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NATTIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3255

SHOCK-TURBULENCE INTERACTION AND THE GENERATION OF NOISE

By H. S. Ribner

SUMMARY

The interaction of a convected field of turbulence with a shock
wave has been analyzed to yield the modified turbulence, entropy spot-
tiness, and noise generated downstream of the shock. This analysis
generalizes the results of Technical Note 2864, which apply to a single
spectrum component, to give the shock-interaction effects of a complete
turbulence field. The previous report solved the basic gas-dynamic
problem, and the present report has added the necessary spectrum
analysis.

Formulas for spectra and correlations have been obtained and numer-
ical calculations have been carried out to yield curves of root-mean-
square velocity components, temperature, pressure, and noise in decibels
against Mach number for the Mach number range of 1 to ®; both isotropic
and strongly axisymmetric (lateral perturbat1ons/long1tudinal perturba-
tions = 36/1) initial turbulence have been treated. It was found that
in either case initial turbulence with a longitudinal ¢éomponent of 0.1
percent of stream velocity would yield a noise pressure level of about
120 decibels; the value of lateral component had relatively little
effect.

The present results are applicdble quantitatively to flow in ducts
or channels containing normal shocks; they are presumed to provide a
qualitative guide to the generatlon of noise by the shock structure in
a supersonic free Jjet.

INTRODUCTION

The propulsion of aircraft by means of jets gives rise to intense
noise as an unfortunate byproduct. Programs of noise abatement are
under way, but at present they are largely empirical: even with the
general gulde provided by Lighthill's theory (ref. 1), the understanding
of the mechanisms of noise generation is far from complete. It appears
from both experimental and theoretical evidence, however, that the inter-
action of turbulence with shock waves must often play a part. On the



2 NACA TN 3255

theoretical side, the generation of noise by such interaction was pointed
out independently in references 2 and 3. The shock-turbulence interaction
was found to produce, in addition to the noise, an entropy "spottiness”
aft of the shock (manifested as a temperature and density spottiness at
constant pressure, ref. 2).

Turbulence, entropy spottiness, and noise (pressure fluctuations)
are examples of the three fundamental modes of small disturbance pertur-
bation of a gas (refs. 4 and 5): more specifically, the categories are
vorticity mode, entropy mode, and sound mode. The vorticity mode (tur-
bulence) and the entropy mode are essentially "frozen" patterns (to use
Kovasznay's term) that are convected by the main flow; the sound mode,
however, consists of waves that propagate in various directions in
addition to being convected.

To the first order in the perturbation velocity, there is no tend-
ency for the modes to interact or for an isolated mode to spontaneously
generate one of the other modes (ref. 5). (The weak transference of
turbulence into noise described by the Lighthill theory is a higher-
order effect (ref. l).) The presence of a shock wave, however, provides
a mechanism for a very strong transference: thus, when any one of the
three modes - turbulence, entropy spottiness, or noise - encounters a
shock, the interaction will give rise to all three modes, in comparable
‘strength, downstream of the shock (refs. 2, 4, and 6).

The first of these cases, shock-turbulence interaction, has been
investigated at the NACA Lewis laboratory as an outgrowth of reference
2 and 1g reported herein. The analysis of the earlier paper was con-
cerned with a single spectrum wave of a turbulent field, and was pri-
marily a study in gas dynamics. The present paper reformulates the
results and incorporates them in a spectral analysis; from the analysis
come the quantitative effects of the interaction of a convected homo-
geneous field of turbulence with an extended plane shock front. (Scme
results of this work were reported in abbreviated form in refs. 7 and
8.) The perturbation velocity, pressure, temperature, and density dis-
tributions behind the shock sre described in terms of formulas for theix
spectra, correlations, and mean-square values; these are separated into
the respective contributions of turbulence, entropy spottiness, and
noise.

Numerical calculations are presented for the root-mean-square val-
ues of the pressure (noise) and components of the temperature and veloc-
ity perturbations for the Mach number range of 1 to »; one set of calcu-
lations refers to isotropic initial turbulence, another set to strongly
axisymmetric initial turbulence (lateral perturbations/longitudinal per-
turbations = 36/1). The noise pressure level is also presented on an
acoustic scale for several levels of initial turbulence.
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SHOCK INTERACTION OF SINGLE SHEAR WAVE
Qualitative Discussion

According to the Fourier integral theorem, a turbulent velocity
field can be represented as a superposition or spectrum of elementary
waves. A single spectrum wave can be interpreted physically as a plane
sinusoidal wave of shearing motion (e.g., ref. 9); a portion of such a
wave is shown in perspective in sketch (a).

(a) Wave of shearing motion.

A similar wave encountering a shock is shown schematically in sketch (b),

Up U

Shock

(b) Convection of shear wave through shock: original
unsteady-flow problem. ; ’ -
the wave and the shock being viewed "edge-on." The wave-shock inter-
action was analyzed in reference 2, and what follows first is a brief
physical account of the main results. The wave is supposed to be con-
vected downstream by the main stream with velocity Up so that it passes

through the shock. The passage is evidently an unsteady process, since
the intercepts of the inclined lines -~ the planes of constant phase or
wave fronts - move downward along the shock; it can be shown that a
sinusoidal disturbance ripple will move along the shock with the same
speed V. :
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The unsteady-flow problem may be treated directly (ref. 4), or it
may be converted to an equivalent steady-flow problem by superposing an
upward velocity V (ref. 2). The conversion is illustrated in sketch (c).

Shear and éntropy

Shear
Shock

(¢) Transformation to steady-flow problem by superposition
of velocity V.

The cross velocity V therein has been chosen so that the resultant
stream velocity is parallel to the wave fronts in the shear wave; the
observer then sees what appears to be a steady sinusoidal shear flow
passing through an oblique shock. This may be called the equivalent
oblique shock. (Addition of the upward velocity V is, of course,
equivalent to transforming to a moving frame of reference.)

Downstream of the shock, the resultant stream flow is deflected
according to the laws for obligue shocks; the streamlines are the upper
lines in the figure. The vorticity of the initial shear wave is con-
vected along these streamlines together with the additional vorticity
generated by the shock. The net result is a refracted, amplified shear
wave alined with these streamlines. The angle of refraction is Jjust the
angle of flow deflection of the oblique shock.

Superposed on the refracted shear wave is an entropy wave of the
gsame inclination and wave length. This wave arises from the convection
of entropy perturbations generated at the shock, precisely as the shear
wave results from the convection of vorticity. The entropy wave is man-
ifested physically as a spatial variation of temperature and density at
constant pressure, by virtue of the equation of state.

The nonuniform velocity in the shear flow results in a nonuniform
pressure jump across the shock. The ultimate effect is that the shock
front develops ripples, modifying the pressure variations, and the
resultant pressure variations propagate downstream as a plane sinusoidal
wave (lower lines in sketch (c)).
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The character of this wave depends on whether the resultant velocity
W behind the equivalent oblique shock is subsonic or supersonic; this
in turn depends on the initial wave inclination through V. Vhen W is
supersonic the pressure wave is a plane sinusoidal sound wave; it appears
as a stationary Mach wave pattern in the steady-flow reference frame.
When W is subsonic it may be shown that the pressure wave, while still
plane, is not a simple sound wave, but rather attenuates exponentially
with distance downstream of the shock; the resultant disturbance velocity
is not normal to the wave front, and the wave propagates relative to the
surrounding fluid at less than sonic speed.

Quantitative Discussion
Elementary wave. ~ Thus far the waves have been discussed only qual-

itatively. Elementary spectrum waves of this sort may be expressed quan-
titatively in the form

ik-x
do = dZ e ~ (1)

(A1l symbols are defined in appendix A.) The wave-number vector k is
directed normal to the wave fronts and its magnitude equals Zﬁ/wave
length. The wave amplitude is given by the complex quantity dZ,. When
o stands for temperature, pressure, density, or entropy, these are
simple scalar waves. When o stands for the components wu, v, w of
the velocity, these are vector waves; two cases may then be distinguished:
the waves are either irrotational and compressible (sound waves) or rota-
tional and incompressible (vorticity waves). (See, e.g., ref. 10). In
the first case the irrotationality condition curl g = 0 requires that
the velocity o and wave vector k be parallel (u, v, w proportional
to ky, ky, kg, respectively); the sound waves are thus longitudinal.

In the second case the incompressibility condition div o = O requires
that the velocity g« and the wave vector Xk be perpendicular; that is,

Kju + kov + kzw = O (2)

Thus, the vorticity waves are transverse and have the character of a
shearing motion (see sketch (a)); in the discussion they have been re-
ferred to as "shear waves."

Geometric reexamination of prior results. -~ The shock-interaction
process for a single shear wave is given quantitatively in reference 2,
but the results are formulated in two dimensions. It will be necessary
to reexamine the problem geometrically in order that the results may be
reexpressed in three dimensions. :
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A perspective view of the initial shear wave in the new xy,Xp,Xz

coordinate system is shown in figure 1. The portion of the shear wave
shown is on the downstream side of the shock front, which is identified
with the xz,x3-plane. A plane passed through the xj;-axis perpendic-
ular to the wave fronts cuts the shock in the line Or. At a given
instant of time this xl,r—plane corresponds precisely to what was called
the x,y-plane in reference 2. The angle ¢ of the x;,r-plane with the

horizontal is then the third coordinate in a system of cylindrical
coordinates.

In reference 2 the time was eliminated from the equations by employ-
ing a frame of reference moving with a velocity V downward along the
shock front, the so-called steady-flow frame of reference. In the pre-
sent paper all results refer to a definite instant of time, t = 0. Thus,
motion of the reference frame plays no part, and the results of the
earlier paper carry over to the present coordinate system on simply re-
placing x,y by xq,r, respectively. The results of the transformation
are given in the following sections with the disturbances reexpressed in
nondimensional form according to the scheme

u, v, w = components of velocity perturbation/critical speed of sound a¥
p = pressure perturbation/mean static pressure
p = density perturbation/mean density

T = temperature perturbation/mean temperature

In addition, there are other minor respects in which the notation has
been modified from that of reference 2; for example, the waves are
‘expressed in complex form. ’

Initial shear wave ( ~initial turbulence). - At time % = O, the
velocity field of the initial shear wave is, in cylindrical coordinates,

ik+x

du = e =72 N
wr |

dv, = dZ e (3)
ik-x

dv(p = dZ¢@ Y,

where du is parallel to X (longitudinal direction), dv,. is parallel
to r, and dvy 1is perpendicular to r and xj, in the direction of
increasing ¢ (see figs. 1 and 2). The wave-number vector k lies in
the xj,r-plane, making an angle 6 with the r-axis.
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Refracted shear-entropy wave { ~final turbulence and entropy spot-

tiness). - The velocity field of the refracted shear wave (fig. 3) is
ik'-x

qu' = dzle— - az! = X az, )

dv! = dZ'eiE'.E az! = Y dz $ (4)
T T T T

3 ik'-x

V! = e !
b dZwe dZw dz Y

at time t = O, where X' is the new wave-number vector, making an angle
8' with the r-axis. The radial components of k' and k are equal

(k} = kr): and the further dependence of k' on k 1s expressed
through the dependence of 6' on 6. Similarly, the complex ampli-
fication factors X and Y depend on Kk in terms of 6. Expressions
for X, ¥, and 6' are given in appendix A.

The perturbation pressure dp' will be zero because this is again
a shear wave, free of accelerations. The temperature perturbation
associated with the companion entropy wave (fig. 3) will be

Rt ex
T = e T = v )
a dz'e az} = T az, (5)
With p' = O (to the first order), the dimensionless density perturbation
p' will be Jjust the negative of the dimensionless temperature perturba-
tion 1 ', according to the linearized equation of state. The form of the
function g is given in appendix A.

Aside from the change in wave inclination, the description of the
refracted shear-entropy wave in terms of the initial shear wave depends
entirely on the amplification factors X and Y and the function T.
Such functions play a role similar to the "transfer functions" of the
theory of servomechanisms (ref. ll), and it appears appropriate to carry
the name over to the present field.

