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GENERALIZED INDICIAL FORCES ON

RECTANGULAR

By Harvard
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eforming

WINGS IN SUPERSONIC FLIGHT

I#maxj Franklyn B. Fuller,
and Loma Sluder

A ?qethodis presented for determining the time-dependentflow over
a rectangular ~tingmoving with a supersonic forward speed and undergoing
smaU vertical distortions expressible as polynomials involving spanwise
and chordwisd’distances. The solution for the velocity potential is
presented in a form analogous to that for steady supersonic flow hating
the familiar “reflected area” concept discoveredby Evvard. Particular
attention is paid to indicial-typemotions and results are expressed in
terms of generalized indicial forces. Numerical results for lkch numlkrs
equal to 1.1 and 1.2 are given for polynomials of the first and fifth
degree in the chordwise and spanwise directions, respectively, on a wing
having an aspect ratio of 4.

INTROIKJCTION

One of the basic problems arising in the analysis of wing flutter
boundaries is the calculation of the aerodynamic forces on wings under-
going smalJ but arbitrary spanwise and chordwise distortions. When the
wing aspect ratio is large (actually,when the distance between spanwise
nodal lines is large), these forces are usually estimated %y some strip
theory in which the loading on each spanwise section is approximated
from that on a two-dimensionalwing having the same chordwise distortion.
This report is concerned with low-aspect-ratio rectanguhr wings for
which tip effects are important and the J?UU three-dimensional theory
must be used.

The exact linearized solution for the forces on thin rectangular

F

wi s limited, however, to the range where effective aspect ratio
( M2-1 A) is > 1) traveling at supersonic speeds has been presented %y
both Gardner (;ef. 1) and Miles (refs. 2 and 3) in terms of nmltiple
integrals involving arbitrary surface undulations. However, the use of
such solutions in evaluating, numerically say, the forces induced by
specific wing distortions still.presents some difficulties. It is the
purpose of this report to discuss certain techniques that can simplify
the labor involved in these calculations and to present numerical tables

— .- . - ____ -- .—— -- —.—-



2 NACA TN 3286

for the forces inducedby a class of surface deformations, a class gen-
eral enough to represent the first few mode shapes of rectangular
plates.

Mathematically the problem is to find and analyze a solution to the
four-dimensional wave equation

(la)

(where ~ is the speedof sound, t’ is the time, and x,y,z are space
coordinates) that satisfies the appropriate boundary conditions. The
particular form of the solution to be analyzed differs from those pre-
sented by Gardner and Miles but its development is based on the method
due to Gardner.

H&damard (ref. 4) studied a generalized form of equation (la) in
which the number of dimensions was arbitrary. His solutions to these
generalized equations are fundamentally different, depending on whether
the total ntier of dimensions is odd or even. In fact, the methods
Hadamard developed apply directly only to equations for which the total
nmiber of dimensions is odd. Solutions for the even cases (such as
eq. (la)) are determined by a %&hod of descent”; that is, the solution
for the next higher odd-dimensioned equation is found and then reduced
by (made independent of) one Umension. It is apparent, however, that
such a technique is in itself by no means unique. T’hUS, Hadamard found
the solution to equation (la) by descending from a solution to the
eqution

(lb)

but there are many other partial differential equations and groups of
partial differential equations governing a five-dimensional (x,y,z,.5j,t)
space all of which satisfy equation (la) in a plane ~ = constant.
Gardner discovered a set of equations containing equation (la) in a
5 = constant plane which are simpler than equation (la) in that solu-
tions couldbe found and adapted to the boundsry conditions for time-
dependent motion by methods well.kncmm to aerodynamicistswho have
studied the flow about wings in steady supersonic flight. This is the
essential part of Gardnerrs contribution and it represents the tech-
nique upon which the development of the solution presented in this
report is based. Actually, Gardner first applied a Lorentz transforma-
tion to equation (la) and then used his method outlined above. The
application of such a transformation is unnecessary and has the dis-
advantage that the resulting coordinates have lost their direct physical

.

——



3]~AcA~ 3286

significance. We will
equation (la) and then

apply Gardner~s method of descent directly to
proceed to analyze the solutions so obtained.

In order to simplify the analysis as much as possible, we will
limit solutions to the plane of the wing, and, further, consider only
indicial-typeboundary conditions; in other words, unsteady motions in
which the wing attains instantaneously,at time zero, a certain span-
wise and chordwise distortion which is thereafter fixed. It is well
kno~m that the transient respnses to these indicial motions can be used,
in a superposition integral, to obtain responses to many other types of
unsteady motion; in particular, responses to the harmonic oscillations
of nonrigid wings.

Finally, the principal interpretation of the results will be made
in terms of generalized forces, since these can be used directly in
either flutter or gust studies, and it will be shmm that the amount of
labor required to calculate such forces is reduced by using reciprocity
relations derived from the

LIST

general theorems presented in reference 5.

OF IMPORTANT SYMBOLS

A

%

aZn

B(pjq)

B1-.xz(p)q)

c(xl,y~)

c%’

Cm

aspect ratio

speed of sound

amplitude of indicial-do~mwash distribution (See eq. (2a).)

beta function (See eq. (B15a).)

incomplete beta function (See eq. (Bl%).)

influence function for effect of side edge (See eq. (AIO).)

liftlift coefficient,—
(@

indicial lift coefficient due to angle-of-attack change,

&L
without pitching, C& = —

indicial lift coefficient due to pitching for a wing rotating

acL
about its leading edge, CL = —

q Ibq qa

pitching-moment coefficient, positive when trailing edge

tends to sink relative to leading edge, moment

qosc

—e ..—.-—.——— —— . ...... —.———— .—— —
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%
r

c

Fj:(t)

f;:(t)

h(xjy,t)

M

AP
~

(J

n

~

%3

q~

%

R.P.

r.

‘1

rc

indicial pitching-moment coefficient due to angle-of-attack
change (without pitching) measured about the leading edgey

indicial ~itchiuz-moment coefficient due to pitching measured
about t~e lead& edge for a wing rotati~-about its lead-

ing edge,

wing chord

generalized

generalized

distance of

indicial force coefficient (See eq. (36). )

indicial force coefficient (See eq. (37).)

wing camber line from z = O p~e

Mach nuniber

loading coefficient (pressure on the lower surface minus
pressure on the upper surface dividedby free-stream
-c pressure)

()
binominal coefficient, ~ =

n!

m! (n-m)!

.

dimensionless rate of pitching,~

free-stream

generalized

generalized
dinate qr

real part of

Uo

-c pressure, $JJ02

coordinate

force corresponding to the generalized coor-

J (x-x=)’+ (Y-YIP
.

J (X-X,)2+ (Y+Y,)2

J (X-xl)z- 132(Y-Y=)2

.

‘L.

———...— —.— —- .



NACA TN 3286 5

wing semispn

wing area

area of acoustic plan form

area of reflected acoustic plan form

aotf ,

time

~
c

x+Mt

P

wing kinetic energy

wing potential energy

forward speed of wing

vertical velocity

Cartesian coordinates, fixed relative to the fluid at
infinity

coordinates with origin on center of wing leading edge
(See sketch (Z).)

coordinates with origin on center of wing leading edge at
time zero (See sketch (n).)

Mx+t
P

;(xP/G=F)

. ... .. ,——-. — —.— —.— —



NACATN 3286

angle of attack (angle between flight path and plane of
wing), radians

~

wing angle of pitch relative to horizontal, positive when
trailing edge lies below leading edge,

coordinate measuring fifth dimension

free-stream density

velocity potential

portion of velocity potential inducedby
plan form

portion of velocity potential inducedby
edge

radians

sources in acoustic

presence of side

potential function in five-dhensional space
\)

Subscripts

regions inan x,~ plane (See sketch (d).)

upper side of wing, z = O+

singularity (e.g., source) position

1,11,...VIII regions on wing sho~m in figure 1

S~ OF THE PROBLEM

The Governing Equation

Assuming a wing!s vertical.motion is of such a nature that the
velocities induced in the fluid are sma13 relative to the magnitude of
the wing’s steady fofimrd motion, the normalized formof equation (la)

.

(lC)

J.
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where t = ~tt, can be used as the governing partial differential equa-
tion of the flow field. This equation applies to the determination of
the velocity potential when the body or wing in question moves through
the fluid, the axes remaining f3_xedwith respect to the still.fluid
infinitely distant from the origin. For convenience we place the wing
leading edge on the y axis at t = O and the side edge on the x
axis. The wing flies at a constant forward (in the negative x direc-
tion) speed so at subsequent times the
x = -Mt, where M is the Wch nunberj
the x axis as shown in sketch (a).

The Boundary Conditions

The fluid velocity normal to the
surface of a solid mo&g in a friction-
less fluid must be zero. If the equa-
tion of the solidls surface is repre-
sented by

G(x,y,z,t?) = O

this boundary condition can be expressed

leadirigedge lies along the line
and the side edge moves along

r Xr -Mf

Sketch (a)
mathematically, in terms of the coordinate system used in equation (lc)y
as

Consider a thin surface near the z = O plane. The equation of the
camber line of this surface csm then be expressed in the form

G(x,y,z,t’) = Z - h(x,y,t’) = O

and, assuming that thickness and lifting effects can be separated lin-
early, the boundary condition for the camber line becomes

If the derivatives of h tith respect to each of the coordinates are
small, the two middle terms can be neglected and the expression for the
boundary condition reduces to

*%ag I Wu(x,y,t’)
at’ az24 =

.

_— — .—-.—- —— - ——--—



8 NACA TN 3286

We wish to simulate a rectangular wing deformed indiciall.yby bend-
.

ing in the spanwise,and chordwise directions. For this purpose, on the
portion of the z = O plane occupied by the wing plan form, the vertical
velocity, which determines the wing shape according to the pretious
equation, is assumed to have the form .

f
0. t<o

where c is chord length, al= is a constant and Z and n are
integers ~ O.

.
The expression (x+Mt)~ is used so that for 7 > 0 the tangent

to the wing caniberline at the leading edge is tangent to the flight-path
angle of the leading edge. Consider, for example, the case Z = 1, n = O. .—
‘Thedo~mwash

Wu =~(x+Mt)

represents an infinite class of

%0h(x,y,t) =—
2CU0

surface shapes having

[(X + Mt)2 + f(x,y)]

.

where f(x,y) is an arbitrary function and h is, by

the form

(2)

definition, the
distance of the wing~s caniberline from the z = O p&ne. Since; within
the accuracy of linearized theory, the solution for the flow about the
wing depends only upon the value of wu(x,y,t), the loading on all.the
wings represented by the above equation is the same.

Let us inspect the two special cases

(i) f(x,y) = -X2

For case (i)

(ii) f(x,y) =0

h(x,y,t) =~(&t+Mt2)

.
.—. ——— — ——. — ———. ——
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and the wing is a flat plate pitching at a uniform rate about its lead-
ing edge which is following the flight path

as shownl in sketch
path of the leading

A

z
t=o

P c

(b). Hence, at time t the tangent to the flight
edge is

flight path of/ ;
feuding edge I’71-h -0’0

%2!&
\ c

.
Sketch (b)

\

d(h)~/dt’ =a=ot

-U. c

The slope of the leading edge of the plate at the same time is ‘

and the two slopes are seen to be equivalent.

