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SUMMARY

A method is presented for estimating varistions in the roots of
the latersl-stabllity quertic due to changes in mass and aerodynamic
paraneters of an airplane. The method is applied to three high-speed
airplanes and the changes of their lateral stability characteristics
are determined by considering increments in various airplene parameters.

The expressions indicating the rate of change of the Dutch roll
damping and frequency with respect to the stability derivatives and
megs characteristlics are simplified and the results when compared with
those obtained from the exact expressions show very good asgreement.

The rates of change of the roots with respect to the pearsmeters
are shown to have g definite relationship with the amplitude coeffi-
cients and rstios of the lateral modes of motion of the alrplane sub-
sequent to gpplied forces or moments. From these relationships, calcu-
lation of the rate of change of the roots with respect to five prescribed
parameters allows determination of the remalning partial derivsatives,
the amplitude coefficlents, and ratios mentioned &bove.

The derlved expressions should afford some insight into the types
of automatic stabillzation devices llkely to be most effective for a
given eirplene since, if subtomatic-stabllizer dynamics are neglected,
the stebilizer 1is effectively varying one or more of the mass or aero-
dynamic parameters of the airplane.

A method is given in the appendix which can be used to calculate
approximately the roots of the lateral-stabllity quartic.
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INTRODUCTION

Recent investigations of the lateral stabllity characteristics of
airplanes have indicated that small varisgtions In the estimate of the
mass and aserodynamic parameters of a glven alrplane may cause pronounced
changes in 1ts stebility. (For example, see refs. 1 to 4.) Estimations
of the mass and serodynamic parameters of the airplane, whether from
wind-tunnel data, flight tests, or existing theory, are subject to
certain probable errors. Hence, a means of evaluating the effect of
these anticipated probeble errors on the stebility characteristiecs of
a given alrplane should prove very useful. Also, such a tool should
provide some insight into the relative importance of parameters or com-
binations of parameters affectling the stablility of the airplane and, as
a result, provides trends which should be useful in the selection of
automatic stebilizing devices for particular airplanes.

The purpose of the present investigetlon is to derive expressions
from which the approximste verlation of the roots of the lateral-
stability characteristic-quartic equation due to small changes in one
or more of the airplane parameters can be calculated. As a check, the
results obtalned by utilizing the derived expressions are compared with
the results of exact calculations of the varlation of the roots due to
changes in certain parameters for three different alrplanes. Also,
there is presented a method which can be used to calculate spproximately
the roots of the characteristic-quartic equetion for a given set of
parameters.

The rates of change of the roots of the characterlstic stabillty
quartic with respect to the alrplane mass and aerodynamlc parameters
are shown to have a unique relstionship with the amplitude coefficients
and the ratics of the modes of the lateral motions of the airplane sub-
gequent to certain disturbances.

K. Mitchell in reference 5 presented a method for calculating the
approximate changes in the roots of a quartic equation due to varistions
in parameters upon which its coefficlents depend which is very similar
to the present method. The present investigation, conducted independ-
ently of that of Mitchell, makes use of a slightly different approach
to the problem and, in addition, the derived expressions are examined
with a view toward obtainling slmpler expressions with which to work.
Also, an attempt is made to establish a criterion which defines the
range of varlations in the parameters for which the assumption of
linearity is valid.
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SYMBOLS AND COEFFICIENTS

A,B,C,D,E coefficlents of lateral-stabllity equation

B',0',D',E' coefficients of lateral-stability equation having been
divided by A

a measure of demping of Dubtch roll oseillation

a T iw complex root of stability equation corresponding to the
*  Duteh roll oscillation

a,b,c,...1 coefficients in solutions of lateral equetions of motion

b wing span, £t
cr, trim 11ft coefficient, ‘i—c—;fi—"
a
Rolli
C1 rolling-moment coefficlent, ng moment
aSb
C1 damping-in-roll derivatlive, rate of change of rolling-
P ment coefficient with rolling-angular-velocity factor,
1
o7 per radian
v
Czr rate of change of rolling-moment coefficient with yawing-
angular-velocity factor, ——l, per radian
arb
2v
CzB effective-dihedral derivstive, rate of change of rolling-
moment coefficient with angle of sideslip, acz/aﬁ, per
radian
Cn yawing-moment coefficient, Yewing nt
aSb
Cnp rate of change of yawing-moment coefficient with rolling-

anguler-velocity factor, EE%, per radlan
2v
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damping-in-yaw derivative, rate of change of yawing-moment

coefficient with yawing-asngular-velocity factor, —=

-b)
per radisn

directional-stebllity derivative, rate of change of yawing-
moment coefficient with angle of sideslip, JoCp/dB8, per
radian

laterel-force coefficient, 595952%422522

rate of change of lateral-force coefficient with rolling-
angulsr-velocity factor, ——%, per radian
e
rate of change of lateral-force coefficient with yawing-
angular-velocity factor, SE%, per redian
v

lateral-force derivative, rate of change of lateral-force
coefficient with angle of sideslip, OCy/dB, per radian

differential operator, d/dsy
characteristic—-quartic equation

acceleration due to gravity, ft/sec/sec

nondimensional radius of gyration in roll sbout longitudinal
stability exis, V%ko20052n + Kzozsinan

nondimensionsl redius of gyration in roll gbout principal
longitudinal axis, ky_ /o

nondimensional product-of-inertia parameter,
2 2
(Kzo - K%, )sin 1 cos 1

nondimensional radius of gyration in yaw about vertical
stegblility exis, szoecoszn + Kkozsinen

nondimensional radius of gyration in yaw sbout principal
vertical axis, kZo/b

radius of gyration in roll about principel longitudinal
axis, ft
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<
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radius of gyration in yaw sbout principal vertical axis, ft

mass of airplane, W/g, slugs

rolling velocity, d@/dt, radiams/sec

coefficlents of A Iin two quadratics that constitute
stability quartic

(>]
Laplace transform varisble, £(p) =\jp e Ptp(t)at
o

ove
dynemic pressure, —s— 1b/sq £t

constant coefficients in two quadreties that constitute
stability quartic

yewing velocity, 4y/dt, radians/sec

" wing area, sq £t

nondimensional time parameter based on span, Vt/b

time for amplitude of oscillation to change by a factor of 2
(positive value indicates a decrease to half-amplitude,
negative value indicetes an increase to double amplitude)

time, sec

airspeed, ft/sec

sideslip velocity along lateral axis, ft/sec

weight of alrplane, 1b

mass and serodynemic perameters upon which A,B,C,D, and E
depend

angle of sideslip, +v/V, radians

angle of flight path to horizontal axis, positive in =
elimb, deg

inclination of principel longitudinal axis of airplane with
respect to flight path, positive when principsal axis is
egbove flight path at nose, deg
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nondimensional root of stability equation,
AY + B+ CN2 + DA+ E =0
real root of stability equation corresponding to spiral mode

real root of stabllity equation corresponding to damping-in-
roll mode

relative-density factor, m/pSb
mass density of air, slugs/cu ft
angle of bank, radians

angle of yaw, radlians

frequency of Dutch roll oscillation

natural frequency of Dutch roll oscillation, (a2 + m2)1/2

frequency of Dutch roll oscillation based on time in

seconds, o' = a%v, radians/sec

The subscript o i1is used to indicate the value of the quantity

when AXi = 0.

