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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3125

A STMPLE MECHANICAL ANALOGUE FOR STUDYING THE DYNAMIC
STABILITY OF ATRCRAFT HAVING NONLINEAR
MOMENT CHARACTERISTICS

By Thomas N. Canning

SUMMARY

The analogy between a ball rolling over a contoured surface and a
pitching and yawing aircraft is developed. Test results from a model
representing a missile with linear moment characteristics are presented
to verify the analogy. Several examples of the behavior of nonlinear
systems are also glven. These examples include results from ballistic-
range firings as well as analogue tests.

INTRODUCTION

Designers of aircraft asre frequently confronted with the problem
of predicting the behavior of asircraft having nonlinear pitching- and
yawing-moment characteristics. The usual approach to these problems
involves tedious calculations or use of elaborate gimulators. A simpler
approach suitable for some of the problems encountered, particularly
those of missiles, is the subject of this paper. The approach uses the
analogy between a ball rolling in a suitably shaped bowl and a missile
pitching and yaswing in flight. This analogue was devised in order to
understand a peculiar motion executed by a projectile in the Ames super-
sonic free-flight range.

SYMBOLS

A,B constants defining veristion of =z with x and y

a radius of ball, ft

ag radius of gyration of ball, ft

Cc,D constants defining variation of Cp and Cn with o and B

Cn pitching-moment coefficient of missile
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yawing-moment coefficlent of missile
vector sum of Cp and Cp for axlally symmetric missile

force component acting on ball parallel to bowl surface at point
of contact which prevents slippage

acceleration of gravity, ft/sec2

moment of inertia of ball about a diameter, slug-f£it2
constant, ft/sec®

constants, radisns/sec®

constant defining rolling friction of ball, 1/sec
body length, ft

constant defining damping of missile, l/sec
JxZ+y2

weight of ball, 1b

coordinate system for bowl description, x and y horizontal and
z vertical

position of center of gravity as fraction of body length
angle of attack, radians

angle of sldeslip, radlans

angle of lnclination of bowl surface, radians

tan™t

ta.n‘l

gl Kid

 a® 4+ p2

rotational velocity of ball, radians/sec
Superscript

differentiation with respect to time
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BASTC DERIVATION

Conslder the force system acting on & ball rolling on an inclined
surface,

Two Porces act on the ball to produce translatory acceleration: the
component of the welght force W parallel to the surface at the point of
contact, and the tengentiel force F at the point of contact which pre-
vents slippage.

Weing - F =20 X (1)
g cos B

Since slippage does not occur

X = aw cos &
X = at cos &
Using this relationship
Faz:_[. X
8 cos B

Substituting in equation (1)

1/W I X 1 %
sin 8 == =+ = =
(?: —§> K

=

cos B
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vwhere

SHGE SEHIE]

and ag 1s the radius of gyration of the ball.
If |8| < 0.15 radian,

gin & = ®

g

s8in & cos B
and it follows that
oz
ox

The derivation has thus far been limited to motion in the x,z plane.
In the general case of motion anywhere on the bowl, the component accel-
eratlons parallel to the x and y axes, respectively, are:

X =Kg—i (x:y)
&: =K%§_‘ X,¥)

Similar equations govern the motlion of an undamped pitching and
yawing misslle

Ki Cm (CL,B)
Kz Cn (@)B)

Q:
i

w™:
il

Comparison of these equations shows that o and B are represented
in the analogy by x and y and that Cp snd Cp are simulated by the
bowl slopes, o0z/dx and dz/dy. The ball rolling about the bowl may be
visualized as describing the path traversed by the missile tip relative
to the center of gravity.
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Ingerting a friction force proportiomnal to rolling velocity and
aerodynamic moments proportional to angular velocities results in

55=K-§—}Zc X,y) - Lx

¥ =K (%) - 17
for the ball, and

d =K Cp («8) - laa

B = Ka Cp (a,B) - Ieé

for the missile. In the case of a missile free to plunge, as well as to
pitch, the coefficlents contain several terms, but the differential equs-
tion 1s in the seme form as that presented.

This, then, is the analogy between a ball rolling on & surface of
given contour and a corresponding missile pitching and yawing with the
above relations between surface slope and sercdynamic moments.

EXAMPLES

A case representing & missile with linear moment characteristics was
tested to verify the analogue, and three nonlinear cases were tested to
demonstrate the application. All four cases were chosen axlally symmetric
to economize on model construction. The feature of axizl symmetry sug-
gests use of cylindrical coordinates to define the moment characteristics
of the missgile and the surface of the bowl.

The moment tending to realign the missile axis with the flight path
for the cases tested is given by

Cg = Co + Do®
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and Cy 1is related to Cy and Cp Dby

Cp = Cg cos @

Cn

CU s8in 6
The bowl-surface slope is glven by

4z _ oar 4+ 4BrS

dr .-
and the equation of the bowl surface is then
z = 25 + Ar2 4+ Br?
Converting the bowl-surface equation to Cartesian coordinates gives

z = zg + A(x24y2?) + B(x2+y2)°

The slopes of the bowl are then

9% _ opx + 4Bx® + LBxy2
dx

%5 = Ay + 4By® + LByx®
y

Using the analogy between the bowl and the missile moment characteristics
gives .

Cm = Ca + Da® + Dap?

Cn

Cp + DR + Dpa®

These equations illustrate that Cp, for instance, is a function of both
o and B, even for this simple nonlinear system,
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The simplification attained by use of cylindrical coordinstes may
apply to conventional electronic analogue computers as well as to the
rolling-ball analogue.l

The four casee were obtained by assigning various positive and nega-
tive values to the coefficlents C and D. The moment equstions and the
resulting bowl profiles are presented in figure 1. The terms "stable"
and '"unsteble" in this figure refer to conditions near the bowl center.
The cubic case has zero stability near the center of the bowl.

