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SHOCK-TURBUIXNCE IIlTEWCTION AND THE GEEERATION OF NOISE 

By H. S . Ribner 

SUMMARY 

The interaction of a convected f i e l d  of turbulence with a shock 
wave has been analyzed t o  y ie ld  the  modified turbulence, entropy spot- 
t iness ,  and noise generated downstream of the  shock. This analysis 
generalizes the resu l t s  of Technical Note 2864, which apply t o  a s ingle  
spectrum component, t o  give the  shock-interaction ef fec ts  of a complete 
turbulence f i e l d .  The previous report solved the  basic gas-dynamic 
problem, and the  present report has added the necessary spectrum 
analysis . 

Formulas f o r  spectra and correlations have been obtained and numer- 
i c a l  calculations have been carr ied out t o  y ie ld  curves of root-mean- 
square velocity components, temperature, pressure, and noise i n  decibels 
against Mach number f o r  the  Mach number range of 1 t o  *; both isotropic 
and strongly axisymmetric ( l a t e r a l  perturbations/longitudinal perturba- 
t ions .: 56/11 i n i t i a l  turbulence have been t reated.  It was found tha t  
in e i the r  case i n i t i a l  turbulence with a longitudinal komponent of 8.1 
percent of stream velocity would y ie ld  a noise pressure l eve l  of about 
120 decibels; the  value of l a t e r a l  component had re la t ive ly  l i t t l e  
e f fec t .  

The present results are  applicable quantitatively t o  flow i n  ducts 
o r  channels containing normal shocks; they are  presumed t o  provide a 
qual i ta t ive guide t o  the  generation of noise by the shock s tructure i n  
a supersonic f r ee  j e t .  

INTRODUCTION 

The propulsion of aircGaft by means of j e t s  gives r i s e  t o  intense 
noise as  an unfortunate byproduct. Programs of noise ab~tement are  
under way, but at present they a re  la rge ly  e i r i ca l :  even with the  
general guide povided by Lighthi l l  ' s theory "P r e f .  1 )  , the understanding 
of the mechanisms of noise generation is f a r  from complete. It appears 
from both experimental and theore t ica l  evidence, however, t ha t  the in te r -  
action of turbulence with shock waves must often play a par t .  On the  
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theoret ical  side, the generation of noise by such interaction w a s  pointed 
out independently i n  references 2 and 3. The shock-turbulence interaction 
was found t o  produce, i n  addition t o  the  noise, an entropy "spottiness" 
a f t  of the shock (manifested as a temperature and density spottiness at 
constant pressure, r e f .  2 ) .  

Turbulence, entropy spott  iness , m d  noise Cpressure fluctuations) 
a re  examples of the three fundamental modes of small disturbance pertur- 
bat ion of a gas (refs .  4 and 5) : more specifically,  the  categories a re  
vor t ic i ty  mode, entropy mode, and sound mode. The vor t ic i ty  mode ( tur-  
bulence) and the  entropy mode are  essent ial ly  "frozen" patterns ( t o  use 
Kovasznay I s  term) tha t  a re  convected by the  main flow; the  sound mode, 
however, consists of waves tha t  propagate i n  various directions in 
addit ion t o  being convected. 

To the  f i r s t  order i n  the perturbation velocity, there is  no tend- 
ency f o r  the modes t o  interact  o r  f o r  an isolated mode t o  spontaneously 
generate one pf the other modes ( r e f .  5) .  h he weak transference of 
turbulence in to  noise described by the  Lighthi l l  theory is a higher- 
order effect  ( re f .  1). ) The presence of a shock wave, however, provides 
a mechanism f o r  a very strong transference: thus, when any one of the 
three modes - turbulence, entropy spottiness, o r  noise - encounters a 
shock, the  interaction w i l l  give r i s e  t o  a l l  three modes, i n  comparable 
s t r e n d h ,  downstream of the  shock ( refs .  2, 4, and 6 ) .  

The f irst  of these cases, shock-turbulence interaction, has been 
investigated a t  the  NACA Lewis laboratory as an outgrowth of reference 
2 and is reported herein. The analysis of the  ea r l i e r  paper was con- 
cerned with a single spectrum wave of a turbulent f ie ld ,  and was p r i -  
marily a study 5x1 gas dynamics. The present paper reformulates the  
resul t s  and incorporates them i n  a spectral  analysis; from the analysis 
come the quantitative effects  of the  interaction of a convected homo- 
geneous f i e l d  of turbulence w i t h  an extended plane shock front .  (some 
resu l t s  of t h i s  work were reported i n  abbreviated form i n  r e f s .  7 and 
8. ) The perturbat ion velocity, pressure, temperature, and density d is  - 
t r ibut ions behind the shock are described i n  terms of formulas f o r  theiz 
spectra, correlations, and mean-square values; these are  separated in to  
the respective contributions of turbulence, entropy spottiness, and 
noise. 

Numerical calculations are  presented f o r  the root-mean-square val- 
ues of the  pressure (noise) and components of the temperature and veloc- 
i t y  perturbations f o r  the Mach number range of 1 t o  -; one s e t  of calcu- 
la t ions refers  t o  isotropic i n i t i a l  turbulence, another s e t  t o  strongly 
axisymmetric i n i t i a l  turbulence ( l a t e ra l  perturbations/longitudinal per- 
turbations = 36/1). The noise pressure l eve l  is  a lso  presented on an 
acoustic scale f o r  several. leve ls  of i n i t i a l  turbulence. 



SEOCK LNTERACTION OF SINGLE SHEAR WAVE 

Quali tat ive Discussion 

According t o  the  Fourier integral  theorem, a turbulent velocity 
f i e l d  can be represented as  a superposition o r  spectrum of elementary 
waves. A s ingle spectrum wave can be interpreted physically as a plane 
sinusoidal wave of shearing motion (e.g., r e f .  9); a portion of such a 
wave is shown i n  perspective i n  sketch (a ) .  

(a) Wave of shearing mot ion. 

A similar wave encountering a shock is  shown schemtical ly i n  sketch (b), 

Shock 

(b) Convection of shear wave through shock: or iginal  
unsteady-flow problem. 

the wave and the  shock being viewed "edge-on." The wave-shock in ter -  
action was analyzed i n  reference 2, and what follows first is  a br ief  . 
physical account of the  main resul t s .  The wave is  supposed t o  be con- 
vected downstream by the  main stream with velocity UA so tha t  it passes 
through the  shock. The passage is  evidently an unsteady process, since 
the intercepts of the  inclined l ines  - the  planes of constant phase or  
wave f ronts  - move downward along the shock; it can be shown tha t  a 
sinusoidal disturbance ripple w i l l  move along the shock with the  same 
speed V.  



The unsteady-flow problem may be t rea ted  direct ly ( ref .  4)) or  it 
may be converted t o  an equivalent steady-flow problem by superposing an 
upward velocity V ( re f .  2 ) .  The conversion is  i l lu s t r a t ed  i n  sketch (c). 

Shear and entropy 

(c ) Transformation t o  steady-f low problem by superposition 
of velocity V. 

The cross velocity V therein has been chosen so tha t  the resul tant  
stream velocity is  pa ra l l e l  t o  the wave fronts  in  the shear wave; the  
observer then sees what appears t o  be a steady sinusoidal shear flow 
passing through an oblique shock. This may be called the  equivalent 
oblique shock. ( ~ d d i t i o n  of the  upward velocity V is, of course, 
equivalent t o  transforming t o  a moving frame of reference.) 

Downstream of the  shock, the  resul tant  stream flow i s  deflected 
according t o  the l a w s  fo r  oblique shocks; the  streamlines are  the  upper 
l ines  in  the figure.  The vor t i c i ty  of the  i n i t i a l  shear wave is con- 
vected along these streamlines together with the additional vor t i c i ty  
generated by the  shock. The net resul t  is a refracted, amplified shear 
wave alined with these streamlines. The angle of refract ion is just the  
angle of flow deflection of the  oblique shock. 

Superposed on the refracted shear wave is an entropy wave of the 
same inclination and wave length. This wave ar i ses  from the  convection 
of entropy perturbations generated at the shock, precisely as the  shear 
wave resul t s  from the convection of vor t ic i ty .  The entropy wave i s  man- 
i fested physically as a spaLial variation of temperature and density a t  
constant pressure, by vir tue of the  equation of s t a t e .  

The nonuniform velocity i n ' t h e  shear flow resu l t s  i n  a nonuniform 
pressure jump across the shock. The ultimate effect  is  t h a t  the shock 
f ront  develops ripples, modifying the  pressure variations, and the 
resul tant  pressure variations propagate downstream as  a plane sinusoidal 
wave (lower l ines  i n  sketch (c) ) . 
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The character of t h i s  wave depends on whether the resul tant  velocity 
W behind the  equivalent oblique shock is  subsonic or  supersonic; this 
i n  turn  depends on the  i n i t i a l  wave inclination through V.  \,%en W is 
supersonic the  pressure wave is a plane sinusoidal sound wave; it appears 
as a stationary Mach wave pat tern in the steady-flow reference frame. 
When W is subsonic it may be shown tha t  the pressure wave, while s t i l l  
plane, is not a simple sound wave, but rather  attenuates exponentially 
with distance downstream of the shock; the resultant disturbance velocity 
is not normal t o  the  wave front, and the wave propagates re la t ive  t o  the 
surrounding f l u i d  at l e s s  than sonic speed. 

