterminste forms
were evaluated by L'Hospital's rule, and the following expressions were
obtained for the limits approached by these functions as o approaches
zZero:

1im 28 -1 - &8 (18)
a0 Sp do
& 2
£%=2<1-§)-<1-%) (19)

Equations (16), (17), (18), and (19) were solved with the use of the
data shown in figure 4. The results of these calculations are shown in
figures 5 and 6. These results are merely indications of the trends
and the order of magnitude of the effects of &, since the values of &
used were obtained assuming potential flow. Figures 5 and 6 indicate

a marked increase in the effect of 8 as the cascade solidity decreases
below 1.0.

Compressible Flow

In appendix B an analysis is carried out for subsonic compressible
flow similar to that for incompressible flow. . The final equations sre
presented in the following section:

Equations. - The expression for the downstresm Mach number Mé is

2 - B +NBS + 4A

My™ = 5h {20a)}
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in which
I%l [Eos(Bl - a + B) ™, cos(Bl - o+ 3) cos o 2 w
A= 1 r=-1 M 2‘_ M; cos B9 + cos(By - o) -
T M
o cos? & cosz(sl - o+ 8)
T z
cos (Bl - a)
L(ZGb)
cos(By - a +8) TM; cos(By - a + B) cos 2
B = 1 1 + L 1 -
1 . I-L M12 M1 cos B, cos(Br - o) 1
2
cos d cos(fy - o + B)
ar cos(p o)
1- /

Thus the downstream Mach number 18 seen to be a function of the upstream
Mech number in addition to the upstresm flow angle, angle of sttack, and
deviation angle.

When the downstream Mech number has been obtained from equations
(20a) and (20b), the static-pressure coefficient can be found by means
of the following equation:

r-1 . 2 1/2
M1 cos By 1+ —E_'Ml

My cos(By - a + B)\q 4 rél Mzz
®p,5 = Y - (21)
- T-1
(1 +L2—1-M12) -1

Because Mg 1i1s a function of the upstream flow conditions and the devi-

ation angle, it can be seen from equation (21) thet the static-pressure
coefficient also is a function of the upstream flow conditions and the
deviation angle.

The quantlty Cy is a ratio of the' static-pressure change across

the blade row to the difference between the upstream total and static
pressures. For the incompressible case, this ratio is the same as the
ratio of the statlic-pressure change to the upstream velocity head. How-
ever, for compressible flow, the upstream velocity head is & function
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not only of the difference between the upstream total and static pres-
sures but also the upstream Mach number. The statlic-pressure coefflcient
¢p,q expressed as & ratio of the upstream veloclty head is defined by

2
(v - pi)/ T (22)

(o] =
?,q 2 2g

where g 18 the acceleration due to gravity. From this definition it
can be seen that Cp is related to cP,q es follows:

c ] p!(Wl)z
229 _ (pr S
c (Pl Pi)/ 2g (23)
D

The right side of equation (23) is a function of M; and is given by

Y

pi(wW:)2 (1 + E’.Mlz)r-l -1
(2] - p3)f g - — (24)
2
z ¥
The varietion of this funetion with M; 1is shown in figure 7. This

function cp,q_/cp is independent of any effects of & as is cobvious
from its definition. o

The total-pressure loss coefficient ® can be found from the fol-
lowing equation, which is derived in appendix B:

T+L
" th-l;
=1, 2
1. My cos B4 l+T2_M2
M, cos(B; - @ + B) l+££—l-Mlz
oy = — — . (25)

'-1
- + 2

Similar to the case for Cps & total-pressure loss coefficient
expressed as a ratio of the upstream velocity head cen be defined as

follows:

2
1 1
P Wl)

®y = (P - Pé)/lz_g— (26)
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The expression for the ratio EQ/E is the seme as that for cp,q/qp
given in equation (23). The variation of this function with M; is

given by equation (24) and is shown in figure 7.