For case (ii)

h(x,y,t) = ~ (X + Mt)2
o

%he z scale in both sketches (b) and (c) is purposely distorted
in order to make the drawings clear. A basic assumption used in setting
up the boundary-value problem, by means of which the loading was deter-
mined, was that the surface of the wing must remain near the 2=0 plane.

—.—.. ..——.— —..— — — .— .— -.
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and
t =

the wing is a
O, a shape it

d
z

t= o

lwcll Tlv 3286

plate which obtained a sudden parabolic camber at
maintained thereafter as shown2 in sketch (c).

L I& DILdwxko”
-c *C -c --c

< -
x -0’0”

*. o at Ieoding edge
Lit

Sketch (c)

The problem is linear, so it will be sufficient to determine a
solution for arbitrary Z andn, and then add
tion of terms as desired. Thus, the complete
be studied are

Wu(x,y,t) =

over the wing plan form,
ing portion of the plane

ml—
I

results for any combina-
boundary conditions to

and, since the loading

=0 off the wing
dt Iz~

since the loading is given by

AP

()

4 a9—.
~=U~ atz+

SOLlJ7ZONFOR THE FOTENTUiL

(2a)

is zero over the remain-

(a)

Figure 1 shows the wing plan form on the surface of which the
potential is required, together with the system of axes; also, traces
in the z = O plane of the wave system set up by the indicial motion of
the wing are indicated. The wave pattern for only two edges is shown;

2See footnote 1 on p. 9. “

...—
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the flight speed is supersonic so the trailing edge has no effect on
the velocities induced over the wing surface, and the results are valid
(in their entirety) only for &l ~ 1, so the opposite edge either has
no effect or one that can be incorporated by s@le superposition.

The wave traces divide the wing area into several regions, indicated
by the Roman numerals, in each of which the analytical formulation for
the potential is different. Region I consists of that part of the wing
where the effect of neither the side edge nor leading edge has yet been
felt. In region II, the side-edge influence is acting (the line y = t
is the trace of the starting cylindrical wave from the side edge y = o)
but not the leading edge. Region III is the part within the starting
cylindrical wave from the leading edge, but outside the influence of the

“ side edge. ‘Thisregion, and region V, are further subdivided for reasons
that will appear later. Region IV is a compound region; potential there
can be found by adding the potentials for regions II and III and sub-
tracting the potential for region I. Region V consists of the portion
of the wing within the spherical wave originating at the wing corner.
The flow over the part of the wing comprising regions VI andVII has
reached a steady state relative to a point on the wing, and the poten-
tial.there is just that for the corresponding parts of a rectangular
wing with the proper dowmmsh distribution in steady motion. Finally,
region VIII is again a composite region, its potential being the sum of
potentials for regions III and VII less the potential for region VI.

All the regions just listed, with the exception of region V, are
actually governed by the three- (total) dimensional wave equation and
the potential therein could be obtained by methods applicable to this
simpler equation. However, in this report we shall present a unified
approach and the problem will be solved by the same method in all
regions.

Review of Kirchhoff~s Formula

The solutions developed in the subsequent sections are more clearly
interpretable if they are compared with certain known results that have
already been determined for the indicial motion of nonlifting tings with
symmetrical thickness distributions or lifting surfaces with all super-
sonic edges. The purpose of this ~ection is simply to review briefly
some of these latter results.

As in steady-statewing theory, there is a formula for time- -
dependent flows that relates the velocity potential to a distribution
of time-dependent sources and doublets over a certain region in the
wing plane. This formula is due to Kirchhoff, and some of its aero-
dynamic uses are discussed in reference 6. Kirchhoff9s result is

-. .—.—— —— —



12 NACA TN 3286

immediately applicable in the study of titeady lifting-surface problems
when the potential can %e represented by sources alone, that is, when
the upper and lower surfaces of the wing do not interact, as is the case
in regions I, III, andVI of figure 1.

Kirchhoff~s formula for source distributions canbe written

Q(x,y,o,t) = -*
If

[%1— % W1r.
Sa

where

(3)

r.2 = (x - X=)2 + (y - YJ2

The brackets on ~ indicate that the retarded value is to be taken

[W] = wu(x=jylyt-ro)

and Sa indicates that the region of integration is the acoustic plan
form corresponding to the event (x,y,O,t). These concepts are discussed
at length in reference 6.

As has been pointed out, equation (3) holds for each of the regions
I, III, and VI, %ut the area of integration Sa differs considerably
from one of these regions to another. Consider, for exsmple, the deter-
mination of q for region III, denoted ~ll. Fart of the boundary of
the acoustic plan form & is foundby eliminating T between the
equation of the

which gives the
that, operating

leading edge, x= = -MT, and the expression

(x - X=)2 + (y - y=)2 = (t - T)2

outer boundary, at “time” t, of all the disturbances
at “time” T, can produce an effect at the point (x,y).

This-boundary is the ellipse

( )
lx=-%

2

+ (Y - Y=)2 = %2
M

where

(4a)

—————.—. —. —



NACA TN 3286 13

If the point (x,y) lies within the cylindrical wave from the leading
edge, that is, -t<x< t, the ellipse of equation (~) comprises only
part of the acoustic plan form, the remainder being boundedby so much
of the circle

(x -x=)2 +(y - y=)%ta (kb)

as lies on the wing at time zero. Sketch (d) shows the three possible
acoustic plan forms for points in region III. The limits for the three
types are

(i)t>x>o

(ii) 0> x2-t/’M

(iii) -t/’M> x > -t

1-
—.
h-

\

/l

%-

1

\ x) = “ Mt
L —--- - --

-.. = ~ ;/M

.................... L

z!- -F- xc-”:--:t
1 I

x,
(x-xfEy-@e

Sketch (d)

and these correspond to the subregions IIIa) IIIbj
in figure 1. Using equation (3), we can write the

and IIIC identified
potential in, say,

,

. ..———— .— _.— — —.- -—. —
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region IIIa as

y+t x+&-(y-yJ2

‘Lq ~[%] ~=+
%1~ = - %

y-t x- t2-(Y-Y=)2

y+A/zzF X=(Y-YJ
1 1 w= J’ [%1 ~
G

Y&G= x-Jt’-(y-y=)2 ‘0 1

(5)

where

P
Xl(y - y=) .: ~ - %2- (y-y=)’2

1

Gardner’s Method of Descent

Equation (1) governs a four-dimensional x,y,z,t space. Our object,
of course, is to find for this equation a solution that satisfies the
boundary conditions in the z = O plane as specified in equations (2a)
and (2b). Obviouslyj we can always construct a space of more dimensions
governed in an arbitrary way except that it must satisfy equation (1) in
an x,y,z,t hyperplane. Then, if a solution in this higher dimensional
space which satisfies equations (2a) and (2b) in the x,y,z,t plane can
be found, it represents for ~ (the additional dimension) equal to some
constint the solution to our problem. This characterizes the method of
descent. It is not obvious, of course, that such a method leads to any
simplification;but, with a proper choice of the governing equation for
the new space, such a possibility always exists.

There are examples where various applications of this method have
proved to be useful. Hadamard~s use of the method, mentioned in the
introduction, is classical. A simple application of his method is the
derivation of the velocity potential for a source in a two-dimensional
supersonic flow field. This potential field (which amounts to a step
function, the step occuxring at the Mach wave) is easy to derive if one
considers a three-~ensional field with a line of sources normal to the
free stream and uniform in strength. The two-dimensional field mentioned
above follows immediatelyby descent. .

In other examples the additional dimension is measued with imagi-
~ n~bers and the additional law for the extended space is the

.
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requirement that the functional dependence on the resulting complex
vaxiable shall be analytic. The method of descending in the latter
case is associated with the study of analytic continuation. In partic-
ular, Rieszts method (discussedinref. 7) for solving equation (1)
illustrates these concepts.

Gardnerts method for solving equation (1) is to define a five-
dimensional space in which a potential function $ is governed by the
equations

(6a)

(6b)

and show that solutions to equations (6) in this space are general
enough to contain general solutions to equation (1) in a plane
E = constant. We shall, therefore, proceed by analyzing these equa-
tions and eventually let ~ approach a plane in which the boundary
conditions of equations (2a) and (2b) are satisfied. For convenience,
the latter plane is taken to be the ~ = O plane.

Since equations (6a) and (6b) are linear, a number of possibili-
ties exist for the choice of the dependent variable $(x,y,z,O,t).
Aside from the more obvious choice v(x,y,z,O,t) =~(x,y,z,t), where Q
is the velocity potential of equation (l); for example, one could let
*(x)YjzlO,*) =qx(x,y)z)t) or again, ~~(x,y,z,o,t) =q(x,y,z,t). These
various choices mount only to relatively minor differences in the
detailed technique of the subsequent analysis. If, in imposing the
boundary conditions of equations (2), one is to use only source-@pe
solutions for both equations (6a) and (6b), the last choice is suffi-
cient. Therefore, set

[
: *(x,y,z,&t)

1
= ql(x,y,z,t)

E.=o
(7)

NOW differentiate equation (6a) with respect to z and set3 z=O.

‘It can be shown that the solution satisfies the equation

{[

Mm Mm
-0 g+o Vg(w)%w)

11

lm q(x,y,z,t)
= Z+o

{[
‘ ~l+moZgo **(XYY)GW)

1}

. —...—..——.— — —— —. ————— —
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W
w(E,xjy,t) =—

Iaz z=o

equation (6a) can be expressed in the form

Wtt - w= -wEE=O

(8)

(9)

and the boundary conditions for equation (9) are given directly by equa-
tions (2). Thus on the wing

(lOa)

and off the wing

.

aw
Iz @ = 9J%Y,o,t) = o (lob)

AssuminR eauation [9) to have %een solved for the boundary condi-
tions given.~y &p3tioti-(10),
partial differential eptions

we return to the second of the set of
(6), specific~,

.

-$22=0

From equation
yields the result.

yl
I

(8), it is seen that the “solutionto equation (9)

= lmown function of y,~ on the wing
dzI~+

Further, the boundary conditions for the original-problem in (x,y,z,k,t)
space require that 9 be an odd function with respect to z, and con-
tinuous across the z = O plane except over the wing plan form. Thus ~

..

-.
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must le zero for z = O except over the wing plan form. The continuation
of this condition into (x,y,zj~,t) space then implies, according to equa-
tion (7), that off the wing

Hence, both the second partial differential equation and its lmundary
conditions are identical in form to the first set givenby equations (9)
and (10), respectively. Applying equation (7) to their dual solution,
we obtain the desired result

.

[ 1
& *(x,y,o,E,t) =q(x,y,o,t)

E=0

for the potential
unsteady motion.

on a rectmgular ting (with 13A21) in supersonic

The General Expression for the Potential

.*

The method outlined in the preceding section will nowbe applied
to obtain integral expressions for the potential in any region of the
rectangular wing shown in figure 1. Consider first equation (9) for
W(g,x,t). This equation is the same partial differential equation as
that which governs supersonic steady flow. Further, the boundary values
in the ~,x,t space are identical to
those representing a thin planar wing
in a steady supersonic flow. Since the
Mach number in the steady-flow analog
is ~, the equivalent plan form of
this wing (sho~m in sketch (e)) is a
sweptforwardwing tip having all super-
sonic edges (i.e., the-n= of the
free-stream veloci~ normal to all edges
is supersonic).

