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TECHNICAL NOTE 3280

ANAU3G133SFOR STIFFEIW SHELLS

WITH FMXE3LE RINGS

By R. H. MacNeal

analogous electrical circuits are developed
for stiffened shells ~th flexible rings. By assumption, the forces
that a shell (consisting of stringers and skin) and a ring can exert on
each other are directed along their comnmn~line of intersection. As a
consequence the shell and the rings can be treated separately.

First an electrical analo~ is developed for a circular shell with
a straight axis and variable radius. This analog is extended to non-
circdm.r cylinders. Next an electrical analogy is derived for rings with
variable radii of curvature; a simplified circuit for circular rings is
also presented. The simplificationsthat occur when the rings are assumed
to be rigid are discussed. Finally results are given for two sample
problems solved on an analog conpter. The second problem concerns a
csatilever conical shell and illustrates the manner in which the shell
and ring circuits are interconnected.

INTRODUCTION

The type of shell considered in this paper bas an elongated shape
and consists of a thin skin supported by stringers and rings. fi
analyzing such shells it is the nearly universal practice to replace the
ehstic supporting rings by rigid bulkheads in order to simplify the
analysis. This will not be done in this paper.

The means of analysis to be used in this paper is an electric analog
computer of the “direct analo~” type. Any complicated sy13tem,M it is
to be analyzed on such a computer, must have its equations formulated in
a very special way. Essentially one seeks for laws of equivalence between
the system being analyzed and a lumped constant electrical network. The
basic laws of equivalence between the equations of elasticity .andthe
equations of an electrical circuit sre well lnmwn. Zn fact there are two
alternative sets of laws depending on whether force is made analogous to
current or to voltage. If the former alternative is chosen the laws of
equivalence are: Force is analogous to current, &LspUcement is and.ogous
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to voltage, Hooke’s law is analogous to Ohm’s law, equations of equilib-
rium sre analogous to Kirchhoff’s law for the sum of currents entering a
node, and the equations concerning the compatibility of strains are
analogous to Kirchhoff’s law for the voltages around a loop.

However much comfort these basic laws of equivalence may give they
=e usually insufficient to determine the form of a lumped-constant
electrical network that is analogous to a given structure. For one thing
elastic structures are continuous rather than “lumped,” and some means
must be found for replacing the given continuous elastic structure by an
idealized lumped one before an electrical analogy canbe found. This
“lumping” consists either of replacing the differential equations
governing the structure by finite-difference equations, or of employing
other devices such as concentrating normal-stress-carrying area into
equivalent flanges amd shear-carrying area into equivalent panels. In
the analysis of stiffened structures this l&ter approach is reinforced
by the fact that much of the structure is in fact so concentrated. In
this paper both of the methods mentioned w5J_lbe used.

b deriving an electrical analog for an ehstic structure u effort
should be made to preserve a one-to-one correspondencebetween the prop;
erties of the electrical circuit and the properties of the idealized
structure. This correspondence means, for example, that the current in
resistor A is equal to the force h flange A’ multiplied by a scale factor,
or that the voltage at node B is equal to the vertical displacement at
panal point B’ titipliedby a scale factor. If such correspondences are
preserved, the analog computer canbe made a useful tool for designing
as well as for analyzhg structures. If a change in the cross-sectional
area of a single fknge corresponds to changing the value of a single
resistor smd if currents can be easily and directly converted into
internal forces, then design changes canbe made very rapidly and their
effects instantly determined while the problem is set up on the analog
Coqnlta . In the present paper these correspondences are rigidly
preserved.

Another advantage of the close one-to-one correspondence of the
electrical analo$g and the idealized structure is that it enables the
structural engineer, who is usually uninstructed in electric-circuit
theory, to understand the operation of the analog computer and to use
it himself after a period of indoctrination. It has even been found
that structural engineers maybe aided h their understanding of structures
by using some of the concepts of electric-circuit theory. This naturally
applies, a fortiori, to the electrical engineer.

The present paper is intended as a step in the development of an
analog-computer methcd that is generally applicable to the solution of
aircraft structural problems. At present, analogies exist in the tech-
nical literature for beams, frameworks, flat sheets, the bending of
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plates, and the bending of platelike multicell shells. Structures
combining components of the above types can be analyzed by conibining
their electrical analogies. Consequently it is at present possible to
analyze.a great many practical aircraft structures.

Some of the previous papers that have a direct bearing on the sub-
ject of the present paper shouldbe mentioned.

In 1944 Kron pfilished a ~aper containing electrical analogies for
the general three-dimensional elastic-fieldproblem and, aa mibcasesj
analogies for the plane-stress and plane-strain problems (ref. 1). In
a companion paper, Csrter worked the plane-stress problem for a deep
cantilever beam (ref. 2).

More recently analogies have been developed for thin multicell
shells having a horizontal plane of symetry by using an equivalent plate
theory (ref. 3).