ANATYSIS

Equations of Motion

The lateral nondimensional linearized sirplane equations of motion

for level flight (y = 0) and controls fixed referred to the stability

axes are
Rolling:

2, (15PDp28 + KggDy2¥) = C158 + £ Cy Do + 5 C1, Doy
Yawing:

2!~‘b<Kz2Db2‘¥ + KXZDb2¢> = CngB + % Cnpr¢ + % Cn Dp¥
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Sideslipping:

2p(DpB + DoY) = Oy,B + & OrgDuf + 3 Oy,Do¥ + Orf

When ¢oeksb is substituted for @, voehsb for ¥, and Boexsb

for B in the equations written in determinant form, A must be a
root of the stebility equation,

FON =ANF + B3+ CN2+ DA+ E =0 (1)

where

B = —pra(EKX2KZECYB + Kg2Cn, + X%, - 2Kxz2Cyy - KxzCay, - KxzCn,)

1
Cc = [J:b<KXECanYB + }-l-l.l'bKXECn_B + KZZCIPCYﬁ + 5 Cnrclp - KXZC?’I‘CYB -

by KywCy - Cp Ky C Ky7C - Kx2Cy C KyxzCv Cy. -

bofxzCig = Cn fxalyy + KxzlngCry - x™Cy,Cng + Kx2ly, C1y

1 2

= Cp C7. - Ky2Cy C

2 n'PZr Xz YP 13) >(2)
1 1

D=-= - 1
i CanzPCYB p.bC'Lanﬁ + i CnPCerYB + uanPCZB +
2,CrKpCpn = 2,CrKpRC; + E£C; Cp Cy - = Cy Cy Cy -

g B Lk TlpmgYr ) TBplpgTiy

1 1
=C; C, C +=0C, C;.C

E = %- CL(CanIB - CernB)
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Derivation of Expressions for the Rate of Change of the Roots
With Changes in Airplaene Parameters

The lateral-stebllity quartic is given by equation (1). The coef-
flcients A, B, C, D, and E have been shown to be functions of the
various mass and aerodynamic parameters of an airplane, henceforth
designated as X3, Xp, X%y ¢ o+ o X If the parameters x3y are assumed

to be independent variables, a change in a parameter will result in
changes in the coefficients of equation (1), that is,

—

A=Ao+-g—x4‘;-Axi
B=B°+%;ii-Axi
C=Co+§;&i? (3)
D =Dy + %g;'Axi
E=F; + %E;-Axi

~

The roots of equation (1) will then become A= Ay + AA. For Ax; =0,
the increment in the root AN 1s equal to zero and A = Ay, B = B,

C =Coy D =Dy, and E = E,. Substitution of equations (3) for A, B,

C, D, and E and A=Ay + AN into equation (1) and consideration of
the limiting case for which Axy and AA approach zero can be shown

to be equivalent to differentiating equation (1) implicitly with respect
to xj. Therefore,

oA L , B X 2, A R
o St EIM SN TSI N S

bAoho? + 3Boho? + 2Coho + Do

(&)
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A point of interest is that equations (3) represent the exact changes
in the coefficients regardless of the size of Axy 1if the coefficients
are linear functions of the parameter x4, which is true for all the

paremeters except Kyz.

Equation (4) expresses the slope or rate of change of the roots of
equation (1) with respect to any parameter x;. If several parameters
are varied simnltaneously, the total change in A 1s given by the
expressgion

NS oA A
an = dxy + %o + + o . + =2 dx (5)
or
oA oA oA

AN = — AXy) + —

Ao + 4 4« o + — A
axl ax2 2 i

oy

General Form of Variation Expressions and Criterlon for
Determining Approximate Range of Linearity

If the coefficlents of the stabllity quartic, the roots of this
quartic, and the partials of the coefficients with respect to a selected
parameter are known, the rate of change of eny root with respect to this
parameter can be found from equation (4). The values of the coefficients
for a particular airplane can be found by evaluating equations (2). The
roots msy be found by either solving the characteristic quartic by var-
ious conventional methods (for example, ref. 6) or by using the approxi-
mation method presented in the appendix. The general forms of the
partial of the coefficients with respect to several of the parameters
X; are given in teble I. The parameters that are used are Czp, clr’

2 2 2
CZB: Cnp: Cnr’ CnB: CYB’ n, g 2, and Kz 2. The parameters Ky 2 eand
Kzoe (the principal radii of gyration squared) were chosen rather than

Kx° and Kzz since errors in Kke and Ky2 could result from errors
in either KX°2, KZO2, or 1.

After the parameter 1s chosen and the values of the coefficients
and the values of the partials of these coefficients are substituted,
equation (&) becomes s function of A. Now depending on the nature of
the A of interest, eguation (%) may be real or complex.
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For A real, the approximate change of A due to a change in one
of the sbove parameters is

A‘Aa‘gi‘iAxi (6)

end the new root due to the Axi 1s approximately

7\“7\o+ iAX1 (7)

For A complex, that 1s, & t iw, equation (4) becomes complex, and
by equating real to real and imsginary to imaginery, the condition
exists that

oA _ % aw

and the approximate change of & and o due to a change in one of the
perameters is

ba ~ — Axy (92)

po o~ 2 axy (9b)
Then, the new complex root due to the Axy is spproximately
7\~ao+@-Axi+i<wo+aw Axi) (10)
oxy 3y

It may be well to mention here that equation (4) evaluated for
A=a - in wlll merely give the conjugate result of equation (4)
evaluated for A = & + iw, and the change in -0 mey be expressed as

oo
=D -?ax—iAxi
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or

which 1s identical to equation (9b). Therefore, in the remaining dis-
cussion when the complex root or its slope 1s discussed, the complex
root 1s assumed to be a + iw.

Naturally, the slope expression willl not accurately epproximate
the change of A for large values of Axy. Therefore, a criterion
rust be estgblished that will indicate the value of Axy abt which the

expression Ag + %%E-Axi no longer gives a sultable approximation to

the new root.

Since A 1is a function of x3, A(xi + Axj) msy be obtained from

the Taylor's series expansion in the viecinity of xy. The first three
terms of the expansion are

K"(Xi)(ﬁ}ti)z .

ot . . (11)

Mxg + Axp) = Mxg) + N (xg)Axg +

where A, A", and so forth, denote differentiastion of A with respect
to xj. In the previous part of this paper the third term and all
succeeding terms in the above expansion were assumed negligible. Now
it is assumed that, whenever the third term becomes sufflciently large
to be 10 percent of the sum of the first two terms, the initial assump-
tion of linearity no longer presents a sultable approximation to the
new root. This criterion may be expressed as

1 <0.10 (12)

The second partial of A with respect to xi may be obtalned by
differentiation of equation (4).
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A oA
2 -2 EE6A7\2 + 3BA + C)&I + baidd + 380 + 2az\ + a'h]

Bxiz 4AN + 3BA2 + 20A + D

When A = a + ilw, the above expression becomes a complex number and gzgé

and QEEE are equal to the real and imasginary parts of this number,
oy
respectively. In order to apply the criterion (eq. (12)) for A = a + iw,

the terms a and w must be considered separately; that is, for a change
in o equation (12) becomes

Pw 2 "
(o1 )

Oy <0.10
+

v ey

Qo
W Sy Axy

Since equation (12) employs only three terms of equation (11) it is
possible that the Axy calculated from this expression will actually
give slightly more or less than 10 percent. Although no results are
presented, this criterion was found to be adequate for the prediction
of nonlinearity of the curves.

Simplification of the Slope Equation for the Oscillatory Root

Although varistions in the mass and aerodynamic parametera of an
airplane may casuse changes in all the roots of the stability quartiec,
usually changes in the oscillatory root are of primery interest; that
is, the change in the damping and fregquency of the Dutch roll oscilla- SR —
tion of the airplane is of most concern. Therefore, en attempt 1s made
to simplify equation (4), for the case where Ao 1is equal to the
oscillatory root (a * iw), in order to reduce the amount of work required
to obtain values for Oa/oxy and ow/dx; and also to provide some

insight into the parameters which affect these partial derivatives.