Generated sound wave ( ~noise field). - The shear-entropy wave down-
stream of the shock is accompanied by a plane irrotational pressure wave
(sound wave) of different inclination (see fig. 3). For small inclina-
tions 6 of the initial shear wave, this pressure wave attenuates expo-
nentially with distance from the shock; for inclinations greater than a
certain critical value 6., (see appendix A), the pressure wave is un-
attenuated. The critical wave inclination 6., corresponds to the
attainment of sonic speed in the mean flow behind the "equivalent oblique
shock" referred to in the qualitative discussion.
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The velocity field can be represented in the form

Jk"'.}_;

o "n., - "o
du" = aZe az; = X _dzu\
. 1 1"t i.IE"‘.}S 11
dv) = dZ’e dz; = Y 4z, ? (6)
1"
dvil = dzZlle T T azl = 0
® P ® y,

where k is the wave-number vector, making an angle 6" with the r-
axis; again the radial component matches that of k; namely, k; = k..

The sound-wave angle ‘6" and the transfer functions X and Y are
specified functions of the shear-wave angle ©0; moreover, for
09 <:ecr, X and Y are functions of xj, showing an exponential

decay to zero as Xl'*'w.

The pressure perturbation may be written

e 11
1 n, - - "o
| dp" = dZPe azg = P az,, (7)

-where P = P(x ) is a transfer function defined in appendlx A; like X
and Y, P decays exponentially with x for 0 €6 < Oarp The corres—
pondlng density and temperature perturbatlons are proportlonal to p"
they may be Obtalned from the isentropic property of the sound wave as
p" =p"/r and T =p"(r - 1)/r.

Transformation to Cartegian coordinates. - Expressions for the
velocity field in Cartesian coordinates will be needed. The transforma-
tion from cylindrical coordinates is effected by means of the relations

dZv = ercos ¢ - dZwsin P (8)

dZW = ersin ¢ + dchos ¢

where primes (~ refracted shear wave) or double primes (~ sound wave)
may be inserted throughout as needed.

The transformation results in

Initial _ eex =
shea {dor, = dz e , where o =u, v, w} (9)
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( o dik'ex N
da' = dZ&g — —, where the values of dZ&
for a =u, v, w are, respectively,

Final

shear{ dz} = X dz, ) (10)

dz.; =Y dZ cos ¢ - dZ,sin @
dz' =Y dZ _sin ¢ + dZ cos
L o r [0} (PO ¢ J
PRI
réuﬂ = ciZ(';be:"--IE £ where the values of dZé?

for a =u, v, w are, respectively,

X 4z, > (11)

Y'ercos o

Sound< dza

"
az.,

KdZ:r = YerSin ®

SPECTRAL ANALYSIS OF RANDOM FIELDS

The foregoing relations will be fitted later into a spectral
analysis of the fields of turbulence and noise. Appropriate analytical
techniques can be found in the spectral theory of random functions;
suitable developments of this sort are given by, for example, Moyal
(ref. 10) and Batchelor (ref. 12) for spatially homogeneous fields. The
first part of the present section will be devoted to an interpretation
{with some liberties) of relevant parts of the two papers; the latter
part will be devoted to developments for inhomogeneous fields and for
correlations of a two-dimensional field with a three-dimensional field.

Homogeneous Fields

Amplitude spectra. - Consider a three-dimensional field of small
disturbance (e.g., turbulence or noise) of unlimited extent. Let this
field be homogeneous in the sense that the statistical properties do
not vary from point to point. The instantaneous spatial distribution
of any physical guantity o can then be represented mathematically by
a Fourier integral in the Stieltjes form (refs. 10 and 12)

a(x) =f JEE az, (k) (12)
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where the triple integral goes from -« to « in each component of
k= (k, kp, k3)-

If equation (12) is written in the form

a au/‘da(g)

then, by comparison with equation (l), da. can be identified with what
has been called an elementary spectrum wave. The Fourier integral is
thus to be interpreted as a superposition of infinitely many of such
plane waves. In the integral the components of k take on all values;
it follows from the significance of k as a wave-number vector that all
wave inclinations and wave lengths appear. An aggregate of vorticity
waves with a suitable distribution of amplitudes among the various wave
lengths and inclinations can represent a turbulent field (ref. 13).
Similarly, an aggregate of sound waves suitably distributed can repre-
sent a random noise field (ref. 10). Finally, an aggregate of the scalar
entropy waves can represent a random field of entropy spottiness. A com-
bination of these three basic types of disturbance - entropy spottiness,
turbulence, and noise - constitutes the most general random small-
disturbance field that may exist in a gas (refs. 4 and 5).

Correlations. - Let o be measured at some point P and B at

some péint T a vector distance £ from P; then the space average of

the product aff as T and P vary but their vector separation g is
held fixed may be defined as the space-average correlation as(g).”
Alternatively, the disturbance field may be considered to be just one of
a large number, or ensemble, of statistically similar fields (e.g., the
flow fields of a great many "identical" wind tunnels operated simultan-
eously); the average of af, with P and T fixed, over all members of
the group, is the ensemble-average correlation. The equations that fol-
low, from the theory of random functions, refer solely to ensemble aver-
ages, but space-averages are desired in practical applications. The
ergodic hypothesis of probability theory equates the space average to
the ensemble average provided that, at any instant, the disturbance
fields o and B are stationary random functions of position; that is,
the disturbance fields are spatially homogeneous.

In what follows, the term "cross-correlation” will be applied for
o # B, the term "self-correlation,” or simply "correlation," for
a= 8.

Correlation and power spectra. - The cross-correlation Eﬁ(g)

(like o or B, individually: see eqg. (12)) may be expressed by means
of the Fourier integral as a spectrum of plane sine waves:

— ik-&
ap(g) = e T[oB)dk (13)
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where {ap] is a function of k, and dk is an abbreviation for

dkldkzdks. The differential elg.g{uﬁ]dg may be regarded as the con-

tribution to the correlation made by spectrum components with wave num-
ber between k and k + dk. The function [af] is called the "spectral
density" when a = B, the "cross-spectral density" when o # B (ref. 11).
The array of nine spectral densities signified by [of] when o and B
are limited to mean u, v, or w is the "spectral tensor" of the vel-
ocity field and is commonly written as Pi' or &,... (The correspond-

ing array of the nine velocity correlations Eﬁ(g) is the "correlation
tensor," commonly written as Rij(g).

Equation (13) includes as a special case the self-correlation or
mean-square relation

o2 3j/j[aa]q5, where & =0 (14)

If o were a velocity component (say u), then o2 would be twice the
space-average kinetic energy péer unit mass associated with u. The
spectral density [ow] is in this case an energy density (per unit mass,
per unit wave number). For similar reasons, where spectra of the kind
defined by equation (14) have occurred in physics (e.g., in the harmonic
analysis of radio noise), they have generally been called energy, inten-
sity, or power spectra. '

Correlation spectrum in terms of amplitude spectra. - The rather
analogous forms of equations (12) and (13) are of interest. Equation
(12) expresses the spectrum of the amplitude of the fluctuating quantity
a; this may be termed an amplitude spectrum. Equation (13) expresses
the spectrum of the correlation of o with B; this has been termed a
correlation spectrum. The complex magnitude dZa(g) of the amplitude

spectrum fluctuates in an apparently random mamner as k 1is varied
(refs. 10 and 12). The magnitude [op]dk of the correlation spectrum,

on the other hand, varies smoothly with Xk, since the correlation is a
smoothed or averaged quantity (ref. 12). The amplitude spectrum gives

no direct information concerning averaged (i.e., statistical) properties
of the disturbance field, whereas the correlation spectrum leads directly
to expressions for correlations and mean-square values (see eqgs. (5) and
(4)). One-dimensional spectra and scales of turbulence can also be
determined (e.g., ref. 14).

It would be desirable to formulate the shock-turbulence interaction
problem directly in terms of correlation spectra, but formidable dif-
ficulties stand in the way. It has been simpler to start with the shock
interaction of a single shear wave, which deals with amplitude spectra,
and to infer from this the changes in the correlation spectra. The
whole procedure depends on the following relation (refs. 10 and 12)
which connects the two kinds of spectra, namely

[apJax = dzf(k)azs (k) (15)
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where dZ(k) is associated with the wave-number range between k and

k + dk, and the bar represents the ensemble average. This relation is
fundamental to the spectrum analysis of the present paper. Its signif-
icance 1s this: the single-wave analysis (summarlzed in an earlier
section) prov1ded the change in amplitude of an individual spectrum wave
in the form dZ, = dZ}, say, and similarly, dZg = dZi; equation (15)

provides the means for determining therefrom the corresponding change in
the spectral density: [apl-[a'p'].
Inhomogeneous Fields

The spectral representation of a spatially homogeneous random field
is given by equation (12):

a(x) = J ¢ % az, )

A corresponding possible representation of an inhomogeneous field is

alx) = f = az_(k,x) (16)

where dZ, now depends on position; the sound field behind the shock is
of this character. The following spectral analysis of such inhomogeneous
fields is a development of Moyal's treatment of homogeneous fields (ref.
10).

Let a(x) and B(x') be inhomogeneous fields

-ik-x
fe o dz'?:(li.:ﬁ) (17)

ik ex!
fe— - dZB(__k_,:ZS') (18)

where equation (17) is an alternate form of equation (16). The correla-
tion of o and B for fixed positions x and - %', respectively, can

be formed by taking the ensemble average of their product:

i '2'-— 3
@ e - S SE T e agezy o9

The operations of integration and averaging commute, so the averaging
bar may be regarded as placed over the dZ's alone on the right side.

a(x)

i}

B(x")




NACA TN 3255 13

Equation (19) could immediately be simplified if the fields ax)
and B(x') were homogeneous; in that case the important relation

azg (k) aZg(k') =[ ap] dk dk' 8(k' - k) (20)
where
8(k' - k) =0 for k'#k
== for k' =k
and

oD
f 8(k' - k)ak' =1

would hold (ref. 10), according to the spectral theory of random func-
tions. The simplification can still be achieved by replacing the in-
homogeneous fields by "equivalent" homogeneous fields that match, respec-
tively, at the points g and g'. - This is accomplished by freezing
dZi(_lgé) in equation (17) at the value aZ¥(k,X) while allowing x to
vary in the exponential, and correspondingly freezing dZB in

equation (18).

When applied to the so-defined equivalent homogeneous fields, equa-
tion (20) reads

~
azy(x,%) azg(x',%') = [3B] &k ax' &(k' - k) (21)

vhere the ~ over [ap] signifies the functional dependence on g and
£'. Upon substitution into equation (19) and integration over k' there
results, with = X' - %,

—_———— ke

A — .
o(®) B(X') = fe [ap ] dk (22)

The spectral density [dB] can be evaluated by integrating equation (21)
over k':

[3] ax = az%(c,8) a2, (. 8') (23)
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where the integral property of the 8-function,

f £(k') d(k' - k)ak' = £(k)

has been used, with f(k') an arbitrary function.

Equations (22) and (23) for inhomogeneous fields are of the same
form as their counterparts, equations (13) and (15), respectively, for
homogeneous fields. In the homogeneous case the dZ's are functlons of
position, and equatlon (25) implies a corresponding dependence of [aﬁ]

Rn position. Moreover, the correlation a(x) B(x ) depends on £ and
2/ PAZ =
X' separately as well as on their separation E.

