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WALL INTERFERENCE IN WIND TLJNTiELsWITH sLom AND

sumARY

Linearized compressible-flow analysis
wind-tunnel-wall interference for subsonic

SPEEDS

B. Turner,

is applied to the study of
flow in ei,ther”two-

POROUS BOUNDARIES AT SUBSONIC

By Barrett S. Baldwin, Jr., John
and Earl D. fiechtel

dimensional or circular test sections having slotted or porous walls.

Expressions are developed for evaluating blockage and lift interference.

INTRODUCTION

●

In solid-wall wind tunnels the effects of blockage severely limit
model sizes that can be tested at high subsonic speeds; in fact, the

* model must become vanishingly small as sonic speed is approached. It
has been demonstrated that if the walls are ventilated (e.g., slotted
or porous) then blockage is reduced and much larger models can be
tested. However, wall-interference effects, although reduced, still
exist and must be evaluated in order to correct the wind-tunnel data to
free-air conditions.

It is the objective of the present investigation to analyze two of
the principal wall-interference effects, blockage and lift interference,
for two- and three-dimensional subsonic flows in ventilated test
sections, where blockage refers to the mean incremental velocity induced
in the vicinity of the model by wall interference and lift interference
is the mean upwash so induced. In the three-dimensional case it is
convenient to perform the analysis for a circular test section. The
results obtained for the circular test section may be applied to a square
test section of equal cross-sectional area since the wall interference
at the center of the tunnel should be relatively insensitive to such a
change in the shape of the wall.
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SYMBOLS

A

a

b

c

G

g

h

10

II

K.

K=

K

1

L

M

me

?nr

n

!l

R

r,e,x

u

factor in Fourier integral transform of q*

slot width of slotted wall (see fig. 1)

wing span of model wing

constant factor in nonlinear term of boundary equation

Fourier integral transform with respect to x of ~

dummy variable of Fourier transform

half tunnel height —

modified-Bessel function of the first kind and order zero

modified Bessel function of -thefirst kind and order one

modified Bessel function of the second kind and order zero

modified Bessel function of the second kind and order one

slot constant, - ~

slot separation of

lift on the model

‘n[sin(~)l

slotted wall (see fig. 1)

free-stream l&ch number

parameter proportional to size

parameter proportional to size

coordinate in the direction of

dummy variable of integration

porosity pareneter

cylindrical coordinates

free-8tresm velocity

of.two-dimensional
Teu

model, —
P

of.three-dimensionalmodel, TTU

the outward normal to the wall.

—

.“

w
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U,v,w

u*,V*,W

m--
U,v,w

Au,Av,Aw

w

x

X,y,z

a

P

r

@

P

Q1

9*

Eql*

P

Te

‘r

k

(97

3

perturbation velocity components in the x, y, z directions,
respectively

additional velocity components due to the presence of the
walls

additional velocity components having rapid spacewise
variation near the walls

additional velocity
due to the walls

complex velocity in

components at the position of the model

the y, z plane

complex variable equal to z + iy (physical plane)

Cartesian coordinates

dummy constant in limiting process

circulation

complex velocity potential

total perturbation velocity potential, ~ + 9*

approximate perturbation potential due to model in free air

additional perturbation potential due to tunnel walls

additional wall-interference potential arising from non-
linear term in boundary eqmtion

free-stream density

cross-sectional area of two-dimensional model

volume of three-dimensional model

function of X, equal to ~ + iq (transformed plane)

Cartesian coordinates in transformed plane
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ANALYSIS :-

General Statement of the Yroblem
v—

The effect of-the tunnel walls on the flow around a model, in the
case of ventilated walls, can be calculated using the same basic method
as that used in reference 1 for the closed-wall case. As in reference 1
the analysis is based on the linearized equation of subsonic cOmPre~si- _ .=
ble flow

where q is the perturbation velocity potential of the flow in the
tunnel.

Let (p= R + V, where ~ is the potential
model in free air and q* is the potential of the
to the presence of the walls.

of the flow about the
additional flow due

If !pI is taken to be a known solution of equation (1) which —.
approximates the true free-air potential at points far from the model, 4
T* can be calculated from the fact that the sum ~1 +q* satisfies a
known boundary condition at the wall. Since the values of ql at the J
wall only are used, any inaccuracy in the value of pl near the model M

should not affect the calculation of-.Cp* appreciably.
.

The primary objective in this procedure is to estimate the change
in stream conditions caused by the walls at the position of the model.

———

It is assumed that the velocity components derived from ~* are con-
.“

stants near the model which can be subtracted from the stream velocity
to obtain the equivalent free air stream veloclty.

—
Thus,

is the blockage correction, and

AW = ~ at x=y=z=O

is the upwash correction in the three-dimensional

In this section a
boundary conditions of
will be developed.

Boundary Conditions

single expression appiqximately representing the
solid, porous, and slotted wa~s and an o~en Jet----

case.