CONSTRUCTION OF MODELS

Severel techniques of construction were tried. The most accurate
bowl, also the least expensive, was cast in hard plaster over a die made
of plaster. The first step in msking a model was to mske the die on a
flat work surface by sweeping a steel template about a vertiecal axis
through the center of the die. While this die was hardening, a round
frame was made using a piece of plywood for the base and a strip of sheet
metal for the side. The hardened male die was greased lightly and the
frame, with access holes cut in the base, was placed upside down over it.
Plaster was then poured in through the access holes. The final contoured
surface was then sanded and sprayed with flat, black lacquer. About eight
man-hours of work were required per bowl for the axially symmetric cases
built. These bowls were 2 feet in diameter.

TESTING

The bowls were placed directly below a motion-picture camera. Lag
screws in the plywood base permitted accurate leveling of the bowls. The
balls were g8ll solid and were made of steel, brass, and aluminum and
varied in size from 0.25 inch to 1.00 inch in dismeter. No elaborate
technigue was required for starting the bglls rolling, but it was found

iThe equations of motion of the ball and missile may be converted to
cylindrical coordinates. The equations for the bell are, assuming
axial symmetry

r - réf = K-%% - Lr
2P¢ + r€ = - Lre

The term 2r¢ is the Coriolis force. The equivalent equations for
the misgsile are

G - 06> = kCy - 16

266 + 08 = - 108
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convenient to roll the balls down a chute rather than roll them by hand
because good repeatability of initial conditions was desired. The motlon
pictures, which were taken at either 8- or 16-fremes per second, were
projected frame by frame onto a screen for measurement. The camers fram~
ing rate was used.as the time standard. 0il layers of various thick-
nesses on the bowls were found to provide good control of the damping.
Using balls of various densities also provided some control over damping
without olling the surface. Actually, the damping was measured rather
than predetermined.

RESULTS

The results obtained with the linear-case bowl are easily compared
with analytic results and serve to check the validity of the analogue.
In figure 2 are plotted the data for three runs corresponding to simple
pitching motion with progressively heavier damping. This large varlation
in damping was attalned by using a l-inch-dlameter brass ball on the bowl
with no oil for the light damping (fig. 2(a)) and a 1/4-inch-dismeter
aluminum ball with a thin coat of oll for the case of heaviest demping
(fig. 2(c)). Superposed on each set of data is a damped sine wave fitted
by the method of least squares (ref. 1). That the experimental data fit
the theory quite well is clear. The undamped naturel period, as predicted
on the basis of bowl profile and the inertia characteristics of the solid
balls used, is indicated in figure 2.

Several plots of angle of attack versus time for pitching missiles
with nonlinear moment curves, obtalned with the bowls, are presented in
figure 3. The curves for the cubic case (fig. 3(a)) were obtained at
different times during the same test and 1llustrate the extreme depend-
ence of frequency on smplitude of osclllation, & characteristic attribu-
teble to the nonlinear moment curve. The large-amplitude curve has the
sharp peaks typical of cubic systems. The stable cubic case (fig. 3(b))
exhibits these ssme characterigtics to a lesser extent. The unstable
cubic case (fig. 3(c)) exhibits 6 points of inflection per cycle instead
of the 2 per cycle shown by all the other cases.

Two plots of motions obtained with the unstable cubic case ere shown
in figures 4 and 5. The motion of figure 4 gradually degenerates and
takes on a form much like that of figure 5. These two motions were not
obtained on the same test run.

In the course of experimentsl firings of a simple body of revolution
in the Ames supersonic free-flight range, the pitch-yaw records shown in
figure 6 were obtained. In the sbsence of large gyroscopic forces (the
models were fired. from a smooth-bore gun), it was difficult to explain
this behavior. In attempting to do this, the analogy between the ball
and the missile was discovered and the improved intultive feel for the
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problem made the explanation clear. The moment curve for this body has
not been determined, but the motions observed indicate that the unstable
cubic case is & falr representation. The data were obtained using bal-
listic "yaw cards.” The technique consists of deducing the model orien-
tation at any instaent from the shape of the hole it punches in a piece

of paper. Therefore, the curves are not exactly defined, but the general
nature of the motion is illustrated.

LIMITATTIONS

The most serious limitation on the use of the analogue is that only
pitching and yswing motion may be simulated. The missile which 1s being
simulated must be assumed to be roll stabilized to zero rate of roll.
The damping coefficient must be the same for pitch and yaw, which also
limits the value of the analogue for silrplane-like cases.

It was noted during the test with the linear example that when the
ball was executing elliptical motion, the axes of the ellipse precessed
slowly. This distortion of the motion is believed to result from second-
order momentum effects (arising from the fact that the bowl surface had
finite slope) not considered in the derivation. The salient features of
the motion are not masked by this effect.

CONCLUDING REMARKS

The use of a ball rolling on a suitably shaped surface to represent
the pitching and yawing motion of a missile has been described. Intuitive
understanding of some complicated motions is simplified through the use
of this device. The use of the analogue for axially symmetric cases sug-
gests that the use of cylindrical coordinates for describing nonlinear
moment characteristics may prove helpful in solving problems on conven-
tional analogue computers.

Ames Aeronautical Leboratory
National Advisory Committee for Aeronautilcs
Moffett Field, Calif., Dec. 10, 1953
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