Correlation of Two-Dimensional Field with Three-Dimensional Field

The local perturbations of the shock face from the mean (xé,xé)
plane constitute a homogeneous two-dimensional field of the general form

1(kixi+kixl)
2°2 4303
B(R1,%5,%%) =fe awlg (kg k) (24)

where xi has been fixed at the value Xl It may be desired to cor-

relate such a field locally with a three-dimensional field (e.g., the
turbulent velocity field). To this end equation (24) is rewritten in

the form
ik'-x! —ik.iXi
B(x") =fe‘ ~ e awg (e}, k4

-ik{x4 -
171
Now, if x{ in e is fixed at the value £, B will be general-
ized to a three-dimensional field (elementary wave number k') that
matches the orlglnal two-dimensional field in its plane of definition
Xy = Xl‘ This "equivalent" field may be written

px) = [ azge) )

where ‘ > (25)
~ik{xd
1%1

dZB(_k:") = e dWB(ké,k

2
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Equation (25) is of the form of a three-dimensional homogeneous field
and may be used in place of (24) in equations (13) and (15) to provide
the correlation of B with any three-dimensional homogeneous field in
the common plane Xy = ﬁl.

SHOCK INTERACTION OF SPECTRUM OF SHEAR WAVES (TURBULENCE)

The interaction of a single shear wave with a shock has been dis-
cussed in detail. With this as the basis, the statistical behavior of a
spectrum of shear waves representing turbulence will now be derived; the
procedure will make use of the spectral analysis relations of the last
section. The problem is formulated as follows: given the spectra (and
hence correlations and mean-square values) associated with the turbulence
convected into the shock, to calculate therefrom the spectra, correla-
tions, and mean-square values associated with the turbulence, entropy
spottiness, and noise in the flow downstream of the shock.

Diagonal Terms of Velocity Spectrum Tensor

The respective spectrum tensors for the turbulence and noise down-
stream of the shock each consist of nine elements; of these the three
diagonal terms are most important since they lead to the mean squares of
the velocity components. The relatively simple derivation of the first
diagonal term and the sum of the second and third will be carried out in
the present section. The derivation of the complete tensor is carried
out in appendix B by a more formal procedure.

Turbulence field. - The shock interaction effects have been expressed
in terms of relations between wave amplitudes on opposite sides of the
shock (eqs. (9) and (lO)). Corresponding relations between spectral
densities (elements) on the two sides can be obtained by use of equation
(15). Some preliminary manipulation is required; thus multiply both
sides of equations (10) by their complex conjugates, and add the last
two; there results

dzu"*dzl'l = |X|2<5Lz:*;dzu (26)
dz\'r*az;f + azr*az! = |v|%az az* + azaz, (27)
But by geometry (fig. 2),
%, = dZ,tan 6
az¥ = dz*tan 6
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and also, by the coordinate transformation (8),
* * _ 3 3%
dZ..4Z.,. + dZ¢ = dZ.,4Z, + dZ 47
Thus, equation (27) becomes
* ¥* 3 z 2 * * *
dz!"az! + 4z!"az! = (;Y| - 1) tan“0 dz7dz + dZ;dz + 4z7 4z (28)
Application of equation (15) yields

uturjak' = [X]2 [uu]dk

(29)
{v‘v'] + [w'w']}dg’ = (lY[z - l) tan?0 fuu Jak +{VV] + [ww]}d__lg
These are the desired expressions relating diagonal elements of the
spectrumn tensors of the turbulence on opposite sides of the shock.
Noise field. - If operations similar to those of the last section
are applied to equations (ll), there results
[U.”U."]dl_{" - IXIZ[uu]dl_{
(30)
v'v" ] + [w”w"]}d_lg" = |Yl2tan29 [uu]dk

These equations relate the diagonal elements of the spectrum tensor of
the noise generated behind the shock to the longitudinal spectral den-
sity of the initial turbulence shead of the shock.t

lDirect expressions for the spectra downstream of the shock may be
desired, free of the unequal volume elements dk, dk', or dk". This
may be effected in eq. (29) by dividing both sides by dk'; then (since
dk is shorthand for dkjdkodkz, and similarly for dk') The ratio dk/dak’
may be interpreted as the Jacobian (say J') for the transformation from

k to k'. Upon evaluation,
J1=;L.
m
Similarly, in equation (30) divide by dk" and interpret dk/dk" as the
Jacobian (say J") for the transformation from k to k". Upon
evaluation
o= cos%0" 0!

m coslgr 00"
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Mean-Square Velocity Components
Turbulence field. - The mean-square velocity components follow

directly from integration of the spectral density (see eq. (14)).
Integration of both sides of eguations (29) yields

ur2 =f|x]2[uu]a1_g

R LI A f(‘YlZ - l) tanze[uu]dg

(31)

Thus, the mean-square velocity components behind the shock (primed values)
are given in terms of those ahead of the shock, the single-wave transfer
functions X and Y, and the longitudinal spectral density [uu] of the
initial turbulence. Note that X and Y are functions of k in terms
of 6 (see appendix A). -

Noise field. - Similarly, integration of equation (30) yields the
mean-square velocity components in the noise field: S

w2 =L/f‘]X|2[uu]d§

_— (32)
v"2 4 "2 =‘J/3|Y|2tan26[uu]d§

Here again, X and Y are functions of k in terms of 6.

Mean-Square Pressure

The first-order pressure field is associated solely with the noise
field: the pressure field associated with the turbulence is of the sec-
ond order in velocity and may be neglected in comparison.2 The spectral
density of the noise pressure can be related to the spectral density of
the longitudinal velocity in the initial turbulence; the relation is
obtained by multiplying both sides of the second of equations (7) by
their complex conjugates, averaging, and applying equation (15) to each
side:

2The local pressure field associated with turbulence, although weak
by aerodynamic standards, may be strong by acoustic standards. If the
turbulence (e.g., in a boundary layer) is convected past a stationary
microphone, a strong response can be observed; the phenomenon is called
"psuedo-sound." The noise sensation produced by wind blowing past the
ears is presumably a similar effect associated with turbulent separation
of the flow.
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[p"p"lak" = [P [?(wa]ax (33)

The integration of both sides of equation (33) yields the mean-square
pressure in the noise field as

22 = [ P2t ax (54)

Mean-Square Temperature

The temperature perturbations in the noise field, because of the
isentropic relation, are equal to (Y - l)/r times the pressure pertur-
bations; thus, the relations corresponding to equations (33) and (34) may
be written down at once. :

The temperature perturbations associated with the entropy spottiness
behind the shock require a separate analysis. The spectral density of
the temperature perturbations can be evaluated by operating on equation
(5) in the now-familiar mamner (see remarks preceding eq. (33)); the
result is

[T'v']dk* = lle[uu]dg (35)

The integral relation obtained from (35) is

w2 = [ pua (36)

This equation evaluates, for the region behind the shock, that part of
the mean-square temperature spottiness associated with the entropy
spottiness.

Mean-Square Density

It is unnecessary to write down special expressions for the density
field: the respective contributions of entropy spottiness and noise to
the density perturbations are related to the corresponding temperature
and pressure perturbations by p' = -t' and p" = p"/v, according to
the small-perturbation form of the equation of state.
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Correlations Not Jointly Involving Turbulence and Noise

Attempts at simplification. - If the spectral density [op](k) is
known, the corresponding two-point correlation dB(E) can, in principle,
be obtained by means of equation (13). In this fashion, for example,
the longitudinal velocity correlation in the turbulence behind the shock
may be expressed, with use of equation (29), as

W(E') =f|Xlz[uu]eﬂ§'“§‘dk or (37)

1.t

=L/.']Xl2[uu]eiE £ J'dk' (38)

(See footnote 1, p. 16, for significance of J'.)

Either of the forms (37) or (38) may prove awkward because of the
admixture of k and X' in the integrand (e.g., {uu] is ordinarily
most simply expressed as a function of k) However, it is possible to
find a fixed vector g that satisfies the relation k'-E' = k-£; this
gives the more convenient relation

Twre) =/ Xl E g (39)

where El = mgi, 52 = Eé, ES = Et. In all the self- or cross-correlations

involving properties of the turbulence and entropy spottiness behind the
shock, whether they be velocity components, temperature, density, or
entropy, the transformation k'- g' = k- Z can be made to simplify the
exponential.

The physical interpretation of the relation between E€ and &' is
this: 1if two fluid particles upstream of the shock are a vector distance
& apart, after convection through the shock they will be a vector dis-
tance E' apart. Put another way, a "pbox" of turbulent fluid of edges
&1 Ez, 55 will be compressed on passing through the shock and will
emerge downstream as a shorter box of edges &{, £5, £4. Therefore,
equation (39) in effect expresses correlations in the space downstream
of the shock in turns of equivalent correlations in a stretched space
upstream of the shock.

The analog of equation (37) for the correlations of properties of
the noise field involves k'- g" in the exponential, rather than k'-E'.
Here no great 31mp11f1catlon appears to be possible in general3 theTe
exists no fixed vector ¥ that satisfies the relation Xk"-E" = k-E.

3 partial simplification is k"-&" = k'&" + (ki' - kl)gi.
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This lack reflects the nature of the transformation from k to k": the
respective components of the two vectors are not in fixed propoffions,
but instead vary with the inclination of k. The particuler coordinate
compression & =+ E' that works for the turbulent field (it expresses
the change in dimensions of a fluid "box" convected through the shock)
will not work for the noise field. An exception occurs when E" is
chosen parallel to the shock plane (radial direction, x; = O).  Then
k"-E" = k&', and since k, = L it follows that for this case

_1_{_".5” lﬁ._g_"- "

nn

The integral for a particular correlation simplifies congiderably
when & (or &', or g") is taken in the direction of one of the coor-
dinate axes, say Xy - In the former case g'g becomes kig, and the

exponential can be replaced by cos kii,_s%nCE the imaginary sine com-

ponent will integrate out. BSimilarly, e™— = can be replaced by
cos k;i".
Cross-correlations. - The phase angles of the transfer functions

must be considered in formulating cross-correlations. For example, the
correlation of local temperature with longitudinal velocity in the
entropy and turbulence fields behind the shock is readily obtained as

f (‘I’eiéT)*(_Xeiss) [uu]dk
f TXei(Ss_sT)[uﬁ]ag_

The integrand, except for the exponential, is even in the wave inclina-
tion 6; the phase angles &y and O (in the notation used) are odd in
6 (both properties can be inferred from the symmetry of the wave-
refraction process with respect to 9). ‘Accordingly, the imaginary sine
term in the exponential will integrate out, and

<u'(0)

I

éﬁﬁ?(o) =g/r)TX cos (Ss - Bp) [uu]dk (40)

The corresponding relations for other cross-correlations can be written
down by analogy.

Correlations Between Turbulence and Noise

Cross-correlations between the turbulence and noise fields require
a special treatment, partly because of the inhomogeneity of the noise
field, and partly because of the nonparallelism of the physically assoc-
iated waves. In what follows, an expression for the correlation of noise
pressure with longitudinal turbulent velocity will be derived. From
this the qualitative variation of the correlation with distance down-
stream of the shock will be inferred.
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The refracted shear wave (~k') and pressure wave (~k") associated
in an elementary interaction process have different inclinations (fig.
3). As a consequence, the formal application of the relations given in
the section SPECTRAL ANALYSIS OF RANDOM FIELDS leads to difficulty:
the spectral density of any correlation appears to vanish according to
equation (21). Actually, the formulas are inapplicable to correlations
involving mutually inclined waves; this will be brought out clearly in
the following derivation of the applicable formulas. For simplicity the
derivation will be limited to the correlation of turbulent longitudinal
velocity wu' at point x' with noise pressure p" at point x"; ex-
tensions to other cases are straightforward. The derivation will first
be carried out as though the noise field were homogeneous (no variation
of transfer function P with 5), and then will be adapted to take
account of the actual inhomogeneity.