Quantitative Discussion 

Elementary wave. - Thus f a r  the  waves have been discussed only qual- 
i ta t ive ly .  Elementary spectrum waves of t h i s  so r t  may be expressed quan- 
t i t a t i v e l y  in  the  f orm 

( ~ l l  symbols a re  defined in appendix A.  ) The wave-number vector k is 
directed normal t o  the wave fronts  and i t s  magnitude equals 2n/waye 
length. The wave amplitude is  given by the  complex quantity dZ,. When 
a stands f o r  temperature, pressure, density, or  entropy, these are  
simple scalar  waves. When a stands f o r  the components u, v, w of 
the velocity, these are  vector waves; two cases may then be distinguished: 
the waves are  e i the r  i r ro ta t ional  and compressible (sound waves) o r  rota- 
t iona l  and incompressible (vor t ic i ty  waves). (see, e .g., r e f .  10) .  In 
the f irst  case the  i r ro ta t ional i ty  condition cu r l  _a = 0 requires tha t  
the velocity _a and wave vector & be pa ra l l e l  (u, v, w proportional 
t o  kl, k2, k3, respectively); the sound waves are  thus longitudinal. 
Ln the  second case the  incompressibility condition div 2 = 0 requires 
tha t  the  velocity g and the  wave vector & be perpendicular; tha t  is, 

Thus, the  vor t i c i ty  waves are  transverse and have the character of a 
shearing motion (see sketch (a)) ;  in the discussion they have been re-  
ferred t o  as "shear waves ." 
fl. - The shock-interaction 

process fo r  a single shear wave is given quantitatively i n  reference 2, 
but the  r e su l t s  a r e  formulated i n  two dimensions. It w i l l  be necessary 
t o  reexamine the  problem geometrically i n  order tha t  the r e su l t s  may be 
reexpressed i n  three dimensions. 



A perspective view of the  i n i t i a l  shear wave i n  the  new x1,x2,x3 
coordinate system is shown in f igure 1. The portion of t h ~  shear wave 
shown is on the  downstream side of the  shock front,  which is  ident if ied 
with the x2,x3-plane. A plane passed through the  xl-axis perpendic- 
ular t o  the  wave f ronts  cuts t h e  shock i n  the  l i n e  O r .  A t  a given 
instant  of time t h i s  xl,r-plane corresponds precisely t o  what was cal led 
the  x,y-plane i n  reference 2. The angle q of the xl,r-plane with the  
horizontal is then the  th i rd  coordinate i n  a system of cyl indrical  
coordinates. 

I n  reference 2 the  time was eliminated from the  equations by employ- 
ing a frame of reference moving with a velocity V downward along the 
shock front ,  the so-called steady-flow frame of reference. In  the  pre- 
sent paper a l l  r e su l t s  r e fe r  t o  a def in i te  instant of time, t = 0. Thus, 
motion of the  reference frame plays no part ,  and the  resul t s  of the  
e a r l i e r  paper carry over t o  the  present coordinate system on simply re-  
placing x,y by xl,r, respectively. The re su l t s  of the  transformation 
a r e  given i n  the  following sections with the disturbances reexpressed i n  
nondimensional form according t o  the s c h e ~ e  

u, v, w = components of velocity perturbation/crit ical speed of sound a * 

p = pressure perturbation/mean s t a t i c  pressure 

p = density perturbat ion/mean density 

z = temperature perturbation/mean temperature 

I n  addition, there are  other minor respects i n  which the  notation has 
been modified fxom tha t  of reference 2; f o r  example, the  waves are  
expressed i n  complex form. 

I n i t i a l  shear wave ( - i n i t i a l  turbulence). 
velocity f i e l d  of the i n i t i a l  shear wave is, i n  

- A t  time t = 0, the 
cyl indrical  coordinates, 

where du is  pa ra l l e l  t o  xl (longitudinal direction),  dvr i s  pa ra l l e l  
t o  r, and dv i s  perpendicular t o  r and xl,  i n  the  direction of 
increasing p b e e  f i g s .  1 arid 2) .  The wave-number vector g l i e s  i n  
the  xL,r-plane, making an angle 6 with the  r-axis.  



Refracted shear-entropy wave ( - f i n a l  turbulence and entropy spot- 
t iness) .  - The velocity f i e l d  of the  refracted shear wave ( f ig .  3) is 

ik' -5 
dv;'= dZ;e - dZ; = Y dZr 

ik' - .x 
dvl = a l e  

(4' '4 
a;= dZ 

at time t = 0, where &' is the  new wave-number vector, making an angle 
8 '  with the r-axis. The rad ia l  components of k '  and k are  equal 
(k;, = kr), and the further  dependence of - k' o n  - k is ebressed  
through the  dependence of 8 '  on 8. Similarly, the complex ampli- 
f ica t ion  factors  X and Y depend on k in  terms of 8. Expressions 
f o r  X, Y, and 8 '  are  given in  appendix A. 

The perturbation pressure dp' w i l l  be zero because t h i s  is  again 
a shear wave, f ree  of accelerations. The temperature perturbation 
associated with the companion entropy wave ( f ig .  3) w i l l  be 

With p '  = 0 ( to  the  first order), the  dimensionless density perturbation 
p '  w i l l  be just  the  negative of the  dimensionless temperature perturba- 
t ion  T ', according t o  the l inearized equation of s t a t e .  The form of the  
function T is  given in appendix A. 

n 

Aside from the change in  wave inclination, the  description of the  
refracted shear-entropy wave in terms of the i n i t i a l  shear wave depends 
ent i re ly  on the amplification factors  X and Y and the  function T. 
Such functions play a role  similar t o  the "transfer functions" of the  
theory of servomechanisms ( re f .  11)) and it appears appropriate to carry 
the name over t o  the present f i e ld .  

Generated sound wave ( - n o i s e  f i e l d ) .  - The shear-entropy wave down- 
stream of the  shock is  accompanied by a plane i r ro ta t ional  pressure wave 
(sound wave) of different  inclination (see f i g .  3). For small inclina- 
t ions 8 of the  i n i t i a l  shear wave, t h i s  pressure wave attenuates expo- 
nent ial ly  with distance from the  shock; f o r  inclinations greater than a 
cer ta in  c r i t i c a l  value OCr (see appendix A ) ,  t he  pressure wave is un- 
attenuated. The c r i t i c a l  wave inclination Bcr corresponds t o  the  
attainment of sonic speed i n  the mean flow behind the "equivalent oblique 
shock" ref erred t o  i n  the qual i ta t ive discussion. 
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The velocity f i e l d  can be represented i n  the  form 

ik" -x  - - 
dv; = dZGe dZl;, = 0 J 

where k" is  the  wave-number vector, making an angle 8" with the r- 
axis; again the r ad ia l  component matches tha t  of - k; namely, = kr. 

The sound-wave angle 8" and the t ransfer  functions X and Y are 
specified functions of the  shear-wave angle 8; moreover, f o r  
0 4 8 <Bcr, x and Y are  functions of x l ,  showing an exponential 
decay t o  zero as xl + - . 

The pressure perturbation may be wrikten 

where P = p(xl) is  a t ransfer  function defined i n  appendix A; l i k e  X 
and Y, P decays exponentially with x f o r  0 < 8 < Qcr. The corres- 
ponding density and temperature perturbations are  proportional t o  p"; 
they may be obtained from the isentropic property of the  sound wave as  
pl' = ptt/y and z" = p"(y - l ) / y .  

Transformation t o  Cartesian coordinates. - Expressions f o r  the  
velocity f i e l d  i n  Cartesian coordinates w i l l  be needed. The transforma- 
t i o n  from cyl indrical  coordinates is  effected by means of the relat ions 

where primes ( - refracted shear wave) or double primes ( - sound wave ) 
may be inserted throughout as  needed. 

The transformation resul t s  i n  

i k - x  - -, where a = u, v, w 
shear 



1 fo r  a = U, v, w are, respectively, I 
Final  
shear d q = X d Z ,  

jaq: = Y a r s i n  q + dZ cos 
P 

ikt' .X -, where the  values of 

fo r  a = u, v, w are, respectively, 

az; = Y dZrcos cP 

I 
I 

SPECTFAL ANALYSIS OF RANDOM FIELDS 

The foregoing relat ions w i l l  be f i t t e d  l a t e r  into a spectral  
analysis of the  f i e lds  of turbulence and noise. Appropriate analyt ical  
techniques c a i  be found i n  the  spectral  theory of random functions; 
sui table  developments of t h i s  sor t  are  given by, fo r  exanrple, Moyal 
( ref .  10)  and Batchelor ( r e f .  12) f o r  spa t ia l ly  homogeneous f i e lds .  The 
f i r s t  part  of the  present section w i l l  be devoted t o  an interpretation 
(with some l i b e r t i e s )  of relevant par t s  of the two papers; the  l a t t e r  
part  w i l l  be devoted t o  developments f o r  inhomogeneous f i e lds  and fo r  
correlations of a two-dimensional f i e l d  with a three-dimensional f i e l d .  

Homogeneous Fields 

Amplitude spectra.  - Consider a three-dimensional f i e l d  of small 
disturbance (e .g., turbulence or noise) of unlimited extent. Let t h i s  
f i e l d  be homogeneous i n  the  sense tha t  the  s t a t i s t i c a l  properties do 
not vary from point t o  point. The instantaneous spa t i a l  dis tr ibut ion 
of any physical quantity a can then be represented mathematically by 
a Fourier integral  in  the S t i e l t  jes form ( refs .  10 and 12) 



where the  t r i p l e  integral  goes from - = t o  .o i n  each component of 
k = (kl, k2, k3). - 

If equation (12) is  written in  the form 

then, by comparison with equation (I), da can be ident if ied with what 
has been called an elementary spectrum wave. The Fourier integral  is  
thus t o  be interpreted as a superposition of inf in i te ly  many of such 
plane waves. In the  integral  the  components of k take on a l l  values; 
it follows from the  significance of k as a wave=number vector tha t  a l l  
wave inclinations and wave lengths appear. An aggregate of vor t ic i ty  
waves with a sui table  dis tr ibut ion of amplitudes among the  various wave 
lengths and inclinations can represent a turbulent f i e l d  ( r e f .  13)  . 
Similarly, an aggregate of sound waves suitably dis tr ibuted can repre- 
sent a random noise f i e l d  ( r e f .  10). Finally, an aggregate of the scalar  
entropy waves can represent a random f i e l d  of entropy spottiness.  A com- 
bination of these three basic types of disturbance - entropy spottiness, 
turbulence, and noise - constitutes the most general random small- 
disturbance f i e l d  tha t  may ex i s t  i n  a gas ( refs .  4 and 5 ) .  