In 1951 Goran published a paper containing an electrical analogy
for stiffened elastic shells (ref. 4). The shells were assmed tobe
conical and to be supported by rigid bulkheads. Although the stringers
were not assumed to be parallel, the panels were assumed to be nearly
rec~ fi s~pe. ~r~ wed a ndMmum energy principle in deriving
the equations frnm which he developed the electrical smalo~, in contrast
with the method of difference equations used in this paper.

me pres~t investigationwas conducted at the CaMfornia Institute
of Technology and has been made available to the National Advisory
Comnittee for Aeronautics for p&d_ication because of its general interest.

SYMBOIS

A6 cross-sectionalarea of stringer

E YOU.WIS matiu6

fn external load normal to ring per radian of @

ft external load tangential to ring (or skin) per radian of @

Fn shear force in ring

FS,FS‘ forces in stringer

Fst> Fst’ tangential forces in panel parallel to t

—..-— .— ——-
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axial force in ring

tsmgential forces in panel parallel to s

shear modulus

thlchess of skin

moment of inertia of ring cross section

bending mcnnentin ring

applied vertical load
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radius of circular shell;’radius of curvature of ring;
distance to point h rigid ring

coordinate psrallel to stringer

coordinate perpendicular to stringer and parallel to ring

UsPlacement

dispbcement

displacement

normal.to axis of ring

parallel to s

pamlllel to t

coordinate related to ut

horizontal displacement of

horizontal.direction

by transformation

rigid lnddshead

vertical displacement of rigid buMhead

vertical Wection

angle between two adjacent stringers; angle between tangential
displacement and line to a petit in a rigid bulkhead

shear strain of panel

angle by which direction of s-axis is changed because of
translation h t-iMrection

clifference operators h s-, t-, and @-directions

increments b s, t, and @
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. L@ = 2 sin (24/2)

$ angle between horizontal line and normal to center line of
undisplaced ring

* angle between stringer and axis of shell

e rotation about sxis of shell, umalJy in ring

DERIVATION OFANANALOGYFORA CIRCULAR

EwmFmED SIIELL

A sketch of a circular noncylindrical shell
This shell consists of circular elastic rings to

NONCYUNDRICAL

is shown in figure l(a).
which strhgers and a

thin skin covering are attached. The rings-are spaced a f=te distance
apart in planes perpendicular to the @s of the shell, which is assumed
to be straight. The stringers lie in planes perpendicular to the rings
ad are assmed to carry axial forces only. The skin is divided into
panels by the titersection of the stringers and rings; these panels are
assmed to carry shearhg forces only, the effective normal-stress-
carrying area of the skin having been incl~ed in the cross-sectional
sreas of the stringers and rings. The radius of the she~ may vsxy in
any manner along the axts of the shell, but the radius of curvature of
the stringers is assumed to be large compared with the radius of the
shell. The angle between the axis of the stringers and the axis of the
shell need not be small provided that the rings and stringers are spaced
close enough together so that the shear panels are approximately
rectangular in shape.

The stringers and skin will be treated separately from the rings.
For the analysis of the stringers and skin it willle shown that the
rings can be represented by tangential external forces applied to the
skin along the lines of intersection of the slclnand the rings.

The equilibrium and force-displiacementequations will be derived
for the skin and stringers and an electrical circuit satisfying these
equations will b,econstructed. Then in the neti section the equations
for au elastic ring will be written and a circuit satisfying these equa-
tions willbe constructed. As a final step the two circuits willbe
connected together to give the electrical analog for the whole shell.
Orthogonal coordinates in the surface of the shell parallel and perpen-
dicular to the stringers as shown in figure l(a) willbe employed in the
_sis Of the skin and stringers. An enkxgedportion of the shell is
shown in figure l(b). This figure shows the points where displacements
parallel to the axis of the stringers us and displacements psrallel to
the axis of the r@s ut are defined.

—. ..——. ——- ———
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Figure 2 shows a portion of
with its midpoint on a stringer.

the skin between
ThetotalaxLal

stringer at points where the stringer passes over
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two adjacent rings
forces carried by the
two adjacent rings

are Fs ad- F8’. The total tangential forces acting in the s-direction

on sections passing through the centers of two adjacent shear panels are

Fts

over

SJI13Fts’.

The force in the stringer is continuous at the point where it passes
a ring because of the following assumptions:

(a) The ring can exert only forces which lie iu its own plane

[

b) The stringer cannot support bending loads
c) The change in direction of the stringer at the point where it

passes over a ring is negligibly small compared with the curvatme of
the ring.1-

Consequently the r@ cap exert forces onQ in the t-direction, and these
forces can be treated as applied forces in the analysis of the skin and
stringers.