The respective Fourier integrals may be written

ul(-}il) - f eil_i'-_}gvk dZu(_l_{_‘) = fe"ili_'-?j' dZﬁ(E')

p"(x") = feig"'-}ﬁn az,(E")

The correlation may be formed as the ensemble average of the product
u'p":

u'(—}s')p"(}i") ) \/\‘/‘ei(_lgu'ﬁn-‘lg' ._}_C_') dzﬁﬁ(_]?_’)dzp(_ﬁ_") .(4:1)

where the bar has been taken inside the integral, since the operations
of averaging and integration commute. Equation (7) and the first of
equations (4) may be used to simplify the right side:

az(k')az, (k") = X*(x)P(R) azt(k)az, (k) (42)

where g" bears the same relation to E as k" does to k. By virtue
of equation (20), equation (42) reduces further to

azf (s )az (B = x*(6)P(R) [wu)s(k - k)ax ak

if the fields are homogeneous. Substitution of this relation into (41)
and integration over g results in

T - S e E EEE peptmla (45)
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since the 8-function eliminates all values of E but k and similarly
all values of E" but k'". Finally, the equation may be generalized to
apply to the actual inhomogeneous pressure field, according to equation
(23) and the discussion preceding it, by writing P(k) as P(k,xy) and

using the value appropriate to xf.

Equation (43) is the general relation for the two-point correlation
of longitudinal turbulent velocity wu' with noise pressure p". The
striking feature is the difference of the exponential term from those in
equations (13) and (22); this constitufes an a posteriori demonstration
of the inapplicability of those equai:ions.4

If the turbulent velocity and noise pressure are correlated locally
(x" = x'), the expression simplifies to

up(x') = .f ei<kl'ki)xi X(k)P(k,x]) [uuJak (44)

since kg = kb, kz = kf. Directly at the shock, xi = O and the right
side simplifies further; the integration can readily be carried out for
isotropic turbulence, and a nonvanishing correlation will be obtained.
Behind the shock (x! > 0), the exponential oscillates sinusoidally; for
a given wave inclination the behavior is essentially like cos Ckxi,
where C 1s a constant. For x| very small, the cosine is near unity
over the significant range of k (the range for which [uu] >>0). Hence
the correlation is only slightly diminished at small distances behind
the shock. At somewhat greater distances the oscillatory nature of the
cosine begins to be felt before [uu] dies out, and the correlation falls
off noticeably. Finally, at very large distances, cos Ckx{ oscillates
over a great many periods as k covers its important range, and the plus
and minus contributions to the integral cancel each other; thus at these
large distances behind the shock the noise-turbulence correlation falls
to zero.

Interaction of Turbulence with an Oblique Shock

A1l the foregoing analysis may be applied to an oblique shock by
treating the latter as a normal shock with a superposed cross-velocity
which is to be ignored. The coordinate system should be oriented so
that the x;-axis is normal to the oblique shock front (on the downstream

“However, eq. (43) is equivalent to that which would result from
eq. (13) or (22) upon replacing the pressure wave by a locally equiv-
alent shear wave parallel to the actual shear wave, as discussed in
ref. 8.
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side), and the x, and Xz axes lies in the shock front with the
Xz-axls in the plane of the stream velocity vector and the xy-axis. The
component of the stream velocity in the X7 direction is the U wveloc-

ity of the equivalent normal shock. From here on the analysis for the
normal-shock case may be applied.

Ordinarily the turbulence spectrum tensor will be defined (as ®! i3

say) in a system xl,xz,x with the xl-ax1s alined with stream direc-

tion, and it will be necessary to transform &! i3 to the new system
Xj,Xp,Xz. If the shock angle of the oblique shock is V¥, the primed and

unprimed axes are related according to the following scheme:

' - ad - =
Xy | Typ = sin ¥ Ty = 0 Tz cos ¥ g (45)
XZ' er =0 I'22 = 1 r23 = 0
xé rz) = -COS v Tzo = 0] rzz = sin ¥ J
where T3 is the cosine of the angle between xi and Xje The trans-
formation is effected by the formula
d = r. 1. &I, (46)

mn im* jn*ij

where the repeated indices 1 and j are to be summed over. The diag-
onal terms in the result are relatively simple:

®1

1l

iil sinzw + @é cos ¢ - 8in ¥ cos W( 1z + QSl)

®on = P2 (47)
@35 = @il coszw + @é sin W + sin ¥ cos W( 13 + @si)
The coordinate transformation whereby @‘ goes over into @mn
may be illustrated most simply by choosing @' to correspond to iso-

tropic turbulence; in that case, @' has the general form (e g.,
ref. 12)

- 1 12 K P T Y
2 = F(x') (k 5 4 kikj) (48)
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Substitution into the first of equations (47) yields
lv 2  ..2 . 2 2 2 2 . |
H 1 1 H H 1 1
®]] F(k ) ( > + kS ) sin ¥ + (kz + kl ) cos ¥ + 2k1k3 sin ¥ cos ¥

2
F(k') [kéz + (ké sin ¥ + k] cos xp):l (49)

In the preceding equations, ki, k3, kz are the components of the

wave-number vector in the primed coordinate system; these are related to
the components k;, kp, kz in the unprimed system precisely as xi, xé,
xj are related to X, X5, Xz in equations (45). As a consequence
equation (49) can be readily shown to reduce to

]

It

2 2
&, = F(k) | x5 + k; (50)
The corresponding element of equation (48) is
&1, = F(k') kéz + kéé:l (51)

Thus the tensor elements @ll and @il have the same functional form,

reflecting the isotropic property of invariance under rotation of coor-
dinates. This particular example of the coordinate rotation applied to
igsotropic turbulence is trivial in that the result could have been written
down in advance without recourse to the transformation eguation. Never-
theless, it illustrates the formal application of the transformation and,
in addition, serves as a check on the first of equations (47) in yielding
the required invariance.

CALCULATIONS

Numerical calculations have been carried out for flows in which the
turbulence incident on the shock is (a) isotropic and (b) strongly axi-
symmetric. An account of the isotropic case follows. The more compli-
cated axisymmetric case adds little of interest and is therefore left to
appendix C.

Mean-Square Velocity Components in Turbulence Field

 The equations that Jjointly relate the upstream (unprimed) and down-
stream (primed) mean squares are

w2 = Tuwlax (52)
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S 2.,
uw'?é = L/PISIZ gos 0 [uu]dk (53)
cos26 -
— — 2o, . 2 — —
v12 4 w2 = L/.‘ISIZ sin 0 sin © [uuldk + v& + w2 (54)
cosZG

The first of these is just equation (14) with a = u; the last two result

from substituting into equations (31) the expressions for IXlz and |Y|2
from appendix A. So far the equations have not been specialized to iso-
tropic initial turbulence.

When the initial turbulence is isotropic (i.e., has spherical sym-
metry), its longitudinal spectral density [uu] has the general form
(e.g., ref. 12, eq. (3.4.12))

fun] = ng(k)cosze (55)
where F(k) is.an arbitrary function of k. (F(k) will ultimately cancel

out in forming ratios.) It is appropriate, then, to go over to a form of
spherical polar coordinates

k.l = -k Sin 6 \
k2 =k cos 6 cos @
> (56)
k3 =k cos 6 sin ¢
k% cos 6 dk a9 a9 J

15
1]

Equations (52) and (53) may now be written

- ® 2x w/2 4
ul = 2 f kK°F(k)dk f do f cos @ d@ (57)
0 0 0
—_ ® 2 n/2
' = 2 L/1 k%F(k)dk L//“ ae k//w lSIzcosze'cos 6 ae (58)
0 0 0

where the factor of 2 and the limit ﬂ/Z result from the symmetry in 6.

w/2
Division of (58) by (57) yields, since L/[)' cos 9 do = 2/3,
0

_— x/2 '
u'8/u? = g U/W |S|2 cos®0'cos 6 d6 (59)
0]
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In a rather similar fashion, equation (36) yields

—— ——= 3 1/2 .
V'3l = w3l = 7 (1 + f ls| ®sin%6'cos 6 a6 (60)
0

where use has been made of the initial isotropy w? = v2 = wz, and final

axisymuetry v'2v= w2,

The transfer function S in equations (59) and (60) is a measure
of the amplification of a single spectral component in passing through
the shock; the assoclated phase angle is SS (not relevant here). 5,
like the other transfer functions, is a complicated function of 6 that
does not lend itself to analytic integration. A numerical tabulation of

S and ®; against € is given in tables I(c) to (k) for the respective

Mach numbers of 1.10, 1.25, 1.5, 2.0, 2.5, 3.0, 4.0, 6.0, and «; these

tables were used in conjunction with numerical integration to evaluate

equations (57) and (58). (S reduces to 1 for all 6 at M= 1.)

Mean-Square Temperature in Entropy Field

The derivation of -Tﬁz/u? is parsllel to that of u'z/uz, equation

(53) being replaced by equation (36). The result is (analog of eqg. (59)):

—

T2 =

— /2
u? f || Peose a0 (61)
0

[VEREY

The transfer function T and the associated phase angle S (not rele-
vant here) are tabulated against 6 din tables I(e) to (k) for the
various Mach numbers. The tabulated values were used in the numerical
integration of equation (61).

Mean-Square Pfeésure in Noise Field

Because of the similarity of equations (34) and (36), the mean-
square pressure can be written down by inspection of eguation (61):

—_— —_ /2
p"2 = —2- u? f |p|2cos®o a0 (62)
0

The integration has been performed numerically with use of the defini-
tion of P in terms of II (appendix A) and the values of I against ©
tabulated in tables I(a) to (i), appropriate to x = ®. Thus, the inte-
gral as evaluated refers to the asymptotic mean-square pressure far
behind the shock. )
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RESULTS AND DISCUSSION

The results of the calculations of the preceding section are shown
in figure 4 for Mach numbers of 1 to «; this figure evaluates the dis-
turbance field - both turbulence and noise ~ downstream of a shock when
isotropic turbulence is convected into the shock. The velocity pertur-
bations, on a root-mean-square basis, are in percent of stream velocity
ahead of the shock (thus the basis is the same on both sides of the
shock); the temperature and pressure perturbations are in percent of
ambient behind the shock.® The velocity curves refer solely to the tur-
bulence component, the temperature curve to the entropy component, and
the pressure curve to the noise component of the field behind the shock.

The curves show that isotropic fturbulence is somewhat transformed
in passing through a shock, the longitudinal and lateral components no
longer being equal; the selective effect is, however, mild compared with
that of screens or wind-tunnel contractions (compare, e.g., ref. 14).
In addition, although the incident flow was assumed isothermal and isen-
tropic, the downstream flow possesses an entropy spottiness, which is a
'frozen' convected pattern like the turbulence. The root-mean-square
temperature associated with the entropy spottiness, in percent of ambient,
is seen to be not much less than the root-mean-square velocity of the
initial turbulence, in percent of free stream.

In the theory the entropy spottiness is spatially correlated with
the longitudinal component of the turbulent velocity everywhere behind
the shock. 1In practice it is to be expected that the correlation will
soon be destroyed by eddy intermixing as the combined fields are con-
vected downstream from the shock; this intermixing, being second order,
is neglected in the linear theory. Directly at the shock the noise pres-
sure likewise is correlated with the longitudinal component of the tur-
bulent velocity. According to the earlier gqualitative examination,
however, this correlation falls off with distance behind the shock,
reaching zero far back.

5For the circumstances of figs. 4 and 5, namely, longitudinal com-
ponent of initial turbulence equals 0.1 percent of stream velocity, the
dimensional quantities plotted are as follows in terms of the nondimen-
sional symbols used in the analysis: longitudinal velocity, percent

initial stream velocity, 0.1 A/u’z/UZ; lateral velocity, percent initial

stream velocity, OJLW/V”Z/uZ; temperature, percent ambient, O.l.q/mTJZ/uz;

pressure, percent ambient, O.lAﬁ’mp"z/uZ.
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The peculiar hump in the curve of root-mean-square noise pressure
against Mach number just above M = 1 has commanded special attention.
In order to delineate the shape accurately, additional numerical compu-
tations (beyond those for the other curves) were made at M = 1.05 and
M = 1.01. These were supplemented by an analytical study which estab-

lished that the curve varies like (M - l)l/4 as M= 1 from above,
approaching the 1limiting value of zero. The precise asymptotic expres-
sion is

=2 /2 1/4 1/4

mp ° _ r (8

0.1 == 0.1 — 1(5) 2 (M-1) (63)
1w

where the omitted next-higher-order term is O(hM - 1)5/4).