Correlations. - Let a be measured a t  some point P and p a t  - - 4 
some point P a vector distance from P; then the space average of 

h 
the  product af3 as P and P vary but t h e i r  vector separation - 5 is 
held fixed may be defined as the  space-average correlation a p ( ~ )  .- 
Alternatively, the  disturbance f i e l d  may be considered t o  be jugt one of 
a large number, o r  ensemble, of s t a t i s t i c a l l y  similar f i e l d s  (e .  g., the  
flow f i e lds  of a great many "identical" wind tunnels operated simultan- 
eously); the  average of a@, with P and ? fixed, over al l  members of 
the  group, i s  the  ensemble-average correlation. The equations tha t  f o l -  
low, from the theory of random functions, re fer  solely t o  ensemble aver- 
age.s, but space -averages are desired i n  prac t ica l  applica-kions . The 
ergodic hypothesis of probabili ty theory equates the space average t o  
the  ensemble average provided tha t ,  a t  any instant,  the  disturbance 
f i e l d s  a and P are stationary random functions of position; tha t  is, 
the  disturbance f i e lds  a re  spa t i a l ly  homogeneous. 

In  what follows, the t e r n  "cross-correlation" w i l l  be applied f o r  
a # P, the term "self -correlation, " or  simply "correlation, " f o r  
a = $. 

Correlation and power spectra. - The cross -correlat ion T ( c )  
( l ike  a or P, individually: see eq. (12) ) may be expressed by means 
of the Fourier integral  as a spectrum of plane s ine waves: 
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where [up] i s  a function of k, and dk i s  an abbreviation f o r  - - 
ik .5  dkldkZdkg. The d i f f e ren t i a l  e - -4 ~$31 d& may be regarded as the con- 

t r ibut ion  t o  the correlation made by spectrum components with wave num- 
ber between k and k + dk. The function [a@] i s  c a l l e d t h e  "spectral  
density" when a = @,-the 7Tcross-spectral density" when a # f3 ( r e f .  11). 
The array of nine spec t ra l  densi t ies  s ignif ied by [a] when a and f3 
a re  l imited t o  mean u, v, o r  w is  the  "spectral  tensor" of the vel- 
oci ty  f i e l d  and is  commonly written as r, , or  .  h he correspond- 

LJ - J-J 
- 

ing array of the  nine velocity correlations ~ ( 5 )  is the "correlation 
tensor, I' commonly written as Ri j  ( I ) .  ) 

Equation (13) includes as a special  case the se l f  -correlation or  
mean-square re la t ion  

a2 =/ [a]%,  where t: = 0 (14) 
- 

I f  a were a velocity component (say u) ,  then a2 would be twice the  
space-average kinet ic  energy p<r uni t  mass associated with u. The 
spectral  density [m] i s  i n  t h i s  case an energy density (per uni t  mass, 
per uni t  wave number). For similar reasons, where spectra of the kind 
defined by equation (14) have occurred i n  physics (e.  g., i n  the harmonic 
analysis of radio noise), they have generally been called energy, inten- 
s i t y ,  or power spectra.  

Correlation spectrum i n  terms of amplitude spectra. - The rather  
analogous forms of equations (12) and (13) are  of in te res t .  Equation 
(12) expresses the  spectrum of the amplitude of the f luctuat ing quantity 
a; t h i s  may be termed an amplitude spectrum. Equation (13) expresses 
the spectrum of the  correlation of a with P; t h i s  has been termed a 
correlation spectrum. The complex magnitude d z a ( ~ )  of the  amplitude 

spectrum f luctuates  i n  an apparently random manner as k is  varied 
( r e f s .  10 and 12) .  The magnitude [ap ]dk of the correlgtion spectrum, 
on the other hand, varies smoothly with- - k, since the correlation is  a 
smoothed or  averaged quantity ( r e f .  12) .  The amplitude spectrum gives 
no d i rec t  information concerning averaged (i. e . , s t a t i s t i c a l )  properties 
of the disturbance f i e ld ,  whereas the correlation spectrum leads d i rec t ly  
t o  expressions f o r  correlations and mean-square values (see eqs. (3) and 
( 4 ) ) .  One-dimensional spectra and scales of turbulence can also be 
determined (e  .g., r e f .  14) .  

It would be desirable t o  formulate the  shock-turbulence interaction 
problem di rec t ly  i n  terms of correlation spectra, but formidable d i f -  
f i c u l t i e s  stand in  the way. It has been simpler t o  s t a r t  with the shock 
interaction of a single shear wave, which deals with amplitude spectra, 
and t o  infer  from t h i s  the changes in  the correlation spectra.  The 
whole procedure depends on the following re la t ion  ( re fs .  10 and 12) 
which connects the two kinds of spectra, namely 
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where d!Z(k) is associated with the  wave-number range between k and 
k + dk, and the bar represents the  ensemble average. This relaxion is  - 
fundamental t o  the  spectrum analysis of the present paper. Tts signif - 
icance is  th i s :  the single-wave analysis (summarized i n  an e a r l i e r  
section) provided the change i n  amplitude of an individual spectrum wave 
i n  the form d!Za -+ a;, say, and similarly, Up -' dZb; equation (15) 
provides the  means fo r  determining therefrom the corresponding change i n  
the  spectral  density: [a@ ] -*[alp ' 1. 

Inhomogeneous Fields 

The spectral  representation of a spa t ia l ly  homogeneous random f i e l d  
is  given by equation (12) : 

A corresponding possible representation of an inhomogeneous f i e l d  i s  

where dZa now depends on position; the sound f i e l d  behind the shock is 
of t h i s  character. The following spectral  analysis of such inhomogeneous 
f i e lds  is a development of Moyalls treatment of homogeneous f i e lds  ( r e f .  
10) .  

Let a(x)  - and p (x l  - ) be inhomogeneous f i e lds  

where equation (17) is an a l te rna te  form of equation (16) .  The correla- 
t ion  of a and p f o r  fixed positions 2 and 21, respectively, can 
be formed by taking the  ensemble average Gf t he i r  product: 

The operations of integration and averaging commute, so the averaging 
bar may be regarded as placed over the dZ's alone on the r ight  side. 
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Equation (19) could immediately be simplified i f  the f i e l d s  a(&) 
and p ( X I )  were homogeneous; i n  t h a t  case the important re la t ion  

where 

6(kt  - k) = 0 f o r  k t  # k - - - - 
= =  f o r  k f = k  - - 

and 

would hold ( r e f .  lo) ,  according t o  the  spectral  theory of random func- 
t ions.  The simplification can s t i l l  be achieved by replacing the in-  
homogeneous f i e l d s  by "equivalent" homogeneous f i e l d s  tha t  match, respec- 

/r 
t ively,  a t  the points x and . This is  accomplished by freezing 
dz:(k,x) - - in equation (17) a t  t h e  value d~;(k,8) - - while allowing x t o  - 
vary i n  the exponential, and correspondingly freezing dZP i n  
equation (18). 

When applied t o  the  so-defined equivalent homogeneous f ie lds ,  equa- 
t ion  (20) reads 

A 
where the .". over [a@] s igni f ies  the functional dependence on x and 
h - 
x' . Upon s u b s t i ~ u t i z n  in to  equation (19) and integration over k t  there  - h - 
resul ts ,  with 5 5 x - x - - -J  

The spec t ra l  density [%I can be evaluated by integrating equation (21) 
over k ' : - 



where the  in tegra l  property of the 6-function, 

has been used, with ' f  ( k t )  - an arb i t ra ry  function. 

Equations (22) and (23) f o r  inhomogeneous f i e lds  are  of the same 
form as t h e i r  counterparts, equations (13) and (151, respectively, f o r  
homogeneous f i e lds .  In the  homogeneous case the  a ' s  a re  functio%s of 
position, and equation (23) implies a corresponding dependence of [a@] 

0% 

on position. Moreover, the correlation a(x)  @ (2') depends on 2 and 
A - A- 

- 
x '  separately as well as on t h e i r  separation E -  
m - 

Correlation of Two-Dimensional Field with Three-Dimensional Field 

The loca l  perturbations of the shock face from the mean (xi ,xj)  
plane const i tute  a homogeneous two-dimensional f i e l d  of the  general form 

A 
where x i  has been fixed a t  the  value x i .  It may be desired t o  cor- 
r e l a t e  such a f i e l d  loca l ly  with a three-dimensional f i e l d  (e . g., the 
turbulent velocity f i e l d ) .  To t h i s  end equation (24) i s  rewritten i n  
the  form 

- i k i x i  
Now, if  x i  in  e is fixed a t  the value , P w i l l  be general- 

ized t o  a three-dimensional f i e l d  (elementary wave number k '  ) t ha t  
matches the  original  two-dimensional f i e l d  i n  i ts  plane of zef in i t ion  

A 
x1 = xl. This "equivalent" f i e l d  m y  be written 

i k '  .x' 
p ( g )  = f e  - - ap (g' 

where 

-ik 'x' 
dZp(gt) = e dwP(kijkj) 



Equation (25) is of the form of a three-dimensional homogeneous f i e l d  
and may be used i n  place of (24) i n  equations (13) and (15) t o  provide 
the correlation of p with any three-dimensional homogeneous f i e l d  i n  

h the common plane xl = xl. 

