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By Hsrvard Lomsx, Franklyn B. Fuller,
and TLoma Sluder

SUMMARY

; /

A method is presented for determining the time-dependent flow over
a rectangular wing moving with a supersonic forward speed and undergoing
small vertical distortions expressible as polynomiels Involving spanwise
and chordwis€ distances. The solution for the velocity potential is
presented in a form analogous to that for steady supersonic flow having
the Pamiliar "reflected area™ concept discovered by Evvard. Particular
attention is paid to indicial-type motions and results are expressed in
terms of generalized indicial forces. Numerical results for Mach mumbers
equal to 1.1 and 1.2 are given for polynomials of the first and fifth
degree in the chordwise and spanwise directions, respectively, on a wing
having an aspect ratio of 4.

INTRODUCTION

. One of the basic problems arising in the analysis of wing flutter
boundaries is the calculation of the aerodynamic forces on wings under-
going small but arbitrary spanwise and chordwise distortions. When the
wing aspect ratio is large (actually, when the distance between spanwise
nodal lines is large), these forces are usually estimated by some strip
theory in which the loading on each spanwise section is approximated
from that on a two-dimensionel wing having the same chordwlse distortion.
This report is concerned with low-aspect-ratio rectangular wings for
which tip effects are important and the full three-dimensional theory
mist be used.

The exact linearized solution for the forces on thin rectangular
wings (limited, however, to the range where effective aspect ratlo
(/ M2-1 A) is > 1) traveling at supersonic speeds has been presented by
both Gardner (ref. 1) and Miles (refs. 2 and 3) in terms of multiple
integrals involving arbitrary surface undulations. However, the use of
such solutions in evaluating, numerically say, the forces induced by
specific wing distortions still presents some difficulties. It is the
purpose of this report to discuss certain techniques that can simplify
the labor involved in these calculations and to present numerical tebles
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for the forces lnduced by & class of surface deformations, a class gen-
eral enough to represent the first few mode shapes of rectangular
plates.

Mathematically the problem is to find and analyze a solution to the
four-dimensional wave equation

Poxe * QYY * Pzz - ;iE Ppryr = O (1a)

(where 8o 1s the speed of sound, t' i1s the time, and x,y,z are space
coordinates) that satisfies the appropriate boundary conditions. The
particular form of the solution to be analyzed differs from those pre-~
sented by Gardner and Miles but its development is based on the method
due to Gardmer.

Hadamard (ref. 4) studied a generalized form of equation (la) in
which the number of dimensions was arbitrary. His solutions to these
generalized equations are fundamentally different, depending on whether
the total number of dimensions is odd or even. In fact, the methods
Hedamard developed apply directly only to equations for which the total
number of dimensions is odd. Solutions for the even cases (such as
eq. (1a)) are determined by & "method of descent”; that is, the solution
for the next higher odd-dimensioned equation is found and then reduced
by (made independent of) one dimension. It is apparent, however, that
such a technique is in itself by no means unique. Thus, Hadamard found
the solution to equation (la) by descending from & solution to the
equation

1 -
q)JD{+ch'y+q)zz+cP§§ "‘a:)—a'cptltl =0 (1v)

but there are many other partial differential equations and groups of
partial differential equations governing a five-dimensional (x,y,z,&,t)
space all of which satisfy equation (la) in a plane £ = constant.
Gardner discovered a set of equations containing equation (1a) in a

¢ = constant plane which are simpler than equation (1a) in that solu-
tions could be found and adapted to the boundary conditions for time-
dependent motion by methods well known to aerodynamicists who have
studied the flow about wings in steady supersonic flight. Thils 1s the
essential part of Gardner's contribution and it represents the tech-
nique upon which the development of the solution presented 1in this
report is based. Actually, Gardner first applied a Lorentz transforma-
tion to equation (la) and then used his method outlined above. The
application of such a transformation is unnecessary and has the dis-
advantage that the resulting coordinates have lost thelr direct physical
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significance. We will apply Gardner's method of descent directly to
equation (la) and then proceed to analyze the solutions so obtained.

In order to simplify the analysis as much as possible, we will
limit solutions to the plane of the wing, and, further, consider only
indicial-type boundary conditions; in other words, unsteady motions in
which the wing attains instantaneously, at time zero, a certain span-
wise and chordwise distortion which is thereafter fixed. It is well
knovn that the transient responses to these indiclal motions can be used,
in a superposition integral, to obtain responses to many other types of
unsteady motion; in particular, responses to the harmonic oscillations
of nonrigid wings.

Finally, the principal interpretation of the results will be made
in terms of generalized forces, since these can be used directly in
elther flutter or gust studies, and it will be shown that the amount of
labor required to calculate such forces is reduced by using reciprocity
relations derived from the general theorems presented in reference 5.

LIST OF IMPORTANT SYMBOLS

A aspect ratio

8p speed of sound

81n amplitude of indicial-dovnwash distribution (See eq. (2a).)
B(p,q) beta function (See eq. (Bl5a).)

B,.x2(p,a) incomplete beta function (See eq. (B15b).)

C(x1,¥1) influence function for effect of side edge (See eq. (Al0).)

cr, 1ift coefficient, LTiil
4.5
CLa indicial 1lift coefficient due to angle-of-attack change,
BCL
without pitching, CLa = —=
da | =0
CLq' indicial 1lift coefficlent due to pitching for a wing rotating
ac
about its leading edge, CLq = ——L’
Cnm pitching-moment coefficilent, positive when trailing edge

tends to sink relative to leading edge, EQQ%EE
qoc
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indicial pitching-moment coefficient due to angle-of-attack
change (without piltching) measured about the leading edge,

indicial pitching-moment coefficient due to pitching measured
about the leading edge for a wing rotating about its lead-~

oCpy
ing edge, cmq = 7

wing chord

generalized indicial force coefficient (See eq. (36).)

generalized indicial force coefficient (See eq. (37).)

distance of wing camber line from 2z = O plane
Mach number

loading coefficient (preséure on the lower surface minus
pressure on the upper surface divided by free-stream

dynsmic pressure)

1
binominal coefficient, ( n> = —
m m! (n-m)!
dimensionless rate of pitching, I‘;—e
o

free-stream dynamic pressure, %proz

generalized coordinate

generalized force corresponding to the genéralized coor-
dinate qp.

real part of

S Gemx, 2+ (7-71)2

S (x-x,)2 + (yy,)?