Figure 4 applies when isotropic turbulence flows into the shock.
Figure 5 (prepared from calculations described in appendix B) applies
when strongly axisymmetric turbulence flows into the shock; the specifi-
cations for the turbulence were taken from theoretical calculations of
the modifications in initially isotropic turbulence that has passed
through damping screens and a wind-tumnel contraction (ref. lO{ four
screens, K = 2, M = 1.5). The calculated deviation from isotropy is
based on idealized conditions and is probably an extreme upper limit to
what might be encountered in a wind-tumnel test section. The longi-
tudinal component of the incident turbulence is the same for both fig-
ures - namely, 0.1 percent of free-stream speed - but the lateral com-
ponent is 3.61 percent for figure 5 against 0.1 percent (isotropic) for
figure 4. Despite the wide disparity in the lateral component, however,
comparison of the two figures shows no great change in the curves.
Evidently the lateral component of the turbulence flowing into the shock
has little effect, and the intensity of the remainder of the disturbance
field behind the shock depends almost solely on the longitudinal compo-
nent, regardless of the degree of anisotropy. The shock-induced change
in the lateral component itself, however, depends on the deviation from
isotropy, being appreciable for the isotropic case and quite negligible
for the extreme axisymmetric case.

The noise generated by the shock-turbulence interaction is measured
by the curves of root-mean-square pressure. This is best indicated by
use of an acoustic scale as in figure 6. Here the noise pressure level
is plotted in decibels above the standard reference base of 0.000204
microbar for several levels of initial isotropic turbulence. According
to the preceding paragraph there would be little difference for strongly
axisymmetric turbulence of the same longitudinal intensities; the dif-
ference between figures 4 and 5 corresponds to no more than 4 decibels
at the Mach numbers (1.5, 3, and *«) for which there are comparable data.
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The reference static pressure behind the shock is different for the
two parts of figure 6. In figure 6(a) the ambient pressure behind the
shock 1s constant with Mach number (1 atm): this situation may be approx-
imated in an exit jet of an aircraft in flight. In figure G(b) the stag-
nation pressure ahead of the shock is constant at 1 atmosphere, so that
the static pressure behind the shock diminishes markedly with increasing
Mach number; this situation is roughly characteristic of many wind-
tunnel flows. It is seen that even at a longitudinal component of tur-
bulence of 0.0l percent, the noise level is severe, and at 1 percent the
noise level exceeds 130 decibels, which is of the order of the threshold
of pain, over much of the Mach numwber range.

These remarks all refer to the asymptotic noise level an "infinite"
distance behind the shock, since the attenuating part of the pressure
waves has been neglected (in practice, this distance may be taken to be
twice the longest significant wave length). For an initial Mach number
of 1.5, the noise level is predicted to be some 17 decibels greater
directly behind the shock where the attenuation is nil.

The local pressure level (proportional to the energy density) of
the noise field in the region of shock-turbulence interaction is one
aspect of the moise problem. Lighthill (ref. 3) has investigated another
aspect, namely, the flux of acoustic energy radiated from the interaction
region as a result of the convection of any specified volume of turbu-
lence through a weak plane shock segment (LsMs 1.5); the turbulence
need not be homogeneous. The two quantities, energy density and flux of
energy, are not simply related unless the wave pattern is simple, for
example, parallel plane waves or concentric spherical waves.

CONCLUDING REMARKS

The quantitative effects of the interaction of a convected homo-
geneous field of turbulence with an extended plane shock have been cal-
culated, including the pressure level of the noise generated in the
process. The assumed conditions are closely approximated in a super-
sonic wind tunnel or dquet with a normal shock: the shock, together with
its tmages in the walls (if the latter are nearly parallel), behaves
substantially like an extended plane shock for the purposes of the
analysis. The approximation is still guite good for plane oblique shocks
for that portion of the incident turbulence whose eddies are small com-
pared with the tunnel diameter (spectral'wave length << tunnel diameter),
and probably fairly good even without this restriction on eddy size.

The propulsive free jet emitted by a turbojet, ram-jet, or rocket
engine is turbulent, but the turbulence is far from homogeneous. In
addition, only local segments of the shock structure that may occur aft
of the nozzle can be considered sensibly plane. The shock-interaction
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noise generated by turbulent eddies smaller than such shock segments can
perhaps by estimated from the curves presented here. Estimates of this
sort refer to the sound pressure level within the jet and nearby outside;
they provide no direct information on the sound pressure level far from
the jet as a function of distance and direction, or on the total acoustic

power radiated by the jet.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, June 3, 1954
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APPENDIX A
SYMBOLS

The following symbols are used in this report: (In appendix B
some alternate symbols are defined and used in certain parts.)

a function defined in ref. 2
a¥ critical speed of sound
b function defined in ref. 2
F(k) arbitrary function of k
2.2 2
4 ® + v
ag(e) screen-effect function, G(@) = — 5in°® + vcos™®
: ' o 4 5in%® + plcosl®
- 1oF 1
H(®) contraction-effect function, H(@) =
(g sin? 26) 2
€ sin“® + cos“®
dJ’ Jacobian of transformation from k to k', J' = Ei% -1
m
J" Jacobian of transformation from k to k',
J" = d'E _ 00529"‘ 00"
- 1Im - 11
dk m cos?@! 08
K coefficient. K = pressure 4rop
screen coefficient, = Synamic pressure
k amplitude of ki k2 = ki® + kp? + ks® = k% + k.
K. radial component of k, k, = -k, cot 2]
k wave-number vector, k = kl, ko, k35 also, k = k;, k, 0 in
cylindrical coordinates
dk volume element in wave-number space, dk = dkldkzdk3

final stream speed

Zl contraction parameter, Zl = Tnitial stroam speed
final stream-tube width
1 contraction parameter, ls = Joitial stream-tube width
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M Mach number upstream of normal shock

Mi Mach number downstream of normal shock

m ratio of speeds before and after shock, m = (r + l)M2
2+ (y - 1)M2

N number of damping screens

P transfer function for sound waves (pressure effect),

'—er/ﬁ [l sec 6 sec O
(v +1m - (v - 1)

'

pressure perturbation

P =

P mean static pressure
Rij(g) perturbation velocity correlation temsor (special case of
ap(£))
1j direction cosines
8 transfer function for shear waves, tabulated in tables I(c)
to (k) (eq. in ref. 2)
T 2{y - 1)(u - 1)2 2 2
(a tan 6 - 1) + (b tan 6)°,
Vul(r + m - (r - 1)]
0go<%
2 transfer function for entropy waves (temperature effect),
i
L =Te 5T
U stream velocity downstream of shock
UA stream velocity upstream of shock

u, v, w nondimensional disturbance velocity components in directions
X1, X9, Xz, respectively;

components of velocity perturbation

Uy VW= critical speed of sound a¥
v cross-stream velocity (sketch (c))
V. disturbance velocity component in radial direction/a™
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v(p disturbance velocity component in @-direction/a*
W resultant of U and V

dWB (complex) wave amplitude in two-dimensional field
X transfer function, X = Sei?>S %gg—gl

X position vector, x = X; = X1y Xp, X3

Y transfer function, Y = Se:-L6s E%%fgl

dz,. (complex) wave amplitude associated with Vo

az,, (complex) wave amplitude associated with a

ciLZ(p (complex) wave amplitude associated with Vo

a,B may stand for wu, v, w, p, p, or %

a screen parameter, aé = 11;2% for K21

aB (&) correlation of « and B at a separation £

[ap](k) Fourier transform of of(E), interpreted as spectral density

of aB(0)
2
My
By o 1
cos“g!
rij(g) perturbation velocity spectrum tensor (special case of [aB]E)
'8 ratio of specific heats (taken as 1.4)
6p phase angle of II (eq. in ref. 2)
8, phase angle of X and Y, tabulated in tables I(c) to (k)
(eg. in ref. 2)
B phase angle of T, tabulated in tables I(c) to (k),

- b NogoggX
Op = tan (cot@-a)’ Sos3

2
& contraction parameter, € = 12/25
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c) shear-wave inclination ahead of contraction,
7
® ='tan'l(}i tan %)
Iz
6 shear-wave inclination ahead of shock (see fig. 3)
o' shear-wave inclination behind shock (see fig. 3),
6" = tan-l(m tan 6)
e sound-wave inclination behind shock (see fig. 3),
2
et RO 0 <6< q,
o1 1-M
6" - cot 1B 6 <0<l
w? ecr > 7 T2
or critical value of 6 for which W = speed of sound
X wave-number vector, X = %y, Xg, Xz
) screen parameter, u =1 + o + K
v screen parameter, v =1+ ay - a/K
£ separation of two points, £ = % - x
6
n function tabulated in table I (defined in ref. 2)
‘ id
I transfer function for sound waves, II =Ile” P
density perturbation
e mean density
< temperature perturbation
mean temperature
6The equation for II in the range ch £06< % is given incorrectly
in ref. 2. (The correct eq. was, however, used in the calculations of
that paper.) The relevant part of eqg. (38b) therein should be changed
to read ‘
m = cos 6 sin y
m cos(® - p)

in the notation of that ref.
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CI>i 3 (_15) perturbation velocity spectrum tensor (Special case of [G,B] (_13))

® common longitude angle of wave normals %, k, k', k" in polar
coordinates
~-inx/2
(cos g' - e / Bwsin 9')
X transfer function, X =1II cos @
inﬂ/z where
(sin ' + e Bc0s 9')
Y transfer function, ¥ = g pepeay
n=1,0<6<6,
7
=0 ecrs 0 SE
¥ acute angle between oblique shock and upstream flow direction
Subscripts:
o, B may stand for wu, v, w, p, p, or %

i,j,m,n may stand for 1, 2, or 3; used to replace o and B when
u, v, w are replaced by Uy, Ug, Uz, respectively

Superscripts:

* complex conJjugate

! refracted shear-entropy wave

sound wave

~ distinguishing mark
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APPENDIX B

COMPLETE VELOCITY SPECTRUM TENSORS

The first and the sum of the second and third diagonal terms of
the spectrum tensors of the velocity field behind the shock are obtained
in the text by use of a simplified approach. Other terms are occasionally
of interest; for example, the separate values of the second and third
diagonal terms are needed for a description of anisotropic turbulence.
The complete spectrum tensor for each field (turbulence and noise) will
be derived herein by a more comprehensive procedure,

Turbulence field. - It will be convenient to replace the symbols u,
v, W Dby uq, up, uz, and to replace « and B by i, j, which take on
the values 1, 2, and 3 instead of wu, v, and w. With this notation and
the use of equations (8), equations (10) can be transformed to

dZi X daz,

t
dZZ

% dZé = (Y - l)dzrsin ¢ + dZg

(Y - l)ercos ¢ + dZ,

By introduction of the geometric relations (figs. 1 and 2)

4z, = dZ, tan )
tan 6 = ’kl/kr
> (B1)
cos @ = kz/kr
sin ¢ = kg/k.

all three equations may be represented by the single expression

k- k
17
az} = X aZ;8;, + (y - 1) {- 7 az, + az; | (1 - sli) (B2)

where
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Multiplication of the complex conjugate of equation (B2) by the

corresponding equation with subscript j and by k4 yields, after
averaging,

4 T 4
< TFaE = o TP sy + (- o) - 8y

2
E:_.ELklkJ IY - 1]%|az,|? + i Z¥AZ; +

3% A 3
kqky k (1 -7v%) AZYaZ; + kyk ko (1 -7¥) ledZi]+

3,,(1 -3 )X*kkkz (1 -7 lel|2+k dZ*dZ]

2 - 2 4 *
Slj(l - 8 )X Ezlkikr (1 -Y*% laz, | + K2 ledZi] (B3)

Now, if in equation (15) the symbol for the spectral tensor is
changed from of to the more conventional symbol @ 3’ application to
equation (B3) yields

!, dk' = %'RLLIXI@ 8..8,, + (L -8.,)(1 -5 )kzkk.ly-llzqn +
ij = ET 11711713 1i 15/ [17id 11

T

4 2 #* 2 *
k| @ij + k k. k2 (1 -7 )qal. + klkar (1 - Y)cbli] +

4
- 8. )xX%h k k8 -+ k& |+
811 (1 lj) Eﬁ Jr (1 ) 11 r lj]

8y (1 - 8,)% E«:lkikﬁ (1 - Yo, + K @LJ} (B4)

The elements of the turbulence spectrum tensor %, may be exhibited
in expanded matrix form: 1
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4y, 12 2 e 2
krlxl 3 x* E:lkzkr (1 -7Y)® _ +|X Eslkskr (1 -y)e, +

11
4 4
kréiZ] kr¢13]
4 4
o Koz +
2 2 2
. ko |Y-1]%@,, + klk2k3 - 1|
& ak' = = 5 -
5 13K
J X, klkzkr(l—Y*)@lZ + kykoko(1- Y*)@
2 2 *
Ky kok (1-y)&* 12 kSKr(l-Y)CPlZ
K58, + Kok lY—l]fI’
T 33 11 %
3
k ksk (1 - Y9 .