Since all edges of the equivalent
/

wing plan form me supersonic, the
solution for W can be written imme-
diately in terms of “sources” only,
their strength being givenby equa-
tion (lOa). Thus, by analogy with
the well-known results of supersonic’

Sketch (e)

.————.—. - --— . -— . —.—
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wing theory, we have

,
NACA TN 3286

1 wu(x=+Mt=,y)dxldtl
w(E)x,t) = - *

T %At-tl)v-(x-xl)=

“(u)

where T is the area on the wing cut out by the forecone from the
point (~,x,t), see sketch (e). The analytic formof W wil-1differ
considerably in each of the three regions above the equivalent wing

-m41—4

//

I
I

\

\

Sketch (f)

T!’hevalue of W given by
equation (U.) now”beco~s a bound-
ary condition for the solution of
equation (6b). Thus, over the
portion of the z=O plane for which
y >0, 5?0, the variation of

av
is now knam and for

y <0, E~O the condition

at
= O applies. (These condi-

X z~

tions are still not sufficient to
determine a unique solution unless
the further restriction is hposed
that the loading falls to zero as
the edge y = O is approached,
i.e., as y+o-t-.) Again we obsene
that these boundary conditions and
the partial differential equa-
tion (6b) are identical to those
studied in connection with a sta-
tionary planar wing in a supersonic

stresm. As shown in sketch (f), solutions from the t,x,~ space above
the ~ = O plane are referred to as ‘A) WB> and Wc> depending on the
relation between x and ~ in a t = constant plane. Sketch (g) shows
the five different boundary-value problems formed by the various com-
binations of WA, WBj and Wc occurring along co~tant x lines in the
x,E plane; and the correspondingregions in figure 1 for which each
applies. Each of these five problems is directly analogous to the
boundary-value problem encountered in steady-state lifting-suxl?ace .
theory, of a planar, rectangdar lifting surface in a steady supersonic
stream. The “leading edges” of thes
lie along the lines ~= = t, ~= = &WgOus ‘e$en&ws%t-xor5==
value of x, and the “side edgen lies along the line y = O. Hence, by
means of this steady-flow analog, we can immediately write the solution

—.—
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/
/

(1) x z t; for regions 19 Z
A

46

/

19

to equation (6b) in the form

*(x,y,o,g,t) =

1 U W(x,yl&,t)d@Y=.—
IT AE-q)2- (Y-YJ2

(12)

a

where only the area of integration u
must %e discussed.

Two possibilities exist for the
shape of U. First, if the point
g, y lies to the right of the dashed
lines in sketch (g), which in the
analogous steady-flow problem repre-
sent the traces of the Mach cones
from the leading-edge tips, a is the
triangular area pho~m (for region
II&) in sketch (h) part (i). If
however, ~, y lies between this line
and the side edge, y = O, a is the
trapezoidal area shown (for region Va)
in sketch (h) part (ii). The latter
is a well-known result used in steady
supersonic lifting-surface theory and

\

-Mtsxs-t; 32Z,ZU ‘i
Sketch (g)

4
(u O<x<f , y> f

+6/

Sketch (h)

—.—.. —.. —_ . .——— —— —- — .—— —-
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first developed by Evvard (ref. 8). The d.itisionof the five kinds of
problems illustrated in sketch (g) into the final twelve, represented by
the regions in figure 1, is brought about by the various ccmibinationsof
WA, ~~, and WC that can occur in the area a as the point ~, y assumes
all necessary values on the wing.

When ~ has been determined, the potential in the physical plane is
foundby equation (7), or, combining equations (n) and (12),

q(x,y,o,t) =

A detailed analysis of equation (13) for a point x,y,t in region
Va Of figure 1 is given in Appendix A, and a study of this analysis

enables one to write the results for all regions without difficulty. ~

Interpretation of the Results

The results of the rather involved analysis given in Appendix A
can be interpreted in terms of the kno~m solutions for simpler boundary
conditions. These latter solutions have already been reviewed in a
previous section in which it was shown that the potential on a lifting
surface with all supersonic edges can be written in

[J [Wu]ax~ayl
q(x,y,o,t) = J&

r.
Sa

From Appendix A it is found that the potential at a

the form

point
lar lifting surface can always be expressed as the sum of

q(x,y,o,t) = (2)(X,y,o,t)q(=) (x,y,o,t) - q

4=)(X,Y,03
[J

[~’$1ldx=m=
t) =-:

%
Sa

J2)(x,y,o,t) = - *
JI

c(x=,YJd@Yl

Sc

on a rectangu-
two parts

(14)

where

(us)

and

—— .—
.
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The value of C(x=,yz) is givenly eqwtion (~o) ~
areas of integration, Sa and Sc, are illustrated for
I through VIII in figure 2.

Let us first inspect equations (15) in light of

21

Appendix A and the
the various regions

their possible
analo~ with the familiar solution for the steady-state, rectangular
lifting surface. If a rectangular wing having =bitrary twist and caniber
is placed in a steady supersonic flow, the solution for the potential on
its surface can also be expressed as the sum of two parts

q(x,y,o) = C@(x,y,o) - J2+GYYO)

where, if

rc2= (X-xl) z-pz(y-y=)z

!J=)(X,y,o) =

and

q(=)(X,y,o) =

These equations can be construed in
the folJowing simple way: Equation

(16)

1 JTW#wl--
1-c rc

s=

1 JTW@ldy-—
II rc

(17-b)

S2

Ju

(17a) represents the potential induced x \
at x,yjO by a distribution of

\
sources over the wing plan form, each
source having a strength proportional
to the local streamwise slope of the
upper surface. The area S1, as
shown in sketch (i), is the portion
of the wing within the Mach forecone
from x,y,O. Equation (17b) has a
similar interpretation; it also rep-
resents a distribution of sources
over the wing, each having a strength
proportional to the local slope of \
the upper surface. But the area of
integration S2 is now that portion

\’

of the wing within the Mach forecone \

from the point x,-y,O; that is, v

“ (17a)

t x,

4U*

within the cone which forms a mirror

1

h,”~o) h:&ol
image of the physical Mach forecone
in the vertical.plane containing thp x,

Sketch

.

.-——. .. . ..—— -. ..— — —— --- __..— .——
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w@’s side edge. Tbe potential ~(2)(x,y,0) represents the difference
between the potentials for awing with a vertically symmetrical thick-
ness distribution and a surface with no thickness having the same shape
as the upper surface of the nonlifting wing.

I& us return nowto equations (15). Just as in the steady-state

case, 9(1)(x,y,O,t) represents the potential induced at x,Y,O by a
distribution of sources (see eq. (3)) over the wing plan form, each
proportional to the local slope of the wing, but now, since the wing is
in motion, with the added condition that theybe local slopes at the

E=
Im&fgi-%f+wp=g
r

t x,

[x, -y)*

*X,

Sketch (~) Sketch (k)

appropriate time. The area Saj shown in sketch (j), is just the
acoustic plan form defined earlier in the discussion of equations (3)
and (4). Physically, & represents those points on the ting from
which disturbances can, at the time t, influence the flow at x,Y,O.
It is the generalization, in the stationary coordinate system, of the
wing area bounded by the I&ch forecone.

(2)(X,y,o,t) is similar(1)(x,y,o,t) and 9The relation between p

to that between their steady-state analogs. Thus, again, 9(2)(x,Y,o,t)
represents the difference %etween the potentials for an uncambered non-
liftbg wing and a lifting surface having the same shape as the top of
the nonliftingwing. A mOre striking similari~ lies in the relation
between Sa and Sc.

We have already seen that & is the acoustic plan form, and, as
it turns out, Sc is the reflection of the acoustic plan form (see—— ——
sketch (k)) fi~he vertical plane containing the side edg~a situation——
identical to that existing between S= and S2 in the steady-state case.

—— —

.;

.

—.-
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(In other words, Sa is
and Sc is the acoustic

23

the acoustic plan form for the event x,y,O,t,
plan form for the event x,-y,O,t.) Physi-

cally, Sc represents the portion of the wing’s lo~~er-s&face contain-
ing distur%amces which can, at the the t, influence the flow at
X,y,o on the wing’s upper surface. At this point the similarity
between the steady and unsteady solutions ends since the influence of
the slopes in the reflected plan form is not the same as it is for the
slopes in the basic acoustic plan form; the influence in the former
case now being given by the integral C(xl,y=) defined in equation (AIO).

One can show, by simply referring the results given in equations
(15) to a coordinate system fixed on the wing, that equations (l%) and
(1%) are identical, respectively, to equations (17a) and (in) when
they apply to regions VIIand VI in figure 1; regions in which, for
indicial-typemotions, the flow is steady relative to the wing. Hence,
equations (1%) and (1%) extend llvvard~s“reflected areat’concept to
all parts of a rectmgular wing in supersonic unsteady motion.4

TEE GENERKGIZED FORCES

Review of Iagrangets Equations of Motion

In order to define more
tion, we will briefly review
to distort~ Wi~S and will
glilarwing6

clearly the subsequent concepts and nota-
Lagrangets equations of motion as applied
examine a simple application to a rectan-

~aels equations are ususillywritten

d aT aT aU—— .— _=Qr; r=l,2, . . .
dtt a& aqr + aqr

where

T kinetic dner~ of the wing

u potential ener~ of wing

Qr a generalized (external)

qr a generalized coordinate

force

(18)

41t is of further interest to notice that equation (15b) can be.-.
reduced to a double integral involving wu(~~yl) by using) for ex~lej
the transformations ~ = xl+Mtl and -r=t-tl and integrating in the T
plane.

-.—.—- _ ——._ . —. —. __ .———..—
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In the present application ~ is the amplitude at a given time of a
.
.

polynomial measuxing
line from the z = O
system that is fixed

The

where m
we find

d

dt‘

The

$>0

~ =0

h, the.~ertical displacement of the wing’s csmi’er
plane. !l?hus,relative to an x~, Y3 coordinate
on the wing, see sketch (Z)

h(x3,y3,t’) =

vingts kinetic ener~

y C@’ )qJ%)YJ (19)
LJ
s

can %e written

J H’m(x3)Y3)dx#y3T=
2

s

is the wing mass per unit plan-form

(20)

area. Using equation (19),

potential ener~ is usually

+X3

+X3

) (21)

difficult to evaluate analytically.
However, it can often%e determined
experimentally (as will he seen) by
measuring the frequencies of the free
vibration modes.. For the present
assume that the wing is a homogene-
ous plate of constant thickness.
The potential energy for such a
wing ,canbe expressed as (ref. 9)

Sketch (Z)

.

— — — ——— —.
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which leads to

~ a%r-—
2 ax32

where v is

Now, if

the equation

2(Young’s modulus)(plate thicknesses
D=

3(1 - p2)

(23)

the generalized coordinates have been normalized so that
each measures ttieamplitude of a free vibration mode, all.terms in equa-
tions (21) and (23) involving the integral of the product of Pr and PS
are zero. Assuming, henceforth, such normalization, we can write

JF( [

a2Pr
+ Dqr (v2Pr)2-2(1-V) —

axaa
s

(:;.n}--’r’‘=’’2’”””(24)
Finally, dividing through by tie coefficient of qr and expressing a
generalized force as the integral over the wing plan form of the product
of the rth mode shape and the loadings5 z(Ap)s induced on the wing hy
each of the mode shapes considered, we find

(25)

where wr is the frequency of the rth’free vi%ration mode.

%e will.write (AP)
-c pressure.

= ~(AP/~) Were ~ iS the free-stre~
This ?s possible w?thout a confusion of notation since

the generalized coordinates are expressed as ql,q=,q~, . . . and
exclude the term ~.