Effect of ©&. - A considerably more elaborate computation is re-
gquired to obtain the compressible potentisl-flow devietlon angles than o
was requlred for the incompressible case. Consequently, it is not
practical to compute even approximately the effect of & as was done
for incompressible flow. However, the effect of & 1s probaebly of the
same order of magnitude for compressible flow as for incompressible flow.

Limiting case. - The eguations for compressible flow listed in the
section Equatlons are limited to a certaln range of upstream flow con-
ditions, because the equation for M, yields imaglnary values after a

certain angle of attack is exceeded for a given Ml and Bl. This
angle of attack, called the critlcal angle of attack Oop, 15 shown in

appendix C to be that angle which results in a downstream Mach number
equal to 1.0 (choking over the area ED, fig. 2) and is related to My

and B7 by-the followlng equation for the case where 8 _ is equal to __ ) 3
Zero: A

sinCaey [(1+ 1¥12)2 + tan? Bl]"' sin or,cr[- 2M; tan Bl,Jz(rH_) (l+ I%]: Mlz):] +

[2M12(r+1) (1 + "2;1 Mlz) - (1 + erz)zj -0 (27)

Equation (27) can be solved by the quadretic formula for the critical . =

angle of attack a,,. for a given M; eand B1. The variation of g,

with M; and B; 1is shown in figure 8. It should be noted that, if

choking occurs 1in the throat formed between the flat plates by the sepa-
rated flow, the maximum (absolute) value of o for which the analysis
is valid may be less than that indicated by equation (27).

RESULTS AND DISCUSSIONS

The equations derived in the preceding analysis for @ and cp are
solved for a range of upstream flow angle B and angle of attack o
for incompressible flow and for a range of B4, a, and upstream Mach

number M; for compressible flow. The deviation angle 8 1s assumed

to be zero in all these calculations. These results are presented in a -
series of figures showing the variation of total-pressure loss and
static-pressure coefficients with B; and o for the incompressible
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case and with B3, o, and M; <for the compressible case. As previously
indicated in the section Preliminary Considerations, the total-pressure
losses obtained by this method represent an upper limit toward which the
losses in an actual cascade of sharp-nosed blades tend.

Incompressible Flow

In figure 9 the variation of total-pressure loss coefficient with
engle of attack is presented for various values of upstream flow angle
and for zero deviation angle. Execept for the case of Bj1 equal to
zero, Which is symmetrical, the total-pressure loss is always greater
for negetive o than for numerically equal positive o. This condition
is accentuated as PB; Increases. The range of operation at negative o«

for a given permissible loss in total pressure is greatly reduced as 87

1s increased. For positive a, there is little veriation in total-
pressure loss with upstream flow angle as By varies from zero to 80°.

The variation of the static-pressure coefficient with angle of
attack for various values of upstream flow angle is presented in fig-
ure 10. Again the curve for B, equal to zero is symmetrical, and cp

is always zero or negative. This results from the fact that, for B3

equal to zero, the fluid is accelerated in passing through the blsgde row
for any nonzero angle of attack.

Two factors affect the static-pressure coefficient. Any loss in
total pressure tends to lower the static pressure 1if the velocity head
remains the same. Also, for a given total pressure, the statlc pressure
decreases ms the velocity head increases and conversely (see eq. (12b)).
Thus, when the fluid is accelerated, that is, Wp 1is greater than 1, the
statlc pressure decreases; and when the fluid is decelerated, that is,
Wo 18 less than 1, the static pressure increases except in cases where

this is offset by a loss in total pressure. Consider, for example, the
curve for PB1 equal to 20°. It indicates & zero static-pressure coef-

flcient when o 1is equal to 20°. Equation (3) indicates that the flow
is decelerated for such an upstream flow angle and angle of attack. This
would tend to csuse a statlc-pressure rise, but this is offset by the
total-pressure loss Indiceted in figure 9. For B3 of 20° and a of

30°, the total-pressure loss is so great that the static-pressure coef-
ficient becomes negative even though the flow is decelerated.