W figure 2, a/2 is the singlebetween the stringer and the line
of action of the she= force Fts’. This angle is approximately equal to

(1/2)#@ where I 3-s the angle between the axis of the shell and the
axis of the stringer and A@ is equal to the angle subtended by a segment
of ring between two adjacent stringers. The cosine of the product of
these angles will be assumed to be eqyal to 1. Hence the equilibrium
eqyation for forces in the s-direction is:

Fs ‘ -Fs+Fts’-Fts=O

Using difference-equationnotation, equation (1) can be written

This notation wild be used in “theremainder of this paper.

(1)

(2) ,

.

.

‘It is not difficult to relax this assumption to permit an appreciable
change in direction of the stringer and a consequent radial load on the
ring. The resultm electrical circuit contains an additional transformer
at each point of intersection of stringer amd ring.
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Figure 3 shows
midpoint on a ring.
on sections passing

a portion of the skin between two stringers with its
The total tangential forces acting in the t-direction
through the centers of two adjacent shesr panels are

F~t smd Fst’. The tangential force exerted by the ring on the SW per

radian of @ is ft. The lines of action of the forces Ft~ and Fts’

fitersect the axis of the shell, so that the equation of equilibrium for
moments about this axis is

&’(rFst) - r@ft = O (3)

The total forces acting on perpendicular planes passing through the center
of a shear panel are Fts d Fst. From equation (3) it is seen that

the shear stress csmnot be uniform in the s-direction across the surface
of a panel if r is not constant. Hence the assmption that the panel
carries only shear stresses is ticorrect. The secondary normal stresses
required by equation (3) are ignored.

It will be assumed that the variation of shear stress is linear
across the surface of the panel, so that the value at the center of the
panel is equal to the average along a line in either the s- or t-direction.
Then a relationship between Fts and F~t maybe obtained from the

equilibrium equation of a small element at the
fig. 4):

Fts ~ bt =F~t ~bS

%8 = Fst ~

center of the panel (see

(4)

(5)

The equilibrium of the portion of the shell shown in figure 3 for
forces h a direction parallel to t at the center of the section may be
demonstrated, if desired, by means of eqpat.ions(3) and (s).

The force-displacement eqyation for the stringers is quite easily
written. ..~.-axial @isplac_~nt of the stringer us is defined at the.——— _____
midpoints between adjacent rings as shown in figure l(b] while the axial -
force (positive for tension) is defined at points where the stringer
passes over the rhgs as shown in figure 2. Assudng the variation in axial
force to be linear between adjacent pohsts where us is defined, from

Hooke’s law

—— . ... —–—— . . —.——— —.———
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-F . ~ (W@
s As

(6)

where & is the cross-sectionalarea of the stringer.

The relationship between shear force and displacements for the shear
panels is less easily written because the relationship between shear
strain and the displacements is complicated. The displacements in the
s- and t-directions are defined at the midpoints of the sides of the
shear panel as shown in figure l(b). The shear strain of the panel is
defined as the distortion of the angle between two.lines passing through
the midpoints of the sides. In computing this angle care must be taken
to eliminate appareti distortion due to rigid body rotation about the
axis of the shell. l?romfigure 5, the shear strain

7 ‘71+72 (7)

where

Agut ~
72.x-

(8)

(9)

and 5 is the angle by which the direction of the s-axis, drawn through
the center of the panel, has been changed because of translation parallel
to the t-axis. For small displacements this angle is

where ~ is the angle between the axis of the shell and the s-sxis.
IYomfigure 2 it canhe seen that

(lo)

& =Sin$
a6

(II)

●

✎
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Combinhg equations (9), (10), and (I-1),

9

72=43% war “—.— . (M
A3 r &3

A,ssumethat the firs% term on the right can be re@aced by the
equivalent partial derivative evaluated at

from

72 % wr=r=—. ——
as r &

the center of the panel

(13)

Replace this equation by its finite difference equivalent and obtain
equations (7), (8), and (13):

(14)

The shearing strain is related to the total tangential force acting
on the panel by the following eqpation

(15)

where h is the thiclmess of the skin. Hence the force-displacement
equation for the panel is

.

(16)

The equations that are essential for the construction of an electrical
analogy are summarized beiow. The equilibrium equations are:

&Ff3+ ~Fts = O (lTa)

~(r~at) - Atft = O (lp)

(17C)

. . . —.. ______ _— —-—. —____



..—. —

NACA ~ 328010

The force-displacement

%s

equations are: .

E&
F~=— (43%)As,

(l?d) ~

(17e)

These equations have been derived by assuming the normal-stress-
carrying area of the shell to be concentrated in stringers. They can
also be derived from the differential equations for a membrane shell of
revolution (ref. 5) by replacing differential operators by finite dif-
ference operators. This is an important fact because it extends the
applicability of the equations to certain unstiffened shells.