SHOCK IXITRACTION OF SPECTRUM OF SHEAR MVES (TURBULENCE) 

The interact ion of a single shear wave with a shock has been dis-  
cussed i n  de ta i l .  With t h i s  as the  basis,  the s t a t i s t i c a l  behavior of a 
spectrum of shear waves representing turbulence w i l l  now be derived; the 
procedure w i l l  make use of the spec t ra l  analysis relat ions of the l a s t  
section. The problem is fomnulated as follows: given the spectra (and 
hence correlations and mean-square values) associated with the  turbulence 
convected in to  the shock, t o  calculate therefrom the  spectra, correla- 
t ions,  and mean-square values associated with the  turbulence, entropy 
spottiness, and noise in the  flow downstream of the shock. 

Diagonal Terms of Velocity Spectrum Tensor 

The respective spectrum tensors f o r  the turbulence and noise down- 
stream of the shock each consist of nine elements; of these the  three 
diagonal terms are  most important since they lead t o  the  mean squares of 
the velocity components. The r e l a t ive ly  simple derivation of the f i r s t  
diagonal term and the sum of the second and t h i r d  w i l l  be carr ied out in 
the present section. The derivation of the complete tensor is  carr ied 
out i n  appendix B by a more formal procedure. 

Turbulence f i e l d .  - The shock interact ion ef fec ts  have been expressed 
i n  terms of re la t ions  between wave amplitudes on opposite sides of the 
shock (eqs . (9  ) and (10) ) . Corresponding relat ions between spec t ra l  
densi t ies  (elements) on the  two sides  can be obtained by use of equation 
(15 ) . Some preliminary manipulat ion i s  required; thus m u l t  ip ly  both 
sides of equations (10) by t h e i r  complex conjugates, and add the last 
two; there r e su l t s  

But by geometry ( f ig .  2),  



and also, by the coordinate transformation (8), 

Thus, equation (27) becomes 

Application of equation (15) yields  

[u'ut]dk'  - = 1x12 [uuldk - 

These are  the  desired expressions re la t ing  diagonal elements of the  
spectrum tensors of the turbulence on opposite sides of the shock. 

Noise f i e l d .  - I f  operations similar t o  those of the l a s t  section 
a re  applied t o  equations (ll), there r e su l t s  

\ 

] + [w"wl'] dk" = IY  I 2tan28 [uu] dk > - - 
These equations r e l a t e  the diagonal elements of the  spectrum tensor of 
t h e  noise generated behind the shock t o  the longitudinal spec t ra l  den- 
s i t y  of the  i n i t i a l  turbulence ahead of the shock.' 

' ~ i r e c t  expressions fo r  the  spectra downstream of the shock nay be 
desired, f r e e  of the unequal volume elements dk, d&', o r  dk". - This 
may be effected i n  eq. (29) by dividing both sides by d&' ; then (since 
dk - i s  shorthand f o r  dkldk2dk3, and s imilar ly f o r  dk' - ) the r a t i o  dkkdk' - 
may be interpreted as  the  Jacobian (say J' ) f o r  the  transformation from 
k t o  k ' .  Upon evaluation, - - 

1 
J' = - 

m 

Similarly, i n  equation (30) divide by dk" and interpret  W d k "  as the 
Jacobian (say J") f o r  the transformation-from - k t o  - k" . upon- 
evaluation 
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Mean-Squase Velocity Components 

Turbulence f i e l d .  - The mean-square velocity components follow 
di rec t ly  from integration of the spec t ra l  density (see eq. (14)) .  
Integration of both sides of equations (29) yields  

Thus, the mean-square velocity components behind the shock (primed values) 
a re  given i n  terms of those ahead of the shock, the single-wave t ransfer  
functions X and Y, and the  longitudinal spectral  density [uu] of the 
i n i t i a l  turbulence. Note tha t  X and Y are  functions of k i n  terms - 
of 8 (see appendix A ) .  

Noise f i e l d .  - Similarly, integration of equation (30) yields the 
mean-square velocity components i n  the  noise f i e ld :  -- - 

Here again, X and Y are functions of k in terms of 9 .  - 

Mean-Square Pressure 

The f i r s t -order  pressure f i e l d  i s  associated solely with the noise 
f i e ld :  the pressure f i e l d  associated with the turbulence is  of the sec- 
ond order in  velocity and may be neglected i n  comparison.2 The spectral  
density of the noise pressure can be related t o  the spectral  density of 
the longitudinal velocity in the i n i t i a l  turbulence; the re la t ion  i s  
obtained by multiplying both sides of the second of equations c7) by 
t h e i r  complex conjugates, averaging, and applying equation (15) t o  each 
side : 

 he loca l  pressure f i e l d  associated with turbulence, although weak 
by aerodynamic standards, may be strong by acoustic standards. I f  the 
turbulence ( e  . g . , i n  a boundary layer)  is  convected past a s ta t ionary 
microphone, a strong response can be observed; the phenomenon i s  called 
"psuedo-sound . " The noise sensat ion produced by wind blowing past the  
ears is  presumably a similar effect  associated with turbulent separation 
of the  flow. 



The i n t e g r a t i ~ n  of both sides of equation (33) yields the  mean-square 
pressure i n  the noise f i e l d  as 

Mean-Square Temperature 

The t e q e r a t u r e  perturbations in the noise f ie ld ,  because of the 
isentropic relation, a re  equal t o  (y - l ) / y  times the pressure pertur- 
bations; thus, the relat ions corresponding t o  equations (33) and (34) may 
be written down a t  once. 

The temperature perturbations associated with the entropy spottiness 
behind the shock require a separate analysis. The spectral  density of 
the  temperature perturbations can be evaluated by operating on equation 
(5) i n  the now-familiar manner (see remarks preceding eq. (33)); the  
r e su l t  is 

The integral  relat ion obtained from (35) is 

This equation evaluates, f o r  the  region behind the shock, tha t  part  of 
the  mean-square temperature spottiness associated with the entropy 
spot t  iness . 

Mean-Square Density 

It i s  unnecessary t o  write down special  expressions f o r  the  density 
f ie ld :  the  respective contributions of entropy spottiness and noise t o  
the density perturbations are  related t o  the  corresponding temperature 
and pressure perturbations by p '  = -zt and p" = p"/y, according t o  
the  small-perturbation form of the equation of s t a t e .  



Correlations Not Joint ly  Involving Turbulence and Noise 

Attempts a t  simplification . - If the  spectral  density [ a@] (k) is  
known, the corresponding two-point correlation q ( 5 )  can, i n  p r ~ n c i p l e J  
be obtained by means of equation (13) . In  t h i s  f asEion, f o r  example, 
the longitudinal velocity correlation i n  the turbulence behind the shock 
may be expressed, with use of equation (291, as  

- ik' 
u ' u l ( t l )  - = J 1xl2[uule - - o r  

(see footnote 1, p. 16, f o r  significance of J1. } 

Either  of the forms (37) or  (38) may prove awkward because of the  
admixture of k and k' i n  the integrand (e . g., [uu] is  ordinarily 
most simply expressed as a function of k} . However, it is possible t o  
f ind  a fixed vector 5 t ha t  s a t i s f i e s  t h e  re la t ion  k t  -5' = k.5; t h i s  - - - - 
gives the more convenient re la t ion  

where El = mSi,  E2 = ti, E3 = E g .  In a l l  the se l f  - or  cross-correlations 

involving properties of the  turbulence and entropy spottiness behind the 
shock, whether they be velocity components, temperature, density, o r  
entropy, the  transformation k ' -E1  = k-E can be made t o  simplify the  - - - - 
exponential . 

The physical interpretat ion of the re la t ion  between < and I' is 
t h i s  : i f  two f l u i d  par t ic les  upstream of the shock are  a yector distance 
5 apart ,  a f t e r  convection through the  shock they w i l l  be a vector dis-  - 
tance 5' apart .  Put another way, a "box" of turbulent f l u i d  of edges 
el, 52J E 3  w i l l  be compressed on passing through the shock and w i l l  
emerge downstream a s  a shorter box of edges 51, < A ,  53. Therefore, 
equation (39) in ef fec t  expresses correlations i n  the space downstream 
of the shock in turns of equivalent correlations in a stretched space 
upstream of the shock. 

The analog of equation (37) f o r  the  correlations of properties of 
the noise f i e l d  involves k " . ~ "  in the exponential, ra ther  than kT .E ' .  - 
Here no great simplif icatiEn appears t o  be possible i n  general3: the'E;e 
ex is t s  no fixed vector 5 t ha t  s a t i s f i e s  the re la t ion  k".E" = k.5. - - - - - 

3~ p a r t i a l  simplification is - k" .g" = - k-E;" + (k i  - k ) r "  1 1' 



This lack re f l ec t s  the nature of the t r a n s f o m t i o n  from k t o  k": the  
respective components of the two vectors a re  not i n  fixed ~ r o p o r ~ i o n s ,  
but instead vary with the inclination of k. The part iculzr  coordinate 
compression + t ha t  works f o r  the  t s b u l e n t  f i e l d  ( i t  expresses 
the  change in-dimensions of a f l u i d  "box" convected through the shock) 
w i l l  not work f o r  the noise f i e l d .  An exception occurs when 5" - is  
chosen pa ra l l e l  t o  the shock plane ( radia l  direction, xl = 0 ) .  Then 
kt,.<" = q?:, and since k; = kr, it follows tha t  f o r  t h i s  case 
p . 7 1  = k.5 - - - 

The integral  fo r  a part icular  correlation simplifies considerably 
when 5 (or g l ,  or  5") is taken i n  the direction of one of %he coor- 
dinate-axes, say xi. I n  the former case - kmE. - becomes ki<, and the 
exponential can be replaced by cos kiE.,;i?9 the imaginary sine com- 
ponent w i l l  integrate out. Similarly, e - - can be replaced by 
C O S  k;q. 