The denominator of equation (k) 1s merely the derivative of equa-
tion (1) with respect to A. If the roots of equation (1) are, as in
the usual case, two real roots, namely, Kl and Ay, and a palr of
conjugate complex roots, a * iwm, the denomlnator of equation (%) may
be written as
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F'(d) = AOK')\Q - 2an + 82 + 02) (A - ) + (A2 - 2ah +
62 + 62)(h - ) + (A - M)A - Ap)(2A - 20)]

Now, if A =a + in 1is substituted into equation (13},

F'(a + 10) = Ao [(a + o - A)(a + o - Ap)(201)]

as was pointed out in reference 5.

Also, if A = a + im, the general form of equatlon (&) is

a + iw) _d -+ ci

Bxi e + £1

By rationalizing the sbove equation and by using equation (8),

da - de + cf
o3 &2 4 £2

dp . ce - 4f

The exsct form of & and c¢ from equation (k) are

_ OA /.4 It OB 2 oC oD oE
d—-g}?{(a-6a2m2+a))-5;£(a3-53m)-a(aa-mz)--é;i-(a)-——-

- - _SB_ - & _ 9
e axj_(ll-ajcu hamd) a}{1(523.2»:5.) ad) E(Eam) a‘xi(cn)

13

(13)

(1)

(15)

(16)

axi
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The form of e and f from equation (14) are
e = 2AocuE)(7\l + Ap) - 2&@
f = 2A00)Ea(7\]_ + Np) + &2 - w2 + 7\17\2]

The simplifications ere now mede that a and Ay are approximately
zero compared with Ap and w; that is, the damping of the Dutch roll
oscillation and spiral mode are negligible compared with the damping in
roll and frequency. Hence, 4, c, e, and f become

Ox4 a Ox3
OB o3 - B

c = — - =
Oxg Oxg
e=2Aocu27\2
£ = -2Aqm)

Then, equations (15) and (16) may be written as

axi ox4 Oxy Ox4 x4

7\2<_ oA w)"'+ac ma..éE_ -y aiwa_al.
da -
Oxy 2Ao<u2(7\22 + w?)

(17}
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B _ 2 _ oA M, 2 _JE
_ >\2<$i_ ® ) ( = i oxy
axj_ B (7\22 + cuz

(18)

Unfortunstely, because of differences in sign of first-order terms
which make second-order terms important, expressions (17) and (18) will
not hold for a few of the parameters. Separate expressions are presented
for these parameters in which some second-order terms (involving =a and
powers of a) are retained.

It was found that, for the three airplanes used in this paper, equa-
tion (17) msy be used to calculate the rate of change of a with respect

For Czp use

_oC B _ OD \|_ 42 9B (2 _ 352} . 9D _ &
hgéclpma+a<aclp3.n2 aCZP] G)EC (? - 3e2) aczp —<301P 2&&

de

L1y 282 (A2 + w2)
For KX02 and KZ02 use
& 2 oD B
7\2|:—— + —(6 - o2) + —-(38.:] aal:—(Ga. + o®) + 5a & 1+ 2 =
T = o | ma

oy 286(Ap2 + w?)

Equation (18) may be used to ca.lcu.late the rste of change of @ with
respect to CnB’ Cn 3 clr’ CIB, KZO , and 7.

For Cp, &nd CYB use

B (2 52) . X (pg) . D oc -
- =7\2[axi(m2 3a2) aXi(2) E:!+<Bx—iw2 S

(21)
Oxy 2Am(Ap® + &)
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2

For Czp and Kxo use

3 B2 w2y X oy . D), A N W PN
—&L--}\z[sx—i-(haaﬁ)+&—i(m2 3a2) &?(23) axJ+ Eax—i(éa.w f)+axi(5am)+éz(m2) a—,;(n.zl

oxXyq

(22)
28.m{ 72 + 0?)

The preceding expressions were simplified under the assumptions that
A1 end & are small and hence are not expected to glve a good epproxi-
mation to the exact values for airplaenes where the spiral root Ay is
of the same order as the demping-in-roll root Az or for airplanes
which possess a large degree of damping in the Dutch roll osclllation
(1arge -aﬁmn). For an airplane where these conditions exist the
general slope equation (eq. (4)) should be used.

Other Possible Simplifications for Cp, and Cnp

Many times, by closer examination of the separate terms of equa-
tion (17) set up for a specific parameter, an extremely simple equation
may be written down which very well approximates the resulte obtained
by the complete slope equation {eq. (#)). Two such examples using Cny.
and Cnp are presented.

If the partial derivatives of the coefficients with respect to Cp,.

(teble I) sre substituted into equation (17), the following equation is
obtained:

N 7‘2E‘b<KX2cYB +% c;p><u2 B % CLCIEI - o K‘z“bzxxz)"’a + %(c’lpCYB - CZBCYP)]
8 = - — - -

= , -(23)
b 2Adl.)2(7\22 + 0)2)

Two assumptions are mede: First, the term KXZCYB is negligible com-
pared with % Clp and, second, the term czﬁcgp is negligible compared

with C )
10

i
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If the following two conditions are satisfied:

[Cnﬁl > <2OCLKZ2 + KXZ)CIB

and
2
. K
Josg | > | =% org0n; + 2 csg
HpKy' Ky

end if Ay and A2 can be well-approximated by

equation (23) reduces to

da. 1
= 2l|.
oCn, (24)

r BlleZ2

This result is the same as would be obtained by assuming one degree
of freedom in yaw which may be expressed as

<2ubKZ2D2 -Lcy D+ an>¢ =0

where the real part of the complex root is

a8 =
8|.rsz,2
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and if this equation is differentiated with respect to Cnr

da = 1
Xy, Buyky®

Equation (17) set up for Cn, by using the partials of the coef-
ficients from table I gives

KgEub(szCYB + %—C;r>cu2:| - d)2<211b21{x2¢02 - ]J:' CZrCYB - I-l'bClB + 1]:_ CZBCYI‘>

%np 2Aom2<i22 +'92>

(25)

Again, an assumption is msde as to the order of magnitude of several

terms. The terms % CZBCYr and - % CeryB are assumed to be negligible

compared with prIB.

If the following condition is satisfied:

1 2
2"5C7-PKZ2(KXZCYB + 5 CZI‘) + 1OppKy KXchB

ub<%k2K22 + KXZ%)

o] >

expression (25) msy bBe well-spproximeted by

HpC
a?a - £ (26)
np  2ag(R? + 0?)

As has been pointed out before, these two expressions were derived
under the assumption that certaein conditions must be satisfied and, if

these conditions are not satisfled for a perticular configuration, equa-
tions (23) and (25) should be used.

It is interesting to note that, from equation (24), the effect of
the derivative Cp,. 1is highly dependent upon the moment of inertia in
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yaw. Also, from equation (26) the derivative CnP eppears to be moat

effective for alrplanes with a low moment of inertia in roll or a high
effective dihedral CIB.

Relation of Slope Equation to Amplitude Coefficients
of Lateral Modes of Motion
The Iaplace transformstion (ref. 7) of the lateral equations of

motion for zero initial conditions and the assumption of an input Cp = 1
¥lelds the following equations:

(Euszai - %Cnx)i\if(ﬁ) + (mbxxzp—e - %Cnpi #(2) - Cngh(B) =_%_
<2ubez5 - %Czr)ﬂr(ﬁ) + <2ubKX2§2 - %CIPE 4(5) - C148(B) =0 > (27)
(on - §n0 + (o1 oy )5+ (o - ) =

where p 1s the laplasce transform varisble.

