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TECHNICAT. NOTE 3158

A SUBSTITUTE-STRINGER APPROACH FOR INCLUDING
SHEAR-LAG EFFECTS IN BOX-BEAM VIBRATIONS

By William W. Davenport and Edwin T. Kruszewski
SUMMARY

The use of the substitute-stringer approach for including shear lag
in the calculation of transverse modes and frequencies of box beams is
discussed. Various thin-walled hollow rectangular beams of uniform well
thickness are idealized by means of the substitute-stringer approach and
the resulting frequencies of the idealized structures are compared with
those of the original beams. The results indicate how the substitute-
stringer idealization could be made in order to yield accurate represen-
tation of the shear-lsg effect in dyneamic analysis.

INTRODUCTION

In determining analytically the natural transverse modes and frequen-
cies of box beams, the influence of shear-lag effects may be of consider-
able lmportance, as indicated by investigations such as those presented
in references 1 and 2. An appealing solution to the problem of including
shear-lag effects in a dynamic analysis of a built-up box beam such as
thet shown in figure 1(a) would be to idealize the box beam into a simpler
structure which involves fewer components but has essentially the same
shear-lag properties. The simplest such idealized structure is the well-
known substitute-stringer structure.

The substitute-stringer idealization is used by Kuhn and Peterson
(ref. 3) in static problems for obtaining the maximm stresses of shell
structures. There is, however, no indication that the idealized struc-
tures which have been defined for static problems would be effective in
determining natural modes and frequencies. It is true that Anderson and
Houbolt used the substitute-stringer idealization (ref. 2) to account for
shear-lag effects on the natural bending frequencies of box beams. Their
primery purpose, however, was to demonstrate the magnitude of the shear-
lag effects; no investigation of the accuracy of the approach was
presented.
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The purpose of the present Investigation is to indicate how the
substitute~-stringer didealization caen be made (or, more precisely, where
to locate the substitute stringers) in order that the dynamic behavior
of the prototype and of the idealized structure will be essentially the
seme. This purpose is achieved by comparing the bending frequencies of
several thin-walled rectangular tubes (which are analyzed exactly in
ref. 1) with the frequencies obtained by an exact analysis of their ide-
alized structures.

In this paper, the idealization of an actual box beam into its
substitute~-stringer structure is discussed. The aforementioned compari-
sons are then made and conclusions are drawn with regard to the accuracy
of the procedure. A list of symbols is contained in appendix A and a
vibration analysis of the substitute-stringer structure is included in
appendix B. A pertinent extension of the solution of reference 1 is
made in appendix C.

THE SUBSTITUTE-STRINGER IDEALIZATION

A box beam which is typical of aircraft construction and its
substitute-stringer structure are shown in figure 1. The idealized struc-
ture consists of four flanges and four stringers which carry only normal
stress connected by sheets which carry only shear. The cross-sectional
areas of the flanges and stringers of the idealized structure are deter-
mined so that their moments of inertia are the same as the moments of
inertia of the spars and covers, respectively, of the original structure;
the moments of inertis in each case are taken gbout the horizontal axis
of symmetry. The over-all dimensions and the web and cover-sheet thick-
nesses are the same for both structures. The chordwise location of the
substitute stringers, given by bg, is, however, as yet unspecified; the

velue of bg determines the magnitude of the shear-lag effect in the

idealized structure and is the quantity of paramount interest in this
paper. Hereinafter, attention is directed to the effect on the vibration
frequencies of varying bg and to the selection of the value of bg which

yields accurate results.
TOCATION OF THE SUBSTITUTE STRINGERS

In this section, comparisons are made between the frequencies of
various thin-walled rectangular tubes such as that shown in figure 2 and
the frequencies of their corresponding idealized structures. In each
case the value of bg is permitted to vary between O and b. The
frequencies of the rectanguler tubes are obtained from a modification of
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the exact series solution in reference” 1; the frequencies for their ide-
alized structures are obtained from the solution presented in appendix B.
The exact series solution of reference 1 is modified to include only the
secondary effects considered in the substitute-stringer solution of appen-
dix B, that is, shear lag end transverse shear deformation.