2 3%
kK k2 (1 - Y)@lz

(B4a)

The matrix is Hermitian; that is, the missing elements are the complex
conjugates of the respective elements diagonally opposite; that is,
@*él = @‘2, and so forth.

It can be shown, by use of the continuity relation klé i3 =k, .=0
(summed over repeated index), that after some reduction d 1
kz
(81, + & )ax' = (1Y P - 1)8 + &, dk
22 11 2 33

in agreement with the second of equations (29).

Noise field. - With use of equations (Bl), the three equations (11)
may be represented by the single expression

ok
n l
azi = x dZ;8y; - r( kZ“) azy (1 ~ 8y4) (B5)
T
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where again the subscripts 1, 2, 3 replace u, v, w, and &,, = O or
1l as before. Starting with this equation the spectral tensor @g. may

be derived in a straightforward manner by a prucedure parallel to that
leading from equation (BZ) to (B4). The result is

. 2 2 k%kj_‘kj
q);J dk" = @ll d_}_;{l)(l 611513 + lYl mk4 (1 - 511)(1 - 513) -
r

k
1 .
2 IxIIY] [315(1 - 8y 5)5 + 8y 5(1 - 611)1:1]} (B6)
(The valid range of this equation has been limited to OopS |6l$%
k

(1

fails outside that range.)

= tan ecr) by use of the simplification XY¥ = x¥Y= [x ||Y], which

The expanded form of equation (B6) is

2
|22 ~Ix 1Y e - Il byl ke
" "o dk Ixl Y] 12 MY 1Y |2k, %
Il R 1k - 1kpkz
I
2.2 2
-l Ixlegrged -y [Piloks Iy [P
The diagonal terms yield
2
ey = X%, dk
2 k%
r

since k% + k% = k?.; these are in agreement with equations (50)~
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APPENDIX C

CALCULATIONS FOR AXTSYMMETRIC INITIAL TURBULENCE

If the turbulence in the settling chamber of a supersonic wind tun-
nel is considered to be isotropic, by the time it reaches the working
section it will be axisymmetric, with the longitudinal velocity pertur-
bations very much less than the lateral perturbations; the change is due
to the effects of the damping screens and the contraction (refs. 9, 13,
and 14). The shock-interaction behavior for a particular case of extreme
axisymmetry will be calculated herein as a matter of interest.

According to reference 14 (with a slight change in notation), if the
longitudinal spectral density in the settling chamber (station Av) is
written as

[u.u]O = KZF(X)COSZC) (isotropic turbulence)

then the longitudinal density in the working section (station A) is
given by

[uu] = sz(x)cos%DGN(®) H(©) (axisymmetric turbulence) (C1)

where ® is the wave number at A', @ is the associated wave inclina-
tion, N is the number of damping screens, G(®) depends on the screen
pressure-drop coefficient K, and H(®) depends on the parameters 14
and 1, defining the wind-tunnel contraction. (See appendix A for the
functional forms.) In what follows, N =4, K =2, I; = 24.92, and

1, = 0.3186.! This set of values corresponds (in theory) to an axisym-
metric turbulence at station A (just upstream of the shock) such that
the root-mean-square lateral velocity component is 36.1 times the root-
mean-square longitudinal component (see table I, p. 46, ref. 14). The
ratio 36.1 to 1 is clearly an extreme deviation from isotropy.

The effects of the changed form of [uu ] on the integration procedure
will be illustrated by considering the mean-square longitudinal velocity
in the turbulence. The relevant equation is ESS), with [uu] being given
by equation (Cl). From the form of equation (Cl) it will be convenient
to carry out the integrations in terms of X rather than k; the trans-
formation is

7The values of Zl and 1, correspond to Mach numbers of 0.05 and
1.5 at stations A' and A, respectively. -In the calculations, however,
these same values of Zl and 12 will be maintained even though the
Mach number at A is varied, in order to maintain the turbulent spectrum
unchanged.
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1
ik = = & =~

2
bl iy

*2ax dp cos® aod

Equation (55) then assumes the form

_ xf2 241 @ 2n
w2 = -JEE ‘J/’ s|? 99§§Q—~GNH cos"® de L//‘ %G (% )ax L/r‘ ae
lez 0 cos“o 0 0]

— (c2)
The last two integrals appear in the expression for ug, the mean-square

longitudinal velocity at station A (the expression is of the form of
eq. (57)); thus, equation (C2) may be simplified to

u'é  3/p & 2 cos?0' N
= = 'ZLE' |s|* ===~ c'=H cose a® (c3)
ug 1112 5 cos“@ '

The variable of integration may be changed from € to 6 by means of
the transformation

2
4@ = 1 cosz® a6
& cos“6
This results in the alternate form

—_ x/2

2a1 2 3
EL - 5{2 ISIZ cos~0 GNH cos2® cos” ® de (04)

2 7,18 cos?6 cos“8 /e

) 1°1 0

On numerical evaluation, the integrand of (C3) was found to have a
sharp peak near the upper limit, and that of (04) a sharp peak at the
origin. The peaks were avoided by dividing the range of numerical inte-~
gration among the two equations: (C3) was used over the range 0< 0 < 0
and (C4) was used over the range 5°< 0. 90°, where ©; is the value
of ® corresponding to 6 = 5°.
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TABLE I. - WAVE ANGLES AND TRANSFER FUNCTIONS
(&) M= 1.0L (m = 1.01669) (abbreviated table)
8, e', e", I
deg deg deg
7.92542(6,,) | 8.056 -81.944 1.6345
7.95000 8.081 -81.281 1.3923
7.97500 8.106 -80.988 1.3017
8.00000 8.132 ~-80.757 1.2363
8.25000 8.386 -79.278 9132
8.43785 8.577 -78.471 7870
8.95028 9.097 ~-76.662 5826
9.46271 9.618 -75.111 4633
9.97514 10.138 -73.686 3824
10.48757 10.659 -72.339 3232
11.0 11.179 -71.045 2778
12.5 12.702 -67.445 1902
14 14.224 -64.014 1383
15 15.239 -61.783 1142
20 20.307 -50.990 0508
25 25.365 -40.502 0251
30 30.412 -30.164 .0124
35 35.447 -19.916 .0057
40 40.468 -9.739 .0019
45 45.474 .384 -.0001
50 50.466 10.460 -.0011
55 55,444 20.495 -.0014
60 60.409 30.493 -.0014
65 65.361 40.461 -.0012
70 70.303 50.401 -.0008
75 75.235 60.320 -.0005
80 80.161 70.223 -.0002
85 85.082 80.114 -.0001
90 90 90 | eeeea-
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TABLE I. - Continued.

(b) M=1.05 (m = 1.08398) (abbreviated table)

WAVE ANGLES AND TRANSFER

FUNCTIONS

0, er, e", I
deg deg deg
16.325(9cr) 17.61 -72.39 1.5246
16.400 17.69 ~-70.59 1.2371
16.630 17.94 -68.59 9995
16.936 18.27 -66.81 .8375
17.240 18.59 ~65.35 7307
17.549 18.92 -64.05 6499
18.162 19.58 -61.74 .5336
18.775 20.23 ~59.66 .4508
19.388 20.88 ~57.72 .3876
20.001 21.53 -55.88 L3377
25 26.82 -42.64 .1357
30 32.04 -30.75 0611
35 37.20 ~19.49 0257
40 42,29 -8,62 .0076
45 47.31 1.96 -.0016
50 52.26 12.30 -.0058
55 57.14 22.44 -.0071
60 61.96 32.41 -.00867
65 66.72 42.23 -.0055
70 71.44 51.93 -.0039
75 76.12 61.53 -.0024
80 80.76 71.06 -.0011
85 85.39 80.54 -.0003
90 90 90 | eeeee-

NACA TN 3255
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TABLE I. - Continued. WAVE ANGLES AND TRANSFER FUNCTIONS

(e) M=1.10 (m = 1.16908)

8, a8, e", S n T B> ST,
deg deg . deg deg deg
0 0 0 1.145|1.6667%|-0.008792|0 180.00
5 5.84]-26.75/1.145|1.6508%| -.008788| .49{156.00
10 11.65(-45.45|1.148|1.6048% -,008777| .90|129.76
15 17.39|-57.07| 1.152 1.5318%| ~.,008767|1.11} 97.30
18 20.80|-61.89}1.157|1.4779%| ~.008770|1.01| 70.12
20 23.05]-64.51]1.161]1.4392%| -.008780| .70| 41.90
20.268 23.35(-64.83|1.16111.4339%} -,008783| .62 36.37
20.536 23.65]-65.14|1.162{1.4286%| -.008786| .51 29.73
20.804 23.95|-65.45(1.162{1.4233%| -.008789| .37| 21.07
21.072(QH) 24.251-65.75[11.163]1.4179 -.00879110 0
21.100 24.28|-64.45(1.161(1.2582 -.007808
21.400 24.621-61.02}1.155| .9378 -.005845
21.800 25.06|-58.41]1.152| .7820 | -.004779
22.200 25.50({-56.3411.149] .6511 | -.004111
22.560 25.90[-54.69|1.147| .5769 -.003663
24.048 27.55|-48.95]1.141{ .3856 -.002511
25.538 29.181-44.07]1.135} .2778 -.001860
27.024 30.81|-39.59|1.130| .20686 -.001428
28.512 32.42(-35.,38(1.125| .1561 | -.001037
30 34.02(-31.36(1.121| .1187 -.000873
35 39.30|-18.76(1.105( .0448 -.000373
40 44,451 -7.0811.090| .0105 -.000101
45 49.46] 3.98(1.075|-.0057 -.000066
50 54.33| 14.58]1.060(-.0125 -.000176
55 59.08| 24.78{1.047{-.0141 | -.000252
60 63.72| 34.66(1.035]~.0123 -.000307
65 68.26] 44.2811.025|~.0103 -.000346
70 72.71} 53.6811.016{-.0072 -. 000374
75 77.09| 62.91(1.009|~.0043 -.000395
80 81.42}) 72.01}1.004~.0020 - . 000408
85 85.72| 81.02|1.001-.0005 -.000416
90 90 90  |----- 0 | =mmeme-- v Y

*These values apply for
ghould be replaced by
pendent of x.