For all values of By the curves reach a meximum, beyond which
further increases in « cause decreases in cp. The curve for B

equal to 80° reaches a maximum at a comparatlvely small positive angle
of attack; and at an angle of attack of 30° s Cp 1s less than the
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corresponding value for B9 equal to 60°. These phenomens occur for
the same reason as discussed in the preceding paragraph.

Compressible Flow

The variation of the total-pressure loss coefficient ® for com-
pressible flow with upstream flow angle, upstream Mach number, and angle
of attack is shown in figure 1l. On each plot By is-constant, and the

variation of ® with o for various values of M; is shown. The curve
for 'Ml equal to zero is that for incompressible flow. It will be noted
that not a&ll the curves extend over the entire range of angle of attack
shown on the abscissa. The end points of tkese curves ocecur at the
critical angles of attack, the angles of attack which result in sonic
downstream velocity. The variation of this critical angle of attack with
B; end M; is shown in figure 8.

For all values of Py, the values of ® become greater as M; in-
creases. The effect of M; 1n increasing ® becomes more pronounced
as B1 Iincreases and is greater for negative angles of aEﬁack than for
positive. In general, the effect of M; in inereasing o for positive

a is negligible. However, it should be noted that ® is a dimension-
less ratio of (Pi - pi). If @ were expressed as a dimensionless ratio

of pi(Wi)z/Zg, on the other hand, figure 7 indlcates that @ would in-

crease appreciably with M;. As By increases, the range of operation
at negative o decreases in such manner that for B, of 80°, a negative

o of less than 1° causes the system to.choke when M) 1is 0.8.

The variation of the static-pressure coefficient cp with B, M1,
end o 18 presented in figure 12. In general, the effect of M; on Cp

is greater than 1ts effect on .

For By equal to 200, the total-pressure losses are suffilciently
large that, although the geometry of the cascade Indicates a decelerat-
ing flow for ilncompressible flow, Mz increases and evenbtually the flow
chokes downstream at o of sbout 26° for M; equel to 0.8. Conse-
quently, for Bl equal to 20° and o greater than 150, Cp decreases
as Mj 1increases. The decrease in cp with increasing M; also occurs
at a greater than 8° for By equal to 80°. This same trend, that 1s,

decreasing cp as Mj increases, 1s approached by the curves for 83

equal to 40° and 60° at large o. This trend causes the maximum value
of cp to occur for smaller o as Mj increases.
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SUMMARY OF RESULTS AND CONCLUSIONS

A method of computing the losses in total pressure caused by a non-
zero angle of attack at the inlet to a row of sharp-nosed blades is de-
veloped for both incompressible asnd subsonic compressible flow. The
method is based on momentum considerations across a row of zero-thickness
flat plates. The results of the analysis are presented in a series of _
figures showing the variation of the total-presswure loss coefficient o
and the static~-pressure coefficilent cp with upstream flow angle B3

and angle of attack o for incompressible flow and with By, @, and up-
stream Mach number M; for compressible flow. The downstreem flow de-

viation angle was assumed to be zero iIn all cases for the computations.
These figures and the equations from which they were obtained indicate
for the range of variables and conditions considered that:

1. Increases in By ceuse sharp rises in o and corresponding
drops in p for negative o, but for positive o and B; less than
80° there is little variation in @ with B;.

2. Increases in M; cause only slightly higher values of ® for
positive «.

5. A maximm value of cp occurs for a given value of By at a

certain positive value of «, beyond which further increasses in o re-
sult in decreases in cp due to total-pressure losses. The value of «

at which this maximum % occurs decresses as Ml increases.,

Lewis Flight Propulsion Leboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, July 20, 1954
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APPENDIX A

SYMBOLS

The following symbols are used in this report:

A,B

CPJQ

DEFGHTJ

32 H > o H

(e

functions of M;, B, «, and & (eq. (20Db))

local speed of sound

function of M;, By, @, and & (eq. (C1))

static-pressure coefficient, nondimensional (eq. (2a))

static-pressure coefficient expressed as nondimensional ratlo
of upstresm dynamic pressure (eq. (22))

points around control surface, fig. 2

differential element of control-surface ares, nondimensional
blede force, nondimensional (eq. (1))

acceleratlion dve to gravity

distance normel to x-sxis between adjacent stagnation
streamlines, dlmenslional

Mach number, nondimensional

unit normal to control surface, positive direction is
outward

totel pressure, nondimensional (eq. (1))

static pressure, nondimensional (eg. (1))

gas constant

total temperature

stgtlic temperature

velocity component in x-direction, nondimensional (eq. (1))

veloclty component in y-direction, nondimensional (eq. (1))
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gl

£l

resultant velocity, nondimensional (eq. (1))
Cartesian coordinates, nondimensional (eq. (1))
engle of attack (eq. (4))

flow directlion, positive in counterclockwise direction from
positive x-axis

blade direction, positive in counterclockwise direction from
positive x-axis

ratlo of specific heats

flow deviation angle, angle between blade direction and down-
stream flow direction, positive in counterclockwise direc-
tion from blade direction (eq. (5))

fluid weight density, nondimensional (eq. (1))

totael-pressure loss, expressed as nondimensionsl ratio of
Py - pJ (eq. (20))

total-pressure loss, expressed as nondimensional ratio of up-
stream dynamic pressure (eq. (26))

Subscripts:

1 conditions inflnite distance upstream of cascade

2 conditions downstream of leading edge

cr conditions when M, 1s equal to 1.0

s shock component of velocity as in ref. 3 (see fig. 3 of this
report)

S flow deviation angle.taken into account

Superscripts:

dimensional value of quantity

vector quantity



is NACA TN 3149

APPENDIX B

DEVELOPMENT OF EQUATIONS FOR COMPRESSIBLE FLOW

For compressible flow, the equations for the momentum change in
the x- and y-directions become, respectively,

1
PiM 8y

g

cos BiL .
Fy sin(py-a)-(ps-p{)L = EHZ&Z cos(B;-a+d) - Mqa, cos Bi]

(B1)
and

piMial cos BlL
g

-Fy cos(Bl - a) = [Mzaz sin(Bl -a+8) - Ma, sin B]]
(B2)

where & 1s the local speed of sound. These two equations are solved
simultaneousiy to yield :

piMla.l cos Bl
g cos(By - a)

(Mza2 cos & - Ma, cos o) (B3)

P - Pp =
In addition to the momentum equation, equation (B3), the following four
equations, which are the equation of state, equation of contlnuity,
energy equation, and speed-of-sound equation, respectively, are known:

p' = p'Rt (B4)

p{Miay cos By = piMpas cos(By - o + B) (B5)
T T-1

-E': l+-—2-—M.2 (BG)

8% = veRt (B7)

In these equations +t 1s the static temperature; T, the total tempera-
ture; R, the gas constant; and vy, the ratlo of specific heats. Thus,
equations (B3), (B4), (B5), (B6), and (B7) form & system of five equa-
tions in the five unknowns Py Pps tz, Mé, and 8o The total temper-

ature T 1s constant since no work is done on the fluld. Combining
equations (B4), (BS), and (B7) results in
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1/2
' r-1 42
_!2= M__Lcos Bl 1+ 3 Ml
Py Mycos(By -a+B)\;  r-1 M,

Combining equations (B3), (B4), and (B7) results in

> (B8)

—p_é=TMl cos Bl y l+—2 Ml
p] ~ cos(B; - @) 2 ] 4 1L

5= w2

Combining equations (B8) and (B9) results in

1

cos & - M; cos o (B9)

- 1/2
TM:LZ cos B, cos aj] 1+ Tz—lMZZ /
1+ M,
cos(By - ) | 14+ -1 Mlz
2

_ Ml cos Bl

cos BlMlMZZ cos O
cos(Bl -a + B)