In the electrical analo~ forces are analogous to currents and
displacaents are analogous to voltages. The complete circuit is shown
in figure 6. This circuit consists of two separate parts. In one part
the voltages to ground are the displacements us wldle in the other

part the voltages to ground sre the rotations ~/r. The two circuits

are coupled together by means of ideal transformers. Transformer coils
which are coupled together sre indicated by circled nunibers. Points at
which each one of the above equations are satisfied are indicated by
letters h the circuit. Eqyation (lTa) is satisfied by the currents
entering a node of the ~ circuit. Equation (17b) is satisfied by the
currents entering a node of the ut circuit. Equation (17c) is satisfied

by the currents flowing in the windings of a transformer whose turns
ratio is rAt/As. Eqwtion (17d) is satisfiedby a resistor whose value
h ohms is A/EAs. b equation (lTe) the increment in us in the
t-direction is added to a fraction of the increment in ut/r in the

s-direction. This addition is accomplishedby the ssme transformer which
satisfies equation (17c). The sum of these terms is the voltage across
a resistor whose value is At/Gh& and through which a current equal
to Ft8 flows.

Two observations canbe made concerning equations (17) and the
resulting circuit. If r does not depend on s, the equations are those
of a cylindrical shell, and r may be removed from inside the difference
operators. Hence the equations of a noncylindrical shell have the same
form as the equations of a cylindrical shell M rotation about the sxis
~.r (rather than tangential displacement) and torque about the axis

rFst (rather than tangential force) are used as variables. The rotation

and torque about the axis sre the natural variables to use in deriving
the equations of a circular noncylindrical shell.
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Equations
stringers of a

I-1

(17) also apply with slight modification to the skin and
noncircular cylindrical.shell. In this case r depends

on t rather than on s, but this dependency on t will not enter
into the derivation of the equations for the skin and stringers. Hence
for a noncircular cyklndrical shell, r can be eliminated from equa-
tion (17e) and can be divided out of equation (1~) to give

&(F~t) -@t=

Since ft is the external tangential force

the total external tangential force per bay

o (18)

per radian of ~, *t is

in the t-direction.

b figure 6 parts of the ut circuit corresponding to different

values of t are not shown connected. The interconnection is accomplished
by means of the currents Atft which are the reactions of the rings.

The voltages at the potits where these currents are inserted are con-
strained to be equal to the corresponding values of ut/r f6r the rings.

A complete circuit for a shell, including the circuits for elastic rings,
will be shown later. If the rings sxe assumed to be rigid, the circuits
for the rings become quite simple as will be shown.

DERIVATION OF ANAJWLUGX FORANELASTIC RING

.

An electrical analogy for the bending of a ring in its own plane
will be derivd in this section. In the discussion of sheld.ssupported
by rings it is usually assmned that the rings are perfectly free to warp
out of theti own planes. An electrical analogy for a circ- ring
defoming perpendicular to its own plane has been derived by RusselJ
(ref. 6), but this effeet will not be considered here.

It will also be assumed that the effects of shesring stiffness and
axial stiffness of the ring are smill so that these effects canbe
ignored. This assumption is made in order to shplify the discussion;
these effects can be included in the electrical analog if desired. In
addition the eccentricity of the ring, that is, the distance between the
neutral tis of the ring and the point of attachment to the skin, will be
assumed to be zero. This hportant effect can also be included in the
electrical analogy.

An element of ring is shown in figure 7. The displacement quantities
to be used in the analysis of the ring sre the normal and tangential
displacement of the center line and the rotation of the normal.to the
center line. The independent position variable ~ is the angle between
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a horizontal line and the normal to the center line of the
The external tangential and normal loads per radian of @
the center 13ne of the ring are ft and fn. Distributed

till not be considered. It will be noted in figure 7 that
curvature iS not assumed to be constant.

NACAm 3280

unloaded ring. ‘
applied along
moment loads .
the.radius of

The loads, titernal forces, and displacements of the above described
ring satisfy the following six first-order clifferential equations. The
equilibrium equations are:

.

stress-strain

M’n
—= Ft-fn
d$

‘t J—= n - ft
d~

dM— = -Fnr
dfl

and strati-displacement

d8 Mr

q=E

equations axe:

(19)

(20)

(a)

.

(=)

(23) .

dut
—=-nq (24)

These eqyations will be replaced by the corresponding first-order----
difference equations. h so dotng central difference equations wZU be
used so that the quantities appearing behind the derivative symbols in
the above equations are deftied at values of @ midway between the values
of $ at which the ‘undifferentiatedquantities are ~efined. For example,
equation (19) may be approximated

(Fn)2 - (Fn)O

by the following equation:

(25)
.

.

—— — -. ... —
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The ssme difference-equationnotation can be used for this equation
as was used in the previous section:

~.= (’t - ‘.)A@ (26)

Position subscripts are not required in this equation. The quantities
Un, Ft, and M are defined at the same points and these points are mid-

way between the points where e, ~, and Fn are defined.

Equations (20) to (24) could be replaced by simple difference equa-
tions h the same mnner that eqmtion (19) was replaced by equation (26).
However, it can be demonstrated that the following di.fference equations
are more accurate. They give exactly correct results for a segment of
ring which is rigid, has constant radius of curvature, and is uniformly
loaded. ~ other words, for any complete ring with constant radius of
curvature, they give correct results for rigid body displacements and
the statically determinant parts of the internal forces. These statements
require l~”hy proofs and instead of the proofs being given they will be
partially demonstrated later by mans of an example.