Cross-correlations. - The phase angles of the t ransfer  functions 
must be considered in formulating cross-correlations. For example, the  
correlation of loca l  temperature with longitudinal velocity i n  the  
entropy and turbulence f i e lds  behind the  shock is readily obtained as  

The integrand, except f o r  the  exponential, is  even in the  wave inclina- 
t i o n  8; the phase angles Ss and ??$ (in the notation used) a re  odd i n  
8 (both properties can be inferred from the  symmetry of the wave- 
refract ion process with respect t o  8 ) .  Accordingly, the  imaginary sine 
term i n  the  exponential w i l l  integrate out, and 

The corresponding relat ions f o r  other cross-correlations can be written 
down by analogy. 

Correlations Between Turbulence and Noise 

Cross-correlations between the turbulence and noise f i e l d s  require 
a special  treatment, par t ly  because of the inhomogeneity of the noise 
f i e ld ,  and par t ly  because of the  nonparallelism of the physically assoc- 
ia ted waves. In  what follows, an expression fo r  the  correlation of noise 
pressure with longitudinal turbulent velocity w i l l  be derived. From 
t h i s  the  qual i ta t ive variation of the  correlation with distance down- 
stream of the  shock w i l l  be inferred. 



The refracted shear wave (-kt ) and pressure wave (wkl') associated 
in an elementary interact  ion process have different  inclinations ( f i g  . 
3).  A s  a consequence, the formal application of the relat ions given i n  
the sec t  ion SPECTRAL ANALYSIS OF RANDOM FIELDS leads t o  d i f f icu l ty :  
the spectral  density of any correlation appears t o  vanish according t o  
equation (21) . Actually, the f oMnulas are  inapplicable t o  correlations 
involving mu~tually i n c l h e d  waves; t h i s  w i l l  be brought out clear ly i n  
the following derivation of the applicable formulas. For simplicity the 
derivation w i l l  be l imited t o  the correlation of turbulent longitudinal 
velocity u f  at point x1  with noise pressure p" at point 5"; ex- 
tensions t o  other cases a r e  straightforward. The derivation w i l l  first 
be carried out as though the  noise f i e l d  were homogeneous [no variation 
of t ransfer  function P with x), and then w i l l  be adapted t o  take 
account of the  actual  inhomogeneity. 

The respective Fourier integrals may be written 

The correlation may be formed as the ensemble average of the  product 
u I p  1'. 

where the bar has been taken inside the integral,  since the  operations 
of averaging and integration commute. Equation (7) and the first of 
equations (4) may be used t o  simplify the  r ight  side: 

n 
where 2" bears the same re la t ion  t o  k as k" does t o  k. By v i r tue  - 
of equaxion (201, equation (42) reduces-furthe; t o  

if the  f i e l d s  a re  homogeneous. Substitution of t h i s  re la t ion  in to  (41) 
and integration over l? resul t s  i n  - 
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A 
since the 6-function eliminates a l l  values of & but k and similarly 
a l l  values of ' but k" . Finally, the equation may c e  generalized t o  
apply t o  the  aczual i n h ~ ~ o ~ e n e o u s  pressure f i e ld ,  according t o  equation 
(23) and the  discussion preceding it, by writing ~ ( k )  - as P(&,X:) and 

using the  value appropriate t o  x:. 

Equation (43) is the  general re la t ion  f o r  the two-point correlation 
of longitudinal turbulent velocity u '  with noise pressure pl'. The 
s t r ik ing  feature i s  the difference of the exponential term from those i n  
equations (13) and (22) ; t h i s  constitutes an a pos ter ior i  demonst r a t  ion 
of the  inapplicabi l i ty  of those e q ~ a t i o n s . ~  

If the  turbulent velocity and noise pressure are  correlated local ly 
(x" = x ' ) ,  the  expression simplifies t o  

since k$ = ki ,  k{ = kg. Directly at the  shock, x i  = 0 and the  r ight  
s ide simplifies further;  the integration can readily be carr ied out f o r  
isotropic turbulence, and a nonvanishing correlation w i l l  be obtained. 
Behind the  shock ( x i  > 0), the  exponential osc i l la tes  sinusoidally; f o r  
a given wave inclination the behavior is  essent ial ly  l i k e  cos Ckxi, 
where C is a constant. For xi very small, the cosine is  near unity 
over the s ignif icant  range of k (the range f o r  which [uu] >> 0 ) .  Kence 
the  correlation is  only s l igh t ly  diminished a t  small distances behind 
the  shock. A t  somewhat greater distances the  osci l la tory nature of the  
cosine begins t o  be f e l t  before [uu] dies out, and the correlation f a l l s  
off noticeably. Finally, a t  very large distances, cos Ckxi osc i l la tes  
over a great many periods as k covers i t s  important range, and the  plus 
and minus contributions t o  the  integral  cancel each other; thus a t  these 
large distances behind the  shock the  noise -turbulence correlation f a l l s  
t o  zero. 

Interaction of Turbulence with an Oblique Shock 

A l l  the  foregoing analysis m a y  be applied t o  an oblique shock by 
t rea t ing  the  l a t t e r  as a normal shock with a superposed cross-velocity 
which is t o  be ignored. The coordinate system shodd  be oriented so 
tha t  the xl-axis i s  normal t o  the oblique shock front  (on the downstream 

4~owever, eq. (43) is equivalent t o  tha t  which would resul t  from 
eq. (13) o r  (22,) upon replacing the pressure wave by a loca l ly  equiv- 
a lent  shear wave pa ra l l e l  t o  the actual  shear wave, as discussed i n  
r e f .  8. 
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side),  and the x2 and x3 axes l i e s  i n  the  shock front  with the  
x3-axis in  the  plane of the stream velocity vector and the xl-axis. The 
component of the  stream velocity i n  the xl direction is the  U veloc- 
i t y  of the  equivalent normal shock. From here on the analysis f o r  the  
normal-shock case may be applied. 

Ordinarily the turbulence spectrum tensor w i l l  be defined (as 'P ' 
13 ' say) in a system x i  x 1  x' with the  xi-axis alined with stream direc- 2' 3 

tion, and it w i l l  be necessary t o  transform @ij t o  the  new system 

x1,x2,x3. I f  the  shock angle of the  oblique shock is *, t he  primed and 
unprimed axes are  related according t o  the following scheme: 

where rij is the cosine of the angle between x i  and x The trans- 
j ' 

formation is effected by the formula 

x 1  
1 

x i  

Xi 

where the repeated indices i and j are  t o  be summed over. The diag- 
onal terms i n  the resul t  are  re la t ive ly  simple: 

2 2 %1 = q1 s i n  jr + @;is cos * - s i n  * COS $ 

X1 

r = s i n *  11 

rZ1 = 0 

- -COS $ r31 - 

@22 = @A2 (47 1 
2 2 $33 = @il cos 9 + s i n  $ + s i n  $ cos * 

The coordinate transf o m t i o n  whereby @ goes over in to  @m 
may be i l lu s t r a t ed  most simply by choosing 

Gij 
t o  correspond t o  iso- 

t ropic turbulence j in tha t  case, m i j  has the general form (e.  g., 
r e f .  12) 

X2 

r 12 = 0 

r22 = 1 

r32 = O 

X3 

r13 = COS * 
r23 = 0 

'33 = sin $ 
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Substitution in to  the f irst  of equations (47) yields 

GU = ~ ( k ' )  2 2 
l2 + kj2) s i n  t + (ki2 + ki2) cos t + akik; s i n  + cos 2 

s i n  $ + k i  cos 4 
In  the  preceding equations, ki ,  kk, kg are the components of the  

we-nmiber  vector i n  the  primed coordinate system; these are  related t o  
the  components kl, k2, k3 i n  the  unprimed system precisely as x i ,  xi, 
x i  a re  re la ted  t o  xl, x2, x3 in  equations (45). A s  a consequence 

equation (49) can be readily shown t o  reduce t o  

The corresponding element of equation (48) is 

Thus the tensor elements all and (Pi1 have the  same functional form, 
ref lec t ing  the  isotropic property of invariance under rotat ion of coor- 
dinates.  This par t icu lar  example of the coordinate rotat ion applied t o  
isotropic turbulence is  t r i v i a l  i n  that the  resul t  could have been written 
down in  advance wfthout recourse t o  the  transformation equation. Never- 
theless,  it i l l u s t r a t e s  the formal application of the transformation and, 
i n  addition, serves as a check on the  first of equations (47) in yielding 
the  required invariance. 

CALCULATIONS 

Numerical calculations have been carried out f o r  flows i n  which the  
turbulence incident on the shock is  (a)  isotropic and (b) strongly axi- 
symmetric. An account of the  isotropic case follows. The more compli- 
cated axisymmetric case adds l i t t l e  of in teres t  and i s  therefore l e f t  t o  
appendix C .  

Mean-Square Velocity Components i n  Turbulence Field 

The equations tha t  joint ly r e l a t e  the upstream (unprimed) and down- 
stream (primed) mean squares a re  



- - 2 2 - - 
v,2 + w12 = J' I s 12 sin 8 '  - sin 8 

2 
[uuldk - + v2 + w2 

cos 8 
(54) 

The first of these is  just  equation (14) with a = u; the last two resu l t  

from subst i tut ing in to  equations (31) the  expressions fo r  IxI2 and l Y I 2  
from appendix A.  So f a r  the equations have not been specialized t o  iso- 
t ropic  i n i t i a l  turbulence. 