= 0 only. For x = =, values
All other values are inde-

o M
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TABLE I. - Continued. WAVE ANGLES AND TRANSFER FUNCTIONS

(d) M =1.25 (m = 1.42857)

g, 6, e", S I T 83 3 8!11)
deg deg deg deg deg

0 0 0 1.300 | 1.6667% }0.04059 |0 180.00
5 7.12 {-13.66 | 1.302 | 1.6453 -.04054 | 1.57 |163.64
10 14.14 | -26.09 | 1.307 | 1.5840" [ -.04040 | 2.98 {146.17
15 20.95 | -36.66| 1.317 | 1.4882% | -.04018 | 4.04 |125.99
20 27.47 | -45.31| 1.335 | 1.3684%* [ -,03998 | 4.47 | 99.65
23 31.23 {-49.70) 1.353 | 1.2926% | ~.04000 | 4.11 76.76
25 33.67 | -52.33 | 1.371 | 1.2446% | -.04019 |3.22 | 53.40
26 34,87 | -53.57| 1.383 | 1.2229% | -.04039 | 2.20 | 34.30
26.300 35.22 | -53.93 ] 1.387 | 1.2172% [ ~. 04048 | 1.67 | 25.44
26.656(6cr) 35.65 [-54.35] 1.392 | 1.2106 ~-.04059 | O 0
26.742 35.75 [ -51.36] 1.373 969 ~.03261

26.828 35.85 | -50.07 1} 1.366 884 ~-.02880

26.914 35.95 [ -49.05| 1.360 822 ~-.02774

27 36.05 |[-48.15] 1.356 773 ~-.02613

27.5 36.64 | ~44.27 ] 1.338 593 -.02029

28 37.22 | -41.28] 1.326 .484 -.01680

29 38.38 [ -36.35| 1.307 .3484 -.01237
30 39.52 [-32.16| 1.293 .2614 -.00953
35 45.01 | -15.45] 1.238 .0658 -.00276

40 50.16 -1.86| 1.195 | -.0007 -.00004

45 55.01 | 10.13| 1.157 | -.0261 [ -.00157

50 59.57 21.02} 1.123 | -.0337 -.00252

55 63.89 | 31.10| 1.094 | -.0327 -.00316

60 67.99 | 40.54 1.088 | -.0277 -.00360

65 71.92 49.48( 1.047 | -.0211 -.00392

70 75.71 | 58.02| 1.030 | -.0143 -.00414

75 79.38 66.27) 1.017 | -.0084 -.00430

80 82.96 74.29| 1.008 | -.0038 -.00440

85 86.50 | 82.18§ 1.002 | -.0010 -.00446

90 90 90 | mmemm | mmmmee | e v v

*These values apply for x = 0 only. For X = =, values should
be replaced by O. All other values are independent of x.
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TABLE I. - Continued. WAVE ANGLES AND TRANSFER FUNCTIONS

(e) M= 1.5 (m = 1.86207)

6, 61, g" , s n T Bs ) ST,
deg deg deg deg deg
0 0 -0 1.463 1.6667% -0.1071 [0} 180.00
) 9.25 -8.95 1.466 1.6346% -.1068 3.43 167.04
10 18.18 -17.61 1.476 1.5441% -.1060 6.48 153.24
15 26.52 -25.75 1.494 1.4085% -.1047 8.79 137.43
20 34.1% -33.23 1.527 1.2464% -.1030 10.01 117.24
25 40.97 -40.01 1.594 1.0850% -.1019 9.34 85.17
27 43.49 -42.52 1.649 1.0366% -.1030 7.60 61.42
28 44,71 -43.74 1.693 1.0249% -.1050 5.38 40.29
28.300 45.07 -44.10 1.710 1.0240% -.1058 4,10 29.96
28.644(90r) 45,49 ~44 .51 1.733 1.0254 -.1071 0] 0]
28.870 45.52 -42.58 1.699 .8849 -.0925
28.733 45.59 -40.93 1.674 . 7831 -.0820
28.750 45.61 -40.60 1.668 . 1634 -.0800
28.822 45,70 -39.36 1.652 .6973 ~-.0733
28.911 45.80 -38.10 1.636 .6382 -.0671
29.0 45.91 -37.06 1.623 .5913 -.0624
29.5 46.49 -32.62 1.576 429 -~.0460
30 47.07 -29.21 1.544 332 -.0362
30.5 47.64 -26.31 1.520 .266 ~.0294
31.0 48.21 ~23 .69 1.499 214 -.0241
31.5 48.77 -21.30 1.481 174 -.0199
32 49.32 -19.06 1.465 141 -.0164
33 50.41 -14.96 1.437 .0905 -.0109
34 51.47 -11.21 1.412 .0536 -.0067
35 52.51 -7.73 1.390 .0258 -.0033
36 53.53 -4,45 1.369 .0042 -.0005
37 54.52 -1.35 1.350 -.0123 -.0017
38 55.50 1.60 1.332 -.0254 -.0037
39 56.45 4.42 1.316 -.0356 -.0054
40 57.38 7.13 1.300 -.0435 -.00868
45 61.76 19.32 1.231 -.0618 -.0119
50 65.74 29.87 1.176 -.0613 ~-.0149
55 69.39 39.25 1.130 -.0531 -.0169
60 72.77 47.178 1.093 -.0421 -.0183
65 75.94 55.67 1.063 -.0307 -.0182
70 : 78.94 63.06 1.040 -.0203 -.0199
75 81.8L 70.09 1.022 -.0117 -.0204
80 84.59 76.86 1.010 -.0053 | -.0207
85 87.31 83.47 1.002 -.0013 ~.0209
90 90 90 | emmme | mmmmme | —eeeen \ \

*These values apply for X = 0 only. For X = =, values should be replaced
by O. All other values are independent of X.
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TABLE I. - Continued. WAVE ANGLES AND TRANSFER FUNCTIONS

(f) M = 2.0 (m = 2.66667)

6, o1, . e", S I T ) By,
deg deg deg deg deg
0 0 0 1.625| 1.6667% | -0.2268 | © 180.00
5 13.13| -6.65| 1.631| 1.6094%* | -.2258 | 6.76| 168.99
10 25.18 | -13.23 | 1.649 | 1.4571% | -.2225 (12.35 | 157.21
15 35.55 | -19.66 | 1.683 | 1.2507% | -.2166 |16.03 | 143.52
20 44,14 | -25.89 | 1.744 | 1.0266% | -.2072 |17.43 | 125.51
25 51.19| -31.87 | 1.879| .8205% | -.1966 [15.80| 93.97
26 52.44 | -33%.04 | 1.939| .7933% | -.1970 {14.68| 82.19
27 53.65 | -34.19 | 2,042 | .7873% | -.2029 |12.45| 63.44
27.5 54.23 | -34.76 | 2.134 | .8051% | -.211%3 | 9.87| 46.63
27.938(6,,.)| 54.74 | -35.26 | 2.274 | .8503 -.2268 | O 0
27.960 54.76 | -33.26 | 2.179 | .7007 -.1870
27.988 54.79 | -32.16 | 2.137| .6332 -.1691
28.038 54.85| -30.84 | 2.090| .5614 -.1503
28.138 54,96 | -28.99 | 2.033 | .4745 -.1275
28.238 55.07 | -27.51 | 1.992 | .4146 -.1119
28.338 55.19 | -26.24 | 1.960 3692 -.1000
28.5 55,37 | ~24.47 | 1.920 3123 -.0851
29 55.92 | -20.13 | 1.834 2013 -.0559
30 57.00 | -13.65 | 1.731 0855 -.0247
32 59.03 | -4.00|1.606 | ~.0190 -.0059
35 61.83 6.97 | 1.487 | -.0795 -.0280
40 65.92 | 20.95| 1.355 | ~.1047 -.0456
45 69.44 | 31.99|1.262 | ~.0996 -.0546
50 72.53 | 41.21}1.192| ~.0851 -.0800
55 75.29 1 49.19 | 1.138 | -.0680 -.0636
60 77.78 | 56.28 | 1.096 | -.0513 -.0660
65 80.08| 62.72 | 1.064 | -.0362 -.0677
70 82.23 | 68.68 | 1.040 | -.0234 -.0689
75 84.26| 74.29|1.022 | ~.0133 -.0698
80 86.22| 79.66| 1.010 | -.0059 -.0703
85 88.12 ] 84.86]1.002 | -.0015 -.0706
% 90 S R [ R, | \

*These values spply for x = 0 only. For x = =, values should be
replaced by 0. All other values are independent of x.
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TABLE I. - Continued. WAVE ANGLES AND TRANSFER FUNCTIONS

(g) M= 2.5 (m = 3.33333)

6, o', 9", s 1 T 55, ST’
deg deg deg deg deg
Q 0 0 1.7001) 1.6667%] -0.313%9 0 180.00
5 16.26 -5.95 [ 1.708 | 1.5839% -.3119 9.39 | 169.66
10 30.44 |[-11.868 | 1.734 | 1.3774% -,3055 | 16.57 | 158.51
15 41,77 |-17.89 | 1.783 | 1.1220% -.2933 | 20.54 | 145.33
20 50.50 | -23.43 | 1.869 8638% -.2722 | 21.12 ] 127.29
20.832 51.75 [ -24.37 | 1.890 .8219% -.2675 | 20.86} 123.33
2l.664 52.94 | -25.31 | 1.913 .7807% -.2625 | 20.50 | 118.87
22.496 54.08 | -26.24 | 1.941 L7404% -.2573 ] 20.00 | 113.76
23.328 55.18 }-27.18 |} 1.976 .7014%* ~-.2519 { 19.36 | 107.69
24.160 56.23 | -28.10 | 2.021 .6657% -.2472 | 18.53 | 100.186
24,992 57.24 | -29.03 | 2.086 L6375 % -.2448 | 17.42 89.96
25.824 58.20 {-29.95 | 2.209 L6323 % —.?511 15.60 73.46
26.656(0,,) | 59.14 |-30.86 [2.662 | .7638 | -.5139| 0 0
26.675 59.16 | -28.86 | 2.496 .5957 ~.2448
26.706 59.19 | -27.57 | 2.413 5120 -.2108
26.756 59.25 1-26.18 } 2.337 . 4366 -.1801
26.856 59.36 | -24.18 | 2.244 .3470 -.1437
26.956 59.46 | -22.61 [2.184 .2898 -.1206
27.056 59.57 | -21.27 12.138 . 2469 -.1032
27.492 60.04 | -16.76 | 2.008 .1337 -.0568
27.792 60.35 |-14.29 |1.949 .0866 -.0373
28.328 60.90 [-10.52 {1.870 .0290 -.0128
28.528 61.11 -9.26 [1.846 .0129 -.0057
28.750 61.33 -7.94 11.822 | -.0026 -.0012
29.164 61.74 -5.63 {1.781 | -.0266 -.0121
29.264 61.84 -5.10 [1.772 | -.0316 -.0144
30 62.54 -1.46 |1.715 | -.0614 -.0290
35 66.81 16.66 |1.476 | -.1288 -.0752
40 70.33 29.31 (1.340 | ~-.1276 -.0932
45 73.30 39.24 |1.246 | -.1109 -.1028
30 75.87 47.46 |1.177 | -.0908 -.1087
55 78.14 54.51 {1.126 | -.0705 -.1126
60 80.17 60.74 |11.087 | -.0522 -.1153
65 82.04 66.37 |1.057 | -.0364 -.1172
70 83.77 71.55 {1.035 | -.023%4 -.1186
75 85.40 76.42 11.019 | -.0132 -.1195
80 86.97 81.06 {1.008 | ~.0059 -.1201
85 88.50 85.57 |1.002 | -.0015 -.1205
90 90 90 |emmme fomemn | oo \ Y

*These values apply for x = 0 only. For x = o, values should be re-
placed by O. All other values are independent of x.
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TABLE I. - Continued. WAVE ANGLES AND TRANSFER FUNCTIONS
(h) M = 3.0 (m = 3.85714)
8, e, e", S n T S S
deg deg . deg deg deg