. _ ..—- .——. -.— —.— .-—- -—-—--————— -- .—



26 NACATN 3286

H the free-mode frequencies are experimentally determined, equa-
tions - such as equation (23) - giving the wing!s potential ener~,
never have to be evalmted. Furtherj in such cases, equation (25)
applies to quite general wing structures with varying densi~. Usually
in the application of equation (25), one uses the actual frequency Ur
of the free mode but, in evaluating the aerodynamic forces, uses an
_ical. expression that only approximates the rthmode shape. I&
us examine the generalized force term in equation (25), taking, for
shpl.icity, only one term of the sum;

According to what has gone before, the mode
has the form

%@s (26)

shape polynomial Pr(Xs,y~)

‘r(xa2Y9) ‘(w($)g (27)

while (Ap/~)s is the loading coefficient corresponding to an indicial

deflection (see previous section on boundary conditions)

which gives a vertical velocity distribution

Wu=uo qs(l)(~)z(~)n

(28)

(29)

Mow a generalized indicial force coefficient can be defined as follows:

(30)

(The calculation of these quantities f~~(t’) will be elaborated in the

next section.) Since the generalized force Qr is intended to apply
to any motion, not necessarily indicial, it is necessary to apply

Duhamelts integral to the indicial force coefficient f#t~); thus,

(3U

—— . ..—— ——-—
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As an exsmple, consider now the simple one
vibrating plate illustrated in sketch (m). The

wall and restrained
to have the form

so for a plate with

no

27

degee of freedom
plate is fixed to the

Sketch (m)

along its leading edge. The mode shape is assumed

h= q=(t~’)
(*S(=S

uniform density and thickness

-s o

Equation (25) now becomes

For this case, we have the generalized indicial

f~(t~), and so
—

force coefficient

1
tl

IIf~(rt )
Ql =qo(sc) ~dtf

I
q=(t-T’) drl

o ql(l)
L -1

Therefore, equation (33) can be written

(32)

(33)

(34)

( 35)

— . ——..- -—. ._—-——.—-— ———
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*
The Generalized Indicial Force Coefficient

It is clear from the previous section that a study of the dynamic
behavior of rectangular wings moving at supersonic speeds canbe carried
out if one can obtain values of the generalized force coefficient,

f~~(t’), as defined by equation (30). We will now show how these values

can be obtained from the solution to the aerodynamic boundary-value
problem representedby equation (14).

‘“0m

*X4

Sketch (n)

c-Mt S

It was convenient in developing
equation (14) to use a coordinate
system - X,y,z,t - which was fixed
in space so that the left edge of the
wing moved along the x axis as
shown in sketch (a). On the other
hand, in studying the dynamic problem
it was more convenient to use an
x49Y4>z@t4 system which was fixed .
in space so that the wing’s spanwise
center line moved along the X4 axis,
see sketch (n). Let us first con- ,.

sider the problem of transferring the
results in terms of the x,y,z,t
coordinates to the x4~y4~z4~t4
system.

The indicial force coefficient

F~~(t’) is defined.as follows:

( 36)

In order to transfer the axes from the set shown in sketch (a) to the
more convenient set of sketch (n), so that mode shapes are symmetric or
asymmetric about the wing~s spanwise center line and the force coeffi-

cients ‘enoted ‘;:
can be determined, we nroceed as follows. First,

the loading coefficient for a wing in the (x,y) system with downwash

——.—— —



fiACATN 3286 29

given by

‘.

is obtained. This loading coefficient can be written as a sum:

p=o

Now the quantity f~~ is defined as

This last integral can be written as

C-Mt
~ln 1

Jg=ZZ [
1 + (-l)g+n

IJ @@(Y)g(f)2n
-Mt o

= (-.,g+dE#El : (-1,’(f!)(y-’ ~ (-l)”(n) (.)-’;
v w=

-. —— —- .—— — ————- — --
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——

By using equation

r 3

(36) we find

“n “+(:)g+n’f (-w)($)’-’ YWw”p ‘it ’37)J3 =
‘=0 ~=o

where all forces are responses to a unit indicial disturbmce. Note
that if equation (37) is applied in the case of a wing cantilevered on
a wall, both n and g must be even in order to satisfy the hundary
conditions of reflection in the wall.

13ysuperimposingboundary conditions and their resulting solutions,

one can further show that the value of f~~ givenby equation (37) is

valid for aU reduced aspect ratios @ greater than 1 in spite ~f the

fact that the value of F~ givenby equation (36), as it stands,

applies only to wings for wilich ~ is greater than 2.

with
gral

from

Given f~(t’), one can determine the generalized force associated

the generalized coordinate qr by means of the superposition inte-
as illustratedby equation (34).

Details of Calculation

The details of actually evaluating the indicial force coefficients
the solution for the ~otential presented in the first part of this

report are discussed in Afiendix B. ‘Considerable labor is involved in
such calculations, and an attempt was made to discover recursion formulas
by means of which certain derivatives, for the rectangdax wing, couldbe
expressed as cotiinations of others. This attempt was successful and
yielded the following results

Consider equation (36). Integrate the x integral in this equation
by parts, setting

u(x) =
f

s #@:w; dv(x) = (x+Mt)d -

0

Then, since by equation (B7) in Appendix B

~ Ap2n 2 Ap 2-l,n—— =. ,2>0
ax%c%

. .— . .
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one finds

3.

.

-.

~Zn _ Z

{

Z-ljn - ~Z-l,n

Sg j+l ‘o g j+l,g}
(38a)

Inspection of equation (37) shows that the same relation holds for the
in

generalized indicial force coefficients f.-; that is,

From this relation, it is

detemined by integration; the
can be found by combination of
shape index j.

J&

{

fz-l,n - fl-l,n
o g j+l,g

}
(m)

on
seen that only the forces F

Sg
need be

forces for higher values of the index Z
results for different values of the mode

As a simple ilhstration of the results presented so far, we can
calculate the indicial force derivative for the cases Z=n=g=(),
j = o, 1. The case j = O corresponds to the indicial lift coefficient
for a flat, sinking, rectangular wing, and the case for j = 1 corre-
sponds to the indicial pitching-moment coefficient for the same wing.
Since n = g = O, equation (37) gives

00‘;:‘Fjo

~US, with j = Oandidentifying -a#Un asangle of attack a, one--
finds from Appendix B

{[.

~1 -1 Mto-l +M
‘M Z Cos to ~

COS-l(M- $%.) +

[

11 —+ 2to - (M-l)to2
~ M+l 1}
.:(l-J.-)to,&

Next, with j = 1, and using ~’ to

1

A<to<A.
Msl - - M-1

designate the pitching moment

-. —. —...— — .— —
.
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measured about the leading edge of the wing>

= -:{+[(’ -3c0s-=%+fcOs-=(M-p’Q+
+%===---: [-’&+3t” - (M-1)2 to.]}

1 1
—~to<—
w-l M-1

~’=+”%)
These expressions agree

to> .-L.
– M-1

with those given by Miles in reference 2.

The a%ove results canbe used to demonstrate the
equation(3&). =ing j=n=g=O, Z=linthat

usefulness of
equation gives

or, for the present case,

10
f00 = f:: - f::

which represents the equality

that is,
lift and

the lift coefficient for a pitching wing equals the sum of the
pitching-moment coefficients of a sinking wing (primes indicate

.
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the wing is pitching about and moments are measured about the wing lead-
ing edge). Hence,

.

c~’=~{6+~t02)- ~[’0-Mto2+?t0”ll ‘Sto%k

.;{* [@+ :to,)cos-.

3- Mto

2
to2 - (1-Mto)21

(M- 1)2tos
1}

1 <t”<~
K - M-1

Mto-l + M COS-l (M- ~2to) +

to F

[

11
— + y“

‘z M-l-l

- 3(M-l)to2+

.

‘i{’-$} ‘“%i
A further application of equation (38a) provides the pitching-

moment coefficient for a pitching flat rectangular wing. !th.lS,with
Znj =l,n=g = O, equation (38a) gives

which becomes

and so

()f
00

1 1 20

%
=-
2

- c~
/-aoo U.

. —.- .—. -.. .— ——— ..-.—
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From equation

f
00

F
00

20 20

IQIICATN 3286

(B21) in Appendix B it is found that

{
_-—_ .-. ~ ++tos) --&-

%o%o M3 [
4- M(M2+ 3)to3

1}
O<to< ~

-—- _ - M-l-l
Uo Uo

{[

.! I l-MtoS ~o~-= Mto-1
+ ~: COS-l(M-P%o) +M~3 to

l+Mto+(M2+2)to2

9 J~]-&[&+ 4.to- “

(M-l)s to4
1}

&<~<~
- M-1

Combining, we find

{
%’ = -; 2+;$-2[8 - ‘to +M@+3@}-o< to<&

{[

2 1 2+ Mto3 Mto -1
Cos-= + g g ~o~-l=-- —

Mfi 3 3P
(M- @%o) +

to

8-Mto-(#+2)to2 ~
A/ 02- (1-M~)2

9 1

(M- l)S *04
1}

1~~to<—
M+l – M-1

‘-?{? -k} ‘“~~

Another relation smong the generalized

derived by
details of

1-—
[

L+8to - 6(M-l)to2 +
24A M-I-l

indicial forces
f2n

Jg
can be

means of ~he reciprocity relations given in reference 5. The
the derivation are given in Appendix C and there results

\

(39)

— —.. ——..— —
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Equation (39) can be used in two ways; one, as a means for checking
the internal consistency of a set of calculated generalized indicial
forces, and the other, as a means for expressing a given force in terms
of a set of others.

Consider, as an example of the former use, the case for which
z 3 00 men==

on
fOg

From equation (37) we can express

lated quantities F; thus

= f::

this relation in terms of the calcu-

If now n = l,g= 3 the following relation results

which provides a

Next let us
sum operation

on both sides of
the left side.

useful check on the

solve equation (39)

J

computed quantities.

for a given force. Perforn the

equation (39), and reverse the order of summation on
There results

p=o

—. —— —— --—
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The inner sum on the left can be evaluated. Thus one has

Xp = [1 - (1-X)]P
= %’(0 ‘l-X)”

NACA TN 3286

Equating coefficients of x,

b“(:)(:)=[:-,,P::;
p=r

and equation (@) becomes

f;= :(-l)j(;)~(-,)w(:) f;:

j=o p=o

(41)

CONCLUDING REMARKS

A method is presented for evaluating the generalized forces on a
rectangular ting flying at supersonic speeds and having”an aspect ratio
such that ,BA~ 1. The generalized coordinates used to define the wi.ng?s
behavior are the amplitudes of downwash distributions expressed in terms
of polynomials in x and y, the chordwise and spanwise directions,
respectively.

Numerical results are presented in table I for generalized indicial
forces on a wing having an aspect ratio of &and flying at a Mach number
equal to 1.1 and 1.2; t~e polynomial coverage being O s Z s 1 and
0<n~5, where w.wx+#.

Ames Aeronautical Laboratory
National Adtisory Committee

Moffett Field, Calif.,
for Aeronautics
June 30, 1954
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APPEND= A

EXPRESSIONS FOR THE POTENTIAL

In order to write the expressions for the potential in all regions
sho~m in figure 1, it is sufficient to derive in detail only that for
region V. Having carried out this analysis, one can determine the expres-
sions for potential in other regions without difficulty.