Zo8(Fy o) (B10)

Squaring both sides of equation (B10) and combining like terms result in

M = [eos(B1-0+)

) M. cos B
140z M 1

2 coszacosz(Bl-da+5)

cos(By - @) cosz(Bl - a)

2
M- co -0+8 ) cos
+ Tiyc S(Bl ) Cf::, -

1+T_;]:b{lzl_ Ml cos Bl

2
Mzz{ 1 [cos(By-at3) . Yﬁlcos(Bl-cms)cosa]

cos8cos (B -aid)
-2r -1
cos{By - «) cos(By - a)
=0 (B11)
This equation can be solved by the guadratic formula as follows:
,/ 2
M22="B+22 + 4A (20a)

where
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i cos(B, - a + 8) M, cos(By - a + B) cos al?
A= 2 1 b — L -
1+ r%l_Mlzl_ M, cos By cos(Bl - a)
2
2 cos® & czsz(Bl - o + B8)
cos”(By - a)
s oo
1 cos(By - « + B) TM; cos(By - o + 8) cos a 2
B = - -+ -
1+ r%l.Mlz Mi cos ﬁl cos(Bl - )
cos B cos(Bl - a + 8)
2r cos(B1 - a) _J

Only the positive sign is shown before the radical in eguation (20a) be-
cause the negatlve sign results either in Imaginary values of Mz or in

real values of Mgz that indleaste & decrease in the entropy of the f£fluid
in passing through the blade row. Nelther of these is admissible.

Equations (20a) and (20b) determine the downstream Mach number Mg

ag a function of the upstream Mach number, the flow direction, the angle
of attack, and the downstream flow deviation angle. When M2 1is ob-

tained, the static-pressure coefficient, which is defined as

-4 (pifpi) -1
‘8 TP -pr T i) - 1

Le)
D~

-

can be obtained. The ratio pé/pi can be expressed as a functlion of the

assumed known quantities by means of equation (B8). The total pressure
at a point is the pressure that the fluid would assume if it were de-
celerated isentropically to a stegnation condition. Therefore,

.

P - -1

P_% = (1 12 Mlz)* (B12)
1

The static-pressure coefficient thus becomes
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1/2
-1 . 2
My cos By T+ 8 1
M2 cos(f1 - o + B) 1+ T;l MZZ
cp,5 = - (21)

-1 ZT"l
(l+%Ml) -1

In order to obtain cp,q (see eq. (22)) from ep, it is necessary
to know the ratio of the difference between the dimensional upstream
total and static pressures to the dimensional upstream velocity head
(see eq. (23)). This ratio can be expressed as

i (Bi/p]) - 1 (513)
pj(W1)2/2g  p}(W:)%/2pig
Equation (B13) can be simplified to obtain
xX_
P17 Pl (l M % 12)T-l -t (24)

= =
p{(W1)*/2g Lw2
Equation (24) can be used to relate cP,q to Cy-

The total-pressure loss coefficient 1s defined as

_P{ -P3 (P{/p]) - (P3/p})
Py -p{ 0 (Bifp{) -1

In order to express @Oy as & function of the assumed kunown vari-
ables, it is necessary to find an expression for Pé/pi only, since

Pi/pi is given by equation (Bl2).

Noting the identity

T = "t 1
P PPy ]

arnd using equations (B8), (B1l0), and the equation corresponding to equa-
tion (B12) st station 2 result in
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1/2
P! Ml cos B 1+ r-=1 v 2 / x_
2 2 r=1 . 2\r-1
P~ M, cos(P. - w ¥ B) T 1+ 5= M (B14)
1 2 1 1+ Lz' Mzz
Thus, the equation for ay 18
T4+l
=1 .. 27\élr-1
1 My cos By 1+,
Mo cos(By - @ + B) 1402l g2
oy 2 1
By = £ (25)
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APPENDIX C