The web and cover-sheet thicknesses and the cross-sectional areas
of the flanges and stringers of the idealized structure are obtained as
outlined in the preceding section and are (see figs. 1(b) and 2):

ty=tc =1t
1

Ap = = at

F=3

Ap, = bt

In order to preserve the inertial properties, the mass per unit length
of the substitute-stringer structure is taken equal to that of the rec-

tangular tube.

The effect of vaerying bg on the frequencies of the first three

symmetrical free-free modes of the idealized structure is shown graph-
ically in figures 3 to 6. In each case, the frequency ® is expressed
in the form of its relative error 'a% - 1 when compared with the exact

frequency ®, of the rectangular tube, end bg 1is expressed in the form

of the ratio bg/bg, wherein by is the distence from the web to the
centroid of area of the half-cover. This ratio bs/bc is used to accord

with past practice in static shear-lag investigations and also in the hope
that the results will be applicable to more general types of box beems.
It should be noted that, for the rectanguler tubes, by equals b/2.

The first case considered is that of a rectangular tube with a
cross-~sectlional aspect ratio b/a. of 3.6 and s plan-form aspect ratio
L/b of 6.0. The curves of figure 3 cross the line of zero error at dif-
ferent values of bs/bc ; thus no single value of bS/bC gives exact fre-

quencies for all the modes. It is possible, however, to choose an "opti-
mm" value which gives nearly exact results for all the modes considered.
This optimum value, which has arbitrarily been selected so that the maxi-
mum of the errors in the frequencies of the first three modes 1s a mini-
mm, is8 bg/by = 0.56. The maximum error in the frequencies for this

value is less than 1 percent.
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The effects of different cross-sectional and plan-form aspect ratios
are indicated in figures 4 and 5. In figure 4, results are shown for
cross-sectional aspect ratios of 1 and » (a limiting case) with a plan-
form aspect ratio of 6.0. In figure 5, results are shown for plan-form
aspect ratios of 2.0 and 12.0 with a cross-sectional aspect ratio of 3.6.
The curves in figures 4 and 5 are similar in character to those presented
in figure 3; they differ only in steepness and in the values of bg /bc

where the zero crossings occur. The optimum value of bs C and the

meximum percentege error of this value for each case are Included in
table 1. For all these cases, the maximum percentage errors are very
small. I+t should be noted that, except for the case in which b/a = 1.0
end L/b = 6.0 and that in which b/a = 3.6 and L/b = 2.0, the optimum
values of bg bc fall within a small range. In the first of these two

cases, the shear-lag effect is very small in magnitude (see fig. 4); the
second case is an extreme configuration, having a plan-form aspect ratio
of 2.0. The results indicate, therefore, that for reasonable configura-
tions with appreciable shear-leg effect, the optimum value of bg bc is

reletively independent of the cross-sectional and plan-form aspect ratios.

The rectangular tubes treated thus far are admittedly not very real-
istic, and the extensibility of the results obtained to more usual box
beams, such as that shown in figure 1(a) » 1s questionable. For this
reason, a generalization of the rectengular tube which more nearly rep-
resents actual structures has been considered. This generalized rectan-
gular tube is assumed to have at each point of its cross section a thick-
ness 1t that carries shear and also a different thickness t' +that
carries normal stress; this assumption approximates the situation in an
actual structure in which flanges and stringers carry normel stress but
do not carry shear. The exact series solution of reference 1 can be
extended to this "dual-thickness" structure by the modification of the
paremeters shown in appendix C.

A perticular exemple of this type of structure is considered in
figure 6, where L/b = 6.0, b/a = 3.6, end t'/t = 2.0. Once again the
meximum error for the optimum velue of bg bc is emall (see table 1).