Considerj therefore, equation (13) and let u and T apply to region
Va. First, it is necessary to determine the potentials WA and WB in
the t,x,~ space. From equation (11), in conjunction with sketch (f),
it iS found that

X+- t-J-

1
wu(xl+Mtl)yl)dtl

WA=-+
f

axl

x-m o J(t-t=)2-E=2-(X-X=)2

(Al)

J’
o

J’
4F=3W wu(xl+Mtl,yl)dtl -

WB=-* axl

X1(El) /-x= M ~t.t=)a -g=2-(x..x=)2

x+Aq

J’ J’
t-J-

1 wu(x=+Mtl,yl)dtl—
l-r axl (M)

0 0 J(t-t=)2-512-(X-X=)2

where

X1(EJ =:(. - Am=)

With
sible now

the values of W given in equations (Al) and (A2) it is pos-
to solve equation (6b) for ~, sketch (g) giving the required

- .- .- ..-——-— --— - --—— _.. — — - .—— .
..—
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dab in the ~,y plane. Thus, if R2 = (~-~=)2 - (Y-Y=)2

*(E,x,y,t) =
-U y ~ft ‘%%%TE+Y+”4 “l? -

g+y-t E+(y-yl) Y G-(Y-Yl)

r

2-X2

J

lY w=
~E WB-WA
1 —-

% R

k+y-m E+(Y-Y=)

(A3)

—. _——_ ._ .
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Now apply the operation of equation (7) and the potential ~~~. is
given by

(Yt Y+t t

f

Y

Y-K/m Y-Y1
J.

+’al

-(Y-Y=)

39

(A4)

where R=2 = ~=2 - (y-y=)2 and the bars on the integrals signify that
the finite part of the integal is to be taken
reference 10 and that the order of integration

in the sense definedl in
cannot, in general, be

reversed.2 For convenience set .-

.

)(pVa.-+ In (A5)

lFor the subsequent analysis to hold, the definition of the finite
part given in reference 10 is essential. This definition differs from
that given by Hadamard when it applies to multiple integrals.

2Since the order of integration plays an important role in the fol-
lowing development, integration first with respect to x and then with
respect to y will be denoted ~@~dx f(x,y) while integration first
with respect to y and then tith respect to x will be denoted
Jdxfdy f(x,y). When the notation f~f(x,y)dydx is used, the order of
integration is hmnaterial.

—. .+ —.- -—. —. .—.. . __..—
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where In is the
tion (A4-).

we

In
be

Consider the
can write

NACA TN 3286

nth integral group on the right-hand side of equa-

first of these integral sets. Using equation (Al.),

1’‘r +’:’[,2 :;)21./2 J’::~’
y-t l-- -1

J’
%(X-XJ2+E=2 wu(xl+Mtl)yl )dtl

o J!(t-t=)z - (x-x=)=’ - ~=,

order to simplify this expression, the order of these integrals will
rearranged so the integration with respect to El can be carried

out first. The technique of changing the order of ;epeated integrals
with strong singularities set forth in reference 10 will be used here.
Consider the change of order in the 51) X1 pwe. ~etend for the

Y-4

‘1

Sketch (o)

moment, that the tl integration has
been carried out. Then the highest
order singularity (since Wu is
bounded) in the ~1~ X= plane has the
order 3/2 which is weak in the sense
that no residual occurs when the
sequence of integration is reversed.
The top of sketch (o) shows the area of
of inte~ation, so imned.iately

~Y ~x+Jt2-(y-y=)2

11‘J‘1 J
y-t x- Jt2-(y-y=)2

.

!’tz-(x-xl)z
k=d~=

Y-Y~ [6=2-(Y-Y=)213’2

t -J(-
I

wu(xl+MtljYJ d%

/(t-t=)2-(x-x1)%2o

——.—-. — —
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To change order in the ~=,tl plane, consult the %ottom of
sketch (o). In this case an inherent singularity exists at the con-
fluence of the singularity lines of the integrand; namely, where

51=Y -ylandt==t- J(x -X=)2 + E=’20 The change of order can
therefore not be performed directly, but account must be taken of the
existence of a residual term (see ref. 10). This residual.is defined
as the difference between the two integrals taken in different orders
over a vanis%ingl..ysmall region surrounding the inherent singulari~
(the region heavily shaded in bottom of sketch (o). The residual Ri
is then,

P(ro+c)2-(x-xl)2

Ri =
lim

f

~ld~=
C+()

Y-Yl [E12- (Y-y=)213/2

f

t-J(x-xJ2+~12
wu(x=+Mt=,y=)dt=

t-ro-c
/(t-tl)z - (X-X=)=%=2

t-ro

-/’ wu(xl+MtlYyl)dtl

#-ro-E

J(t-t=)2-(x-x=)2

f
Y-Yl

–J. –L

[E==-(y-y=)z ]%j!(t-t=)a-(x-x=)z - g=2

J

where ro2 = (X-X=)2 + (y-y=)% The second integral vanishes (see
ref. 10), and, passing to the limit G-O in the first integral, there
results

wu(xl+MWroyY1) . m [wul
Ri=-; -——

r. 2 r.

where the square brackets again mean that the retarded value is to be
taken. TIIUS, the integral I= canbe reduced to.

(A6)

.—. -.—. .—— .. -— —. . ———-
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In the ssme way, the integral 12 can be reduced, and

y+t A/

11+12=-:J ‘1 f ‘+“-(y-y’)’
y--t x.+’-(y-y=)’

~= [W]

r.

which is recognized as Kirchhoffts formula,
acoustic plan form %ounded by the circle

(x-’,)’+ (Y-Y=)2 =

The reduction of the integrals 13,
leading to the sum

y+t x+Jt2- (Y-Y,)2. P n

L In =-&
J

w=
J

1 0 x-Jt=.-(y-y=)’

NACA TN 3286

equation (3), with an

t2

14, 15, and 16 is quite simi-

y+m
~ [%] 1
1 —- _

r. 21cf
-o

J
o

[%]+ 1

J

y+ JF’z7

f

o

dxl —
r. Go

wl

%(Y-Y1) x-Jt2-(y-y=)=

●

W1

[%]
dx= —

‘o

(A7)

Examination of the limits on these inte~als shows their total area
of integration is that shown in sketch (j). But this
exactly to the acoustic plan form Sa for a point in

denoting the conibinationof terms in equation (A7) by
simply

area corresponds
region Va! Hence,

~(l) we ~~~ite

(A8)

— . .
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It now remains to calculate

nating their total effect on the

43

the integrals 17 through l=O. Desig-

potential by 9(2), one can readily
show (since no inherent singularities arise in these cases) that

(2)

%a =

-y+t x+%&’2-(y+y=)a

‘1 “’[&,y+y=,2~’j-r’ o

w %(xl+Mt=,y=)dt=

-y’tAm7 o

~
f12f

W,
f

o x- &-(y+y=)2

—

[ (t-t=)a - (t-t1)2- r=2

ax.
A

-y+ A-z?t-rl

f

~%(x=+Mt=,y=)dt= -

f‘* o
0 [(t-tJ2 - ro2]Ji-

f

0 ‘-r’ ~wu(xl+Mt=,y=)dt=
axl

f
Xl(y+y=) -X=/M [(t-t=)2-ro2ti(t-tl)2 -r=2

where r12=(x-xl)2+ (y+yl)2. No. let

c(xl,yJ =

rt-r=

‘-’.-xl/M [(t-t=)2-ro2]J(t-t=)2 -r12”

J‘-r’ ~ +L+Mt=,y,)d.t=

o
[(t-t1)2-ro2 lJ(t-t1)2-r=2’

X=<o

Xl>o

.

(A9)

(Ale)

—— ..—. .
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In terms of this expression, equation

NACA TN 3286

(A9) can be written stiply

where the area (SC)va

In order to give

(.=) 1
%.=7 Lr C(xl>yl)dxldyl

(Sc)va

is illustrated

expressions for

(All)

in sketch (k).

the potential in every region of
the wiu? shown in-fimre 1, one can show that it is only necessary to
vary th~ areas over %ich the double integration in equ&tions (A8) and
(All) are carried out. This is evident in connection with the source

po*,o?l Q(1), for in every case

and only the acoustic plan

case of T (2), the part of

1 It’ [%11 dx=dy=
-z r.

Sa

(A12)

fOI’111Sa changes with the region. In the

the potential due to the existence. of the
side edge of the wing, equation (All) can be generalized and written

J4= i
~ If c(xl)YJd+dYl (A13)

SC
where the integrands are defined in every case by equation (AIO) and
only the “reflected” acoustic plan form Sc changes with the region.
The region Sc is always lmundedby portions of the ‘reflected” circle.

(X-X=)2 + (y+yy = t2

and the “reflected” ellipse

(:X1-XJ+‘Y+Y1)2=
Figure 2 shows sketches of both SC and Sa
T& absence of a sketch indicates that the
not exist for that region.

for au regions in figure 1.
corresponding integral does

.— --—
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APPENDIX B

GENERALIZED INDICIAL FORCES

The Loading Coefficient

In order to determine total forces acting on the wing, it is first

necessary to obtain expressions for the loading coefficient Ap/~.
According to the linear theory

AP 4 ag—= —.
q. uw at

(Bl)

so it is necessary to differentiate each of the expressions for poten-
tial. As an example, consider, as in Appendix A, just region “Va of
figure 1. The loading coefficient till be divided into two parts

Ap(l)/~ andAp(2)/~ to correspond to the potentials ~(l) and ~(2)4
Thus, using equation (All)

(2)

[

-y+t

Qa ‘& f “.~’ % “1 -
0

(B2)

since the derivative passes
Referring to equation (AIO)
derivative with respect to

the x=,y= integrati~n without effect.
for the function C(x=,yl) we next find its
t. Write 7 = t-t=; then for x= < 0

‘ixl’M~ Wu(x.+ Mt - MT,Y,)d’
c(x=,yJ = I (T’ - ro2) A/72 - r=2

r=

.-— .. — . -—- — .— — -— — –— ——— —---- —.
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and

NACA ~ 3286

JFK %(O,Y)z=[(’+vro’lm +

~%fi J~l & wu(x=+Mt-M’rjyl)

J
dT (B3)

(-r2- ro2)~~
rl

Notice that if w does not depend on (x= + Mt=) the integal term in
equation (B3) vanishes, while if it does, then the integrated term is
zero. Next, for x= > 0,

t ~~wu(x=+MWT,y=)

C(X1>YJ =
f (T2 - ro2)~
‘1

and

dT

\

ac ~Wu(X=,Y=)
t ~4n=-@- wu(x=+Mt-MT,yl)

f

at i )

s= (t2-ro’)/~”+
dT (B4)

r= (T2- ro’)J-

In this case, both terms exist unless Wu is not a function Of (x=+Mtl)~
in which case the integral vanishes.

Substitution of equations (B3) and (B4) into equation (B2) will now
yieldan expression for the loading coefficient corresponding to the
influence of the side edge;

—.—
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.

.

.

.

kazn

F@fc Z+n

-y+t
n

-y+t x+Jt2- (y+y=)2

J ‘y’~,-=+
o

x+Jt2- (y+yl) 2

J
x- &2- (y+yl)z

t-r=

f

~(xl+Mt )2-’y=ndt,1

0 [(t-t1)2-ro2]J (t-t= )2-r=2

-y-!-A-c?