J (x-x,)2 - BB (3-y,)2
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X,¥s2
Xgs¥arta
X4sY4t,

Xo

Xl(n)

wing semispan

wing area

area of acoustic plan form

area of reflected acoustic plan form
agt!

time

wing kinetlc energy -

wing potential energy

forwvard speed of wing

Y
9z /2=0

vertical velocity

Cartesian coordinates, fixed relative to the fluid at
infinity

coordinates with origin on center of wing leadlng edge
(See sketch (1).)

coordingtes with orlgin on center of wing leading edge at
time zero (See sketch (m).)

0

Mx + ¢

+
B

%(&-«/ﬁ)
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angle of attack (angle between flight path and plane of
wing), radians
M= -1

wing angle of piﬁch relative to horizontal, positive when
trailing edge lies below leading edge, radians

coordinate measuring fifth dimension
free-stream density
velocity potential

portion of velocity potential induced by sources in acoustic
plan form

portion of velocity potential induced by presence of side
edge

potential function in five-dimensional space.

N

Subscripts

regions in an x,t plane (See sketch (d).)

upper side of wing, z = O+

singularity (e.g., source) position

I,IT,...VIIT regions on wing shown in figure 1

STATEMENT OF THE PROBLEM

The Governing Equation

Assuming a wing's vertical motion is of such a nature that the
velocities induced in the fluild are small relative to the magnltude of
the wing's steady foiwerd motion, the normalized form of egquation (la)

x F Py T Ppy = Pyy = O (1c)
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vhere t = agt!, can be used as the governing partial differential equa-
tion of the flow field. This equation applies to the determination of
the velocity potential when the body or wing in question moves through
the fluid, the axes remaining fixed with respect to the still fluid
infinltely distent from the origin. For convenience we place the wing
leading edge on the y axis at t = O and the side edge on the x

axls. The wing flies at a constant forward (in the negative x direc-
tion) speed so at subsequent times the leading edge lies along the line
X = -Mt, wvhere M 1is the Mach number, and the side edge moves along

the x axis as shown in sketch (a).

xz-Mt
The Boundary Conditions

>0
The fluild velocity normal to the

surface of a solid moving in a friction-

less fluid must be zero. If the equa~

tion of the solid's surface is repre-~ 7 -
sented by / J
=0

G(x,y,2,5') =0

VX \
this boundary condition can be expressed Sketch (a)
mathematically, in terms of the coordinate system used in equation (lc),
as

aG a@m+g§+§?_a£=o

_— e —— —

dt' Ox Ox OJy dy Oz Oz

Consider a thin surface near the z = O plane. The equation of the
camber line of this surface can then be expressed in the form

G(x:y:zyt') =3z - h(X:Y:t') =0

and, assuming that thickness and lifting effects can be separated lin-
early, the boundary condition for the camber line becomes

Oh , 3P%h , 393h _ 99 _

St' | % ox | oy oy oz

If the derivatives of h with respect to each of the coordinates are
small, the two middle terms can be neglected and the expression for the
boundary condition reduces to

o0 20

= Wu(x:Y:t')
ot' oz z

=0
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We wish to simulate a rectangular wing deformed Indicially by bend-
ing in the spanwise.and chordwise directions. For this purpose, on the
portion of the 2z = O plane occupied by the wing plan form, the vertical
velocity, which determines the wing shape according to the previous
equation, is assumed to have the form

0 - t<o
Wy = 1 n
Mt
) ) e (=2) ()
1 n

where c¢ 1is chord length, a8y, 1s a constant and 1 and n are
integers > O.

The expression (x + Mt)z is used so that for 1 > 0 the tangent
to the wing camber line at the leading edge is tangent to the flight-path
angle of the leading edge. Consider, for example, the case 1 =1, n = 0.
The downwash '

a
'W‘u = —g—:'—o- (X + Mt)

represents an infinite class of surface shapes having the form

[(x + Mt)Z + £(x,¥)1] (2)

&
h(X:Y:t) = —22
20U0

vhere f(x,y) is an arbitrary function and h is, by definition, the
distance of the wing's camber line from the 2z = O plane. Since, within
the accuracy of linearized theory, the solution for the flow about the
wing depends only upon the value of wy(x,y,t), the loading on all the
wings represented by the gbove equation is the same.

Let us inspect the two special cases

-x®

0]

(1) f(x:Y)

(i1) £(x,y)

For case (i)

M
10 2
2xt + Mt
2, ( )

h(x:Y:
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and the wing is a flat plate pltching at a uniform rate about its lead-
ing edge which is following the flight path

(n)._= - EAQEEEE

IE 2cUq

as shown® in sketch (b)l Hence, at time t +the tangent to the flight
rath of the leading edge is

4 Iy s
DIID:. e e uﬂn;Zhan
o pes |*~1
- ._--J

flight path c#' \\
leading edge .

Sketch (b)

a(h); /At ayqt

c
) o

The slope of the leading edge of the plate at the seme time is

b\ _ 210t
C

aXLE

and the two slopes are seen to be equivalent.

For case (ii)

a
hix,y,t) = =22 (x + Mt)2
2¢ o

The =z scale in both sketches (b) and (c) is purposely distorted
in order to make the drawings clear. A basic assumption used in setting
up the boundary-value problem, by means of which the loading was deter-
mined, was that the surface of the wing must remain near the 2z =0 plane.
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and the wing is a plate which obtained a sudden parebolic camber at
t = 0, a shape it maintained thereafter as shown?® in sketch (c).

7
7.