By use of determinents, expressions are obtained for py(p), &(D),
and B(p) as follows:

-

FY(5) = L2
(D)
g(3) = ;Z?jz & (28)
P
8(p) = A
Ba(B)
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where Py, Py, P3, and Q are functions of the mass and aerodynamic

characteristics of the airplane. By use of the Heaviside expansion
theorem (ref. 7) the inverse transformation of equations (28) yields

the solutions Dy, ¢, and B as functions of the nondimengional time
parameter sy, that is,

Dy = P1lo) | i P1ln) e—7\nsb
a(o) Q' (M)
Dy = 8o + alexlsb + .0 .+ ame%me

4 = Pplo) <& Pp(hy) nsb
a(e)  TET MQ'(An)

’ (29)
@ = by + blexlsb + . . .+ bye'm®
_ P3(0) 2?: P3(Kn) Jusb
Q(O) n=1 7\nQ. (7\n)
B =co + cleklsb + . . .+ cme%mgb
J

The linegr and distinet roots of the latersl-stebility quartic
Q(F) =0 are A, Ay, - - - Ny, and Q' denotes differentiation with

respect to p. The roots of Q(f) = 0 are, of course, ldentical with
the roote discussed previously for equation (1).
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The followlng relationships can be shown to exist:

Ny 1

o =3 Mnén

M _ Wb,

acnp 2

o)

_}\i = Mcn

g

(2) - 2 a[%n,
B/\=nn M 3N /Bcn13

ay\n/acnp

(30)

From the expression for @/¥, the conclusion cen be made that, for

alrplanes with a high @/ ratio in the Dutch roll, the Dutch roll
demping will be more sensitive to the derivative Cnp than to the

derivative Cp.,..

Comparable relationships cen be derived for the derivatives Cips

Clp: CIB, and CYB for inputs C; =1 and Cy = 1. For (3
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and therefore

m
Dy = d5 + Z dneMBb

n=1
m
ﬂ = fo + fne7\nSb
n=, J
7N _1
wzr = 5 7\ndn
87\11 7\n23n
2
Bczp
Ohpy
8—0—7; = MFfn
(Bt 2
B/A=hy  Pn OMn/dCig
()., 5o
1[’ 7\37\11 ’ a MZI‘
(8) a2 Pl
\If )\=)\n

2 anfax;, ]
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(31)

(32)
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For Cy =1,

and therefore

Lo}

ln_-sxngn
B

;2;p = % 7‘nahn

N g

ach=§7‘nin

25

(33)

(34)
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The coefflecients ag, bg, s Qos €os fos &y hpy and i, which
appear in equations (29), (31), and (33) are defined as follows:

j
o = —207,B
CanZB - CernB
o = -I:CZI‘CYJ3 + (J'-I—l.lb - bYr>CZ[:J
o = i
CL(PanzB - CernB)
Czr
Co =
2C
d_o = j - > (35)
Co,C1y = C1,Cng
CanYB + CnB<)-I-|.L'b - CYI')
€q T
01(Cn,C14 - C1,Cng)
~Cnyp
fo =
CanzB = chCnB
g€ =0
= 1
ho = - _CE
iag =0 _
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The following relationships exist for Ky°, Kx2, and Kygy:

o _ OAp
a2 TR e,
o
M g D > 56)
oKy BCLP
Ny oAn o\n
—2_ = +
OKxz, ofn acnp ach-)

These partisl derivatives were not dlscussed previously but are releted

%o N OAn and OAn

—— &8 follows:

aKZoa, aKXOE ? Bn

ONp _ Mg xz? LM Mg? oM, Oy ]
XKz P AR My P wy? My P gy Ay O

Ny Ny AiK2 , M Kx® , M Mz
Mx,® OKg® My > ;xS g ® Mz g

(37)

Ny _ My MzE By ag? M Mgy
= + +
on Ay O AP o1 gy On
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Subsgstitution of the following relationships:

3K, 2 3K 2 OK;
_EZ_E = cos2y —E&7§ = siny __§§§ = gin 1 cos 7
BKZO BKZO _ aKZO
AKy2 32 K
= gin2 = cos? X2_ - _
S———g sinen S;sz cos~n - 5 sin 7 cos 7
KXo X0 Xo
3Kz 2 Ky 2 Mgz, o .2
R EXi R

and those of equations (36) into equatiocns (37) yields

Ohg N I\ Mg, N N
—5 = “buphy |52 cosln + =2 gin2q + <. + ——gi>sin n cos 1
BKZO E?DT aclp acn:p €3 ]

=

= 1 —n_ 2n - 4]
a——vg “-b7\n| - sin®n + > . cosén < + ) )sin n cos > (38)

a7‘n - 87\n an a7\n 37\3:1 2 2
- sl 22 (5 B0

y

From exemination of eguations (30), (32}, (34), (35), end (38), it
becomes spparent that, for a glven flight copdition, caleculation of the
rate of change of A, wlith respect to flve parameters (say, Cnye» Cnp,

Cnﬁ: Czﬁ, and CYB) allows determination of the remaining partial

derivatives, the amplitude coefficients assoclated with the lateral
modes in the transient responses t¢ unit yawing-moment, rolling-moment,
or side-force inputs, and also the ratios which exist between rolling,
yawing, and sideslipplng in each lateral mode.

Although the preceding anaslysis assumed unit moments or forces as
inputs, the same type of aepproach can be used for arbitrary inputs with
similer results.
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The Slope Expression as a Possible Indication of Sultable
Automsatic Stabilizing Devices for Airplanes

Flight tests and analysis of many of the present-day airplanes have
indicated that the lateral or Dutch roll oscillation of these alrplanes
is very poorly damped. Usually, in order to improve this undesirable
stabllity characteristic, artificial damping is supplied to the airplane
by some type of automatic stabilization. However, the problem often
exists that, although a specific stabilizer has proven to be satisfactory
for one alrplane, it has been found to be unsuitable for another. For
instance, the damping characteristics of a certaln airplane may be mark-
edly improved by an autopilot that supplies a yawing moment to the air-
plane proportional to the rate of yaw but not much affected by an auto-
pilot that supplies a yawing moment proportional to the rate of roll,
and yet for another airplasne the converse may be true. Also, this 4if-
ference in sensitivity of airplanes to various types of artificial
dempers can exist even though they posséss the same or nearly the same
natural period and basic damping characteristics. Since the slopes or
rates of change of the roots are & measure of the sensitivity of the
damping of the airplane in the different modes of motion to various
parameters, they should afford some insight into the conditions that
might exist in order for some of the gbove situations to result.

As an example, assume four airplanes which, for the same flight
condition, have the same damping characterilstics (same roots of charac-
teristic equation) but differ in some of their mass and aerodynamic
parameters. The characteristics of the assumed alrplenes are given
in the following table:

Quantity Adrplene 1 Alrplane 2 Alrplane 3 Adrplane L
T o T 35.3 35.3 35.3 35.3
V, ftfsec o . . oo oL .o 695.5 695.5 695.5 €95.5
2R - - S 0 o 0 [}
CL = ¢ « o o o o s v o = o o« 0.2 0.12 0.12 0.06
B o o o s o s e n e e e 50 50 50 50
K2 o v e b h e e e e e e 0.01485 0.00T25 0.01485 0.007425
Ez2 o v e i e 0.050% 0.1008 0.050% 0.1008
BXZ « ¢ o« o = o o o o o o o oo o] Q o] 0
My dEBE ¢ ¢ « s = = o« = ¢ & s & o 0 0 0
Cip, Per radian . . . . . . . . -0.15 -0.225 -0.15 -0.225
Cy,s per radian . -« + . o - o« . 0.04 0.04 0.08 0.08
Cnys Per radian . . . . . . . . ~0.01 -0.0L -0.005 -0.005
Cny, per radian . . . . . . .. -0.15 -0.30 «0.15 -0.30
Cyp, per redian . . . . . . . . [0} o] o o}
Cy,, per radian . . . . . . . . 0 0 0 ]
GIB, perredian . . .« . . . . -0.58 -0.58 -0.58 -0.58
Cnﬁ, per redian . . . . . . . . 0.12 0.2% 0.12 0.2h
Cig, per Tadian . . . . . . - . -0.11 -0.11 -0.22 -0.22
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Although the roots of the characterigtic quartic for these airplanes are
the same, thelr sensitivity to certain parameters is different. Exeamlina-
tion of the slopes should indicate then not only the parameters that are
most effective in increasing the damping of the Dutch roll oscilillation
but also the reason that some parameters are more effective for one air-
plane than they are for another. Since the quartlcs for the airplanes
have the same roots, the coefficlents of the quartics must also be
identical. Therefore, if the slopes are to differ, the reason must be

a difference in the partials of the coefficients of the stability quartic
with respect to the various parsmeters. (See eq. (4).)