Yo

o

J
JFjyXlz ypxl

-y+%k=’-x+

– Ml
J

ti~

x-~(t2-ro2)- 0

P“
t-r=
r ~(xl+Mt )Z-=y=ndt=1 LJ dx~J

x- Jt2-(Y+YJ2 0

-Y+A=7

[(t-t =)2-ro2]J-

ml J axl

xl(Y+YJ

J‘-r= ~~=(x=+Mt=)Z-ly=ndt=

-(x=fi) [(t-@2-ro21~(t-tl)2-r=2

1

(B5)

The explicit form of 1~, given by
it is assumed that Z ~ 1.

equation (E?),has been inserted and

.— .— —.—.
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The portion of the loading coefficient
found readily and is

corresponding

NACA TN 3286

(1)to qVa can be

~p (1)

( )1

2aZn

[1

y+t (x+Jt2.(y-yJ2)z+ (x-Jt=-(Y-YJqz ~;+

G ~a=-
Xln

Idmocz+n o

dxl -
f

y+t + ~t2- (Y-Y,) 2
Ml Yl%l

T
o x-Jt2-(Y-Yl)2

~

[x=+M(t-ro)]2-1

r.

.Y+Ji=F [x=+M(t-ro)]Z-l

JMl - Y=ndy=
o J

x-~t- ‘0

+-

f /’

o [x=+M(t-ro)]Z-l ~
Ml Y=n*1 1-

r.

--

J

X1(Y-YJ

y+dtz-ti

r
~n (x-w-( y-y=)v
“1 ,

Jo
A2+-YJ2

(B6)

It is clear that, even for small values of the indices Z and n,
the required integrations for the determination of total forces on the
wing pose formid.a%leproblems. There is, however, a proper~ of the
loading coefficient corresponding to vertical velocity distributions of
the type chosen here (eq. (2)) that will materially shorten the requisite
labor. This maybe expressed as follows, adopting the convention that

Apzn/~ corresponds to a downwash distribution proportional to

(x+Mt)Zy%

a APzn z APl-l,n—— =. 1>0
axqocqo’

(B7)

.

—.. .
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or,
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.

(B8)
APzn ~ x Apz-l@(xljy,t)til,
—=.
~. J’

1>0
c q.

-Mt

Details of Evaluating”theGeneralized Indicial Forces

In calculating the generalized indicial forces by means of equa-
tion (36), it has been shown that only the value zero need be taken for
the index 7. Thus we must find

2

J

C-Mt

‘;: = J
(x+ Mt)%x —s ~APon ~ (B9)

bcs+g+l
-Mt

‘%o

The values of the loading coefficient Apon/qo are foundby differentiat-
ing the expressions for potential given in the first part of this
appendix.

It is convenient, in evaluating equation
gration with respect to y first. Se’tting

(B9), to ‘considerthe inte-

(B1O)

it is found that L seems to have different representations according
to the interval in which x lies. These expressions can, however, all

the same formula. The portions of L corresponding to
::ee:;:se;(:y

and Q(2) of the potential are similarly signified, and
we have

@ = 2~n
{

(-1P ‘{g:[ 1
&(n+g) + KM(n+g) -

3Tu~cn+g (n+g+l)!

[n/2l

2 I ($) ‘!:.:;p[@-’) + ~(2”-’)1}
p=o

L(2) = aon J(n, g)

[
— ~(n+g) + I$&Fg)

Ym#c~g @+g 1

(B:

(B:

.-. . —c —- .-.—— —————. ———— --—— —,— . . -. .-— — --—— ——

~ .$
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where

I
cos-~(+)

KO(W3) . twg+l R.P. sinn+g+l 19d0

o

and [n/2]means the greatest integer contained in
J(n,g) maybe expressed as summations, and it has

J(n,g) = J(g,n)

~ d?=

n/2. ‘Ibefunction
the property

(B13)

The sumformulais,tith g+p=n

J(g,n) = (-1) g ‘f] (:,)~f-:’> y)-B(p-y, 272)] +

i=o

‘-’:g-=Y“(ay-’$B(=’9‘(p-’i:2’+3’%9-
i=o j=o

i=o j=o

—. —
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.

.

()P‘here 2i
is the binomial.coefficient

and B(p,q)

()P2i =

function

B(p,q) =
J

lX?-’

o

f

Yr/2

= 2

0

P!

(2i)!(p-2i)!

(1 - X)q-= ax

= r(p)r(q)/r(p + q)

-..—. . .. . .-. -—-— —.- —-— —__ .—. — —.— —.-—— -———— -— -- ——
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The function J(g,n) has been calculated for g,n taken 0,1,2,3,4,5.
Because of the prope~ (B13), it is only necessary to give a triangular
array, which appears in the a%ove table.

Now consider the functions %(V) and ~(v), defined after equa-
tion (B12). It is convenient, for computational purposes, to express
these in terms of the incomplete beta functions, defined as

J
Cos-l(x)

B=-X2 (P,q) =2 2P-1 o COS2q-1 Odesin

o 1

/

(B15b)

A tabulation of the incomplete beta functions is available in refer-
ence Il. I?otethat when the syaibol B is written without a subscript,
the complete integral is meant, that is, in equation (B15b), x equals O.
It is necessaryto exercise some care when interpreting %(V) aId KM(V)
as beta functions because of the upper limit. Thus, since

J
Cos-q-+).v+l ede

%(V) =tv+l R.P.

o

we have the following cases:

‘-P-cos-’(-:)=cos-’$)$)‘ ‘ - CoS-’($)
‘(v)‘We’ oB+,t)e’ N



NACA TN 3286
53

. (iii) “t~ X< 0, Rope COS-l(-:)=.0.-1(-:)

()(iv) -Mt~x ~-t; R.P. Cos-l -~ =0

~(v) =0

A similar line taken with %(V) leads to

(i) x~t, q(v) =0

‘4%/%)‘(FJ31

‘2 can now be expressed as

a(-l)n n!g!

1[

*j
10 (g+n) +

(n+g+l)!

-——. .—_____ . . . .— —..— _ .
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where

C -Mt

*I: (v) =
J’
-Mt ‘x+Mt)” ‘i[tV+’ R=p=fc”s-’(-x’t) ‘inV+’ ‘de] ‘B17)

o

(B18)

It is convenient to express these forces in terms of dimensionless
quantities. Thus setting

we have

j+v+2
l-Mto

%:(v) = c
I [

(xo+Mto)s @ t~+l R.P.

-Mto
.

J

cos-l(-x”/to) “Sinv+l

1
ede s c

j+v+2
10S (V)

o

I -Mto

*I;(v) = CS+Y+2
J [( )

V+l
(~+ Mto)S@ : = R.p.

-Mto

Cos-= Mx”-tto

J

~+Mto 1sin’+’ OdO = cj+v+2 IMS (v)
o

— —

(B19)

(B20)
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and
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. b ~ J(g,n)on

{[
F:==Z —+2g+n

(-i)n2 ‘!g!
1[

I: (g+n) +
(n+g+l) !

[
I: (2P-1) + #(2v-1)

1}
(B21)

The integrals I~(V) and Ij(v)
%can be simplified by reversing e

order of integration. This can be
accomplished in a straight-forward
manner by merely inspecting the region
of integration in the ~,0 plane.
Consider first the integral I:(V). ,
Depending upon the relation between the
chord length and the time, we see -
from sketch (p) - that reversing the
order of integration results in three
different possibilities for the upper
limit of the 19 integal. However, if
we define X. such that

-MtJ
(i) 0<4<//(W/)

(iii) X. = -to; -1 <-t.
M-1 -

(iii) M3f-l)<b,

Sketch (p)

— . . .—- . ____ __ ._—..—.—.— .-—. .—
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.

then, in every case) I!(v) cm be ~t~n

cos-~( -xO/to)
to~+l

1: (~) ‘~
J

Sinv+l ede
o

-- f(-l)rk’)”’+=-r

f

cos-1(-~/to)
Sinv+l

e cosrede
o

‘.0

(B22)

and, similarly, it can he shown that

t’

—
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.

.

According to
three-dimensional

Al?PENDIXC

DERIVATION OF RECIPROCITY RELATIONS

reference 5, the reciprocity relation for general
unsteady motion can be written

J17’
‘~(xlYY19 1t )w2(xlYY12tl ) dx=dy=dt= =
’20

v

J(T‘~ (x2YY2)t2)wl(x2YY2Yt2) ~#Y#t2
(cl)

v

where the volume of integration v is that swept out in x,y,t space by
the wing. The subscript 1 refers to the wing moving in the forward direc-

tion and subscript 2 refers to the wing moving in the opposite direction
in the same manner. The coordinate systems are related by

x= = -X=+ C-MT

Y= = -y2+2s

t= = -t2+T

x~

where sjc are wing semispan
and chord, respectively, and T
is some fixed value of time.
These quantities are elucidated
in sketch (q).

●Y2
Now let the wing associ-

ated with the subscript 1 have
the vertical velocity distribu- Sketch (q)
tion

w1(x1)Y12tl)

and that associated with the

~~2(x2)Y2)t2)

‘(X’:MVW9”
subscript 2 have

.(xa:’tay (S;yay

— ---- .— -—-——..— —— —-—. ——. .— — -—
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Then

(w=(x2,y2,t2) = 1 -
‘:”’2Y(=Y

(
w2(x=,y=,t=) = 1 -

x.+”t=~[yl:s~

c

Substitution of these results into equation (Cl) yields

T C -Mt2

{f
dtz

(
&* 1-

“:””)’ fs~, (%$%
-“’2 (C2)

Equation (C2) can be differentiated with respect to T, yielding

~-m-(’-=ws”’(Y+Yc
o

The binomial expansion is now performed:

— — —
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In equation (C3) the spanwise integration is carried over the whole wing,
but it can easilybe reduced to integration over, say, the left panelby

use of the factor [1+ (-l)g+n]/2.

;

Thus, equation (C3) can be written

j.l=o -MT

By comparison with equations (36) and (37), it is seen that the integral
terms in the last equation correspond to the generalized indicial forces
fZn J~ and f:, so tkt the summations can be written

where the quantity (g+n) must be an even number.

.

.

(Ck)

. . . .—.— _________ . —. ——. — . .



60 NACA ~ 3286

REFERENCES ,,,

1. Gardner, C.: Time-Dependent Linearized Supersonic Flow Past Planar
wings. Conm. Pure and Appl. Math., vol. III, no. 1, Mm?. 1950,
PP. 33-38=

2. Miles, John W.: ‘IkansientLoading of Supersonic Rectangular Air-
foils. Jour. Aero. Sci., vol. 17, no. 10, Oct. 1959, pp. 647-652.

3. Miles, JohnW.: A General Solution For The Rectangular Airfoil in
Supersonic Flow. w. APP1. Math., vol. XI, Apr. 1953, pp. 1-8.

4. Hadamard, Jacques Solomon: Lectures on Cauchy~s FToblem in Linear
Partial Differential Equations. Yale Univ. Press, New Haven,
Corm., 1923.

5. Heaslet, Max. A., and Spreiter, JohnR.: Reciprocity Relations in
Aerodynamics. “EACA Rep. 1119, 1953.

6. mmx, Harvard, Heaslet, Max. A., Fuller, Franklyn B., and Sluder,
LOma: Two- and Three-Dimensional UnsteadyLift Pro%lems in High-
SpeedFlight. NACA Rep. 1077, 19Z.