3 5
M. M dfslr/‘:z}ian
fed Fed ed e
A

%—/;L‘- =0 at leading edge

Sketch (c)

The problem is linear, so it will be sufficient to determine a
solution for arbitrary 1 and n, and then add results for any combina-
tion of terms as desired. Thus, the complete boundary conditions to

be studied are
1 n
o (22 (2) =
=0

over the wing plan form, and, since the loading 1s zero over the remain-
ing portion of the plane

39

Wu(x:Y:t) = 3z

A

oP

- =0 off the wing (2b)
ot

z=0

since the loading is given by

Ap _ b @)
9, UM \ot /z=0+
SOLUTION FOR THE POTENTIAL

Figure 1 shows the wing plan form on the surface of which the
potential is required, together with the system of axes; also, traces
in the 2z = O plane of the wave system set up by the indicial motion of
the wing are indicated. The wave pattern for only two edges 1s shown;

2See footnote 1 on p. 9.

&
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the flight speed 1s supersonic so the trailing edge has no effect on
the velocities induced over the wing surface, and the results are valid
(in their entirety) only for PBA > 1, so the opposite edge either has
no effect or one that can be incorporated by simple superposition.

The wave traces divide the wing area into several reglons, indicated
by the Roman numerals, in each of which the analytical formulation for
the potential is different. Reglon I consists of that part of the wing
where the effect of neither the side edge nor leading edge has yet been
felt. In region II, the side-edge influence is acting (the line y =t
is the trace of the starting cylindrical wave from the side edge ¥y = 0)
but not the leading edge. Region IIT is the part within the starting
cylindrical wave from the leading edge, but outside the influence of the
side edge. This region, and region V, are further subdivided for reasons
that will appear later. Region IV is a compound region; potential there
can be found by adding the potentials for regions IT and III and sub-
tracting the potential for region I. Reglon V consists of the portion
of the wing within the spherical wave originating at the wing corner.

The flow over the part of the wing comprising regions VI and VII has
reached a steady state relative to a point on the wing, and the poten-
tial there is Jjust that for the corresponding parts of a rectangular
wing with the proper downwash distribution in steady motion. Finally,
region VIII is again & composite reglon, its potential being the sum of
potentials for reglons III and VII less the potential for region VI.

All the regilons Jjust listed, with the exception of region V, are
actually governed by the three- (total) dimensional wave equation and
the potential therein could be obtained by methods applicable to this
gimpler equation. However, ln this report we shall present & unified
approach and the problem will be solved by the same method in all
reglions.

Review of Kirchhoff'!s Formula

The solutlions developed in the subsequent sections are more clearly
interpretable 1f they are compared with certain known results that have
already been determined for the indicial motion of nonlifting wings with
symmetrical thickness dlstributions or lifting surfaces with all super-
gonic edges. The purpose of this section 1is simply to review briefly
some of these latter results.

As in steady-state wing theory, there is a formula for time- -
dependent flows that relates the velocity potential to a distribution
of time-dependent sources and doublets over a certain region in the
wing plane. This formula is due to Kirchhoff, and some of its aero-
dynamic uses are discussed in reference 6. Kirchhoff's result is
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immediately appliceble in the study of unsteady lifting-surface problems
when the potential can be represented by sources alone, that is, when
the upper and lower surfaces of the wing do not interact, as is the case
in regions I, IITI, and VI of figure 1.

Kirchhoff!'s formila for source distributions can be written

q)(x:Y:O;t) = - "2]‘;; ff [::)1] dx; dy, (3)
Sa,

where

To® = (x - %)% + (v - ¥,)?
The brackets on +w; indicate that the retarded value is to be taken
[l = Wu(xl:let"ro)

and Sy indicates that the region of integration is the acoustic plan
form corresponding to the event (x,y,0,t). These concepts are discussed
at length in reference 6.

As has been pointed out, equation (3) holds for each of the reglons
I, 111, and VI, but the area of integration Sg differs considerably
from one of these regions to another. Consider, for example, the deter-
mination of @ for region III, denoted Prrre Part of the boundary of
the acoustic plan form Sg is found by eliminating T between the
equation of the leading edge, x; = -MT, and the expression

(x - %)%+ (y -~y)%=(t -T)=

which gives the outer boundary, at "time" t, of all the disturbances
that, operating at "time" T, can produce an effect at the point (x,¥y).
This boundary is the ellipse

2
(& x - m) + (- 3)% - (ke)

where
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If the point (x,y) lies within the cylindrical wave from the leading
edge, that is, -t < x < t, the ellipse of equation (la) comprises only
pert of the acoustic plan form, the remainder being bounded by so mmuch
of the circle

(x - %)%+ (v - y)% = 2 (bb)

as lies on the wing at time zero. Sketch (d) shows the three possible
acoustic plan forms for points in region III. The limits for the three
types are

(1) t>x>0
(i1) 0> x>-t/M

(111) -t/M> x> -t

By + =3 1

h -—— - - - -—
e W e o = - -—
\ ooooooooooo
7| <
e 2 F %Y A
| i)
v ' (x—x,/’f- (y- };}‘512
X
' Sketch (d)

and these correspond to the subregions IIIg, IIIp, and III. identified
in figure 1. Using equation (3), we can write the potential in, say,




b , NACA TN 3286

region IITy as

x+a/ t2-(y-y,)2
P

v+t
1
IIlg ~  2n f 4y f [z‘;] dx; +
y-t x=o t2-(y-y, )%

Y+ t2-x2 Xl (Y"'yl) [
g; J/‘ dy, ::] dx, (5)
Y L AW v e

where

Xy - yi) = % [xm -/ tm® - (y-yl)z}

Gardner's Method of Descent

Equation (1) governs a four-dimensional x,y,z,t space. Our object,
of course, is to find for this equation & solution that satisfies the
boundary conditions in the =z = O plane as specified in equations (2a)
and (2b). Obviously, we can always construct a space of more dlmensions
governed in an arbitrary way except that it must satisfy equation (1) in
an X,y,z,t hyperplane. Then, if a solution in this higher dimensionsal
space which satisfiles equations (2a) and (2b) in the x,y,z,t plane can
be found, it represents for ¢ (the additional dimension) equal to some
constant the solution to our problem. This characterizes the method of
descent. It is not obvious, of course, that such a method leads to any
simplification; but, with a proper choice of the governing equation for
the new space, such a possibility always exists.