When the  i n i t i a l  turbulence is isotropic ( i  . e . , has spherical sym- 
metry), i ts  longitudinal spec t ra l  density [uu] has the general form 
(e.g., r e f .  12, eq. (3.4.12)) 

2 [uu 1 = k%(k)cos 8 (55) 

where ~ ( k )  is .an arb i t ra ry  function of k. (F (k) w i l l  ultimately cancel 
out i n  forming ra t ios .  ) It i s  appropriate, then, t o  go over t o  a form of 
spherical polar coordinates 

k, = -k s i n  8 'I 

k3 = k cos 8 s i n  CP 

dk = k2 cos 8 ah: dcp d8 - I 
Equations (52) and (53) may now be written 

where the factor  of 2 and the l i m i t  31/2 r e su l t  from the symmetry i n  8. 

Division of (58) by (57) yields,  since $'/2cos38 dB = 2/3, 

-- -~5/2 2 
U ~ ~ / U ~ = : J  ~ S ~ ~ C O S ~ ' C O S  8 d 8  (59 



In  a rather  similar fashion, equation (363 yields 

-- -- 
IS I 'sin2@ ' cos B 

- - -  
where use has been made of the  i n i t i a l  isotropy uZ = v2 = 2, and f i n a l  - - 

2 axisymmetry v t 2  = w' . 
The t ransfer  function S in equations (59) and (60) is a measure 

of the  amplification of a s ingle  spectral  component i n  passing through 
the  shock; the  associated phase angle is Ss (not relevant here).  S, 
l i k e  the other t ransfer  functions, is  a complicated function of 8 t h a t  
does not lend i t s e l f  t o  analyt ic  integration. A numerical tabulation of 
S and Es against 8 is given in tables  I ( c )  t o  (k) f o r  the respective 
Mach numbers of 1.10, 1.25, 1.5, 2.0, 2.5, 3.0, 4.0, 6.0, and =; these 
tables  were used i n  conjunct ion with numerical integration t o  evaluate 
equations (57) and (58) . (S reduces t o  1 f o r  a l l  8 a t  M = 1. ) 

Mean-Square Temperature in Entropy Field 
-- -- 

2 2 The derivation of T ' 2 / ~ Z  is p a r a l l e l  t o  that of u '  /u , equation 
( 5 3 )  being replaced by equation (36). The r e su l t  is  (analog of eq. (59)) : 

The t ransfer  function T and the  associated phase angle 6~ (not r e l e -  
vant here) a re  tabulated against 8 i n  tables  ~ ( c )  t o  (k) f o r  the 
various Mach numbers. The tabulated values were used i n  the  numerical 
intekration of equation (61). 

Mean-Square Pressure i n  Noise Field 

Because of the  s imi lar i ty  of equations (34) and (36), the  mean- 
square pressure can be written down by inspection of equation (61): 

The integration has been performed numerically with use of the  defini-  
t i o n  of P in terms of il (appendix A )  and the  values of n against 8 
tabulated i n  tab les  ~ ( a )  t o  ( i ) ,  appropriate t o  x ;. Thus, the in te -  
g r a l  as evaluated re fers  t o  the  asymptotic mean-square pressure f a r  
behind the  shock. 



RESULXS AND DISCUSSION 

The re su l t s  of the calculations of the preceding section are  shown 
in  f igure 4 fo r  Mach numbers of 1 t o  "; t h i s  f igure evaluates the dis-  
turbance f i e l d  - both turbulence and noise - downstream of a shock when 
isotropic turbulence is  convected in to  the shock. The velocity pertur- 
bations, on a root -mean-square basis,  are  i n  percent of stream velocity 
ahead of the  shock (thus the  basis  i s  the  same on both sides of the 
shock); the  temperature and pressure perturbations a re  i n  percent of 
ambient behind the  shock.5 The velocity curves r e fe r  solely t o  the tu r -  
bulence component, the temperature curve t o  the entropy component, and 
the pressure curve t o  the noise component of the  f i e l d  behind the shock. 

The curves show tha t  isotropic turbulence i s  somewhat transformed 
in passing through a shock, the longitudinal and l a t e r a l  components no 
longer being equal; the select ive e f fec t  is, however, mild compared with 
tha t  of screens o r  wind-tunnel contractions (compare, e.g., r e f .  14).  
I n  addition, although the  incident flow was assumed i so therm1 and isen- 
tropic,  the downstream flow possesses an entropy spottiness, which is  a 
'frozen' convected pat tern l i k e  the  turbulence. The root-mean-square 
temperature associated with the entropy spottiness, i n  percent of ambient, 
i s  seen t o  be not much l e s s  than the  root-mean-square velocity of the 
i n i t i a l  turbulence, in percent of f r e e  stream. 

I n  the  theory the entropy spottiness is  spa t i a l ly  correlated with 
the longitudinal component of the turbulent velocity everywhere behind 
the shock. I n  pract ice it is t o  be expected tha t  the correlation w i l l  
soon be destroyed by eddy intermixing as the combined f i e lds  a re  con- 
vected downstream from the shock; t h i s  intermixing, being second order, 
i s  neglected i n  the  l inea r  theory. Directly at the shock t h e  noise pres- 
sure likewise is  correlated with the  longitudinal component of the tu r -  
bulent velocity. According t o  the  ea r l i e r  qual i ta t ive examination, 
however, t h i s  correlation f a l l s  off with distance behind the  shock, 
reaching zero f a r  back. 

%or the circumstances of f i g s .  4 and 5, namely, longitudinal com- 
ponent of i n i t i a l  turbulence equals 0 .1 percent of stream velocity, the 
dimensional quant i t ies  plot ted are  as follows i n  terms of the  nondimen- 
sional symbols used i n  the analysis: longitudinal velocity, percent 

-- 
i n i t i a l  stream velocity, 0.1 1\1- at era velocity, percent i n i t i a l  

stream velocity, 0 .1  qm; e, percent ambient, 0 .1  

pressure, percent ambient, 0 .1  



The peculiar hump i n  the curve of root-mean-square noise pressure 
against Mach number just  above M = 1 has commanded special  a t tent ion.  
I n  order t o  delineate the  shape accurately, additional numerical compu- 
ta t ions  (beyond those f o r  the other curves) were made at M = 1.05 and 
M = 1.01. These were supplemented by an analyt ical  study which estab- 

l ished that the curve varies l i k e  (M - 1) 1/4 as  M - t  1 from above, 
approaching the  l imit ing value of zero. The precise asymptotic expres- 
sion i s  

where the omitted next-higher-order term is  O((M - 1)3/4). 

Figure 4 applies when isotropic turbulence flows in to  the shock. 
Figure 5 (prepared from calculations described i n  appendix B )  applies 
when strongly axisymmetric turbulence flows in to  the shock; the  specif i -  
cations f o r  the  turbulence were taken from theoret ical  calculations of 
the  modifications i n  i n i t i a l l y  isotropic turbulence t h a t  has passed 
through damping screens and a wind-tunnel contraction ( r e f .  lo1 four 
screens, K = 2, M = 1.5) .  The calculated deviation from isotropy is 
based on idealized conditions and i s  probably an extreme upper l imi t  t o  
what might be encountered i n  a wind-tunnel t e s t  section. The longi- 
tudinal  component of the  incident turbulence is  the  same f o r  both f ig -  
ures - namely, 0 .1  percent of free-stream speed - but the l a t e r a l  com- 
ponent is  3.61 percent f o r  f igure 5 against 0 .1  percent ( isotropic)  f o r  
f igure 4. Despite the wide dispari ty  i n  the  l a t e r a l  component, however, 
comparison of the  two figures shows no great change i n  the  curves. 
Evidently the l a t e r a l  component of the turbulence flowing into the shock 
has littl'e effect ,  and the  in tens i ty  of t h e  remainder of the disturbance 
f i e l d  behind the shock depends almost solely on the longitudinal coqo-  
nent, regardless of the degree of anisotropy. The shock-induced change 
i n  the  l a t e r a l  component i t s e l f ,  however, depends on the deviation from 
isotropy, being appreciable f o r  the isotropic case and quite negligible 
f o r  the  extreme axisymmetric case. 

The noise generated by the  shock-turbulence interact ion is  measured 
by the  curves of root-mean-square pressure. This i s  best indicated by 
use of an acoustic scale as i n  f igure 6. Here the noise pressure l eve l  
is  plot ted i n  decibels above the  standard reference base of 0.000204 

. microbar f o r  several levels  of i n i t i a l  isotropic turbulence. According 
t o  the  preceding paragraph there would be l i t t l e  difference f o r  strongly 
axisymmetric turbulence of the same longitudinal intensi t ies ;  the d i f -  
ference between figures 4 and 5 corresponds t o  no more than 4 decibels 
a t  the  Mach numbers (1.5, 3, and ) f o r  which there a re  comparable data. 
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The reference s t a t i c  pressure behind the shock is  different  f o r  the 
two par ts  of figure 6. In  figure 6(a) the  ambient pressure behind the  
shock is constant with Mach number (1 atm): t h i s  s i tuat ion may be approx- 
imated i n  an ex i t  je t  of an a i r c ra f t  i n  f l i g h t .  In  f igure 6 (b) the stag- 
nation pressure ahead of the shock is  constant at  1 atmosphere, so tha t  
the s t a t i c  pressure behind the  shock diminishes markedly with increasing 
Mach number; t h i s  s i tuat ion is roughly character is t ic  of many wind- 
tunnel flows. It is seen tha t  even a t  a longitudinal component of tu r -  
bulence of 0.01 percent, the noise leve l  i s  severe, and a t  1 percent the 
noise leve l  exceeds 130 decibels, which is of the  order of the  threshold 
of pain, over much of the Mach number range. 