—

w ~

v
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Let x be the coordinate in the direction of the free stream
and n the coordinate in a direction perpendicular to,the x .direction.
Consider a wall which is ~rpendicular to the n direction (i.e.,
parallel to the free stream). If’the wall is solid, the condition of
no flow through the wall.can be expressed as

av ~—=
&

at the wall

In the case of an open Jet there is no pressure drop across the jet
boundary so that there is zero perturbation pressure at the boundary.
With a disturbance in the stream thfs boundary does not remain parallel
to the free stream. However, for convenience, the condition of zero
perturbation pressure is imposed at a surface parallel to the free
stream and coinciding with the jet boundary far upstream of the
disturbance (see ref. 2). Also, for convenience, this surface can be
called an open wall and the boundary condition can be expressed as

a%. at the wall
z-

In reference 3 an average boundary condition for a porous wall is
derived. The average velocity normal to the wall is assumed to be
proportional to the pressure drop through the wall, a linearized
approximation to viscous flow thrrmqh a porous medium, and the pressure
outside the wall is assumed equal to the free-stream pressure. This
leads to the boundary equation

The quantity R is

E?I+Q2=()
ax

at the wall
R an

a porosity parameter defined by

4 Pu *=——
R ?3n

where

Ap pressure dro~ through the wall

P stream density

u stream velocity

The quantity PU/R can be determined
mass flow and pressure drop through a

(2)

(3)

~rhenta~yby measuring the
sample of the wall under con-

ditions corresponding to zero stream velocity.

v Porous walls to which eq-uations(2) and (3) are applicable will
henceforth be referred to in this report as ideal porous walls.

w
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An approximate boundary equation for a slotted wall is derived in
Appendix A. The pressure at the slots is assumed constant and equal to
the free-stream pressure. The resulting uniform boundary condition is

&J9+K aL() at the wall
ax ax~n

(4)

where K is related to the slot geometry by

K=–:
‘n [sin (91

Slotted walls to which equation (4) is applicable will henceforth be
referred to in this report as ideal slotted walls.

(5)

Solutions for wall interference based on equations (2) and (4) can
be obtained in one calculation by combining them in the form

a+&Lq=~aq+K——_ everywhere at the wall (6)
xc ~x?h R an

Thus, wall-interference solutions based on equation (6) contain, as
special cases, those of the closed wall (K ~ m or l/R~ w), ideal
porous wall (K = O), ideal slotted wall (1/R = O), and open jet
(K = O and l/R = O). Furthermore, equation (6) can be assumed to
deecribe a slotted wall having mixed potential and viscous flows in the
slots. In that case the porosity parameter R can be detefiined
experimentally, as it is in the case of a porous wall, by measuring the”
mass flow.f.cwa given pressure drop through a.sample of the wall.

If it is found that a nonlinear relationship between pressure drop
and mass flow exists, it may be necessary to add a term of the form
f(&p/an) to equation (6). This case is discussed in Appendix B.

●

—

——

A

In addition to the foregoing interpretations of equation (6), an -
interpretation i.dentifyi

—

T
it with slotted walls with tapered slots

(Z and a functions of x and potential flow--inthe slots is possible.
This case is discussed in Appendix C where it is found that instead of

.—

representing viscous effects, the parameter
-.

R is related to the taper —

by

where K(x) is the same as in equation (~).

Blockage in.a Two-Dimensional-FlowTunnel

(7)

Under the assumption of infinitesimal model size, the blockage cor-
rection will be calculated using equation (6) as the boundary equation.
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Let x be the coordinate in the free-stream direction and y the
coordinate in the direction perpendicular to the walls. Let h be the
half tunnel height .sothat the walls are at y = -h and at y . +h.

In these coordinates equation (1) becomes

The * signs on the second and third terms are required because at
the upper wall, n = +y and at the lower wall, n = -y, n being the
coordinate in the direction of the outward normal to the wall.

If’ 9 is replaced by Ql + P*, equations (8a) and (8%) field

(ga)

These two equations are sufficient to determine ~* when P=, the dis-
turbance due to the model in free air, is known.

As in reference 1, the disturbance due to the model at zero angle
of attack in free air is approximated”by a two-dimensional doublet
which can be expressed as

(lo)

The reasoning behind the choice of the doublet is as follows: The
source-sink distribution representing a nonlifting model contains the
same total sink strength as total source strength, so that the distant
flow field would not resemble that of a single source or sink. The
center of gravity of the source distribution would lie forward on the
model compared to the center of the sink distribution which would be aft.
Hence, there wouldbe a dipole or doublet effect of the model at a
distance. Other higher-order effects would be much less than that of
the doublet at large distances. The constant ~ is related to the
size of the model with sufficient accuracy for present purposes by

w

v
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.
7eU

%=—
P

(U)

where Te is the area of the model in the xy plane.
w

It is convenient to solve equations (9) by the Fourier transform
method. The Fourier transform of q= is defined by the relations

w

Gl(g,y) =& f %(x,y)ei= dx
-co

(12a)

m-.