The equilibrium equations are:

The stress-strain

~t=-(. (F+ ft)2 sin

and strain+iisplac~”t

v .4.
EI

@
2 )

(’-%‘4(-1- 2 sin
)

4!!
2

equations axe:

(27)

(28)

(29)

(30)

(31)

.—. — —— -— —. .-=— .-.—.—
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(32)

For small values of A@, 2
and the above equations approach

Mff erence equations. The chord

An electrical circuit which

sin (44/2) is approximately equal to A@
the correspond@ simple central-

()
subtending the arc @ is r 2 sin 4!.

2

identically satisfies the above equations
is shown in figure 8. In this ctictit displacement quantities are voltages
to ground and the loads and internal forces are currents. Equation (29)
is satisfied by the currents entering a junction in the upper circuit of
figure 8. l?quations(27) and (28) are similerly satisfied by the currents
in the middle and lower circuits of figure 8. Ideal transformers are used
to produce currents flowing into the junctions of one circuit that are
proportional to the currents flowing in the “main line” of another circuit.

Equation (30) expresses Ohm’s law for the tioP ti voltage between
successive nodes of the upper circuit. Equation (31) is satisfied in the
mati line of the middle circuit by means of ideal transformer coils which
insert voltages in the line proportional to the voltages to ground in the
other two circuits. Equation (32) is similarly satisfied in the lower
circuit. Each transformer is instrumental in the satisfaction of two
equations, an eqd.librium equation and a strain-displacementequation.
The cticuit of figure 8 employs three transformers er cell. If the

fradius of curvature of the ring is constant (fig. 9 a)), or if the ring
can be divided into segments contaidng several cells for each of which
the radius of curvature is constant, a circuit requiring only two trans-
formers per cell can be used. Since r is nbw assumed to be constant,
equations (27) to (32) can be rewritten as follows (where 2 sin A@/2
has been abbreviated by L@’):

+(%+) ‘ -Fn(r@’ ) + (ftr)@‘ (2&)

(29a)

(30a)

.

.

.

#
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.

.

443=-4!$!)

(31a)

(32a)

lh this form of the equations ~-r and Ftr replace ~ and Ft

as variables as in the case of the skin and stringers for a noncylindrical
shell. The purpose of this manipulation has beento get equation (31a)
into the form shown, where the increment in Un is proportional to the

difference of the other two displacement quantities. This equation can
le satisfiedby a single transformer whereas equation (31) required two
transformers. A circuit satisfying equations”(2Ta)to (32a) is shown
in figure g(b). h this figure the transformer coib connecting the
upper and middle circuits are coupled to the transformer coils in the
main line of the lower circuit. This remote coupling is indicatedby
circled numbers. The currents corresponding to ~he
in this Circuit.

ioads are not shown

CIRCUITS FORRIGIDRR?GS

It is frequently possible to assume that some or all of the rings
supporting a shell are rigid in their own planes without serious error
in the aual.ysisof the shell. This assumption greatly simplifies --
ical solutions of shell problems and sometimes eliminates a great deal
of the equipment required in an analog-computer solution. Since it is
assmed here that only the tangential displacement of the ring is inrpor-
tant in the amalysis of shells, this is the only coordinate that need b,e
represented at points around the periphery of a rigid ring.

The position of a rigid bulk.headis determined by the displacement
of one of its points in two perpendicular directions and by the rotation
about an axis perpendicular to its plane (as shown in fig. 10(a)). The
tangential displacement at points on the periphery canbe computed from
these three quantities

1% = Ysin~+Zco8$-Or sina (33)

In an analytical solution Y, Z, and (3 are unknown quantities. They
sxe usuallyregaxded as
regarded as an equation

et~tiltiplie.s and equa{ion (33) is -
. In an electrical saalogy this

——- ——— --—— — .—. —- ——————
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equation of constraint can be satisfied by a network of transformers, a
general form of which is shown in figure 10(b). This network also
satisfies the equilibrium equations of the rigid ring. Applied loads
ti the y- and z-directions sad applied torque cureinserted as currents
into the network as shown. Since, in geneml, this circuit requires
three transformers for each tangential displacement it has no advantsge
over an e-tic rhg circuit in which the resistors corresponding to the
bending stiffness of the ring are set equal to zero. However, in prac-
tice, one or more of the terms in equation (33) may be equal to zero
because either the unlmown or the coefficient may vanish.’ In such cases
the transformer network may be quite s~le.