These remarks a l l  re fer  t o  the  asymptotic noise leve l  an "inf ini te"  
distance behind the  shock, since the  attenuating par t  of the  pressure 
waves has been neglected (in practice, t h i s  distance may be taken t o  be 
twice the longest significant wave length).  For an i n i t i a l  Mach number 
of 1.5, the noise l eve l  is  predicted t o  be some 17 decibels greater 
d i rec t ly  behind the shock where the attenuation is  n i l .  

The loca l  pressure l eve l  (proportional t o  the  energy density) of 
the noise f i e l d  i n  the region of shock-turbulence interaction is one 
aspect of the noise problem. Lighthi l l  ( r e f .  3) has investigated another 
aspect, namely, the f lux of acoustic energy radiated from the  interaction 
region as a resul t  of the convection of any specified volume of turbu- 
lence through a weak plane shock segment (1 d M d 1.3); the turbulence 
need not be homogeneous. The two quantities, energy density and f lux  of 
energy, are  not simply related unless the wave pat tern is  simple, f o r  
example, pa ra l l e l  plane waves or concentric spherical waves. 

CONCLUDING REMARKS 

The quantitative effects  of the  interaction of a convected homo- 
geneous f i e l d  of turbulence with an extended plane shock have been cal-  
culated, including the pressure l eve l  of the  noise generated i n  the 
process. The assumed conditions a re  closely approximated i n  a super- 
sonic wind tunnel o r  duct with a normal shock: tihe shock, together with 
i ts  a g e s  in  the walls ( i f  the  l a t t e r  a re  nearly para l le l ) ,  behaves 
substantially l ike  an extended plane shock f o r  the  purposes of the  
analysis.  The approximation is s t i l l  quite good f o r  plane oblique shocks 
fo r  tha t  portion of the  incident turbulence whose eddies a re  small com- 
pared with the tunnel diameter (spectral  wave length <<tunnel diameter), 
and probably f a i r l y  good even without t h i s  r e s t r i c t ion  on eddy size.  

The propulsive f ree  j e t  emitted by a turbojet,  ram-jet, or rocket 
engine is turbulent, but the turbulence is  f a r  from homogeneous. In 
addition, only loca l  segments of the  shock structure tha t  may occur a f t  
of the nozzle can be considered sensibly plane. The shock-interaction 
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noise generated by turbulent eddies smaller than such shock segments can 
perhaps by estimated from the curves presented here. Estimates of t h i s  
s o r t  r e f e r  t o  the  sound pressure l eve l  within the je t  and nearby outside; 
they provide no d i rec t  information on the sound pressure l eve l  f a r  from 
the  j e t  as a function of distance and direction, or  on the  t o t a l  acoustic 
power radiated by the  j e t .  

Lewis Fl ight  Propulsion Laboratory 
National Advisory Committee f o r  Aeronautics 

Cleveland, Ohio, June 3, 1954 



APPENDIX A 

The following symbols a re  used i n  t h i s  report: ( In  appendix B 
some a l te rna te  symbols a re  defined and used i n  cer ta in  pa r t s  .) 

a function defined i n  r e f .  2 

a* c r i t i c a l  speed of sound 

function defined i n  r e f .  2 

a rb i t ra ry  function of k 
2 2 

screen-effect function, G(@) = 
4a s i n  O + v2cos% 

4 sin20 + p2cos2@ 

~2~ contraction-effect function, H(@) = - 1 

'1 (c  sin2 o + cos20) 2 

dk_ 1 Jacobian of transformation from - k t o  kg ,  J1 = - - 
d k 1 - m  - 

Jacobian of transformation from - k t o  If", 
dk - J" = - - cos2eu ael 

2 aetl G" - m cos 8 '  

pressure drop screen coefficient,  K = dynamic pressure 

amplitude of k: k2 = kl 2 2 - + k Z 2 +  k32 = kl + kr 

r ad ia l  component of &, k, = -klcot 8 

wave-number vector, k = kl, k2, kg; also, & = kl, kr, 0 in 

cyl indrical  coordinates 

volume element in wave-number space, dk - = dkldk2dk3 

contraction parameter, Z1 = f i n a l  stream speed 
i n i t i a l  stream speed 

f i n a l  stream-tube width 
contraction parameter, Z 2  = initial stream-tube width 



M Mach number upstream of normal shock 

M, Mach number downstream of normal shock 
I 

r a t i o  of speeds before and a f t e r  shock, m = (Y + m 
2 + (y - 1 ) ~ 2  

N number of damping screens 

P t ransfer  function f o r  sound waves (pressure ef f ee t ) ,  

-2yJm ll sec e sec 0' P = (y + 1 ) m  - (r - 1 )  

pressure perturbation 
P mean s t a t i c  pressure 

R~ (5) perturbation - velocity correlation tensor (special case of 

c9 (53 ) 
r i j  direct  ion cosines 

S t ransfer  function f o r  shear waves, tabulated i n  tables  ~ ( c )  
t o  (k) (eq. in  ref ., 2 )  

T 2(y - l ) ( m  - 112 2 a tan e - 1)2 + (b tan  0) , 
6 [ ( Y  + l ) m  - (Y - 0 1  

T 
II 

t ransfer  function f o r  entropy waves (temperature effect  ) , 
T rn =Te i% 

U stream velocity downstream of shock 

u~ stream velocity upstream of shock 

u, v, w nondimens ional disturbance velocity components i n  direct  ions 
xl, x2, x3, respectively; 

components of velocity perturbat ion 
u, v, W = c r i t i c a l  speed of sound a* 

V cross-stream velocity (sketch ( c ) )  

vr disturbance velocity component i n  radia l  direction/a* 
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v disturbance veloc i t y  component i n  9 -direct ion/a* 
cP 

W resultant of U and V 

d w ~  
(complex ) wave amplitude i n  two-dimens ional f i e l d  

X i6, cos 8 '  
t ransfer  function, X = Se cos 

X - position vector, - x = Xi = X1' X23 X3 

t ransfer  function, Y = Se 26, s i n  6' ' 
s i n  6' 

(complex) wave amplitude associated with v, 

dZa (complex) wave amplitude associated with a 

dz 
cP 

(complex) wave amplitude associated with v 
cP 

at P may stand f o r  u, v, w, p, p, or  T 

a screen parameter, as - - s 
' - 'a2' f o r  ~ 3 1  

I t - K  

correlation of a and p a t  a separation < - 
Fourier transf o m  of s (c) ,  interpreted as  spectral  density 

of Z ( 0 )  

perturbation velocity spectrum tensor (special  case of [aplk) - 
r a t i o  of specific heats (taken as 1.4)  

phase angle of ]ZII (eq. i n  r e f .  2) 

phase angle of X and Y, tabulated i n  tables  ~ ( c )  t o  (k) 
(eq. in  r e f .  2) 

phase angle of T, tabulated i n  tables  ~ ( c )  t o  (k), 
N 

- 1 3l % = t an  
9 
o , < e < Z  

2 2 
contraction parameter, a = Z2/Z1 



0 shear-wave incliilation ahead of contraction, 

o = tan'' 2 t an  8 
G z  ) 

8 shear-wave inclination ahead of shock (see f i g .  3) 

8 ' shear-wave incl inat ion behind shock (see f i g .  3), 
-1 8 '  = tan (m tan 8 )  

8 " sound-wave incl inat ion behind shock (see f i g .  3),  

Z 
f-tan -1 tan ', o e 4 gCr 

1 -MZ 

c r i t i c a l  value of 8 f o r  which W = speed of sound 

wave-number vector, x = X1, X2, X3 

screen parameter, ~1 = 1 + as + K 

screen parameter, v = 1 + as - aSK 

A separation of two points, = 5 - 2 
6 

function tabulated i n  tab le  I (defined i n  r e f .  2) 

i 6  
t ransfer  function f o r  sound waves, = n e  

density perturbat ion 
mean density 

temperature perturbat ion 
T mean temperature 

-ll 
6 ~ h e  equation f o r  II i n  the range BCr Q 8 d - 2 is  given incorrectly 

i n  r e f .  2 .   h he correct eq. was, however, used i n  the calculations of 
t h a t  paper. ) The relevant par t  of eq. (38b) therein should be changed 
t o  read 

i n  the notation of that r e f .  



Qij(&) perturbation velocity spectrum tensor (special  case of [ a$] (k) )  - 

qP common longitude angle of wave normals #_, k, &', - k" i n  polar 
coordinates 

-ina/2 
&sin 8 '  

X t ransfer  function, x = Q cos 8 

t ransfer  function, 
N 

where 
IS e 1  

If acute angle between oblique shock and upstream flow direction 

Subscripts : 

a, I3 may stand fo r  u, v, w, p, p, or T 

i,j,m,n may stand fo r  1, 2, or 3; used t o  replace a and P when 
u, v, w are  replaced by ul, u2, u3, respectively 

Superscripts : 

39 complex conjugate 

I refracted shear-entropy wave 

I' s ound wave 

a distinguishing mark 



COMF'UTE VELOCITY SPECTRUM TENSORS 

The f irst  and the sum of the  second and t h i r d  diagonal terms of 
the spectrum tensors of the  velocity f i e l d  behind the shock are  obtained 
in the t e x t  by use of a simplified approach. Other terms a re  occasionally 
of interest ;  f o r  example, the  separate ~ a l u e s  of the second and t h i r d  
diagonal terms are  needed f o r  a description of anisotropic turbulence. 
The complete spectrum tensor f o r  each f i e l d  (turbulence and noise) w i l l  
be derived herein by a more comprehensive procedure. 