There are examples where various applications of this method have
proved to be useful. Hadamard's use of the method, mentioned 1in the
introduction, is classical. A simple application of his method is the
derivation of the velocity potential for a source in a two-dimensional
supersonic flow field. This potential field (which amounts to a step
function, the step occurring at the Mach wave) is easy to derive if one
considers a three-dimensional field with a line of sources normal to the
free stream and uniform in strength. The two-dimensional field mentioned
above follows immediately by descent.

In other examples the additional dimension is measured with imagi-
nary numbers and the additional law for the extended space is the
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requirement that the functional dependence on the resulting complex
variable shall be analytic. The method of descending in the latter
cagse 1ls assgocliated with the study of analytic contlnuation. In partic-
ular, Riesz's method (discussed in ref. T7) for solving equation (1)
11lustrates these concepts.

Gardner's method for solving equation (1) is to define a five-
dimensional space in which a potential function ¥ 1s governed by the
. equations

Ve - Vyy ~ ¥y = O (6v)

and show that solutions to equations (6) in this space are general
enough to contain general solutions to equation (1) in a plane

£ = constant. We shall, therefore, proceed by analyzing these equa-
tions and eventually let £ approach a plane in which the boundary
conditions of equations (2a) and (2b) are satisfied. For convenience,
the latter plane is taken to be the £ = O plane.

Since equations (6a) and (6b) are linear, g number of possibili-
ties exist for the choice of the dependent variable ¥(x,y,2,0,t).
Aside from the more obvious choice V(x,y,z,0,t) = ¢(x,y,z,t), vhere @
is the velocity potential of equation (1); for example, one could let
¥(x,y,2,0,t) = CPX(X:Y;Z)t) or agein, ‘Vg (x,¥,2,0,t) = ?(x,y,z,t). These
various cholces amount only to relatively minor differences in the
detailed technique of the subsequent analysis. If, in imposing the
boundary conditions of equations (2), one is to use only source-type
solutions for both equations (6a) and (6b), the last choice is suffi-
clent. Therefore, set

I: "a— ¥(x,v,2, E;t):| = q’(x:YJZJt) (7)
ot £=0

Now differentiate equation (6a) with respect to z and set® z=0.
87t can be shown that the solution satisfies the equation

z}_i.;no {gimo l:‘yg (X,5,2, g:t):l} = Z_l_j;,mo o(x,¥,2,t)

= gl_i;no zimo [WE(X:Y:Z:g:t)}}
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Defining

W(E:XJYJt) = %ll‘! (8)

Z12=0
equation (6a) can be expressed in the form

and the boundary conditions for equation (9) are given directly by equa-

tions (2). Thus on the wing
wl  _o® X+M’°>z ( P )n (10a)
c c

= Wu(X)YJt) = 3zn(
z=0
and off the wing

P

Btlg=o = @ (x,%,0,8) = 0 (10b)

Assuming equation (9) to have been solved for the boundary condi-
tions given by equations (10), we return to the second of the set of
partial differential equations (6), specifically,

‘ygg—\l"y.y-‘ifzz=o

From equation (8), it is seen that the solution to eguation (9)
yields the result

Y

= known function of y,E on the wing
Oz z=0

Further, the boundary conditions for the original ‘problem in (x,y,z,&,t)
space require that @ be an odd function with respect to 2z, and con-
timious across the 2z = O plane except over the wing plan form. Thus @
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must be zero for z = 0 except over the wing plan form. The continuation
of this condition into (x,y,z,&,t) space then implies, according to equa-
tion (7), that off the wing

|
agzﬂo '

Hence, both the second partial differentlal equation and its boundary
conditions are identical in form to the first set given by equations (9)
and (10), respectively. Applying equation (7) to their dual solution,
we obtain the desired result

l:i *(X:Y;O:E-;t):l . = 9(x,y,0,t)
ot £=0

for the potential on a rectangular wing (with PBA > 1) in supersonic
unsteady motion.

The General Expression for the Potential

-

The method ocutlined in the precedlng section willl now be applied
to obtaln integral expressions for the potential in any reglon of the
rectangular wing shown in flgure 1. Consider first equation (9) for
W(E,x,t). This equation 1s the same partial differential equation as
that which governs supersonic steady flow. Further, the boundary values
In the §,x,t space are identical to
those representing a thin plansar wing

in a steady supersonic flow. Since the }H,"—;
Mach number in the steady-flow analog v /
is »,/'E, the equlvalent plan form of . 7\

this wing (shown in sketch (e)) is a }

swveptforverd wing tip having all super-
sonic edges (i.e., the component of the
free-stream velocity normal to all edges
is supersonic).

- /4
X/-—Mf, 7\ / T N\
L AN

Since all edges of the equivalent
wing plan form are supersonic, the
solution for W can be written imme-
diately in terms of "sources” only, Y
theilr strength being glven by equa-
tion (10a). Thus, by analogy with Sketch (e)
the well-known results of supersonic

G
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wing theory, we have

w,, (x,+Mt, ,y)dx,dt,
g) = - = u ) ll
Nt JC]:/(t tl)a—gz—(x-x )2 o

wvhere T 1is the area on the wing cut out by the forecone from the
point (&,x,t), see sketch (e). The anmalytic form of W will differ
considerably in each of the three regions above the equivalent wing

showvn in sketch (f).
—>
X

The value of W given by
equetion (11) now “becomes & bound-
ary condition for the solution of
equation (6b). Thus, over the
portion of the 2z =0 plane for which
¥ >0, £20, the variation of

%E 1s now known and for

Zlz=0

y <0, E>0 +the condition

v = 0 applies. (These condi-
Of | 2=0

tions are still not sufficient to
determine a unique solution unless
the further restriction is imposed
that the loading falls to zero as
the edge y = O 1is approached,
i.e., as y—>0+.) Again we observe
that these boundary conditions and
the partial differential equa-
tion (6b) are identical to those
studied in connection with a sta-
Sketch (f) tionary planar wing in a supersonic
stream. As shown in sketch (f), solutions from the t,x,t space above
the ¢ = O plane are referred to as W, Wp, and W, depending on the
relation between x and ¢ in a +t = constant plane. Sketch (g) shows
the five different boundary-value problems formed by the varlous com-
binations of Wy, W, and Wg occurring along constant x lines in the
X, plane; and the corresponding regions in figure 1 for which each
applies. Rach of these five problems is directly analogous to the
boundary-value problem encountered in steady-state lifting-surface
theory, of a planar, rectangular lifting surface in a steady supersonic
stream. The "leading edges" of these analogous rectangular plan forms
lie along the lines §l = t, §1 v t2-x% or €, = tp, depending on the
value of x, and the "side edge" lies along the line v = 0. Hence, by
means of this steady-flow anaslog, we can lmmediately write the solution
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A7 0