For example, in a shell with a vertical plane of symmetry, loaded
symmetricallywith respect to this plane,

Ut = z Cos $

This equation requires one transformer for each value of ~. It is

possible to introduce further

variable which depends on @.

then

simplificationby replacing ut by a

Let

Ut = iitCos g

=t=z

(34)

(35)

(36)

If this change of vsriable is now introduced into the equations of the
skin and stringers (eq. (17)), it will be found that the form of the
equations wild remain unchsmged and that the only effect will be a change
h the turns ratio of the transformers coupling the us and ~ circtits.

Equation (36) is then satisfied by connecting together all the tangential
displacement nodes in smy one ring.

As another example consider a rigid ring (or bulkhead) which is very
thin in one direction (see fig. n(a)). Ih this case it may be assumed
that the angle between the y-axis and the top and bottom surfaces of the
shell is small everywhere except at the ends, where there are closing
verticsl segments. Furthermore it is usual to assume that Y, the
displacement parallel to the long direction, is zero. In this case

.

.

.
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Ut = -er sin CL

%1 = z - (e+)

%2 = -z - (e+)

Here again scale factors can be

k=- k=e
rsina

top and bottom surfaces

at left end

I

(37)

at right end

introducd to simplify the equations:

top and bottom surfaces

1

iit =ut=z-
1 1

(cc/2) at left end

~ . -%2 s z+ (cc/2) at right end I (38)

These equations are satisfied by the simple network of figure IJ-(b).

With.this circuit for a rigid bulkhead and the circuit for the
stringers and spars (fig. 6), two spar box wings with unsymmetrical top
or bottom surfaces can be analyzed. The extension to multispsr wings is
simple and direct.

SOLUTI~ OF PROBL@5

The Cal-Tech analog computer (ref. 7) was used”for the solution of
two problems in connection with the preparation of this paper. This
computer consists essentially of a storehouse of electrical parts which
contains, among other things, the resistors and high-quality transformers
required in the solution of stress-smlysis problems.

The first problem was the analysis of the simple circulsr ring
shown in figure g(a) stijected to two opposing concentrated radial loads.
Because of the symetry of the ring and,its loads a quadrant of the ring
can be substituted for the whole if proper boundary conditions are applied
“atthe ends of the quadrant. At @ . 0 the proper boundary conditions
are that e, utj W Fn equal zero. At $= fi/2 the proper boundary

conditions are that f3 and ut equal zero and that Fn equals P, one-

half of the applied load.

-–. —.. ..—----- .— - .— ——— .. —.—
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In figure g(b), the q~ t of ring has been represented by a
circuit contaj3g four cells. The boundary conditions have been
satisfied by setting the corresponding electrical quantities equal to
zero at the two ends.

The results of the analysis are presented in table I in dimensionless
form. An -et analysis of the problem using differential equations is
compard with the analog-computer solution. h addition an exact solution
of the difference equations governing the electric cticuit is shown. It
will be seen that the differential-equation solution sad the exact solu-
of the difference equations give identical results for the internal shear
snd internal axial force. This was to be expected since these quantities
sre statically determinate in the problem tivestigated. The other quan-
tities show errors due to finite-difference appro-tion. A comp=ison
of the difference-equation solution and the analog-computer solution
shows errors in the computer solution of the order of 1 or 2 percent,
which is fairly typical of the results customarily obtained with the
Cal-Tech analog computer.

The second problem was the analysis of a conical shell suppotiedby
ctrculsr elastic rings. As such it provides an example illustrating the
manner in which the shell and ring circuits are interconnected.. The
structure, which has 3 elastic rings and 14 stringers, is shown h fig-
ure 12(a), and specifications-forthe structure are given in table II.
This structure is supposed to resaible the aft portion of an aircraft

.

fuselsge. The structural weight is divided approxhately equally between
the skin, stringers, and rings. w rings sre somewhat stiffer than those .
employed customarily in fuselage construction. The number of stringers
and the number of rings in the structure are much fewer than the number
that wouldbe employed in an aircraft fuselage, so tht each str@3er of
the structure represents several stringers in the fusehge, and the stiff-
ness of titermediate fuselage rings is included in the stiffness of the
three main rings shown.

The shelL is subjected to symmetrical concentrated vertical loads
applied to the ring at the small end of the shell aud these loads are
reacted at the Wge end, which is built into a rigid wall. Because of
the symmetry of the structure and the applied loads, only a quarter of
the shell need be considered if appropriate boundary conditions are applied.
T& part of the shell has been given a two-coordinate numbering system
for the identification of points h the structure. For example, point 42
refers to a point at the intersection of ring number 4 and stringer nuniber2.

The electrical analog for the structure is also shuwn in figure 12.
This cticuit consists of three psrts, the us and ut circuits and the

ring circuits. In figure 12(b) only one ring circuit is shown since the .

other two have an identical appearance. The connections between the ring

.
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circuit shown and the ut circuit axe indicated by the circled letters a,
b, and c. Currents corresponding to the interaction forces between the
skin and the rings flow through these connections. In figure 12(a) a
cutoti is indicated in the middle bay. Electrical arts corresponding

7to the cutout (shown dotted in figs. 12(c) and 12(d ) are removed when
the cut panel is removed.