The optimum value of bg c is less than the wvalue obtained for the

single-thickness counterpart; this reduction indicates a possible depend-

ence of the optimum vaelue of 'bS/bc on the magnitude of the additional

stress-carrying area of an actual structure.
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EVALUATION OF RESULTS

The ratios used for the configurations presented herein bracket
those which would occur in most actual box beams. Cross-sectional and
plan-form aspect ratios have been varied from 1 to = and from 2 to 12,
respectively. The ratio +° /t, which is a measure of the ratio of normsal-
stress-carrying erea to shear-carrying area in the cover, has been
varied from 1 to 2; representative values of +'/t =for actual box beams
are within this range. The results in table 1 indicate that although
these wide ranges of ratios were used, the optimum value of bs/bc falls

within a relatively narrow range. Thls result suggests the possibility
that, in the absence of a more detailed investigation, a universal value

of b bC could be used. In order to demonstrate the validity of this

conclusion, the values of the meximm of the errors in the first three
vibration frequencies for a value of bS/bc = 1/2 are also presented

in teble 1. The errors exceed 2 percent only in the extreme cases.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., November 2, 1953.

e v — - - e i e e s e e e = . A S A— e e — =




KI

NACA TN 3158
APPENDIX A
SYMBOLS

cross-sectional area of flange of substitute-stringer
structure

cross-sectional area of substitute stringer
efPective shear-carrying aree

parameter defined by equation (CT7)

half-depth of beam
hglf-width of beam

distance between web and adjacent substitute stringer
distance between web and centroid of area of half-cover

constant
modulus of elasticity

shear modulus of elasticity (taken equal to E/2.65 in
present paper)

bending moment of inertia

shear-lag parameter Gtc Ar
- , —— —————
V Ebg Aphy,

parsmeter defined by equation (C5)

A
frequency coefficient, L

coefficient of shear rigidity, =y/[o=
L\ cag
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B1,;B2

- - e e —————— o = = & ———— g —— == = g

half-length of free-free beam

parameter defined by equation (B22)
parameter defined by equation (Ck)

parameter defined by equation (B23)

perimeter of cross section of beam
distance along periphery of cross section of beam

wall thickness of beam with uniform well thickness; effec-
tive shear thickness for dual-thickness beam

cover-sheet thickness
web thickness

effective thickness for normal stress for dual-thickness
beam

meximum kinetlc energy
maximum strain energy
longitudinal displacement of a point on beam

longitudinal displacement of point of flange in substitute-
stringer structure

longitudinal displacement of point of substitute stringer

vertical displacement of cross section of beam
longitudinal coordinate

Fourier series coefficients

integers

peremeters defined by equations (B26), (B27), (B29),
and (B30)
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inclination of normal to the wall with the vertical

mass of beam per unit length

natural frequency of beam obtained by use of substitute-
stringer approach

naturel frequency of beam obtained by use of exact solu-
tion of reference 1

longitudinal stress in flange of substitute-stringer
structure

longitudinal stress in substitute stringer

shear stress in cover sheet of substltute-stringer
structure

shear stress in web of substitute-stringer structure
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APPENDIX B

i’

VIBRATION SOLUTION OF A FREE-FREE
SUBSTITUTE~STRINGER STRUCTURE

The nstural modes and frequencies of the substitute structure may
be obtained by the method employed in reference 1, that is, the Rayleigh-
Ritz energy procedure in conjunction with appropriate Fourier series
expressions.

Let x be the longlitudinal coordinate with its origin at the mid-
point of the beam; then, by Hooke's law and the assumptions concerning
the stress-carrying properties of the components of the structure given
in the body of the paper, along with the assumption that cross sections
maintain their shepes, the longitudinal stresses are

- g F
op = E - (B1)
g &L
end the shearing stresses ai'e
bg
= gl&¥ _ 9
TW = G(d_x o ) (Bll')

where Up is the longitudinal displacement of a point on a flange, uj,

is the longitudinal displacement of & point on a stringer, and w 1is
the vertical displacement of a cross section of the beam.