(i) xzt;for regions I, ﬂ'

/’7/4 ///,,

-

¥

(ii) Osx=t; E,,ZZ]?,
T

>
3/l

19

to equation (6b) in the form

‘F(X:Y:O:-E-Jt) =

1 ff W(x,¥,,8,,t)d6,dy, (12)
J(E-€,)2 - (y-3,)2

where only the area of integration o
mist be discussed.

Two possibllitles exist for the
shape of o¢. First, if the point
£, v lies to the right of the dashed
lines in sketch (g), which in the

" analogous steady-flow problem repre-

sent the traces of the Mach cones
from the leading-edge tips, o is the
triangular area shown (for region
IITy) in sketch (h) part (i). If
however, £, y lies between this line
and the side edge, ¥y = 0, o is the
trapezoidal ares shown (for region Vg)

\\ ¥ in sketch (h) part (ii). The latter
/ is a well-known result used in steady
/ Vfg-xz supersonic lifting-surface theory and
y §¢
(iii) f/ﬁlsxso. E,, t : /7,
6 - 'fl.x@ P //\/ ’
/ W, :k\\\\<§§
& ol S N %
g AR \ RGEIN
\\ 4>
\ll——‘,z_xe 1= %ﬂ’ 7
NNy 4 i) O<x<t , y>1
(W) =1=xs -t/M; I, 7, vm
y 14
7 7
1 <
o/ W
/ (7 I W.
QA
Loy N
N Y Y/

(v) -Mlsx<-t; E,m'

Sketch (g)

(i) O<x<t , y<Vt?-x%

Sketch (h)
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first developed by Evvard (ref. 8). The division of the five kinds of
problems illustrated in sketch (g) into the final twelve, represented by
the regions in figure 1, is brought ebout by the various combinations of
Wp, Wp, and Wg that can occur in the area o as the point £, y assumes
all necessary values on the wing.

When V¥ has been determined, the potential in the physical plane is
found by equation (7), or, combining equations (11) and (12),

(x,y,0,t) =

1 gim 3 ff dt,dy, ff Wy (%, 4M6, ,y, ) ax, dt, 13)
-3 0 X
. %8 o aﬁ&-&l)z-,(y-yl)a A .f(t-tl)z-gl-?-(x_xl)z

A detailed analysis of equation (13) for a point x,y,t in region
Vg of figure 1 is given in Appendix A, and a study of this analysis
enables one to write the resulis for all regions without difficulty.

Interpretation of the Results

The results of the rather involved analysis given in Appendix A
can be interpreted in terms of the known solutions for simpler boundary
conditions. These latter solutions have already been reviewed in &
previous section in which it was shown that the potential on a lifting
surface with all supersonic edges can be written in the form

W, Jdx
o(x,5,0,t) = - _2} f[_u_!;_ g
7T To

Sa

From Appendix A it is found that the potential at a point on a rectangu-
lar lifting surface can always be expressed as the sum of two parts

o(x,y,0,t) = cP(l) (x,¥,0,t) - (P(z) (X:YJO;t) (1%)
where )
(2) 1 [vyy Jax, 4y,
@' (x,¥,0,t) = - P ff 0 (15a)
Sq,
and

o yon) <L [ ctnydendn (150)
| .

(6]
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The value of C(x,,¥,) is glven by equation (A10) in Appendix A and the
areas of integration, Sy and Sg, are illustrated for the various reglons
I through VIII in figure 2.

Let us first inspect equations (15) in light of their possible
analogy with the familiar solution for the steady-state, rectangular
1lifting surface. If a rectangular wing having arbitrary twist and caumber
is placed in a steady supersonic flow, the solution for the potential on
its surface can also be expressed as the sum of two parts

0(x,5,0) = o) (x,5,0) - o2 (x,7,0) (16)

where, if
I.c2 = (X - xl)Z_ Bz(y = yl)z

CP(l)(x:Y:O) = - ‘3{" ff ‘ﬁl%—iyl " (17a)
Sl

and
dx
q.3(2)(){’y.,o) = - %f—[ Wur—l_dy (17p)
Cc
S2

These equations can be construed in ‘L‘
the following simple way: Equation \
(172) represents the potential induced

at x,y,0 by a distribution of

sources over the wing plan form, each

source having a strength proportional

to the local streamwise slope of the

upper surface. The area S,, as

shown in sketch (i), is the portion

of the wing withln the Mach forecone Xy
from x,y,0. Equation (17b) has a
similar interpretation; it also rep-
resents a distribution of sources
over the wing, each having a strength
proportional to the local slope of
the upper surface. But the area of
integration S, 1s now that portion
of the wing withln the Mach forecone
from the point x,-y,0; that is,
within the cone which forms & mirror
image of the physical Mach forecone
in the verticel plane containing the

-
x

1111
-t
Ny ettt

)/

Sketch (1)
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wing's side edge. The potential ¢(2)(x,y,0) represents the difference
between the potentlals for & wing with a vertically symmetrical thick-
ness distribution and a surface with no thickness having the same shape
as the upper surface of the nonlifting wing.

Let us return now to equations (15). Just as in the steady-state
case, m(l)(x,y,o,t) represents the potential induced at x,y,0 by a
distribution of sources (see eq. (3)) over the wing plan form, each
proportional to the local slope of the wing, but now, since the wing is
in motion, with the added condition that they be local slopes at the

N
L A = — — -
N A
/ﬁﬁ?j// 4 2
;/ A-alipr-»/':f
\ £
Sketch (J3) Sketch (k)

appropriate time. The area Sg, shown in sketch (J), is just the
acoustic plan form defined earlier in the discussion of equations (3)
and (4). Physically, Sg represents those points on the wing from
which disturbances can, at the time %, influence the flow at x,¥,0.
It is the generalization, in the stationary coordinate system, of the
wing area bounded by the Mach forecone.