~(x,y) =J’Gl(g,y)e ‘i= dg (12b)
-w

Analogous expressions defining the Fourier transforms of 9* are

Ce

G*(w) =* f
9*(X,y)eigx dx

-00

(lsa)

co

~*(x,y) = J G*(g,y)e-i~ dg (In)

-m

With the substitution of equation (lsb) into (ga) and with an interchange
in the order of differentiation and integration there results

Performing the indicated x differentiation
terms under the ccmmon integral yields

This integral will be zero if

* %G* ~
-132&’G+ — =af

and collecting

dg=O

.—

w

-.—

the two

-.
.

Substituting equations (12b) and (lsb) Into equation (gb) and

(14a) .

T.proceeding as before yields

u
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G

(14b)

Equations (l&a) and (lxb), involving the transforms G1 and G* of
TI and Q*, can nowbe solved in the place of solving equations ($la)and
(9b). me general solution of equation (14a) is

& = A(g) cosh (Pgy) + B(g) sifi (Bgy)

Substituting the second termof this expression into eqmtion (13b)
yields a termof P* having an odd y dependence. From symmetry
considerations it can be seen
Therefore, B(g) must be zero

C#=

The unknown factor A(g) till
into equation (14b), but GI

that 9* should
and, hence,

A(g) cosh (~gy)

be determined by

have even y dependence.

(15)

substituting equation (15)
must be known for this purpose.

. In order to find Gl, equation (10) is substituted into equa-
tion (l$?a)and there res~lts-

. G= (gjy) =*

From reference 4. it is found
‘w

—

ei- ~ (16)

e-hldyl

lIn reference 4, G(g) is defined as G(g) = J“F(f)ei2nfg df. In
-m

the tables of F(f) versus G(g), F is usually given as a function
of p where p = i2fif. If P(p) is the function of p given in the
table, it follows that

.-
F(f) = P(p) = P(i2Y’cf).With the substitution,

a
x= 2fif,it is found that G(g) =:

1
P(ix)e= dx. Thus, G(g) in

the tables is the Fourier transform, as defined in equations (E!) of
the function of x which results from replacing p by ix m P(p).
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where the synibol I 1 denotes absolute value. Differentiating both
sides of this with respect to g yields

Substituting equations (15) and (17) into (llb) yields

A(g) ~- ig-cosh (~gy) T igK Pg Sinh (~gy) * ~ Bg sinh (mw)l =
L

me

-G

~

R

Making the
the single

indicated substitutions (y = th) ~d SCIIV@ for A(g) yie~s
complex eqyation

( —-i]:1igK~+# )
e-l~l~h

A(g) =–$

[
cosh (&gh) + K13gsinh (13@) + i ~ sinh (Pgh)1

(18)

Substituting equations (Is) and (18) into equation (lsb) yields

a

J ( ) -\glBh
i*-

ig K~ +{ e cosh (j3gy)e-i=
T*=-~

[

dg

cosh (~gh) + K~g sinh (13gh)-+ i ~ sinh (~gh)1

a

—

w

.—

.—

+.

.

.—

m

w
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Updn separation into real and imaginary parts and making use of the fact
that an integral from - to * is twice the value of the integral
from Q to EJif the integrand is an even function and zero if it is an
odd function, this becomes

~* =

With

T* ‘

{

[

2

01 [(

2
co

f

l-( K~g)2-~ + 1 - K$g 92
1

‘) 1

+pgh
1 ‘T7e
!5

[

2

1[ 1

2
0 cc)sh(&@) + K~g Si?3h(#lgh) + : si~ (p@)

cosh (~gy) sin (gx)

the substitution, q

L

= flgh,this becomes

Cosh(9 cOB(a
. .2 . .2

1 Hcosh (q) +: q Si13h q + : Sinh (q)
1

1 “[1-(:q)w21 ‘[(1 -fq)2 ‘(:)7 ‘2q

z

f{ [

2

1[

2
0 cosh (q) + f q Sifi (q) + ~ sinh (q)

1

7

1co”(:) ‘+f)’q

dq +
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.
The integrals indicated in equation (19) have not been found in

closed form. However, if the derivatives of 9* are desired at a
small numhek of points for a small number of values of K/h and ~/R, -z

the derivatives can be taken in the integrand and the resulting inte-
grals evaluated numerically or graphically.

The quantity of primary interest is Au, the value of bT*/ax
evaluated at x = y = O. Performing the indi-cateddifferentiation on
equation (19) and setting x . y . 0, the expression —

[

[()(
2 2

a

1[

.,2

f

1- :q-g ~-~q+R
1

I

e-zq

Au.
‘e

-—
lM~2h2 o

[

cosh (q) + ) ‘~![;sli qj~ ‘d’~qsinh (q)

(20)
is obtained for the additional stream velocfiy at the position of
the model due to the walls.

-.