From these expressions for the stresses, the maximm strain energy
of the structure 1s

dug dug, UF - ug,
_af [ AF+E(dx> AL+G(T) tch+G twgld.x

(B5)
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and the maximum kinetic energy is

L
T=%ILmﬁw2u (B6)

where up, U, and W are now considered as the amplitudes of displace-

ment for the particular mode considered, o is the natural frequency
of the mode, and ¢ 1is the mass per unit length of the structure which
the substitute structure represents.

A natural mode of vibration must satisfy the variational equation

8(U-T) =0 (B7)

where the variation is taken independently with respect to Up, Uy, and

w. Application of this principle to expressions (B5) and (B6) would result
in the differential equations and the natural boundary conditions of the
vibrational problem under consideration. However, Fourier series expres-
sions for up, v, and w are used in conjunction with the variational
procedure, rather than & direct attack on the differential equations end

the boundery conditions.

Appropriate assumptions for the displacements for the symmetrical
modes of a free-free beam are

w=C+ 2 & cos ZIX (B8)
n=1,3,5 2L

up= 2 by sin IXX (B9)
n=1,3,5 2L

= sin nIex B10

n=1,3,5 a 2L ( )

Substituting the expressions (B8), (B9), and (B10) into equations (B5)
and (B6) and then using expression (BT7), where the variation is with
respect to the a's, b's, e¢'s, and C independently, results in the

following equations (where i =1, 3, 5, « « «):
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i-1

| )

2
%2_; -5;—‘ 8y + Esa(%) + ksa(ICL.)2 j—i + J;%Z,bi - ksa(KI-)2 i—'-];’- c; = 0 (B12)

2
ﬁ—g(m)zbi - ,K%) + %‘(m)ﬂ ey =0 (B13)
o nl
kg2l + Y % an(-1) 2 | =0 (B1k)
n=1,3%,5

These equations are written in terms of kg, the coefficient of shear

rigidity, K, the shear-lag parameter, and kg, the frequency coefficient;
these terms are defined as follows:

= 1 /EL_
kg = o s (B15)
K= / Gtc Ar (B16)
Ebg Aphy,
kn = ® E‘L& (B17)
B ET
where
Ag = haty (B18)
I = haaq (819)
Ap = Ap + Ay, (B20)

By solving equations (B1l1l), (B12), and (B13) for aj and substituting

the result into equation (B14), the following frequency equation, which
must be satisfied by the frequency coefficient kg, is obtained:
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© 2
k2|1 + 2lks® D n'%) 1 =0 (B21)
n=1,3,5 1 2
- 5:(3)
where
2 2
2
i [ i €
2 2
Ny =1+ = (B22)
2
wE) + =
2 2
P, = (.2'231) - szkS (B23)
The rate of convergence of the series of equation (B21) is increased

2 1

n=1,3,5 (naﬂ-)aPn

by subtracting the expression 2kBl'kS and adding the

oftan kgkg
equivelent closed-form expression kg _k;ks— ~ 1} « The resulting

equation is

ki [ban dogly + kg k) > = =0  (B2k)

IL=1,3’5 PnaN - Pn(E)a
2

The series in equation (B21) converges as l/nl" while the series in
equation (B2hk) converges as 1/n6.

For the case where b/a. —>m», equation (B21) reduces to the closed
form

1:]32(c:r1 tanh kgoy + By ten kle)= 0 (825)
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where

2
w =\ [-1 B0 .1 (E"fm.?.) b (B26)

and.

2
1 Bbgb 1 b )
51=\/——+— (Zt)s) * (327)
QGLQ 2\/;1.2 sz

For the case where bg = 0, equation (B21l) reduces to the closed form

kp2 (a.2 tanh kpay + By ten kBﬂa) =0 (B28)
where
A S - B A W (B29)
o |3 %"+ 3\t 5

Bo =\/.32£ kg” + %Vks‘* + ﬁé (B30)

This frequency equation is identically the equation obtained when
the frequency equation for symmetrically vibrating free-free beams of
reference 4 is modified by neglecting rotary inertia, that-is, when the
only secondary effect considered is transverse shear deformetion.