7. Baker, Bevan B., and Copson, E. T.: The ~thematical Theory of
Huygens’ Wnciple. The Clarendon Press, Otiord, England, 1939,
pp. %ff.

8. Eward, JohnC.: Use of Source Distributions For Evaluating Theo-
retical Aerodynamics of Thin Finite Wings at Supersonic Speeds.
NACA Rep. 951, 1950.

9. Rayleigh, John William Strutt: The Theoryof Sound, vol. I, Dover
Pub., New York, 1945, p. 353.

10. Lomax, Harvard, Heaslet, Max. A., andl?uller, Franklyn B.: Inte-
@s and Integral Equations in Linearized Wing Theory. NACA
Rep. 10~, 1951.

III-.Pearson, Karl: Tables of the Incomplete Beta-Function. Cambridge
Univ. Press, Cambridge, England, 194-8.

————



NACA TN 3286

TABLE I.- VALUES OF GENERALIZED INDICIAL FORCES, F;;

The generalized indicial force coefficient F; is defined by

equation (36). It is the response for a mode shape having a unit ampli-
tude

‘rode‘(%9’(:)’
and a loading induced hy a unit value of w/Uo,

The table gives values of F
;;

against time (actually chord lengths
traveled) for

2 =0

j = 0,1,2

n= 0,1,2,3,4,5

g = 0,1,2,3,4,5

M = 1.1, 1.2

A= h

,

. —.—. ..-.-.— .—. -—.—..—. . . . .. —. —
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TABLE I.- vA.Lm OF G13NlEWJ~ DUUCIAL ~cES, F~ -
(B)2=O; J =O; M=l.1

Continued s’
J6

9

33.=
99.9
33.78
35.92

M
43.75
31.17

;:;

147:6
Ig9.1
C91.4

i%:;

Win
166.9
lW.9
1%.0
‘iM.Q
E18.’a
227.8
0$9.5
W6.O

%;

w

$f

m.

b

g

‘w.13
‘a.
El.FSa, 7
2).KJ
26.*
29.7’8
39.79
n.%
61.60

I&i

3::

—
o

—
1 z- 5

3
—

La
U,6Y

:%
I&u
L&b
Le.@
W.v
Lk.18
L5.6?
L9.61
U.95
27.65

E:%

?5:2?

1 e

y-n

T:%!7.3
7.396
7.463
7.%5

1:s
8,nk
1.O.45
IQ.IB
13.53
U.T9
19.23
m.v
a.%

1

3.636
3.;37

,.6??3
S.w
3.*
3.6%
3.679
3.872.
4.lC5
4.719
5.?S?

2:E

‘kg
9.l&
—

31.6+
Il.&
U,&
3L64
11.Ea
31..9
U,&
lL71.
12.*
yo

ti.iw
Mu.
m .16

~~

a—

Le4a
4.059
4@
4.9X
L*

4

3.0
>.
5.17
S.*
6.mz

R
9.6X
1.21
.3.67
u.
L7.%

iii
L9.k3
L9.%
Lg.&
W.79
L9.w
W.lh
m.w
22.99
rl.ls
?lo41

M$
43.97
%.$.

0—

s.636
3.5X

?
3. 2
3. 13
9.4$
3.53
9.37

;:?%

iii!
4.*
4. 10
I5. n

~.em
6.3k3
—

‘1.m
7.m
7.273
‘1.m
?.m
I.m
7.9

I7.U

M
9.913
lo.ti
U.03

$$

16.10

L&5
La%
h.w
4.e47
4.W5
4@3
4.834
4.MJ
7W2
9.s70

~:g

~g

9.@
D.46
—

9.39
9.33
.9.39
0,s
L9.39
L9.?9
L9.s

:$

%7
??’.d
S.83
E,83
g.%

44:m
—

La
U.&
U.E6
u.
u.E
~9
U.91
L2.12

lJ:~
E.

U.w
el.ao
e4.44
W.m
m%
35.93

?.9.lE
39.41
%.07
61.kY
6%.87
6%9

g;

UI?.6
14 .’9

d
1 A

Zr2iz
4m.o
5?8.1
671.7

L 3.634
9.6?5
3.6Es
3.62s
3A3
3.%9
3.*
3.6X

g

A
5.
6.
6.3
7.433

4

l%%

Q3y6

7.273
7.m3
7.P73
7.=73
1.X73
7.273
T.m

;ig

::$

2.63
14.67
L6.15
17.6Y

mu
!&w
S.’a
%.n
yulx
?5’.Z
%.x

~$
93:0!
L03.1
U&l
Lk.T
L@.4
176.3

D3.b
D3.6
D3.9
m.1
06,0
w3.8
UO.4
ue.6
W2.2S
L33.5
LAS
Lg3.o
*O
@.6
343.e

g:

19.33
19.59
19.s
19.B
19.33
W.Y3
19.Y3
l?.
m.
m. $
ekm
q.m
9)J6

i!

.%

.%?

&$

mm
*.@
%.k~
s a6
&.16
.Q.33
.$2.S3
63.?J
.$9.02
75.47
93a
-.4
E8.!J
53.6
65.9
r%.3
!73.6

103.4

g:!

UD:3
llk.3
W.Y
121.3
15s.6
lyl.0

$.$
w’.

3nL
m.o

%!!

,



< .

TABLE I.- VAHJES OF G~
‘1- ‘mm’ ‘2 -(b) Z= O;j=l; M=l.1

continued

—
~
~

>
.W5
.U
a
.33

,$!

L:571
13
?.75
).&i7
).9
r.333
1.0
—

)
.W
.I1

ii
.??h

,:p

1.977.
1.2

W,
}.7
‘.p
..

0
—

L61f
1.W
L-(EI
L.w
1.63

;:%
1.W

i~

1.%9
1.*
l.fng
E.@
Q.363
6!.7n

1

L.&a
1.616
l.ma
1.*
l.wl
l.t?b
1.622
1.&3
1.6S0
1.652
1.9=
2.16S
S.*

;%

L:&

—

3—

3.63
3.6
,.d
3..%
3.C9
3.m

!:;
4.55

>$
9.31
le.lo
17.62
a.S3
a4.73

16.*
16.6?
16.63
16.63

;:%

U.@
17.4

$:
w.i3
%.C9
$5.Q
53.12

z%

I 5—
o 1 4 1

3.6>
3.63
3.611

5
i
3.
3.!2S
W.&
3.m!
3.W

W

;:%
6.YZ
7.5X
8.W

Y

l.ma
1.SM
1!S71
1.779
1.7’Z2
1.6m
1.S3
1.555
1.5M
1.579

:%

::3

;g

33
W.k,
33.s?
31.7t

m
g;;
76:*
UO.1
M3.o
=1.7
27.7
ti.6
$P.8

M9.3
@.7
Ln.0
L75.6
Lm.9
W.a
L .9
Ta .7
?37.9
hm.~
m6.3
!92.9
r63.3
p.
m .
M.
m,

v

I

9.6X
9.-
9..9$
9.535
9.ml
8.=

W
8.*3
8.635
9.’W
1.1
2,d
.k.m
.7.2%
o .0s
!3.49

29.W

%$
w
23.P
B.3
28.*
33.3-7
S3.lo
41.78

2:E
71.76
77.6
3L5
33.0

%72
mm
mm
?2.65
53.kT
sLe6
54.55
55.%

$$:
S&
.%.6
W.g
w9.e
a5.4
49.6

9.W
9W
8.s9
e..p
B.IE
7.41
6.63

;:

3.71.
9.70
5.02
3.76
?.$5
9.34
7.52—

51.72
51.i7.
m.n
P.&
51.42
m.w
TJ.16

~Ij
71..7I
X3.3
B.9
V.7
W.1
%.7

93.W
93.W

S&J
93.

97:3
97.72
wa.e
Lo
L54
LP.9
=7.7
a.2
?70.7
!A .6

&
.8

G

5?.Q

I



TABLE I.- Vm OF GENERALIZED INDICL4L FCRCE3.
o-l
4=

(c) 1 EO; j=2; M=l.1
.

10

T
n

0

L 1.2M
1.2U
1.QM
1J9’I
1.166
::?

A
.*

g

l.liw
M&l
1.L61
1.71.2
km

2

LA16
L6M
1.693
1.6?9
1,619
1.739
1.ZJ
l.ml
1.9’72
1.679
:y

‘?.2

w
5.*
7245

ZiE
6.Wj
6.k7t
6.kY
6. (
6. :

;:;
S.9U

~

9.ti
U.75
LY.?7
L9.39
23.6Y—

9 ‘a

E.w
R.h%
R.k?3

ikl
2.3k3
!?.-26
‘2.226
e.269

::g

tg

9.’m

5

6.h.S+
6.@
6.97x

::3

m
8.49
lo.ti
12.3?
19.@

%:

w
.w.b

3LM e

:;

I.e. 14
ls.1~

it%
ti.la
m,ly

E:2
$:$
1$7.9
M9.6
2W.5

II 09
11.1.1
IL19
11.b
U.T6
U.*
u.%
Ii.’%
13.e

U.z
21.
7.$
9J.93
*.
w.
m. ?

..21Q

..W7
U61
L141
L@$
MU
.941B

:?%!
;~g
.957?

L.W-l

L.lE13
L.3p
1.77.9

2.*
l.w
E.km
P.&
2.3%

03!

‘2.95
e.1
e.
e.om
e.C=31
2.QV
e,up
e.a
‘2.6s5
3.343
3.*3
4.@3

s.&+
‘2.*
Q.44C
e.e

q

Q, (
e.%
Q.’n:
R.d
3.96
9.lb]
6.2!
8.ss
D,2a
0.40
L6.6S
—
U.09
U.lo
U.u
U.al
U.C5
UJ3
WAS
mea
U.46
LR.4>
W77

:%

$$

65.73

I

.0?5

.I.l

ii
.94

:?

L:~
?.’2
i.75
3.657
>.7
r.n3
L.O

62.ti
6%.s
62.*
63.EI
6Y.41
66A
@..@

g:

1.Z2:9
19.1
ma

5

3.7
.0
.4

L@3
Lcg

Lm
1.06
D.w
D.%
Q.u
9.99!
0.09
0.s3
Mm
k%
16.33
L9.’m
tip
%9
s9.7e

.



*

TABLE I.- VKGUES OF GENERALI
in

ZED INDICIAL FORCE3, F . -

(d)? =l; j =l; M=l.1

Continued

>

0

9

—

4

3.R’I!
9.’93

ES
4J2a
4.M
km!

!%
6.
.9.3
U3.l?j
3.2.s3
14.93
19.9
a.m
‘z?,m

0 1

1,U2
1.212

1.9U

l.mg

1.23

1.c5a

1.289

::%

1. m

l.’rp

e.am
U@

e.bl

Kg

3.879
3.879
San

i%
4.103
i.1.M
k.9J3

k%
6.3Yr

~:;

9.3s5

Y

6.W
6.W
6.3T

[g

Jg

16.s3

d.i
m.

~::

S3:9+

%:
34.54
35.33

$:;

47ka
72.9
60.03
m.44
03.9
E7.6
77.2
06.1
43.2
k3.4

o

1.R19

1..U2

I.-m

1.214
1.2?3
1.Qb3
l.ml
1.29?

;%

l.m
e.OIT
!&l%
e.435
Q.*
e..$o

3-879

:%

$:%
4.U9
4.107
4.931
4.629
5.%9
6.276

::g

;:%

1

1.616
1.616
1.a’7
1.&
1.6+3
1.679
1.71.3
1.74s
l-m
‘2.014

::%
;&

;:$

9:919

‘2
.