Solid wall.- Letting K–> m or l/R-> m in equation (20) ~e~s

me V3

flu J’ e-% X me=— dq=——
K 2fi~2h2o sinh (q) 24 ~2h2

E –> w

Ideal porous wall.- At K= O equation_ becomes

[
w cosh (q) -

Au’ = 1

K~=o
‘&J [Cosh ‘q)l ‘: ~q’12 ‘-qqdq ’22)

Ideal slotted wall.- With l/R = O we have

Q?sGE” - For both K = Oandl/R=O
co

Au ‘e J e‘2%dq Y’(= ‘e

fi~2h2o 1 + e-zq ‘–m~

:=0 ““

PO-=
R

(24)

.....z ‘“
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In the general case (eq. 20), the
values for the solid wall and the open
trarily small by an appropriate choice
plot of the values of K/h and @/R at

13

value of Au lies between the
jet, and Au can be made arbi-
of K/h and P/R. Figure 2 is a
which Au = O. These values

~ere computed numerically near the ends of the curve and interpolated
in the middle. Equations (21), (22), and (24) are in agreement with
the results of reference 3. Figure 3 is a plot of equation (23), show-
ing the variation of blockage factor with slot parameter for the two-
dimensional-flow, ideal, slotted tunnel.

Since the effect on the blockage correction of letting p approach
zero is the same as letting l/R approach zero, it can be concluded
that as the stream Mach number approaches unity, the blockage correction
factor for an ideal porous wall approaches that of an open jet. Simi-
larly any effect of viscosity or taper of a slotted wall described by
equation (6) would be suppressed at near sonic speed so that the block-
age correction factor would approach that of an ideal slotted wall.

. .

Blockage in a Circular Tunnel

Again,the blockage due to the wall interference of a very small“
model till be calculated using equation (6) as the boundary equation.

Let x be the coordinate in the free-stream direction and r the
cylindrical coordinate perpendicular to the
the tunnel radius so that the wall is at r
nates, equation (1) becomes, in the case of

and equation (6) becomes

x direction. Let r. be
. ro. Using these coordi-
rotational invarianee~

: r.

Then P* must satisfy the equations

()
~&’+&l r=’ =0

r & ar

(25)

(26)

(27a)

#
(See fig. 1.)

4
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●

Again, from reference 1 the free-air solution is approximated by

The consttit D3i is related to the size of the

Illr =uTr

-(28) ‘

—
model by

-.

(29)

where Tr is the volume oi?the model. Correction factors which take
into account the shape of the model and the presence of shock waves are
discussed in reference 5.

—

Substituting, as before, the Fourier integral expressions for @
and gl into equations (27) yields

(30a)

(-ig G* &*

)

+ 1 aG*-Kig— –— =-

(
-ig G~ - Kig~+-

)

l%
& R & & R &r

r=ro = r.
d

The general

,

where 10 and ~
first and second
a singularity at
B(g) must be zero and, hence,

(30b)
.

solution of the first of equations (30) is .-

G* =A(g) 10 (~gr) +B(g) ~ (~gr) “

are the modified Bessel functions of zero order of the
kinds, respectively (see ref. 6). Since & (p~r) has
r= O which would lead to a singularity in ~ at r = O,

G* =A(g) 10 (~gr)

Substituting eqpation (28) into the FoWler integral
91 yields

w

From reference 4 it is found that

m

(31)

expression of .-—

(32)

Y. —

.



NACA TN 3176

According to equations (12), the inverse relation

follows. Taking the derivative with respect to x of
this equation @elds

w

both sides of

From this, according to equations

L so that

mr
G1=—

4Yt2

Substituting equations (31)

ig~ (Prlgl)

and (33) into

(33)

equation (3m) yields

1r

A(g)
1
-ig 10 (Pwo)

-1

K= (flrolgl)+J23Lig
[
-ig

4fi2

the derivatives of ~ and ~ being found
solving for A(g), substituting the result

● substituting q for Prog there results

.

in reference 6. Upon
into equation (13), and



.

P
m

1[ 1(
m Kl(q)Io(q) + Ko(dh(q) Io :

mr !32

J

‘Os & ~dq+
.— --

kn@%02 R x ~

[
10(q) +; q11(q)]2”+ ~ ,,(:)]J

[
4Kl(q)Io(q)+~(q) Io(q)+ q~~(q)Il(q)-

- ‘qro
o

(q2~+$)KddIdd] 10($ .~(&)qdq 1

o
r

1‘o(q)+‘5’(q)12 +[: “(q)12

Differentiatingwith respect to x and 6ett@

b.l=-

J
(34)

~2dq

(35)

Closed wall.- Setting l/R–sin in equation (35) yields

%2 “’Kl(q)
h

f
.— —— q’dq = 2“~r

_ _>m 4J@ro~ ‘B
Ii(q) 2z2r03~3

R
o

Q!

Ideal ~rous wall.- At

1 a

‘, ,
,

K = O equation (s5) becomes

. . ‘ >
,,

,,,! 1, ill
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i

Ideal slotted wall.- With (l/R)= O we have

[ 1
m b(q) - q:h(d q2dq

Al mr 2=-
[4fi~3r03~ o

[

(38)

P
Io(q) + q$I=(q)

—= 1
RO

@en jet.- For both (l/R) =OandK= O

a

IK.—=r.
The values of Au in equation (35) lie between

closed wall and the open $et. Figure 4 is a plot of
versus ~/R at which Au = O; the shape of the curve
the ends and interpolated in the middle. A graph of
in figure ~ showing the variation of blockage factor
for the cylindrical, ideal slotted tunnel.