0 0 0 1.741 | 1.6667% | -0.3754 0 180.00
5 18.65 -5.62 | 1.751 | 1.5610% -.3725 | 11.37 | 169.97
10 34.22 | -11.22 | 1.784 | 1.3125% -.3631 | 19.48 | 159.10
15 45.94 | -16.78 | 1.845 | 1.0270% -.3444 | 23.25 | 146.05
20 54.54 | -22.27 | 1.953 LT49T* -.3098 | 22.74 | 127.58
23 58.58 | -25.52 | 2.072 .5894% -.2767 | 20.03 | 108.50
24 59.79 | -26.60 | 2.144 .5423% -.2658 | 18.56 97.65
25 60.93 | ~-27.68 | 2.307 .5271% ~.2696 | 16.48 77.55
25.3 61.26 |-28.00 | 2.437 .5540% -.2871 | 15.13 64.65
25.644(6cr) 61.63 | ~-28.37 | 2.940 L7137 -.3754 0 0
25.650 61.64 |-27.22 | 2.785 .5922 -.3114

25.670 61.66 |-25.91 | 2.650 .4872 -.2564

25.700 681.69 |-24.74 | 2.553 .4118 ~.2170

25.744 81.74 | ~23.48 | 2.467 .3456 ~.1825

25.844 61.84 |-21.41 | 2.351 .2586 -.1371

25.944 61.95 |-19.78 | 2.276 . 2040 ~.1088

26.044 82.05 | -18.44 | 2,221 .1649 -.0882

26.250 62.27 | -16.04 | 2.137 .1072 -.0579

26.5 62.53 | -13.61 | 2.064 .0596 -.0325

27.0 63.03 -9.59 |1.961 | -.0019 -.0011

27.6 63.62 -5.60 | 1.875 | -.0465 ~.0266

28 84.01 -3.26 |1.829 | -.0675 -.0393

28.5 64.48 -.59 |1.780 | -.0874 -.0520

29.5 65.38 4.14 | 1.701 | -.1142 -.0709
30 65.82 6.27 {1.668 | -.1232 -.0782

35 69.68 22.74 | 1.446 | -.1489 -.1180

40 72.83 34,42 | 1.314 | -.1354 -.1349

45 75.46 43,58 | 1.225 | -.1136 -.1442

50 77.73 51.15 | 1.160 | -.0910 ~.1500

55 79.71 57.63 | 1.112 | -.0700 -.1539

60 81.49 63.34 | 1.077 | -.0514 -.1566

85 83.11 68.48 | 1.050 | -.0357 -.1584

70 84.61 73.21 | 1.030 | -.0228 -.1598

75 86.03 77.64 | 1.016 | -.0128 -.1608

80 87.38 81.87 | 1.007 | -.0057 -.1614

85 88.70 85.97 | 1.002 | -.0014 -.1618 ;
90 90 <TORN IR, R I v §
*These values apply for x = 0 only. For x », values should be replaced

by O.

All other values are independent of Xx.
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TABLE I. - Continued. WAVE ANGLES AND TRANSFER FUNCTIONS
(1) M= 4.0 (m = 4.57143)
g, o', 9") S I T Ss, ST:
deg deg deg deg deg

0 0 0 1.781 | 1.6667% | -0.4515 0 180.00
5 21.80 -5.33 | 1.795 | 1.5269% -.4471 [13.95 | 170.26
10 38.87 | -10.65 | 1.837 | 1.2248% -.4327 |22.90 | 159.60
15 50.77 | -15.95 | 1.917 .9087 ¥ -.4029 [25.94 | 146.55
20 58.99 | -21.22 | 2.059 .8107% -.3418 [23.36 | 127.01
21.091 60.44 | -22.36 | 2.106 5444 % -.3204 [21.88 | 120.57
22.182 61.79 | -23.50 | 2.164 .4760% -.2945 [19.95 | 112.15
23.273 63.04 | -24.64 | 2.251 .4090%* | -.2660 [17.48 99.12
23.5 63.29 | -24.88 | 2.280 .3978% -.2614 |16.91 95.02
24.0 63.83 | -25.40 | 2.411 .3972% | ~.2670 |15.77 80.18
24.364(6,,.) | 64.22 | -25.78 | 3.288 | .6600 -.4515 | © 0
24.370 64.22 | -24.47 | 2.986 L4797 -.3281

24.400 64.26 | -22.77 | 2.743 .3364 -.2303

24.464 64.32 | -20.70 | 2.553 .2250 -.1545

24..500 64.36 | -19.84 | 2.492 .1900 -.1306

24.564 64.42 | -18.55 | 2.413 .1451 -.1001

24.664 64.53 | -16.87 | 2.327 .0976 -.0676

24.750 64.62 | -15.65 | 2.273 .0685 -.0476

24.764 64.63 | -15.45 | 2.264 .0641 -.0446

25.000 64.87 | -12.67 | 2.161 .0111 -.0078

25.250 65.12 | -10.20 | 2.084 | ~-.0256 -.0182

25.77% 65.63 -5.95 | 1.971 | ~.0739 -.0539

27.182 66.93 2.64 | 1.790 | ~.1336 -.1038

28.591 68.13 9.22 | 1.876 | -.1573 -.1303

30 69.25 14.70 | 1.591 | -.1670 -.1474

35 72.65 29.37 | 1.394 | -.1616 -.1792

40 75.39 39.94 | 1.274 | -.1384 -.1940

45 77.66 48.24 | 1.192 | -.1129 -.2025

50 79.60 55.07 | 1.135 | -.0890 -.2078

55 81.29 60.92 | 1.093 | -.0678 -.2115

60 82.80 66.06 | 1.063 | -.0495 -.2140

65 84.18 70.68 | 1.041 | -.0342 -.2158

70 85.45 74.94 | 1.024 | -.0218 -.2171

75 86.65 78.92 | 1.013 | -.0122 -.2180

80 87.79 82.71 | 1.006 | -.0054 ~.2186

85 88.90 86.38 | 1.002 | -.0013 -.2189 {

90 90 90 | mmmmm | mmmmee | emmee- / v
*These values apply for x = 0 only. For =x = o, values should be re-

placed by O.

All other values are

independent of x.
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TABLE I. - Continued. WAVE ANGLES AND TRANSFER FUNCTIONS
(3) M=6.0 (m = 5.26829)
6, er, 6", S 1 T By B
deg deg deg deg deg
0 0 0 1.810 {1.6667* [ -0.5188 | © 180.00
5 24,75 | -5.1411.827 |1.4906% | -.5126 |16.32| 170.44
10 42.89 | -10.28 | 1.879 |1.1422% | -.4926 |25.67| 159.90
15 54,69 | -15.41 { 1.980 | .8059% | -.4491 |27.61]| 146.71
20 62.46 | -20.52 | 2.162 | .4878% | -.3494 |22.32| 125.78
21 63.69 | -21.55 | 2.216 | .4164% | -.3131 |19.95| 118.95
22 64.84 | -22.57 | 2.282 | .3360% | -.2652 |16.75| 109.37
23 65.91 | -23.59 | 2.412 | .2590% | -.2145 |12.87| 88.38
23.247(6,p)|66.16 | -23.84 | 3.604 6205 -.5199 | © 0
23,250 66.16 | -22.95 | 3.162 4074 -.3415
23.297 66.21 | -20.14 | 2.646 1602 -.1346
23,347 66.26 | -18.62 | 2.511 0969 -.0815
23,447 66.36 | -16.39 | 2.373 0342 -.0289
23,547 66.46 | -14.66 | 2.291 |-.0016 -.0013
23,647 66.56 | -13.21 | 2.232 | -.0267 -.0229
24 66,91 | -9.11|2.096 [-.0799 -.0693
25 67.85 | -1.0% | 1.896 |-.1425 -.1298
27 69.57 9.83 | 1.690 | -.1801 -.1804
30 71.80 | 21.20|1.514 {-.1861 -.2141
35 74.83 | 34.49 | 1.340 | -.1650 -.2396
40 77.25 | 44.17|1.233 | -.1370 -.2523
45 79.25 | 51.77 | 1.161 |-.1100 -.2597
50 80.95 | 58.05 | 1.111 |-.0859 -.2644
55 82.43 | 63.40 | 1.075 | -.0650 -.2677
60 83.75 | 68.11 | 1.050 |-.0473 -.2700
65 84.94 | 72.34|1.032 |-.0375 -.2716
70 86.05 | 76.23 | 1.019 |-.0207 -.2728
75 87.09 | 79.87 | 1.010 |-.0116 -.2737
80 88.08 | 83.34 | 1.004 |-.0051 -.2742
85 89.05 | 86.70 | 1.001 |-.0013 -.2745
90 90 90 | mmmmm mmmmee | e Y \

*These values apply for x
replaced by O.

All other values are independent of Xx.

0 only.' For x = = values should be
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TABLE I. - Concluded. WAVE ANGLES AND TRANSFER FUNCTIONS
(k) M= o (m = 6.00000)
8, o', e", S n T By s By
deg deg deg deg deg
0 0 0 1.83% | 1.6667% | -0.5832 | O 180.00
5 27.70 | -5.00 ] 1.853 | 1.4503% | -.5754 |18.67 | 170.58
10 46.61 | -10.00 | 1.918 | 1.0602% | -.5484 |28.05 | 160.10
15 58,12 | =15.0 | 2.045 | .7105% | -.4873 | 28.51 | 146.67
20 65.40 | -20.0 | 2.280 | .3637* | -.3253 |19.33 | 123.90
20.552 66.03 | -20.55 | 2.317 | .3140% | -.2889 [17.12 | 119.67
21.104 66.64 | -21.10 | 2.357 | .2557¥ | -.2420 |14.29 | 114.51
21.656 67.23 | -21.66 | 2.401 | .1810% | -.1761 |10.35 | 107.57
22.208(9cr) 67.79 | -22.21 | 2.449 | .0000 0000 | O 0
2%.182 68.73 | -4.93]1.971 | -.1586 -.1665
24.156 69.61 2.4511.822 | -.1875 -.2064
25.130 70.44 8.09 | 1.721 | ~.1993 -.2301
26.104 71.21| 12.78 ) 1.643 | -.2036 -.2464
27.078 71.94 | 16.85|1.579 | -.2039 -.2586
28.052 72.63 | 20.47 | 1.525 | -.2018 -.2680
29.026 73.28 | 23.72 | 1.479 | -.1981 -.2756
30 73,90 | 26.69 | 1.438 ( -.1935 -.2819
35 76.61| 38.83|1.287| -.1638 -.3021
40 78.77 | 47.74|1.192 | -.1334 -.3127
45 80.54 | 54.7611.130 ] -.1060 -.3190
50 82.04| 60.54|1.087] -.0822 -.3232
55 83.34 | 65.48| 1.058 | -.0619 -.3260
60 84.50| 69.82 1.037| -.0449 -.3281
65 85.56 | 73.73 ] 1.023 | -.0308 -.3295
70 86.53| 77.31| 1.013 | -.0196 -.3308
75 87.44 | 80.661 1.007| -.0109 -.3313
80 88.32| 83.86| 1.003 | -.0048 -.3318
85 89.16| 86.961{ 1.001{ -.0012 -.3321
90 90 90 | cemem | mmmmee | emmeee v

*These values apply for x
replaced by O.

= 0 only. For x = «, values should be

All other velues are independent of x.
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Figure 1. - Perspective view of shear wave in relation to reference frame.
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Figure 3. - Interaction of shear wave with shock: view in x;,r-plane.
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Figure 4. - Disturbances produced behind shock by interasction with isotropic turbulence. Turbulent
intensity just before shock, 0.1 percent. Rms velocity in percent of initial stream velocity;
rms tempersture and pressure in percent of ambient.
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Figure 5. - Disturbances produced behind shock by interaction with strongly axisymmetric turbulence.
Longitudinal intensity, 0.1 percent; lateral intensity is 3.61 percent just before shock. Rms
velocity in percent of initial stream velocity; rms temperature and pressure in percent of ambient.
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(a) Ambient pressure downstream of shock, 1 atmosphere.

Figure 6. - Nolse generated by shock-turbulence interaction (isotropic turbulence).
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(v) Stagnation pressure upstream of shock, 1 atmosphere.

Figure 6. - Concluded. Noise generated by shock-turbulence interaction (isotropic
turbulence).
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