The relation between Q(l)(x,y,o,t) and.w(z)(x,y,o,t) is similar

to that between their steady-state analogs. Thus, again, Q(z)(x,y,o,t)
represents the difference between the potentials for an uncambered non-
lifting wing and a lifting surface having the same shepe as the top of

the nonlifting wing. A more striking similerity lies in the relation
between Sg and Se.

We have already seen that Sy 1s the acoustic plan form, and, as
it turns out, S 1s the reflection of the acoustic plan form (see
sketch (k)) in the vertical plene containing the side edge - a situation
identical to that existing between S, and S; in the steady-state case.
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(In other words, Sg 1s the acoustic plan form for the event X,¥,0,%,
and Sec 1s the acoustic plan form for the event x,-y,0,t.) Physi-
cally, Sec represents the portion of the wing's lower surface contain-
ing disturbances which can, at the time +, influence the flow at

X,¥,0 on the wing's upper surface. At this point the similarity
between the steedy and unsteady solutions ends since the influence of
the slopes 1n the reflected plan form is not the same as it is for the
slopes in the basic acoustic plan form; the influence in the former

case now being given by the integral C(x;,y,) defined in equation (Al0).

One can show, by simply referring the results given in equations
(15) to a coordinate system fixed on the wing, that equations (15a) and
(15b) are identical, respectively, to equations (17a) and (17b) when
they apply to regions VII -and VI in figure 1; regions in which, for
indicial-type motions, the flow is steady relative to the wing. Hence,
equations (15a) and (15b) extend Evvard's "reflected area" concept to
all parts of a rectangular wing in supersonic unsteady motion.*

THE GENERALIZED FORCES
Revlew of Lagrange's Equations of Motion
In order to define more clearly the subsequent concepts and nota-
tion, we will briefly review Lagrange's equations of motion as applied
to distorting wings and will examine a simple application to a rectan-
gular wing.
Lagrange's equations are usually written

d‘ aT — BT + BU == Qr; I‘=l,2, e o o (18)
at' 9§, 9dg, Oa,

where

T kinetic énergy of the wing

U poéential energy of wing

Q. & generalized (external) force

d, & generalized coordinate

4Tt is of further interest to notice that equation (15b) can be
reduced to a double integral involving wu(8,y,) by using, for example,

the transformations § = X, +Mt; and 7=t -t, and integrating in the T
plane.
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In the present application g, 1is the amplitude at a given time of a
polynomial measuring h, the. vertical displacement of the wing's camber
line from the 2z = O plane. Thus, relative to an xg, yg coordinate
system thet is fixed on the wing, see sketch (1)

Bk, ¥y t') = Z a.(£")P (0 ,¥s) (19)

3
The wing's kinetic energy can be written

T =ff _;_ b%m(xs,¥g) dxadys (20)
S
where m 1is the wing mass per unit plan-form area. Using equation (19),
we Tind
d oT .
prri-yale dg ff Pr(xa,¥s) P (X3,¥a)m(xg,¥5) %a8y5
dr - g
(21)
3T .,
oqp

The potential energy is usually difficult to evaluate analytically.
j; However, it can often be determined

? experimentally (as will be seen) by
§>0 ¢ measuring the frequencies of the free
3 vibration modes.. For the present
lq— s —» assume that the wing is a homogene-
ous plate of constant thickness.
The potential energy for such a
v X5 wing can be expressed as (ref. 9)
> . 2. d2
t =0 ﬁ Sz U=gﬂ{($h)2-2(l-u)[§hé 3 hz -
= X
£ + S 3 3
le—s
7 3%\
— dx 53y (22)
v X3 axsaYs

Sketeh (1)



iM

NACA TN 3286 25

which leads to the equation

U S %P, %P,
— = PVEP; - 2(1 - —£
day, Z‘*sff[”V ( )<28y28x *

9°p,. 3°P o®*p. %P
1 T 5 _ T 8 :>]dxadyé
2 dxg” dyg  Oxgdys Oxadys

(23)

where p 1is Poisson's ratio, V2= 32/dxs° + 0%/dys>, and

2(Young's modulus) (plate thickness):3
3(1 - p?)

Now, if the generalized coordinates have been normalized so that
each measures the amplitude of a free vibration mode, all terms in equa-
tions (21) and (23) involving the integral of the product of Py and Pg
are zero. Assuming, henceforth, such normalization, we can write

" > o \2 %P, %P,
d5 ff P, (xa;ys)m(xa)yG)dxde:a + Dap ff {(V Pr) -2(1-p) l: > >
S S axs ays

?®p, \?
( =) ]}dxsdys= s T=1,2 ... (24)
0xa%yg

Finally, dividing through by the coefficient of ¢, and expressing a
generalized force as the integral over the wing plan form of the product
of the rth mode shape and the loadings® x (Ap)g induced on the wing by
each of the mode shapes considered, we find

A
B qozs: _éf Pr(xsiy3)<‘a§>s d-xadys

Gp + G = (25)
T {Sf Pr2(xg,¥s)m(Xs,¥s) 8%a8Y4

where wy 1s the frequency of the rth’' free vibration mode.