(39)

the values for the
values of K/r.
was calculated near
equation (38) appears
with slot parameter

Again, letting ~ +.0 has the same effect on the blockage cor-
rection as letting (1/R)->0, so that near sonic speed the ideal porous
wall should act like an open jet and the slotted wall should act like
an ideal slotted wall.

Lift Interference in a Circular Tunnel

The upwash correction will be calculated using the infinitesimal
model size approximation and the approximate boundary condition of
equation (6).

s
Let x be the coordinate in the free-stream direction, z the

coordinate in the direction of lift on the model, and y the remaining

.
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*
Cartesian coordinate. The cylindrical coordbiates r and 6’ are related -

to the Cartesian coordinates by “r= fia.d~=
be seen from reference 1 that the appropriate free air

%
rb

(‘r 1+ )
h ‘i;e

r sin e. It can “

solution is

(40)
—

which is the potential of a horseshoe vortex having infinitesimal span.
The ftictthat the actual span is finite introduces higher-order terms
which are negligible at distances large compared to the size of the .:=+
model. Here rb is related to the lift on the model hy

.- —

The Fourier transform
An arbitrary parameter a
the Fourier transform of a
function be

/

L= purkl .— (41)

with respect-to x of 91 cannot be found. ___
will be introduced into the potential so that ‘“” ..-”
related function can be.found. Let this

P= ‘
=~ (Je-a%+p=~~a -CJ-ic-ii= sine

h-r
--— e ‘-

a ax ) r

so that .

Then a will be eliminated
with a at zero.

From reference 4 it is

lim ql~ = Q1
a—>o

from the resulting @’ by taking the

found that the Fotiier transform of

(42)

— .

limit —

e-a~ is @r K= (~r~~)
. By the use of an inversion,

fl~ “-”

differentiation, and reinversion, as in the derivation of eQuatiOn (33),

b -ah iS ‘it is found that the transform of — e
ax

..
—

s

.
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iga~rKl(f3r,/&+ a?)

./m
so that the transform of Ql! is

(43)

From physical reasoning, it can be seen that the sin e factor
of C#l will result in the same angle dependence for P*, so that sin e

g&G~.a factor co~on to gl’~ 9*’ and their Fo~ier tr~sforms G1’
With cylindrical coordinates, equation (1) is

%WK%)+H%=”
In the case of sin G dependence, this becomes

and the boundary condition remains the ssme as in equa.tion~(26). Sub-
stituting the Fourier integral expressions for g=’ and @ in these
equations, as before, yields

‘F@G*r‘=(’% +’” ‘0 (44a)

The solution of equation (44a) which has

G*’ = A(g) Il(Prg)

(44b)

no singularity at r = O is

sin e (45)



Substituting this and equation (43) into equation (4kb) yields

{
A(g) - ig I1(&&) + ig Kw. ig K fJgIo(p~og) -~b&d ++ Io(&og)

rO }

sin e =

Solving for A, substituting in the integral expression for w’, and taking the limit

of pr as a ~ O yields

[

[ ] (rO) (i%) ‘q ,h(dIo(q) + b(q)Il(q) q211 ~ sin 13cos

P*=-Q- ~sinf3---
4aro r.

‘:~q2[{ -:~.(q) +q($jIo(qj2+(:~~(gl - qIo(q)]2 -7

m

J
[

f’[(1-#-)Ehd-q~%(d ][(-+,(q) +q~Io(q)]+(:~[K,(q)w%(q)][I.(q
o

q’[(’-+l(q)+q; ‘O(4’+(:)pq) -q’o(’q
7

1

I

, . * * . r



$

Re@acing 11 (qr/ro) by its power serie~ expanston, differentiating with respect to z,

which is equal to r sin e, and setting r = O yields

[

()[L(q) Io(q) + %(!!) ll(q)l qs COS & aq
* ._&4J o 1

az
[(

R z O q2 1-~ Ii(q) +q~ ~o(q)
——

~l(q) - !l~o(q) 2 *o
r=o r.

[( >
qz L-; ][(:)l(q) - q +KJq)

NJ [
& ll(q)W &Io(q) ~ Kl(q)+q&(q) 1[Ii(q)-q Io(q)

1

q:
:( )

1 -r: l(q) +q : Io(q)
J ‘ (+. [“(q) - ‘:o(q)r

for the upwash at

(4’7)

r=O.

When x = O we have

for the value of upwash at

solid wall.- Letting

the position of the model due to the walls.

l/R - RI yields

&ii

I

=+

:+.
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Ideal porous wall.- At K = O equation (48) becomes

!?b

[

pl w [Kl(q)Io(q) +Ko(q)Il(q)~q3dq
Aw =-— 1

J
1

(49)
bfiro2 –F;

()

2-
K.—= 0 q2112(q) + “~ II=(q) - qIo(q)12

ro

Ideal “slotted.wall.- When l/R is set equal to zero in equa-
tion (48), a limiting process is required to...obtainthe correct result _ ..;
at (~/R) = O. The result of this process is ,

Aw =-

fi
“E=o

Open jet.- Letting

The value of Aw in
the values for the.closed

173

4nro2()
Kl—-
r.