Turbulence f i e l d .  - It w i l l  be convenient t o  replace the  synibols u, 
v, w by ul, u2, ug, and t o  replace a and f3 by i, j, which take on 
the  values 1, 2, and 3 instead of u, v, and w. With t h i s  notation and 
the  use of equations ( 8 ) ,  equations (10) can be transformed t o  

By introduction of the geometric relat ions (figs. 1 and 2 )  

dZr = dZ1 tan 8 

tan e = -kl/$ 

cos [p = '"21% 
s i n  9 = k3/kr 

a l l  three equations may be represented by the single expression 

where 
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Multiplication of the complex conjugate of equation ( ~ 2 )  by the 

corresponding equation with subscript j and by k yields,  a f t e r  
averaging, 

Now, i f  i n  equation (15) the symbol f o r  the spectral  tensor is  
changed from ap t o  the more conventional symbol cB application t o  
equation ( ~ 3 )  yields ij ' 

The elements of the turbulence spectrum tensor Fij may be exhibited 
in  expanded matrix form: 
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The matrix i s  Hermitian; tha t  is, the  missing elements are  the complex 
conjugates of the respective elements diagonally opposite; t ha t  is, 
@*il = G ,  and SO for th .  

It can be shown, by use of the continuity relat ion kiGi = k .* i j = O  
(summed over repeated index), t ha t  a f t e r  some reduction 

i n  agreement with the second of equations (29). 

Noise f i e l d .  - With use of equations ( ~ l ) ,  the three equations (11) 
may be represented by the single expression 



where again the subscripts 1, 2, 3 replace u, v, w, and tili = 0 or 
1 as before. Star t ing with t h i s  equation the spectral  tensor @ Y j  may 
be derived i n  a straightforward manner by a p idced~re  p a r a l l e l  t o  tha t  
leading from equation (BZ) t o  (~4). The re su l t  i s  

X  h he valid range of t h i s  equation has been limited t o  eCr4  18 IQ z (~?l 3 t an  e,,) by use of the  simplification xi* = X*Y= 1 ~ 1 1 ~ 1 ,  which 

f a i l s  outside tha t  range. ) 

The eqanded form of equation ( ~ 6 )  i s  

The diagonal terms yield 

a;lakfl - = 1x1 2 @ll (25 

2 2 since k2 + kg = kr; these are  i n  agreement with equations (30). 



APPENDIX C 

CALCULATIONS FOR MISYMMETRIC INITIAL TURBtlIEHCE 

If the turbulence i n  the s e t t l i n g  chamber of a supersonic wind tun- 
ne l  is  considered t o  be isotropic,  by the time it reaches the working 
section it w i l l  be axisymmetric, with the longitudinal velocity pertur- 
bations very much l e s s  than the  l a t e r a l  perturbations; t he  change is due 
t o  the e f fec ts  of the damping screens and the  contraction ( re fs .  9, 13, 
and 14) .  The shock-interaction behavior f o r  a par t icu lar  case of extreme 
axisymmetry w i l l  be calculated herein as a matter of in t e re s t .  

According t o  reference 14 (with a s l igh t  change i n  notation), i f  the  
longitudinal spectral  density i n  the s e t t l i n g  chamber (s ta t ion A ' )  is 
written as 

[uu], = x%(x)cos2 0 (isotropic turbulence) 

then the longitudinal deasity i n  the working section (s tat ion A )  i s  
given by 

2 N 
[UU] = X%(X)COS OG (01 H(O) (axisymmetric turbulence) ( ~ 1 )  

where x is  the wave number at A ' ,  O is the associated wave inclina- 
t ion,  M is  the  number of damping screens, G(O) depends on the screen 
pressure-drop coefficient K, and H(Q) depends on the parameters Z1 
and Z2 defining the wind-tunnel contraction. (see appendix A fo r  the 
functional forms.) I n  what follows, N = 4, K = 2, Z1 = 24.92, and 
Z2 = 0.3186 .7 This s e t  of values corresponds ( i n  theory) t o  an axisym- 
metric turbulence a t  s ta t ion  A ( ju s t  upstream of the shock) such tha t  
the  root-mean-square l a t e r a l  velocity component is  36.1 times the root- 
mean-square longitudinal component (see tab le  I, p. 46, r e f .  14) . The 
r a t i o  3 6 . 1 t o  1 is clear ly an extreme deviation from isotropy. 

The ef fec ts  of the  changed form of [ u u l o n  the  integration procedure 
w i l l  be i l l u s t r a t ed  by considering the mean-square longitudinal velocity 
in the turbulence. The relevant equation is  531, with [uu] being given 
by equation ( ~ 1 ) .  From the  form of equation [ C l )  it w i l l  be convenient 
t o  carry out the  integrations i n  terms of 2 rather  than &; the t rans-  
formation is 

7 ~ h e  values of z1 and Z2 correspond t o  Mach numbers of 0.05 and 
1 .5  a t  s ta t ions A '  and A, respectively. I n  the calculations, however, 
these same values of Z1 and Z2 w i l l  be maintained even though the 
Mach number a t  A is varied, i n  order t o  maintain the turbulent spectrum 
unchanged. 
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1 dk = - - 2 d x = -  - x2dx dq coso d@ 
z1z2 212; 

Equation (35) then assumes the form 

- 
2 

( ~ 2 )  
The l a s t  two integrals  appear i n  the  expression f o r  uo, the  mean-square 
longitudinal velocity a t  s ta t ion  A ' (the expression is of the f orm of 
eq. (57)); thus, equation ( ~ 2 )  may be simplified t o  

The variable of integration may be changed from 0 t o  8 by means of 
the transformation 

2 
1 cos Q de dQ=-- 
4 cos28 

This r e su l t s  i n  the al ternate  form 

- 
3 2 cos28' N cos20 cos Q d8 

2 
Is1 7 G H -  

u cos 8 cos28 6 
0 

On numerical evaluation, the integrand of ( ~ 3 )  was found t o  have a 
sharp peak near the upper l imit ,  and tha t  of ( ~ 4 )  a sharp peak a t  the 
origin.  The peaks were avoided by dividing the  range of numerical inte-  
gration among the two equations : (C3) was used over the range 0 I< 0 6 Q1 
and ( ~ 4 )  was used over the range 5' ,< 8 g go0, where Q1 is the value 
of O corresponding t o  8 = 5'. 
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TABLE I. - WAVE ANGLES AND TRANSFER FUNCTIONS 

(a )  M = 1.01 (m = 1.01669) (abbreviated table) 



4 4 NACA TN 3255 

TABLE I. - Continued. WAVE ANGLES AND TRANSm 

FUNCTIONS 

(b) M = 1.05 (m = 1.08398) (abbreviated tab le)  
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TABU I. - Continued. WAVE ANGUS AND TRANSFER FUNCTIONS 

(c )  M = 1.10 (m = 1.16908) 

*These values apply f o r  x = 0 only. For x = -,,values 
should be replaced by 0. A l l  other values a re  inde- 
pendent of x. 



4 6 NACA TN 3255 

TABLE I. - Continued. WAVE ANGLES AND TRANSFER FUNCTIONS 

(d) M = 1.25 (m = 1.42857) 

*These values apply for x = 0 only. For x = -, values should 
be replaced by 0. All other values are independent of x. 
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TmLE I. - Continued. WAVE ANGLF,S AND TRANSFER FUNCTIOXS 

(e) M = 1.5 (m = 1.86207) 

%ese values apply for x = 0 only. For x = -, values should be replaced 
by 0. All other values are independent of x. 
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TABLE I. - Continued. WAVE ANGLES AND TRANSFER FUNCTIONS 

( f )  M = 2.0 (m = 2,66667) 

*These values apply f o r  x = 0 only. For x = W, values should be 
replaced by 0. A 1 1  other values a re  independent of x. 
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TABU I. - Continued. WAVE ANGUS AND TRANSFER FUNCTIONS 

( g )  M = 2.5 (m = 3.33333) 

*These values apply f o r  x = 0 only. For x = m, values should be re-  
placed by 0. A l l  other values a r e  independent of x. 
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TABU I. - Continued. WAVE ANGLES AND TRANSFER FUNCTIONS 

(h) M = 3.0 (m = 3.85714) 

"rhese values apply f o r  x = 0 only. For x = -, values should be replaced 
by 0. A l l  other values a r e  independent of x. 
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TABU I. - Continued. WAVE ANGLES AND TRANSFER FUNCTIONS 

(i) M = 4.0 (m = 4.57143) 

These values apply for x = 0 only. For x = 0, values should be re- 
placed by 0. All other values are independent of x. 
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TABLE I. - Continued. WAVE ANGLES AND TRANSFER FUNCTIONS 

(j) M = 6.0 (m = 5.26829) 

qhese values apply for x = 0 only. For x = wt  values should be 
replaced by 0.  All other values are independent of x. 
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TABLE I. - Concluded. WAVE ABGI;ES AND TRANSFER FUNCTIONS 

(k) M = (m = 6.00000) 

*These values apply for x = 0 only. For x = a, values should be 
replaced by 0. All other values are independent of x. 
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X1 
Figure 1. - Perspective view of shear wave i n  relation t o  reference frame. 
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Figure 2. - Projective view of shear wave in 
relation to reference frame. 
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Shear- 
entropy 
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Figure 3. - Interaction of shear wave with shock: view i n  xl,r-plane. 



Figure 4. - Disturbances produced behind shock by interaction with isotropic turbulence. Turbulent 
intensity just before shock, 0.lpercent. Rms velocity in percent of initial stream velocity; 
nus temperature and pressure in percent of ambient. 
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Figure 5. - Disturbances produced behind shock by interaction with strongly axisymmetric turbulence. 
Longitudinal intensity, 0.1 percent; lateral intensity is 3.61 percent just before shock. Fh~s 
velocity in percent of initial stream velocity; rms temperature and pressure in percent of ambient. 
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Figure 6. - Noise generated by shock-turbulence interaction (isotropic turbulence). 



N
A

CA
 
TN 

3
2

5
5

 