Now, assume that it is desired to equip each airplane with an
auxiliary demping device in order to lmprove the Dutch roll damping.
If the dampers are assumed to have no lags, the effect of the dampers
can be considered merely as a modificetion of the stability parameters
and the slopes will present a measure of the sensitivity of the Dutch
roll damping to these parameters.

The values for the rate of change of Dutch roll demping with respect
to Cnr, Cnp, and Czp for the four airplanes are given in the following

table:

da. Jda, da
Alrplane
1 0.048 -0.076 0.0058
2 .024 -.076 .012
3 048 -.15 .0058
4 .02k ~-.15 .012

Assume, for example, that airplanes 1 and 3 equipped with a —
Cnr type yaw damper are satisfactorily staeble. For alrplanes 2 and 4,

the same yaw damper would be only about 50 percent as effective as for
alrplanes 1 and 3. For all four alrplanes it appears that, based on the
slopes, a Cnp demper would be more effective than a Cp, damper, but,

in selection of a suitable damper, consideration must be given to its
effect on the other roots of the characteristic equation as well as to
its effect on other factors such as the roll-to-yaw ratio. A CnP type

damper, although generelly effective in stabilizing the airplasne Dutch
roll, primarily redistributes the total damping of the system and, as a
result, the damping-in-roll root Ao 1is adversely affected. Hence, the

value of Acnp which can be tolerated before this adverse effect becomes
important is usually smsll and the increase in Dutch roll damping is



NACA TN 313k 29

somewhat limited. Thls adverse effect does not occur for the Cn, type

damper and, consequently, a larger increase in Dutch roll damping usually
can be obtained by introducing large increments to Cnr.

Nevertheless, the importent point to be made here is that a dif-
ference may exist in the sensitiviity of their damping to different
parameters even though the airplanes initially have identical damping
characteristics. Futhermore, by use of the slope equation this differ-
ence can be attributed to specific terms. For example, the reason air-
planes 3 and 4 have a slope aa/acnp double that of airplsnes 1 and 2

is that the values of the parameters ClB and Czr for the former air-

planes are exactly double these parameters for the latter airplanes.
Likewise the difference in the Cnr and CZP slopes can be attributed

to specific terms. It is of interest to note that the difference in
da/dCp, and 8:3./8Cnp for the four airplanes will be predicted correctly

by the simplified expressions (eqs. (24) and (26)).

APPLICATION OF METHOD TO THREE ATRCRAFT AND

DISCUSSION OF RESULTS

Stebility derivatives end mess and dimensional characteristics of
three airplanes are given in table II(a). The nondimensional roots of

the quartic equation (eq. (1)), the values of 1 T)/p for the aperiodic
modes, and the values of %/Tl/z and frequency of the oscillatory mode
for each airplene are presented in table II(b).

The results obtained by evaluating the exact equation (eq. (4))
ON\/dx; for the real roots and the complex roots for each airplane with
respect to the ten parameters are given in table III. The rates of
change of Dutch roll damping end frequency as calculated from equa-
tions (17) to (22) are presented in table IV along with similer data
from table IITI as a comparison of the results obtained by utilizing
these simplified equations. Generally, the agreement 1s very good. The
slopes presented In tebles ITT and IV are nondimensional slopes and if a
comparison 1s made between the slopes of one alrplane and those of
another airplane, they must first be multiplied by the V/b ratio of
the respective airplasnes. These slopes are plotted in figures 1 to k.

In 2 lateral-stability analysis, Tl > is commonly used as an indi-
cation of the degree of damping of an eirplane. Here l/Tl/g is chosen

for plotting rather than T1/2 since the former can be expressed as a
linear function of Axji.
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For the purpose of comparing the effeet of increments in the param-
eters on the lateral stabllity of the three airplanes and meinly as a
comparison of the approximate changes, obtained by the methods of this
paper, with the exact changes, figures 1 to L4 are presented.

The straight lines in figures 1 to 4 indicate the approximate varia-
tions of the crdinate due to various parasmeter changes, calculated by
the methods of this paper. The symbols Indicate check points which were
taken at equal positive and negative inecrements for each parameter.

These points show actusl varigtions which were obtalned by increasing
or decreasing the specific parameter in the lateral equations of motion
and solving the characteristic quartic (eq. (1)) for the new roots. The
check points are presented in the following intervels, which are the
seme for each figure: between Axji/xi equal to 100 percent for Czp,

C1,.; and Cn.; between Axy /x4 equal to 350 percent for CnB’ Cig;
and Cyg; between Axs /x4 equal to £20 percent for Kkoa and Kz,2;
between Acnp equal to #0.05 per radian; and between An equal to %6°.

Therefore, 1t is important to note that, with the exception of CnD
and 7, the variations in %/&1/2 and o' are not plotted ageinst

equlvalent incremental scales for the three airplanes since the basic
parameter xi{ 1s generally different for each airplane. These particu-
lar intervels were not chosen as limits or boundaries for the method but
were used in an attempt to show the degree to which the method could
predict changes for relatively large variations of many of the parasmeters.

Figure 1 shows changes in the %/51/2 of the spiral root A; of

three alrplanes due to increments in various girplane parameters. In
figure 1(a) at ACZP/CZP equal to -100 percent, the actual variation

has been plotted only for aslrplane B, since for airplanes A and C the
real roots (A} and Ap) haeve combined to form another oscillation.

The spiral root of all the airplanes is most affected by those
parameters which would be expected to cause the greatest changes as
indicated from the spproximate expression of the spiral root -E/D
vwhere E 18 the constant and D the coefficient of A in equation (1).
One of the most important terms in the D coefficient is '“CZPCnB'

As seen from figure 1, Clp and the parameters which constitute the
E coefficient cause the most pronounced changes in the spiral root.

The method sppears to give good approximetions to the changes in
the %/&1/2 even for large variations of the paremeters except for

Czp and CnB' For Clp: the method predicted the changes fairly well
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up to ACZP/bZP equal to #40 percent. For Cng, it gave fair approxima-
tions up to Acnﬁ/bnﬁ equal to 40 percent.

Figure 2 shows changes in the l/&l/g of the demping-in-roll

root Ao of the three airplanes due to increments in various airplane
paremeters. The method gave good agreement to the actual changes in
1/T1 /2 for all variations of the parameters considered. In figure 2(a)

at ACzplczp equal to -100 percent, sgain the actual variation has been

plotted only for airplasne B. The reason for not plotting the actusl
variations for airplanes A and C was explained in the preceding discus-
sion of figure 1.