K— +1
ro ::

K = O in equation (50) yields

rbAw =–—-’-- -..

P 4flro2~::
—=0r
K -o~–

(50)

the general case of equation (48) lies between
wall “andthe open jet.

—.——

CONCLUDING REMARKS

A method of evaluating wall interference of yartly open walls in~olv- _
ing mixed potential and viscous flows has been presented. EWressions for
blockage and lift interference for both slotted and porous walls have been
derived. Some new details of the method may prove useful in other theo-
retical treatments of this type of problem.

The results of the analysis indicate that near sonic speed, the

—

—
*

-—P -.

.

..

blockage correction for an ideal porous Wall.approaches that of ~ OPen ..._. ---,

jet. Similarly, any linear viscous or taper_~$f’ectof a 810tted wall is
suppressed near sonic speed, so that the blo_ckagecorrection approaches-- -
that of an ideal slotted wall.

Ames Aeronautical Laboratory
National Advisory Committee

Moffett Field, Calif.,

.- — .—

for Aeronautics
~Y29, 1953
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APPENDIX A

DERIVATION OF THE BOUNDARY EQUATION .

In this appendix an approximate smoothed or average boundary equa-
tion for a slotted wall will be derived.

An ideal slotted wall has zero perturbation pressure at the slots
and zero normal flow at the strips. These conditions can be expressed
6.8

a(p=o at the slots
z

*.O at the strips
an I

(Al)

When the slot spacing and model dimensions are small ccmpared to
tunnel dimensions, the perturbation flow can be separated into a rapidly
varying and a relatively uniform part so that the two parts can be
investigated separately. It till be shown that the effect of the rapidly
varying part can be replaced by a condition on the relatively uniform
part.

-
Let q, ~, ?, amd = represent the rapidly varpng part of the flow

field and ~, u, v, and w the remaining part of the perturbation flow.
For a plane wall at z = h equations (Al) require that

w
U+u= o at the slots

1

(A2)
;+W=O at the strips

In addition

c=
-

F.w.o far from the wall (M)

In order to solve for ~, use canbe made of the fact that u, v,
and w are nearly constant at the wall compared to ti,%, and %, so
that u and w canbe considered constant in equations (A2).

Since the slots lie along the x direction, ~ iS nearly co~tant
in the x direction, so that atifix csnbe neglected compared to

a?jayWd a%~z. As in slender airplane theory, this leads to a two-
dimensional crossflow for which
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(A4) ‘- .

Then ~ can be of the form Q(x) f(y,z) where Q(x) is a slowly
var~ng f~ction of x, and f(y,z) satisfies the two-dimensional

Laplace equation. Then,

?.!!.~ f(y,z);=
ax ax

and since ; is equal to -u, a constant, at the slots, f(y,z) must be
constant at the slots or

~=~=Qaf=o
h by

at the slots

This equation-can be used to replace the first of equations (A2),
and altogether there results

-
V=o at the slots

assuming that

Equations

$= -w = constant at the strips

1

(A5)

? =7= 3.0 far from the wall

&@x is not absolutely zero.

(Ah) and (A5) can be solved using the conformal trans-

●

✎

formation technique.

Let the wall at z = h be slotted periodically from y = -m to

Y = +m with the center of a slot at y = O. Let a be the slot width
and 1 the slot separation (see fig. 1). It is sufficient to consider
only one period of”the periodic flow configuration so that solid bounda-
ries can be placed at y = *(Z/2) and attention confined to the region
between them.

Let x = z + iy be the complex physical plane and ~ = L +iq the
transformed plane. Let O be the complex velocity potential such that
W.G. i?, the complex velocity, is equal to d@/dX, and @ = real part @.
Then equation (A4) is satisfied if O is any analytic function of X.
The boundary conditions (A5) are satisfied by finding theanalytic fUnC-
tion E(X) which transforms the boundaries in the X plane into a con- a-

figuration for which the flow field with the desired flow at the bound-

.

aries can be found. .
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In the X plane the region under consideration is from z = -=
to z = h and from y = -(2/2) to y=+(Z/2). The slot lies on the.
line X=h+iy from y=- (a/2) to +(a/2). (See fig. 6.) me
two half strips lie on the same line from y = -(2/2) to y= -(a/2)
and from y = (a/2) to y= (l/2). The remainder of the solid boundary
lies along the line X = z - i(l/2) from z = -W to z =h and along
the line X = z + i(z/2) from z = -= to z =h.

The transformation which will place the origin at the wall, and the
domain under consideration in the right half-plane is

~l=h-X (A6)

The effect of the transformation on the positions of the boundaries is
obtained by substituting the equtions representing the boundaries into
equation (A6). Thus, the line X = h + iy becomes El =c=+ill~ = -iy
in the El plane and the slot lies an this line from rll= -(a/2) to
ql= + (a/2). The two half strips lie on the same line from 71 = -(2/2)
to -(a/2) and from a/2 to 1/2. Similarly, the remainder of the solid
boundary in the El plane lies on the line 51 = h - z - i(l/2) from

:: ‘~: y= cl = =
and on the line El = h - z + i(t/2) from !.1=0

& -.