SWe will write (Ap) a(&p/ag vhere q, is the free-stream
dynamic pressure. This is possible without a confusion of notation since
the generalized coordinates are expressed as dy595595> - - - and
exclude the term g, .
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If the free-mode frequencies are experimentally determined, equa-
tions - such as equation (23) - giving the wing's potential energy,
never have to be evaluated. Further, in such cases, equation (25)
applies to quite general wing structures with varying density. Usually
in the application of equation (25), one uses the actual frequency Wy
of the free mode but, in evaluating the aerodynsmic forces, uses an
analytical expression that only approximates the rth mode shape. ILet
us exemine the generalized force term in equation (25), taking, for
simplicity, only one term of the sum;

o = 3o [ Prlaasvo) (%5) dxadye (26)
S

According to what has gone before, the mode shape polynomial Pr(xs,yé)

has the form
r(rore) = (%2 ) (22 (1)

while (Ap/qo)S is the loading coefficient corresponding to an indiecial
deflection (see previous section on boundary conditions)

h = =2 ag(1) % ; [(?—)ZH + f(%)(%%) ] (28)

which gives a vertical veloclty distribution

= 0o as) () (L) (29)

Wow a generalized indicial force coefficient can be defined as follows:

fgg(t' = % ag(1) f f (?)J@—a)g [ (Ap/qo)s] dxgdyg (30)
S

(The calculation of these quantities fgg(t') will be elaborated in the

next section.) Since the generalized force Q, 1s intended to apply
to any motion, not necessarily indicial, it is necessary to apply

Duhamel's integral to the indicial force coefficient f;:(t'); thus,

t! f;g(T')

d 1 .t
—_— qs(t T ) qs(l)

— ar! (31)

Qr=qos
[e]
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As an exemple, consider now the simple one degree of freedom
vibrating plate illustrated in sketch (m). The plate is fixed to the

53(—4

‘c

Sketch (m)
wall and restrained along its leadling edge. The mode shape is assumed

to have the form
= q,(%5") ( ) (y‘*) (32)

so for a plate with uniform density and thickness

f dyaf dxg Pre(xs,¥s) = 2;‘<g>4

-8

Equation (25) now becomes

(.il + mlzq;_ = msc< ) Q, (33)

For this case, we have the generalized indicial force coefficient
2.,
f22(t ), and so

G £3a(T")
Q, (sc)-dt—'-f q (t-7) | —— Jaw (3k4)
b q,(1)
Therefore, equation (33) can be written
25q, £2(71)
1 - Tt 22 1
Q:L'l‘wl ql ( > dt' ql(t T ) ql(l) ar (35)
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The Generalized Indicial Force Coefficient

It is clear from the previous section that a study of the dynaemic
behavior of rectangular wings moving at supersonic speeds can be carried
out if one can obtain values of the generalized force coefficient,

fé’é(t'), as defined by equation (30). We will now show how these values
can be obtained from the solution to the aerodynamic boundary-value
problem represented by equation (14).

It was convenlent in developing
equation (14) to use a coordinate

Xy = Xyt Ml system - x,y,z,t - which was fixed
Y3V in space so that the left edge of the
Z3* 24 wing moved along the x axis as

1= 1, shown in sketch (a). On the other

hand, in studying the dynamic problem
it was more convenient to use an
f4>0 X413 492,55, system which was fixed
in space so that the wing's spanwise
center line moved along the x, axis,

¥ },’ see sketch (n). ILet us first con-
= 4 sgsider the problem of transferring the
lg=0 c
} results in terms of the x,y,z,t
l s z;gi:inates to the x,,¥,,2,,%,
x The indicial force coefficient
<4
F;’E(t‘) is defined as follows:
Sketch (n)
in 1 . 3 x+Mt J y & Ap b
F 1) = = dx bl =E 6
) scht [ (=Y (1) (&) (36)
- o}

In order to transfer the axes from the set shown in sketch (a) to the
more convenient set of sketch (n), so that mode shapes are symmetric or
asymmetric about the wing's spanwise center line and the force coeffi-

cients denoted f?j']gl can be determined, we mroceed as follows. First,

the loading coefficient for a wing in the (x,y) system with downwash
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glven by

2 () () - () o ¥ e @

is obtained. This loading coefficient can be written as a sum:

(fl‘-f S i (-1)" (ﬁ)(%) - %f)w

=0

Now the gquantity fgz is defined as

w2 (2) ()"

T IOIO)

This last integral can be written as

c-Mbt s 3 g 1n
in 1 _1y\8tn x+Mt ¥y-8 AP
38 = 2sc [l+(l) ]fMt dxfdy<6><6><qo>
- fo) .

H
1

e e OO TOTOM
H=0

v=0

c-Mt

[T f e @
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By using equation (36) we find

-2 @ feroEE @

where all forces are responses to a unit indiciel disturbance. Note
that 1f equation (37) is applied in the case of a wing cantilevered on
a wall, both n and g must be even in order to satisfy the boundary
conditions of reflection in the wall.

By superimposing boundary conditions and theilr resulting solutions,
one can further show that the value of f;g given by equation (37) is
valid for all reduced aspect ratios PBA greater than 1 in spite of the
fact that the value of F;g given by equation (36), as it stands,
applies only to wings for which BA 1s greater than 2.

Given fzn(t'), one can determine the generalized force associated

Jg
with the generalized coordinate g, by means of the superposltion inte-
gral as illustrated by equation (34).

Detalls of Calculation

The details of actually evaluating the indicial force coefficients
from the solution for the potential presented in the first part of this
report are discussed in Appendix B. Considerable lsbor 1s involved in
such calculations, and an attempt was made to discover recursion formulas
by means of which certain derivatives, for the rectangular wing, could be
expressed as combinations of others. This attempt was successful and
yielded the following results

Consider equation (36). Integrate the x integral in this equation
by parts, setting

in
u(x) =fs ygéP;_ 3 av(x) = (x+Mt)'j dx
o 9
Then, since by equation (B7) in Appendix B
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one finds
In 1 [_l-i,n Z-l,n}
= — P - R, a
F i j+l{° g~ Fig (38a)
Inspection of equation (37) shows that the same relation holds for the
generalized indicial force coefficlents f;g; that 1s,
In _ _1 l-1,n _ _l-1,n 38b
ig T 31 {fo g fJ+1,g} (380)

From this relation, it is seen that only the forces ng need be

determined by integration; the forces for higher values of the Index 1
can be found by combination of results for different values of the mode
shape index J.