The boundary conditions at the vertical plane of symmetry axe that
the shear stresses in shear psuels intersected by this plane are zero
and that in the ring circuits El, ut, amd Fn are all zero except when

vertical loads are ap@ied to the rtng in the plane of symnetry, in which
case Fn iS equal to P, one-half of the applied load. The boundsxy

conditions at the horizontal plane of symnetry are that the displacement
in the s-direction us is zero and that in the ring circuits ~, M,

and Ft are zero except when vertical loads are applied to the ring in

the horizontal plane of symmetry, in which case Ft is equal to -?.

The boundary conditions at the large end of the shell are that both us

and ~ are equal to zero. At the small end the boundary conditions are
conveniently expressed as the absence of applied loads except as indicated.
All of the above boundary conditions have been satisfied in the electrical
circuit by meanE of short and open circuits. Short circuits are used to
set displacements equal to zero while open circuits are used to set internal
forces equal to zero.

The electrical circuits shown in figure 12 use 27 resistors and
27 transformers. In calculating the values of the transformer turns
ratios and resistors to be used in the circuit it is necessary to me
use of scale factors. This aspect of the problem has been omitted in
the present discussion in order that the electrical quantities shown in
the circuit diagram may have a direct significance in terms of mechanical
quantities. A brief discussion of the scale-factor methrxlsemployed with
the Cal-Tech analog computer is given in the appendix of reference 8.

The structural and loading conditions that were investigated in this
problem are given in table II. It was desir~ to investigate the effect
of the following things on the distribtiion of internal forces: The
effect of the stiffness of the rings, the effect of the location of the
vertical load on the end rings, and the effect of a cutout in the middle
bay.

The results of these investigations”=e given in table II. The
quantities recorded according to the nuuiberhg system previously dis-
cussed are the stringer forces Fa, the panel shears Fta, the ring

bending moments M, and the vertical displacements. The vertical dis-
placements have been obtained by vectorially combindng the tangential
and normal displacements of the rings. The tabulated results sre subject
to experimental errors and when four significant figures are given the
fourth figure is entirely unreliable.

.. —-. — ..——z —.-— —.— —-——
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The ndn conclusion to be drawn frm these results is that for the .

shell tested and the loads which were applied the stiffness of the rings
has a rather small effect on the distribution of internal forces. The
only change made between conditions (1) and (2) was that in condition (2) “
the rings were made five times as stiff as in condition (l). It will be
seen that the stiffness of the rings has very little effect on the
internal forces except between the second and third rings. However, the
distortion of the third ring in condition (1), as given by the vertical
displacements, is significant. M another condition, the results of
which are not tabulated, the first and second rings were stiffened by a
factor of 10 while the third ring retained its normal stiffness. The
difference in the results between this condition and condition (1) was
negligible.

The results of condition (3) indicate that the effect of ring stiff-
ness is considerably less when the applied vertical loads are h a
horizontal.plane than when they are in a vertical plane. The results of
conditions (4) and (5) indicate that even moderately sma~ symmetrical
cutouts produce a severe redistribution of the internal forces and that,
b this case, the effect of ring stfffness is important if accurate
results are desired.

California hstitute of Technology,
Pasadena, Calif., Novt3iber 25, 1953.

.
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TABLE I.- SOLUTION OF CIRCULAR-RIMG PROBLEM WITH

FOUR l?IIKIXE—DIKFERENCE CELLS PER QUADRANT

Lyl.imtity

-

$0)

$;.
11.25

33.75
56.25
78.75

=.25
33*75
;;.g

.

22.5
45.0
67.5

=.25
33.75
56..25
78.75

0.3827
.7071
.9239

0.3827
.7ql

●9239

0.9808
.8315
.5556
.1951

0.9808
.8315
.5556
.1951

0.3&2
.1948

-.0810
-.4415

0.1327
.2071
.1739

0. @+87
.o’jT6
.C-515

-0.lzp
-.0573

.0493

.1349

0.3401
.1907

-o@
-.44$

0.1335
.2084
.l~o

0.0514
.0747
.0548

-0.1318
-.0596

.0509

.1405

Analog
computer

0.387
.702
.922

0.982
.824
.566
,210

0.340
. . lg2
-.083
-.447

0.1338
.2064
.1703

0.0515
.0756
.0559

-0.1310
-.@%

● 0535
.1435
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TABLE II.- IM’oLm FRCM mJDY OF CONICAL 8HELL

23

.
[Specification for She.u: Nurribarof stringers, 1.4;cross-section area

Of 8txiwers, 0.643Sqin.;thicknessOrsun,0.030in.;mmg’s

1mcduluajlo.kX d pSi; ad shear mcdihs, 4.0X d psi. P = 1 kip.