Mode shapes of the structure may be obtained by solving equations (B11),
(B12), and (B13) for a;, b;, and c; and then substituting the results
into expressions (B8), (B9), and (B10); the value of C may be arbitrar-
ily chosen.

Extension to the antisymmetrical modes and to centilevered beams
may be accomplished by methods similar to those shown in reference 1.
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APFENDIX C
EXACT FREQUENCY SOLUTION FOR A DUAL-THICKNESS RECTANGULAR TUBE

The exact solution of reference 1 can be extended to take into
account the effects of having different normal-stress- and shear~carrying
thicknesses t' and t by modifying the expression for the maximum
strain energy as follows:

L 2
U=-;=f f}g[-a—“i—v—)-’a‘:] t'ds dx +
0

L 2
lf f.;ﬁ__(_a_luxs +d._‘."sinE'tdsdx : (c1)
20 os dx

The expression for maximum kinetic energy is unchanged if longltudinal
inertia is neglected and is

N
T:aj:me.@u (c2)

By means of the procedure described in reference 1, the following
frequency equation can be obtained for a symmetrically vibrating, free-
free "dusl-thickness" rectangular tube:

2
kp2|l + kg ) %) Li=o0 (c3)
n=1,3,5 Nn
where
sinh DL k—s(ﬁ - 1)
1
n 2 2 a kg 2 k' 2
Bkg hkg"n cosh % =
K
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and.

e _ 4y/ I
K=o\ (c5)
kg = & \Eas (c6)
Ag' = bat' (cT)
Ag = Jat (c8)

It should be noted that, with the exception of the slight change in
perameters, equations (C3) and (C4) are the same as equations (41) and
(A18) in reference 1 if, of course » the effects of longitudinal inertia
are neglected.

e e e e ——— e —
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TABIE 1

A COMPARTSON OF ERRORS FOR OPTIMUM VALUES OF bg/bg

AND FOR A VALUE OF bg/bg of 0.5

17

Plan-form aspect ratio L/b = 6.0

Maximum percentage error for -

Cross-sectional Optimm value oot -
aspect ratio, b/a of b ue =
1 » bf s/®c ofim‘mbs o bg/bg = 0.5
1.0 0.65 0.5 1
*3.6 .56 1 2
© Sk 2 2.5
Cross-sectional aspect ratio b/a = 3.6
Maximum percentage error for -
Plan-form Optimum value opt valae
t ti b f b b = 0.
aspect ratio, I/ o s/Pc ofimm'bs/'bc s/Pc 5
2.0 O.lIJ-l- 2.5 3'5
*6.0 .56 1 2
12.0 .61 .5 1.5

Cross-sectional aspect ratio b/a = 3.6;
plan-form aspect ratio L/b = 6.0

Thickness ratio,

Optimum value

Maximum percentage error for -

Optimum value

1/t of bg/be of - be/b bg/be = 0.5
s/°c

*1.0 0.56 1 2

2.0 .48 1.5 2

*Mis case is repeated for ease of comparison,

f et —— e o
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(@) Typical box beam.

I“— bg—>

< 2b-

(b) Substitute-stringer idealization.

Figure .- Typical box beam and its substitute-stringer idealization.
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Figure 2.- Thin-walled rectangular tube.
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Figure 3.- Effect of stringer location on the accuracy of the substitute~

stringer approach for a box beam of uniform wall thickness.
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Figure 5.- Effect of stringer location on the accuracy of the substitute-stringer approach for box beams with extreme

plan-form aspect ratios.
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Figure 6. - Effect of stringer location on the accuracy of the substitute-

stringer approach for a dual-thickness box beam (;{—'= 2).
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