‘2.M
e.kx
2.433
a.bx
Q.*
Q.*
Q.6*
2.701
2.*

g

::Z
6.357

::%
—

1.09
1.C9
1.U
1.19
1.%
I.@
1.97
Q.e
,.d
4.%
‘r.ol

;:g

7:6-7
9.59
1.o1
.

Y

11.o

11,1

11.e

;:!

14,7
17.0
19..2

:;~

ii
85.1
—

s
6a.$?

$?

u;
93.
107.1
k4.a
y:

im.1
F2.3
el.e
WI.e

0 1 Q 3

%J
6.614

6.776

;=
‘1.
.9.276
9.D5
11.’23
UY3
13.03
17.46
21.SO
S3.
e3.x

3k.M
34.7a
94.6$
35.14

$;

R!

2:E

~;~

.6.7
16.9
20.8

l.m?

L@

1JJ3
UJf7
lti

1.*
l.lea
1.E?24
1.878

1.33

::%

::%

M
8.94

Q.42)

Q.W
P.&
!2.4Y
2.4&
Q.5U
Q.%!
!?.&t
2.61!

ii
4.%M
5.

Iii
Y.
Y
—

1JY3
1.08
L.q
lJ3
l.@

::$

~:g

6:CU
8.01
9.49
1,49
4.27
!3.77
6.63

19.
r19. T

W.@
m.’%
m.a

W
@J

3
.1’7

d
72.41

LE>i
L&.O
L41.7

Q.4E4
e.kb
Q.M6

,.4%
2.4

2.739
‘2.%7
e.615
em
3.01.2
3.&

:g

5:1?0
5.4
?.6=%

l.ca

1,1o

1.14
1.2Z
1.!!9
2.00
P.kl
‘y7J

5:45
9.02
R.@
5.34
9.%
%a
B.*
9.*

19.
19.a
UJ.57
W.(Y7
m.83
21.O
m.m
Q3.69
26..59

~;g

9.77
&5.76
E?.e4
9.66
$5J.2

6.46Y
6.46
6.46?
6.493
6.%1

::$

7:xlk
8,046

n:>

;;

iok
5.9

34.49

34.%
34.79
3.69

3:!
41.9
47.1
%...s3

w

3:?
.43.3
.61.’2
A.1

6.46A
6.4$5
5.4M
5.W3
5.%1

$j

I:*
3.*

>.$
?. 6

;:3
3.92
$.62
5.24

~:

u8.6
l.eM

E
L .7
L.0
L46.7
L@.o
L93.S
!62.7
)34.8

;:;

K1.g

)

.65

.I1
a

.33

.44

.524

j%

.:em

.7Y

.’%7
1.q
.333
.0



TABLE I.- VALUES OF 13ENERALIZED INDICIAL FORCE!, F;: - Continued

(e) Z= O; J= O; M=l.2

m
m

!3



TABLE I.- VKGDES OF GERERALI ZED DIOICIAL FORCEs, F ‘= -

(f)2u=O; j=l; M=l.2 ‘g
Continued

1

l.a’r
1.&5
1.@
1.63s

;:%

;:%

1.%9
1.7%
1.*
2.119
‘2.3%
%697
3,E2

7.333
5.327
5.377

g

k:nh
k.7&6
4.559
9.n7
6J.22
6.633

::%
9.657

~
A

.03

3,
.6
.8
.0
.s
.0
.4
.0
,0
.0

.03

:1
f3

.0

.0

.5

.0

.$

.0

.0

.0

n

i?
o 1.

1.617
1.
1.
1.E
1.s37
l.m
1.29A
1.
1.
?1.%

1.634
1,
1.
e.3

3 3.3m
;.g

3:267

::%
2.97
9.s’%
2.925
3..%9
3,kly
f%

4.443
5.052
s.833

5 >

1.5.e42
19.29
15.43
1.7.97
I.&n
rr.n
18.21
B.’la
21.65
25.C9
k.93

k

A
D.@

&3,3s 7
e%%

::3

Zfl

.%:?

$;

9.3
?76.3
W.9
U7.O

It@.$

0

2.222

Q.mg

‘2.t21

i.1T7

elm

e.ti

1.937

1.*
1.978
e.okl
2.248

;:%

::%

jif$

8:
8.
%6.17

7.Ym

~:~

9:172
.9.16
.0.93
2.0
3.7f
,5.9

I 5—

.$:
9.01

g

1.3.ce
UAW
21.k6

H
%.24
ti.14

1

2.$22
Q.219
Q.u
P.1T3
2,1n

::#
2.ok

1,5’57
2.0’s

;;%

3.06S

i:g

0.803
8. 8
8.%

::&
8.178

!:%

i:g
9.l@
0.93
l.m
2.16
3.W
J5.lo

3

s.=

;:g

5.39
5.3%
%33:
5.3&
Y.7G
6.2u
7.63
9.lX
Dow
u.%
14.33
I.&z?

*.@
26.67
@.@
26.65
e6.%
26.34
a6.u
26.23
C’I.@
29.69
36.05
42.63.
kl.i-i
73.10
6>.42
79.63

h 4

15.*
15!%
U.%
V.m
15..31
16.23
16.3g
ti.a
U.aa
m.39

E639

Hi
9L67
63.05

2.’ZZ
2,W
2#21:
2.X5
2.l&
2.lY
Q.ld
2.12!
2.2U
2.35-
2.7+

;%
4.n~
Zd

5.9:3?5. :
9.s7!
S.w

5.64:
9.823
y.$.y

6.w
6.73!

$;
.k.76
.7.4
1.L
5.14

8.’W
8.9x
8.944
9.W
9.33
9.%2
9.643
9.&6
10.6-7
12.17
15.M
M.m
=.93
27.37
3$43
3.39

47.42.

H
49.04
49.89
72.13
Y.’m
n..%
IS.77
79.16
97.%
J.2.1
.32.7
,31.2

2.5.0

66
P6.7
69
27.8!
E9.b
33.6
Q.k

~:

13.11
76.7)
p.a
UO.9
@.1
173.1

47.41
w.%

y:

*:U
fl.k
%.?9
69.I.2
7k,n
=.8

*.8

%.9
9.0
37.4
73.7

3.2!
?.29

$;2

g

i03
4.43
%17
7.45
9..93
l.m
4.55
9.54
3.dl

I



0
—

1.IJI

!:x

‘:X9

:~

ml%
.mm

:%
.*
1.W

E
1.1
1.4

2 .2=
8,222

2.W3

P.ml
e.lw
2.c51

1.9-70

1.9D
1.W7
1.9$3
E.U6

::$
2, 3

3.17).
3.&a

TABLE I.- VAI$J7W OF GENERAUZED INDICIAL PORCH, F?? -

(dz=o; j=2; M=l.2

1
—

1.3L2
l.lu

L.llo
l.m
1.07E
1.0s
.-
.973
.*
.W

1.C91
1.X9

::%
L.’r@
2 .W5

—

-2--L

1

5—

Y.!m
5.55
6.03

2:%
1.134
7,S?1
7.55!
0.7%
lo.
14.z
1 .g
ie .eh

E2

31061

dU-7
33.3?
3.03

$:;

E::

;:
50.8
U.o
L39.O
LTI.3
W.’a
—

0
—

..331

:.lu

1.W

L.W-$
1.06
1,011

g

.932

.~l

1.069

L.1
fL,Q 3

L.433
L.753

I
2 3

2.227 3.%4
1.293 3.*
Q.ka> 3.rn

::3 ::%
2,B 3.6M
a.on 3.59?
Q.M 3.951

::% 2:%
2,319 “ 4.*
2.W 6.ti
3.2U 6.8x
{:.9 ::3

$5. 3 U.93

0.16 17.
0.16 17.2
0.16 17.05
m13
9.*

17.?5
1’1.91

9.637 17.n
9.?3 17.s7
9,0n 17.9
9J337 18,*
g.m 19.S
D.B Q3.3?

;:2; %1

H %$?
1

7
n

98

U.3.6 Q
lo.iw

lo.l?

m i-r
U.39
la.03
2a.
IQ.
11.5
16.54
2h3

g:

73:37

Contln’uea

1
—

2.=

a.-

‘am

e ,203
2.150

2.G?a

1.9?2
1.933
1,93.2
1<553
2,

?
:;3?

$:%

10.16
LO.16
LO.lS
10.ti
9.8s

;:g

8:13
8.*

9“7M.’7
2A59
32.91
1.5.2..I
U3.39

—

17.78
17.03
lo.m

Rg

f23.2k
‘21.79
a4.91
e8.93
ko.a
93.’57
#+.@

‘“?103.
lfl.9

z

~;

U3:9

%:Z
u3.6
M&2
W..1
m.e

P

.6

.k
31,.9

33.4
653.3

p

t



!!&
A

.@

.12

:2
.40
j’v

.8

.0

.3

::
.0
.0
.0
—

.ti

.IA

.!?4

.34

;$5

.8

.0

.5

.9

.b

.0

.0

.0

o
—

1.U
1.W3

1.C87
I.op

1.C67
1.078
1.W’1
1.IL%
1.165

;%

1:=
1.Z7
l..m
1.726

z
2.=
S.mk

:~~

Q.*
2.395
Q.%3
e.w
3.0Y3
3S’4
3.W
3,653
3.873
3.W

TABLE I.- VALUES OF G3NERAUZ131 INDICLW FORCES, F

(h) 1 =l; j=l; M=l.2 ;: -
Concluded.

1

1.3U

1.111
1.U2

1.112

1.W

1.157

1.3
1.1

;3J
l.m
1. 63
1.
1.k
2.033

3.55

3.9%

3.Z37
3.573
3.613

g

k:lh

;$
5.W1
6.244
6.4s

I

Q---lJ-
1.492 Q.222

1.k83 2.226

1.4.37 2.233
1.535 y
1.53
1.* :;%
1.8?3
1.6% e.m
1.7@ 2.8s

$9 ;E
9.634 4.4Y.
Q.&cI L?@
‘?:g ;.$

I
9,926 3D.L$
9.929 lo.1’7
5.99 lo.’a
5.* 10.
6.oW m. 2
6.e54 U.03
6.379 3Ln
6.532 u.%

~$ ::;

9.3% 17*W
9.S=l 19.w
0.% m.4B
L2-f m.yf
1.63 23.76

5

9.9
9.93

%
6.@

g

U2:a
ly,ffl
16.69
I.&a
‘m.62
el.33

n
0

1 1,111

1.3U

l,ul

1,U3

l.le
1.1d
1.163
1.103
1.2*
1.SX
l.bm
1.633
‘l.&l
1.772
1.8P
1.*L

4 3.556
3.5%
3.5%
3.ST3
3.613

ff

k:317
U3S
5.M3

;%

6:ti

T
1 e

1!45? 2.222

l.bm 2.2A

l.m Q.222

1.% Q.Q?3

lg 2 .W

2“i%1.%5 2.

6E

1.X 2.k

1.4$3 2.

1.W3 2.e2T

2.@ :.%

:% @

e,m b,

‘2.@ 4.4.57

I
S.sa 10.16
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Figure l.- Regions used in the analyaiB of a rec~ wing in auperaonlc unsteady nmtion.
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Figme 2.- Sketches of areas of integration, Sc and Sa, for all regions
in figure 1.
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Figure 2.- Continued.
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