condition

‘@n-t (1) (2) (3) (4) (5)
(a) (b) (c) (d) (e)

s~ forces, Fs, kipS

2 -0.945 -0.945 -0.942 -0.330
k

-o.~
-l.-foe -l.-@ -1.708 -1.55CI -1.632

6 -2 .n8 -2.050 -2 .uk -2.475 -2.3c0
22 -.6E!8 -.W -.W .fi7 .689
24 -1. 2&2 -1.2%2 -1.291 -l.@ -1.y?l
26 -1.612 -1.594 -1.587 -2.124
42 -.308 -.380 -.452

-2.l&3
-1.7E5

44 -.67%
-1.7&3

-.-CL4 -.745 -.536 -.650
46 -1.m -.935 -.832 -.445 -.326

Penala-, Fti, kip8

U 1.206 1.1% l.lgl 1.593 1.7’26
13 .9% .956 .953 .509 .469
15 .513 .~l .536 .372 .155
31 1.556 l.~ 1.y?2 o

1.217 1.231 1.W :.~g 2.457

% .618 .661 1.S38
51 1.985 2.046 2:% 2:7ko 2.7@

53 1.685 1.652 1.632 l.oy?
55 1.013 .937 .Wcl :% .334

Ffirqzbenrtingmoments, M, ill-~pS

22 -o.q -o.@ O.CQ 3:2 4.08
24 -.03 -.@ .01
26 .&

1.28
.02 -.02 -2.40 -2. &

42 .20 .05 -.09 -3.72 -3.88
44 .10 .01 -.02 -1.08
46

-1.28
-.18 -.07 .06 2.48

62
2.64

4.45 4.36 -2.28 5.53 5.45
3.& -.56 4.I.2

% -5=7 -% 1.44 -5.93 2::

verticalaiaplac.anelrts,h.

22 0,W38 o.a2&J o.ck282 0.0133 0.0247
24 . CQ’O .C1’X35 . a288 .CC262
26

. C1282
.0283 .@@ .0283 .0592

42
.0336

.Cw5 .0$76 .21&l .U3!3j’
44 .0890 %& .0870 .Z!l@
46

.1870
.@% .0%30 .1912 .l@50
.1577 .1670 .l~s

z .1660
.2595 .2515

.1701 .17CP .2660
66 .lgx .l~o .=J7 .m5 :%

%!ondition (1): Vertical lc=da applied Iq points A ad A’ of end ring (see fig. 12(a)). No
Cutauts . Mcm9nt’of fmsr’tiaof rings, 5.33in.+.

bconuion (2): Ebm as condition (1) except mmnt of Inertia of rlnga increased by a
factor of 5.

Cconaition(3): Sam as condition (1) except vertical M applied ta pdmts B and B’
(see fig. M(a)) .

%ondition (4): Sam ea Ccmiition(1)==@ withsy’matrlcal~S IIIcanter bay
(see fig. 1.2(a)).

econaition(5): Sam as comiition (4)except nument of Inertia of rings fmreased by a
factor of 5.

.
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(a) Segment of she~ showing orthogonal coordinates.
-.—— .. ..

(b) Eolarged portion of shell showing dlsphcements.

Figure l.- Circular noncylindrical stiffened shell.

A
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Figure 2.- Equilibrium of
with

portion of shell between two adjacent
center on a stringer.
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Figure 3.- Equilibrium of portion of shell between two a&jacent stringers
with center on a ring.

.

●

Figure 4.--Equilibriumof shearing forces in a panel.
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Figure ‘j.- Shear strain of a panel.
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AS
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‘ (a) ~ circuit.

~gure 6.- Electrical

(b) ~ circuit.

analogy for stringers and skin of a circular
noncylindrical-shell.

,

.
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(a) Forces.

\ \
\

\ \

(b) IMsplacements.

.
Figure 7.- Segment of a ring showing applied loads, internal forces,

and displacements.
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Ilgure 8.- Electrical analogy for .sring with vm-iable radiua of

4?L2d.n!5

curvature.
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(a) Ring and loads.

-.4P

Ez’- –e –0

(b) Analog circuit for quadrant of ring.

Figure 9.- Electrical analogy for a circular ring subjetted to
loads.
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(a) Rigid bulkhead. ~ = ZcOs$+Ysin$-& sina.

I I
%

0

Figure

+ J-

(b) Analogous electric circuit.

lo.- Electrical-analogy for a rigid
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bulkhead.
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(a) Flat rigid bulkhead.

G$=“e

5uwJ-
“+’”2

‘i? -

Figure XL. -

(b) Analogous electric circuit.

Electrical analogy for a flat rigid bulkhead.
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(a)

-e

4 6

conic&1.

M
—

shell.

o

(b)

Figure 12.-

~ical ring circuit (3 reqtdred).

Electrical analogy for conicsl-shell problem.

.
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(c) 1+3 - Cticuit. “

——— —

I I oa
/ - ~+ 1- ~+ l\
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–-
(d) ut circuit.

Figure 12. -Concluded.
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