DERIVATION OF EQUATION FOR CRITICAL ANGIE (F ATTACK

Equations (20a) and {20b) yield real values for the downstream Mach
nurber M, for all values of a, Bl, 8, and My such that

B2 + 44> 0
let
2
cos(B, -« +8) TM cos(B, - a + 8) cos a
c - 1 1 Rk 1
L+IEwg L Mesh cos(By - @)
2

(c1)

In order to solve for agup, that is, the angle of attack which if ex-

ceeded results_in equation (20a) yielding imaginary roots for a given
M, and B;, BZ + 4A 1is set equal to zero and the resulting equation

solved for «. The value of o« obtained from this equation is o4p.
Thus

B2 + 4A=0=(C - 2r)% + 4(£§l c - Tz)
This equation simplifies to
c2 - 2(r+1) ¢ = 0
which has the roots
c=20

c

2(y+1)

If C is equal to zero, equation (20a) indicates that Mzz is negative.

Zero, therefore, is an extraneous root. If C is equal to 2(y+l),
equation (20a) indicates that M, is equal to 1. The limiting condi-

tion, therefore, is reached when the downstreem flow is choked. 1In order
to find the relation among ag., Mj, and By, C 1s set equal to 2(y+1)

and the resulting equation solved for «. For a given By, & 1is a func-

tion of o for a given cascade and is, therefore, not an independent
varieble, Thus,
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1 cos(By - @y + 8) TM; cos(By ~ aop + B) cos mcflz
T-1 M, cos B * COB(Pq ~ Ginp) = 2(r+1)
(1 + L2 Mlz) 1 1 1 - %er ]

If ® 1s assumed equal to zero, this equation ylelds the following
quadratic equation for sin aer which can be solved by the quadratic
formula:

Binzd.cr[(l+‘rM12)2 + tanZB]]+ sin o, [— 2M; tan Blnjz(\wl) (l + %J:- Mlz)} +
[2M12 (v+1) (1 + %1 M]_z) - (1 + mlz)z]= 0 (27)
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/’\f

(a) Dirichlet flow,

Resultant force (11f%) normal o
undisturbed flow direction

—

(b) Joukowski f£low.

Lift Resultant force normel
to plste

Beparated flow reglon

Drag

(c) Free-streamline flow.

Flgure 1. - Three ideal flows past an lunclined flat plate.
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Figure 2. - Control surface in flow fleld.

Figure 3. - Veloecity vector diamgram showing "shock" velocity component Wy
of reference 3.
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Figure 4. - Continued. Variation of deviatlon angle 5 with angle of attack
a for various solidities o and upstream flow angles B,.
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Figure 5. - Varlation of 55/5 with angle of attack a for
varlous values of solidity ¢ and upstream flow angle By .
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Flgure 6. - Varlation of c¢ 6/cp with angle of attack a for
>
various values of solidlity ¢ and upstream flow angle 131.
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pressible flow. Downstream flcw deviation angle p assumed equal to
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various values of upstream flow angle £y and upstream Mach number M;. Downstream flow
deviation angle 6§ assumed equal to zero.
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Figure 12. - Varlation of static-pressure coefficlent ¢ wlth angle of attack a for various

values of upstream flow angle’ ﬂl and upstream Mach number Ml. Downstream flos deviation
angle 6 assumed equal to zero.
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Figure 12. - Contlinued. Varlation cof static-pressure coefflcient cp with angle of attack a
for various valueg of upstream flow angle Bl and upstream Mach number Ml' Downs tream
flow deviation angle 5 assumed equal to zero.
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Figure 12. - Continued. Variletion of static-pressure coeffilclent cp wlth angle of attack o

for various values of upstream flow angle P3; and upstream Mach number M;. Downstream
flow deviation angle & assumed equal to zero.
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Pigure 12. - Continued. Varlation of static-pressure cocefficlent ¢_ with angle of attack o

for various values of upstream flow angle ﬂl and upstream Mach number "1' Downstream
flow deviation angle & assumed equal to zero.
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