Cy
A good approximation to the damping-in-roll root is Ap = E—JETE.
HpKX
Therefore, from this expression, Ap appears to be mainly sensitive to
changes in Czp and KX2. Examingtion of figure 2 bears this out.
Although KXE- was not plotted, the variations of thls parameter will
elmost be equal to the variations of Kxoa.

Figure 3 shows change in %/bl/z of the Dutch roll oscillation of

the three airplanes due to increments in varicus airplane parameters.
The varlation of Dutch roll damping with parameters other than Czp

is seen to be almost linear for each of the alrplanes up to the largest
changes consldered for the parameters, and the agreement between the
calculated damping and the damping predicted by the slope equations is
seen to be very good. For alrplsne A, however, the effect on the spirel
root A; (see fig. 1) and the Dutch roll damping (fig. 3(a)) of varying
ACzP/CzP in the negative direction is predicted by the slope equations

only up to AC;P/CZP of approximately -40 percent. The calculated

points indicate a reversal of the initial effeet of Czp on the Dutch

roll damping beyond this value. The physical reason for this reversal
is not clear. Mathematically, however, the reversal can be shown to be
the result of the relstionship between the variation of the total damping
of the system (B/A) and the variation of the sum of A7 and Ap with

Czp. This line of reasoning leads to the conclusion that the damping of

the Dutch roll osclllation of :en alrplane will be most sensitive to
varlations in CZP when :

o(B/A)
Ip

a("‘7\l - 7\2) #
BCZP
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PN - Np)
BCIP?
large. Although the reversal of the effect of Czp on the Dutch roll

damping of airplsnes B and C is not apparent from figure 3(a), additional
calculations indicated that thils reversal does occur for lerger varia-
tions in Czp than were included in the figure.

or when these partiasls are equal or nearly equal and is

Figure 4 shows changes in the frequency of the Dutch roll oscilia~
tion of the three airplanes due to inerements in various asilrplane
parameterg. The varistions in frequency calculated from the slope
equations are seen from these figures to agree almost identically with
the actusl variations for all of the parameters considered. A generally
satisfactory epproximation of the nondimensionel frequency of the Dutch
roll oscillation is '

1/2

C Ko C 1
o~ 08 _Xi
2upKz?  2upKx2Kg2

From the asbove expression the frequency appears to be mainly sensitive
to Kzz, CnB, sz, Kxz,, and CzB (and gy which was not considered
in this paper). Examination of figure 4 bears out the validlty of the
expression as an approximetion to ® for the alrplanes considered. The
parameters C and Kzoa appear to have the greatest effect on o

but it should be pointed out that Kyy for the sirplanes was generally

-Ky7C
small and therefore the term ___E%EEQE contrivuted very little to w
Zupky Ky,
for these ailrplanes. The general effect of this term can be seen from
figure 4(d). As n is essumed to be increased positively, the term
becomes more positive and o is incressed somewhat.

CONCLUDING REMARKS

Expressions have been presented in this paper which afford a means
of calculating the rate of change of the roots of the lateral-stability
quartic equation with respect to ten mass and aerodynamic parameters
upon which these rocts depend. Application of these expressions to
three airplanes indicated that satisfactory results are obtained for
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large variations in the ten parameters even though in the derivation of
the expressions small variations in the parameters were assumed. An
attempt was made to simplify certain of the expressions and the results
indicated good agreement when compared wlth the results of the exact
expressions.

The expressions which define the rate of change of the character-
istic stability roots with respect to the various parameters were shown
to bear a definite relationship with the amplitude coefficients (and
hence the ratios) of the lateral modes of motion subsequent to spplied
moments and forces. From these relationships calculation of the rate
of change of A, with respect to five prescribed parameters allows
determination of the remaining partial derivatives and these amplitude
coefficients and ratios.

The slope expressions should afford some insight into the types of
automatic stabilization sultable for a given airplane since, 1f the
dynamics of the automatic stabilizer are assumed to be negligible, the
automatic stabilizer is effectively varying one or more of the mass or
aerodynamic parameters of the airplane.

The effect of a parameter change on a given alrplane may be dif-
ferent from the effect of the same parameter change on another airplane.
The reasons for this difference can be geen from examinstion of the
slope equation and, in some instances, can be attributed to particulsr
perameters or combination of parameters. TFor example, the effect of
the damping-in-yaw stability derivative Cnr appears to depend primarily

on the moment of inertis in ysw, whereas the effect of the yswing-moment
coefficient due to rolling veloclty CnP tends to be most effective for

alrplanes with low moment of inertia in roll or high effective dihedral.
The relative effectiveness of C and Cnr can be measured by the

roll-to-yaw ratio ¢/¢ of a given airplane, and for high wvalues of
B/, Cn, 1is the most effective of the two.

A method for calculating spproximately the roots of the stability
characteristic quartic is presented in the appendix and is shown to
give very accurate results for the three alrplanes considered.

Langley Aercnauntical Isboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., October 2, 1953.
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APPENDIX A
APPROXIMATE SOLUTION OF LATERAL STABILITY QUARTIC

The period and damping of the various latersal modes of motion are
determined from the linear and distinct roots of an equation of the
form

F(A) = + BAS + CA2 + DA+ E = O (A1)

where the coefficients A, B, C, D, and E are functions of the sta-
bility derlvatives and mess parameters of the airplane. Rewriting,
after division by A, gives

FOAN) = + B A3 + C'A2 + D'A+ E' =0 (A2)
Assume that
(RE + plk + ql)(7\2 + pek + qa) = F(A)
Hence,
, —
B = Pl + P2
c' = q; + 4o + P1Po
; (43)
D' = p1ap + Pogy
E' = q1qp
P

Equation (A2) will almost slweys have two real roots and a palr of con-
Jugate complex roots. One of the real roots Aj; 1is assoclated with

the lnherently very poor splral stability of airplanes and hence is

very small. The remaining real root Ao 1is assoclated with the damping
in roll of the airplane and is of the order of the coefficient B'. The
real and imaginary parts of the complex roots determine the damping and
periocd, respectively, of the normal lateral Dutech roll osciliation. If
the assumption is made that the complex roots are obtalned from the
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quedratic A2+ plk + 4, the condition generally exists that Qb < q;;
end hence go can be assumed to be zero in equations (A3). Therefore,

]
B =p; +pp

Q
il

Q1 + P1P2

; (a)

D' =
Pody

E'=0
o

From equations (A4) the following expressions are obtained for Pyt

Pl:B'-_

> (25)

Py

Equating equations (A5) yields

D B’ Cl]_('ll]_ -c')

94 D g 6

Fl(q]_) = Fg(‘ll)

Therefore, q; can be determined by a simultaneous solution of equa~
tions (A5). The functions F; and Fp are illustrated by the following
sketch:
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F(qp)

Replace F; and Fp for...]];)T < gy <C' by the expressions

\ (a7)

The intersection of these straight lines gives the desired qj, which is

~ ¢! 2 B'D'
) ((33)2++ c' (48)




NACA TN 3134 7

Substitution of this value of q; into the first of equations (A5)
glives

_c'('c’ -p')
(c')2 +B'D'

By (89)

or, since p; = -2a (where a 1is the real part of the complex root
A =28 + iw),

_1¢'(B'c’ -1')
2 (cl)2 + BIDI

a= (a10)

Also, the imaginary part of the complex root 1s related to q; by

1/2
o = (g - &) / (A11)
The two resl roots may be obtalned as follows:
From equation (Al)
D!
p2 [
93
and from equation (A3)
]
ap = E_ (A12)
%

Therefore, the quadretic giving the real roots may be written as

t 1
2+ D A+ E . 0
43 Q3
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Solving the gbove quadratic for A gilves

I ' 12 11/2
A (02 - uqye] }

Then, the spiral root is given by the root with the plus sign

1/2
=L J_p’ "2 . '
N 50, D' + ED) b,qlE:l (A13)

and the damping-in-roll root is given by the root with the minus sign

1/2
- .4 1 12 1

Hence, the four roots of equations (1) mesy be found by equations (48),

(A10), (M11), (A13), and (A14).