To satisfy the boundary condition at the strip, a term WEI = w(h-X)
is added to the potential in the transformed plane.

The remaining boundary-value problem is solved with the aid of two
further transformations.

The transformation

’52 = Sinll
()
; El (A7)

transforms the region under consideration in the El plane to the entire

right half of the .52 plane, as can be seen by following the procedure
outlined for the first transformation. It is found that in the ~=
plane, the slot lies along the imaginary axis from -i sin (fia/2Z)to
+i sin (ma/2Z) and the solid boundary including the two half strips lies
along the imaginary axis outside of *i sin (fia/2Z)0

The transformation

E= ,2+- (M)
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The neglected terms
zero at infinity if

[

+: (h-X) ~w(hx)
~ AZn e

1

~A~(h-X) +W (h-X) -

r.

.

transforms the region under consideration to tl’~epos.iti~e real half of

the & plane, excluding the circle of radius sin (fia/2Z)centered at
the origin. The slot lies along the half of this circle in the right
half-plane, and the complete solid boundary lies along the imaginary
axis outside the circle. Thus, a source at-the origin in the ~ plane
will satisfy the condition of no flow through the solid bomdary and no
flow across the slot. Hence,the desired potential is

O =AZn (~) +w~l (A9)

Substituting equations (A6), (A7), and (A8) in (A9) yields

The constant A is evaluated by the last of equations (A5), O

I

=0
~—!-co

being the equivalent of that equation.

As X –>-00, the potential simplifies to

.

.-

-—

are of order smaller than l/h-X. Thus, Q will be
A= -(2/YT)W so that

(Ale)
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It was assumed that the velocity potential is constant over the slot.
The value of this constant is

@ [ (~)]=,=-w -$h sin at the slot
y=o

I z=h

and

==={-$zn[sin (=)l}=: at’hes’ot

Substituting this in the first of equations (A2) yields

Since it was assumed that u and w do not vary appreciably from
slot to strip, this equation applies everywhere at the wall

Z2+K.E2 .()
ax ~x?h

K=-; ‘nFi”(~)lj at ‘hem”

and melds

(All)

for a plane wa~.

In considering a curved cylindrical wall, ft appears that the above
results are not altered appreciably if the radius of curvature of the
wall is everywhere large compared to the slot spacing.2 Hence, it can be
assumed that equations (All) are applicable to any slotted wall.

2For a circular cylindrical slotted wall, solution of the boundary value
problem

a: o—=
&

at slots

a? -w—=
ar

at strips

?=0 atr=O

. yields a value for K identical with that obtained from equation (All).
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.

In an attemptto take viscous effects in the slots into account, it
can be assumed that-as in the case of the “ideal” porous wall there is a
pressure drop through the wall which is proportional to the normal
velocity at the ws#. In that case the first of equations (A2) is
replaced by (u + u) +(1/R)w = O at the s-lotswhich leads to

lq+K.&&-+~~=O
ax

everywhere at the wall (A12)

where K remains the same as in equation (All) and R is to be deter-
mined experimentally.

Equation (AIO) can be used to calculalxrthe neglected variations
in flow quantities near.the wall and also at the model if the variations
are not negligible there.

DISCUSSION OF A CRI’TICALASSUMPTION IN
OF THE BOUNDARY EQUATION

.

—

—

THE DERIVATION

It is assumed that the perturbation pressure at the wall is pro-

portional to u + ~. This is a good approximation only if

(v +3’ -1-(W+;)%2 (u+:) u

in addition to the usual requirements for linearization. This addi-
tional requirement can be reasonably relaxed to

(w + 3)2 c<2uU at the wall (A13)

Equation (AIO) indicates singularities,in ~ at the edges of.the
slots. Experience with wing leading edges indicates that this.dis-
crepancy can be reasonably ignored. Howeverfi_equation(A13) should at
least be satisfied at the center of the slots. The effect of this
condition on u and v will now be determined. Differentiating
equation (AIO) yields

cosh
.[1

: (h-X)
dO

w =—=W
ax

Jsid2 [+ ‘h-x)]+ ‘in’ (=)-w

—
.

. —.

.
—
—

—

.

.
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Then

COB

I

()T
w =W

z =h

i ‘in’ (!)”:””’ (?) ‘w=;” ‘h

and

(w+;) = w

Iz =h

()
sin ~

Y’~ 21

so that equation (A13) becomes

()sin= z
2-1

or

29

(a4)

This result places a lower limit on the ratio of open to total area
(a/Z) for which the results of this analysis can be expected to apply
to slotted sections.
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.
APPENDIX B

BLOCKAGE IN A CIRCULAR

NONLINEAR VISCOUS

TUNNEL WITH

EFFECT

._

If, in the experimental determination of the porosity parameter R,
it is found that an additional term of the form f (&p/~n) is needed in
the boundary equation, the result is

—-.