It should be reiterated that these results are contingent primarily
upon the condition that gqp << qy end if, upon determination of qp

(eq. (A12)), this condition is violated, the results are, of course,
invalid, and resort must be made to other methods of determining the
roots of the latersl-stsbllity guartic.

The following table showe a comparison between the values of the
nondimensional roots obtained by using this spproximgte method and the
exact roots for the three sirpleanes:

Spiral root Damping-in-roll root Dutch roll oscillation
Aflrplene A .
Exact ~0.000410T -0.13932 -0.0094337 + 0.1727L1
Approximate -.0004099 -. 13647 -.009330 ¢ .17121
Airplane B
Exact ~0.0007611 -0.036142 -0.00004245 * 0.0709111
Approximate -.0007T546 ~-.03598 -.0001658 + .0T1061
Airplane C
Appmte -g.ﬁg -g.i;ggz -8 g’{.{;'? I ° 156521
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TABIE I.- GENERAL FORMS OF THE PARTTALS OF THE QUARTIC COEFFICIERIS

FOR TEN DIFFERENT PARAMETERS

Cny
3A/XCn, o
38 /3n,. -2, 2Ky
3/%n, ko(Kx2Cy, + 3 C1p)
3/3Cn,, 1 (C160x, = C1.015)
3E/3Cn,, % Crfg

CnP
aA/acnp 0 i
3B/, 20 %Kz
/n, -%(KXZCYﬁ + 5 Clr)
3D/3Cny, %CerYB * mCg - ffczgcyr
aE/acnp 0

Ci,.
OA/3C1y. 0
OB/C1y 2ub2sz
3/31,, -1, (BxzCrp + 3 Onp)
an/aca, i (CugCeg - OngOry)
3®/30; - % Crlng
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TABIE I.- GENERAL FORMS OF THE PARTIAIS OF THE QUARTIC COEFFICIENRTS

L1

. FOR TEN DIFFERENT PARAMETERS - Continued
Czp
aA/aCzP 0
3B/oCy -2y, %72
D
36/30, wp (Rz%0x, + L Cny)
1 1
o/ aCZP N canYﬁ - prnﬁ + n f-"nBCYr
BE/BCZP 0
C¥p
BA/BCYB o
/20y, a2 (P72 - Koeg®)
3/, (K¢ %0ny + Kg201 - KezCiy - Kzlnp)
1
BD/BCYB E(Cnpclr - Cnrclp)
3E/30y, 0
Cng
BA./BCnB 0
3B/, 0
3€/30ng b (bt + By, - K0, )
) aD/aan -|.1b01p + 2, CrKyy + ﬂ_; CZPCYI' - "}"- CZrCYP
3 /Cng - % C1C4y
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TABIE I.- GENERAL FORMS OF THE PARTIALS OF THE QUARTIC COEFFICIENTS

FOR TEN DIFFERENT PARAMETERS - Concluded

Cip
aA/ach c
E/aclp o
3/, (B + K220, - KezOry)
l® oy = BT - Ol +  Caelry
a0 Lo,

%2
an/oy, 2 By K,
B/ 2 2w EcYpKZoz + Cny cos2n + Ty a1nn + (C3 + Cag)sin n cos il
a/omg 2 ™ anaq(cnrcys + hp\,cnﬂ: ercnﬂ) + ::1::211(311;:1(&I - Cyp(hB) +

sln 7 cos ‘I(cerYB + Mxlyp + Coglrp - Cnplry, - c!rclsjl

2p/3xy, 2 -aq,cr,(cza 810®q + Cny 8in § cos q)
ETE . °

kg 2
an/amg,? 8z,
/o8y, 2 o2 Ecygxxf + Gy sinzn“f €1y, cos?y - (c;r + cnp)nm 7 cos ﬂ
BC/BKzf prinET]((Jnrc!ﬂ + hprnB - Crrcip) + efﬂan(czperﬂ - crpczg) -

sin 7 cos n(ch'crﬁ + kpbc;,e + cnpOyB - ancYp - crrclaj
/3Ky, 2 -2413,01,(C1 0820 - Cng 8in 7 cos 1
Az, B g
ox/omy 2 0
)
da/dn [+]
/e 2 fomea 0ry = G+ (B + ) (22 - Tt Deon 1)
/2 o[t By + Wi = O1,ty + Or 0t - OryOng) - (Ree? - Xeo?)Cr,0r, +
hipCrg + Co Oy, - Cnglr - Cyrclp)cu 2ﬂ

/3y 2upCr, El{xzc;B + cnp(xzoz - Kxoa)coa eﬂ

&(2q

o]
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TABLE II.- CHARACTERISTICS OF ATRPLANES CONSIDERED

(a) Stebility derivatives and mass end dimensional characteristics

of three airplanes

Airplasne A

Wing:
Span, ft .« . . . . . 28.00
Area, ft2 130.00
Aspect ratio .. 6.00
Sweepback, deg . . . 5.05
Dihedral, deg . . . . 0
W, l‘b . * . . L L] - - . 8,J+50 m
W/S, /et . . . . .. 65.00
Altitude, £t . . . . 30,000.00
V, ft/sec « . . . . . . 797.00
CL « ¢ ¢ « v v v v o 0.23
Hh » ¢ ¢ o« o o ¢ o o« 80-70
N, de8  « ¢« & « o e . -2.00
KX,Z - o - - 0.00962
o 0.05135
Kg2  « . . . 0.00967
KzZ . . .. 0.0513
. A -0.00145
Czp, per redisn . . . . -0,.)4-0
Cy,» per radian . . . . 0.08
CnP: per radian . . . -0.02
Cn,.s per radien . . . . -0.40
CYP’ per radian . . . . o]
ch’ per radian . . . . 6]
CYB’ per radien . . -1.0
Gnﬁ , per radilen . . . . 0.25
CzB, per radian . =0.126

tany . . v o o000 0

Airplane B

25.00
175.00
3.60
35.00
-3.00
9,245.00
52.80
50,000.00
T76.00
0.49
182.00
0.82

0.01557
0.1560
0.0156

0.156

0.0020
-0.33

0.23
-0.05

-0.69

0

0
-~0.58
0.25

-0.18
0

Airplane C

35.30
250.00
4.97

4.00
12,630.00
50.50
30,000.00
695.00
0.24
50.00

0.01485
0.0504
0.01485
0.050k4

-0.45

0.0%
-0.01
-0.15

-0.58
0.12
-0.11

43



TABIE XT.- CHARACTERISTICS OF ATRPLANES CONBIDERED - Concluded

(b) FNondimeneional roots of the characteristic quartic equation, with the

e - - L ’.rr! . \ a T LY P T I TR DU SR

Damping factor, Frequency,
Nondimensional roots, A (ij y ) (m')o
1/2

A B | _I

Alrplane A:
Spiral root . . . . - . . - =0.0004107 0.01687  ——memmeee
Damping-in-roll root . . . -0.13932 5.7220  acecwmccee-
Dutch roll oscillation . . -0.0094337 ¢+ 0.171271 0.3875 4.875
Airplane B ;
Spiral root . . s s s -0.0007611 0.03409 N —
Damping—in—ro]l root .. -0.0361k2 1. 6190 ----------
Dutch roll oseillation . . -0.00004245 + 0.0709111 0.001901 2.201
Alrplane C:
Spiral TOOt .+ « 4 4 . . . -0.00049 0.01393 —————
Damping-in-roll root . . . ~-0.15679 4 4580 ————————
Dutch roll oselllation . . -0.00746 *+ 0.156751 0.2121 3.088