This type of equation cannot be solved exactly by any presently known
method because of the nonlinearity. However,the equation becomes linear
if the @ in the nonlinear term ia neglected under the assumption that

Hence, the equation

will be discussed.

The transforms G* and G1 of @ and 91 remain the same as before,
with the exception that the factor A(g) must be evaluated from the
transform of equation (B4). For this purpose, the transform of
f(&pl/&) is needed and can be found by evaluating

(’5)

.—

.

—

——

.—

.
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The transform

r

31

of equation (Bk) is found to be

-1

Upon solving for A(g) and substituting in the inverse transform
expression for q* equation (34) is obtained plus the additional term

-co

1

~ Wl(l%g) [- ig lo(BrOg) + NWl(prog)
1

With the substitution q = ~rog this beco~s
f

GfIo(@g)e ‘i~dg

m

f

8q*=- 1 1 1Gfe ()-%10 ~
[

S2 (B6)
# Ii(q)-i lo(q) + ~ qI=(q)

1

r. q
-w

As an example of the use of eq~~tion (B6) let

This function is chosen rather than
because the pressure drop should be
velocity.

Hence,

()av=.s

one propotiional to (a~/~n)2
an odd function of the normal

()
Ca

%3 3
Gf=& (3 B2ro)3 &

f

x

+ G
-m [~ + !32r02115’2

(B7)

.

From reference 4 it is found that

.
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Differentiating three times with respect to g yields

so that

“=-’+ (-. *

or

Substituting this in
imaginary parts yields

equation (B6) and

f

separating real and

,0s (~)% (g) “

![m % (’) + : @l(d

f

1

0

[ :r’(q)r + [10(’) ‘$q11(q)12

(B9)

.

.

.

.

.

.
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.

Upon differentiation with respect to x and setting x=r=O, there
results

.

+ (4.&Y
Mu.p=L

‘l(q) :[~’~(~)1 ‘q

“~~(%) ‘f[:’’(q’ T+[’o(q) ‘: “(q):

From reference 6 it is found that

$[.7’’(’)1
= (1152 •I-168q2 - 5q4)q2Kl(q) + (576 + Ef - q4)q%(q)

and

co

(B1O)

Setting
equation (37)

K/r. equal to zero in (B1O) and recombining it with
yields



% I [ 1
= lo(q)Ko(q) ‘$Kl(q)Il(q) 2

All=——

%2~3rOs
J [%(q)~+[%(q)~qdq-

(Bll)

as the blockage in a porous tunnel for which the boundary equation is

The lin&r-tiscous-effect term la zero

~/R = 1.21, and

zll-~
2#Prog

compared with the value of

when equation (Bll) is evaluated numerically at

Illr
Au= [2.4]

2ri2~sros

for a solid wall.

#

w
!=

,
Il. 1. ,,.
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Since the factor Tr/4=os is very small, the nonlinear contribu-
tion to the blockage correction should be negligible at subsonic speeds
where ~ is not small. But as contrasted to the linear viscous effect
which becomes small as M approaches 1, this nonlinear viscous effect
may become large.
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.

DERIVATION

FOR A

APPENDIX C

OF THE BOUNDARY

TAPERED SLOTTED

.—

.
EQUATION

WALL

In this appendix an approximate smoothed boundary equation for a .—
—

slotted wall with tapered slots will be derived.
-=

The develo~ent in this case is identical with that in Appendix A
Vp to the point where it is found that

~=w[-:,n[sin(:)l] attheslOts

or

~=w K at the slot (cl)

When the slots are tapered, the slot parraeter K is a slowly
varying function of x which ca~ be exq?andedin a power series about
x= O so that neglecting the higher order terms

K(x) ~K
+dK x

x= zo. X=o

Then

~=K dKw+— Xw at the slots
x= oh X=o

and

:_&K &+g dK hw4—— —x
3X X=oax dx X=o dx X=o?k

Assuming that the last term will be negligible comyared
we have

at the slot

—.. ..——
—-.

.

-—

to the others,

*
u= K

o~+~ ~=ow
at the slots (C2) -

x=
.



37NACA ?!N3176

Substituting this eqyation in equation (A2) of Appendix A yields

u+K
Ix=

Then, as in Appendix
slot to strip

Ff$ +a_qq+K —
ax x . ()axan

aw:dK I w= o at the slots
Oax dx x.()

A, since u and w do not vary appreciably from

dK

I

>9=0
everywhere at the wall

=x=Obn
1

I(C3)

K(x)
‘-* ‘n [sin*]

Hence, the parsmeter l/R in equation (6) of the text can be interpreted
as the quantity dK/dxl x . 0 which is related to the taper of the slots

in a slotted wall having purely potential flow in the slots.
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(o) Two-dimensional-flow slotted test section.

\

Circular slotted test section.

Figure /.- Cross -sectional diogrums
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Figure 2.- Simult oneous values of slot par ometer ond porosity

parameter for zero blockage in o two-d!inensionol- flow tunnel.
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Figure 4.- Simultmeous values of slot purometer and porosity

PUfUmef er for zero blockage in o circular cylindrico! tunnel.
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