L
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NACA TN 313k 45
TABLE ITI.- NONDIMENSIONAL SIOPES FOR THREE ATRPLARES WITH
RESPECT TO TEN PARAMETERS
Slopes
X3
37\1/ axi ale/axi da/dxy Qw/dxs

Alrplane A
C1, -0.0010 0.32 0.0024 ~0.0090
Cip .0034 .0026 .0015 0040
Cnp .0017 .00088 .029 0023
Cny, -.00049 a1 -.048 -.0h1
c,,15 0026 .030 -.016 .3k
Cig 0052 .088 =047 .020
CYB -.0000019 .00018 .0030 ~.00013
1 .000017 .16 -.088 .098
Kz 2 .00021 -.11 .29 -1.68
Kx, 2 -.00012 k47 -.57 -.076

Alrplene B
C1p -0.0017 0.077 0.0062 <0.0015
Cip .0029 -.0023 -.00086 .0005T
Cny .0021 -.0013 .0040 .00072
cﬂp -.0012 .oty -.022 -.013
cns L0048 .018 -.011 .12
C1g L0067 .031 -.019 -.024
CYB -.0000019 000034 .0013 . 0000060
1 .00013 .16 -.089 .16
Kz2 .0012 -.019 .028 -.19
kg 2 - 0009k 2.022 -.068 .34

Alrplene C
Cip ~0.0010 0.33 0.0058 ~0.00060
Ci. .0050 -.0016 -.0017 .0019
Cn,. 0046 -.0007h .08 .0028
cnP -.00094 .15 ~.076 -.077
Cng ,0055 .021 -.013 .62
Cig .0060 .46 -.026 -.022
Cyg -.0000028 .00016 .0049 -.00013
n .00001h4 A7 ~.088 .083
Xz, 2 .00045 -.023 .16 -1.49
xg 2 -.00010 10.22 -.010 -.18




NACA TN 313k

TABLE IV.- RATE OF CHANGE OF DUTCH ROLL DAMPING AND FREQUENCY OBTAINED

FROM SIMPLIFIED EXPRESSTONS COMPARED WITH THE EXACT

da/3dx3 m/dxs
X
Simplified Exact Simplified Exact
Airplane A
Cip 0.0031. 0.0024 -0.0086 ~0.0090
C1. .0016 .0015 .0037 0040
Cnp .029 .029 .0017 .0023
Cnyp, -.045 -.048 -.042 -.041
Cng -.01% -.016 .3l 3k
C1g -.0b5 -.04T .019 .020
Cyg .0030 .0030 -.00016 -.00013
1 -.0Th -.088 .098 .098
Kz,,2 .29 .29 -1.69 -1.68
2 - - - -
K, «Sh -5T .10 .076
Alrplane B
Cip 0.0062 0.0062 -0.0016 -0.0015
Cip -.00085 -.00086 .00058 .00057
Cny 0040 .0040 .0006T7 .00072
Cnp -.022 -.022 -.012 -.013
Cng -.0099 -.011 .12 .12
czB -.019 -.019 -.027 -.024
Cyp .0013 .0013 -.000009 000006
n -.087 -.089 .16 .16
Kz, 2 .026 .028 -.19 -.19
Kg 2 -.07L -.068 -.33 -3
Alrplane C
Cip 0.0058 0.0058 -0.00021 -0.00060
Cip -.0018 -.0017 .0018 . .0019
Cny .048 .048 .002k .0028
cnp -.073 -.076 -.077 -.077
cIIB -.011 -.013 .62 .62
CIB -.025 ~-.026 -.022 . -.022
Cyp .0049 .00%9 -.00015 -.00013
1 -.083 -.088 .083 .083
2
KZO 7 .16 -1.49 -1.49
Ky 2 -.013 -.010 -.17 -.18
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HETE NI VOVN

Ly




8

jd

~,
N

Ahﬂmn Approximaie varlaton Actual variabon
B
[

05 -
/P
ng
- 04 -
Lr o-no
- _E]'-—F—-
="
-
N 1 I o
O Ty/2
08 .
—O—0—10
oO—0——0O— >
| oo —0-— 7 R
ol
1 | 0 1 | I 1 } | ] I | 1
100 -.06 0 .08

Aqb,mrmmm

{v) Cn, &nd cnP.

Figure 1.- Conbinued.-

HeTe NI VOVN




T1/2

Q7

6

03

01

B ————— —

Q ——

.08|-

T_17'2' 03 F

02 -

01 |-

Airilme Approximaete varistion Actunsl variation

o}
o
4]

(e) CnB and C‘Lﬂ'

Filgure 1.~ Continued.

HETE ML VOWN

6




Airplane Approximate varistion Actusl varistlon
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HeTe NI VOVN

v
B ————— a
c — ¢
[: ' 8 r
- 5|
A A A A A LA A A A A o__0"_‘(“)-“_“_
L A e e e A Ykt ol —_—-
—
40 4k
1
“L_ 3l T 3|
TI/B 1/2
B 2|
O-0-0-0-0--t--0- -0 - -0 e [ SRS N e
1l 1l
o [| i 1 1 1 1 1 1 1 1 -0 i L i 1 1 i 1
-100 o 100 -.05 0
G Cn,, adian
an'y parcent 8 np prr

(b) c,flr and cnp.

Figure 2.- Continued.

e




Alrplans Appraimete vaoa
2 = YariRTion
B
¢ —=T=
a4
O |
B L o NN
4
=1
EVE
(e) ¢

%S

eTe NI VOvN



Ti/e

Airp‘i.ane Approximate variation Actual varietion E
B ______ 9 0
c — 0 =
- =
8} T T
(F“—\...: (@]
00 —C—0-T7T=2 -0 -0‘-_““"“*%}\__“
4 - ‘-0.--“-'--
ol
1
T
/2 8|
(S
0.
3r -“D-____h
O-- 0 -0 -4~ -0 -0~ --O i
[ S
1} ‘EL"-__J;I
] 1 1 1 1 | { L 1 1 0 1 1 1 1 | 1 ] i 1 ] 1 |
-50 0 B0 -4 0 8
AL
_..EE_ 4n, deg
, percent
CYB
fa\ ~ " -
\a) Ly ana T
]
Ui
Figure 2.- Combinued. W



T /e

Approximate varietion

B e

Alrplane
A
c
O —0
o— - - -
r----=-=-- - Ll
1 |
=20 0 20
cxzog
52 percent

Actual variation

o)

a
A
v

T1/2

(e) ¥7? and Ky °.

Figure 2.- Concluded.

@
&
\\
\\\7
\‘O
E]—-“-——
17T --m
|
-20 0 20
M 2
Xo

—E—-Q-, percent

Xo

9¢

WETE NI YOVN




Ajrplape  Approximate varison Actnal varistion
A

——— o
B —e—m———
e —= é
5r- ar-
o
o Q
Q I « T,
T /,O/,OV—O’JM ir o—0o—0—0—0—
—O0—CO—0—0—0
S S
r'/
A O
O ¢
2} . e GO~ O 00— O 0
f“o‘ T 2F‘
< v
Ot
1k ” 2
-U"Dfﬂ
n _-”D” — — — —
) Jads 0 Pt S e
AT
L
1 G A \ 1 1 A L 1 -l ~1 . 1 | L — 1 | N | 1
=100 0 100 100 \] 100
Acln ..“.Cl
o parcont c_zz' parcent
r

(B.) clp end C;r-
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