As & simple illustration of the results presented so far, we can
calculate the indicisl force derivative for the cases 1 =n =g =0,
J =0, 1. The case J = O corresponds to the indicial 1ift coefficient
for a flat, sinking, rectangular wing, and the case for J = 1 corre-
gponds to the indicial pltching-moment coefficient for the same wing.
Since n = g = 0, equation (37) gives

$00 _ 500
Jo Jo

Thus, with J = O and identifying 'aoo/Uo as angle of attack a, one
finds from Appendix B

1 Mto 1
Cig =~ — 1 =—l—— 0L to L=
ho a-oo/on [ <. ] =0 T Ml
=u{ [ -1M+M cos"l(M-Bato)+»/t02-(1—Mt0)2]-
to B
1 1 2 1 1
= + 2ty - (M-1)% — <t <=
hA[M+l o - (-1 ]} Ml = © =M-1
=£I- -_l_ t0> 1
B 28A = M-1

Next, with J = 1, and using Cma' to designate the pitching moment
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measured about the leading edge of the wing,
1 00 2 l, 2 o o= 2
- — . === - =% -— [3-(M=+ L)%
()t 0 3 - oee e}
1

0< to'S?ﬁ;I

1

Cmg

2
- g{l [ <1 - %) cos~1 Mto-1 + % cos™t (M- BZt,) +

M|x tq
1+Mt 2
5 oﬁoz - (1-Mto)2]- i [_2_+ 3ty - (M-1) tos:l}
M+l
NP
M+1 M-1

v o _2(1 .2 to > Lk
Cmg, B( 3pA °2 1

These expressions agree with those given by Miles in reference 2.

The above results can be used to demonstrate the usefulness of
equation (38a). Taking j=n=g =0, 1 = 1 in that equation gives

10 00 00
Foo = Foo = FlO

or, for the present case,

10 (e]e] 00
0o oo 10

which represents the equality

T

q CLa+CmCL,

Cr,

that is, the 1ift coefficient for a pitching wing equals the sum of the
1ift and pitching-moment coefficients of a sinking wing (primes indicate
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the wing is pitching about and moments are measured about the wing lead-
ing edge). Hence,

ch-v=§{(1+-;—t02> -i—[to -1~ﬂ:02+1~123+l tos]} ogtogﬁll-

= %{l 1+ + t02 )cos~t Mto-1 + ¥ cos1 (M- BZty) +
T ) o 8

3-Mto
. J o2 - (1-Mto)z}-éz[M%l + 3to - 3(M-1)te? +

(M—l)2t03]} Loy L

M+l - M-1
=g{l -_:'.'_ 't0>___l
8 3BA - M-1

A further application of equation (38a) provides the pitching-
moment coefficlent for a pitching flat rectanguler wing. Thus, with
l=3J=1,n=g=0, equation (38a) gives

10 _ ; 00 _ 00
FlO - <Foo on)

wvhich becomes

10 7 [ oo 00
fio = 2 (foo L
and so
00
oo
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From equation (B21) in Appendix B it is found that

fOO FOO
20 20 h{ (1 -146.%) [l; > :l 1
= - — M M t -
Uo UO
L (1] 1-Mt.S -y Mto-1 -
= {;[__.3.2_ cos~¥ ’:o + -]35% cos™1 (M-pZt,) +
LMo+ (MB4+2) 5,52 > > 1
62 = (1 - Mtg) ]-—-—[-i-Jr bty -
9 "/0 © oha | Ml °
s 4 1 1
M" —_— ——
~bf1 1 to> L
B13 " A °Z2 M1
Combining, we find
2 ([2+Mb° to 1
Cang' "ﬁ{ : _12A|:8-6Mt0+M(M2+3)1303:|} 0<% <y

24+ Mty -
- 2_{% I:_._...._g_ cog—1 M_to__l + %% COS-l (M.. B2t0) +

M 3 to
8-Mto- (ME+2) 152
.2 - (L-M - -1)t,2
5 /0 ( to):l 21%[ + 8ty - 6(M-1)t,2 +
M-1)% t.* Lo, <L
(a-1) 0]} Mel = O = M-1
=__a{_a__1_} to > L
Bl3 Lpa = M-1

Another relation smong the generalized indicial forces f;g can be

derived by means of the reciprocity relations given in reference 5. The
details of the derivation are given in Appendix C and there results

Z( () - § (2 (39)
u=0 u-

(o]
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Equation (39) can be used in two ways; one, as a means for checking
the internal consistency of a set of calculated generalized indicial
forces, and the other, as a means for expressing a given force in terms
of a set of others.

Consider, as an exemple of the former use, the case for which

on og
og = fon

From equation (37) we can express this relation in terms of the calcu-
lated quantities F thus

W@ o <><>““
o (5) 3 ()™

p=0
Ifnow n=1, g = 3 the following relation results

03 - 01 00 03 (X1 o2 A 2 oz 00
Fo:. Fos>+ |:<Foa Foo> + 3<F02 - F01>} + 3<2> (Foo - F02> +
AN® /oo o1\ _
2<-§> <F01 - FOO) =0

which provides a useful check on the computed quantities.

ol

Next let us solve equation (39) for a given force. Perform the

sum operation
’ J
RO
=0 )

on both sides of equation (39), and reverse the order of summation on
the left side. There results

otz a3 Q- L)y er () s
p=0 J=o p=0

J=t




36 NACA TN 3286

The inner sum on the left can be evaluated. Thus one has

ct e = ) @ (2)

- :i:(-l)u (ﬁ) i(—l)r <;{>xr
S e L)

Equating coefficlents of x,

Z(-D()() (e

p=r
and equation (40) becomes

£ = i (~1)j<‘;>i (-1 <ﬁ fii (1)
J=0 H=0

CONCLUDING REMARKS

A method is presented for evaluating the generalized forces on &
rectangular wing flying at supersonic speeds and having an aspect ratio
such that PA > 1. The generalized coordinates used to define the wing's
behavior are the amplitudes of downwash distributions expressed in terms
of polynomigls in x and y, the chordwise and spanwise directions,

respectively.

Thmerical results are presented in tabie I for generalized indicial
forces on & wing having an aspect ratio of 4 and flying at a Mach number
equal to 1.1 and 1.2; the polynomial coverage being 0 <1 £1 and
0 <n <5, wvhere w~x

Ames Aeronautical Leboratory
Netional Advisory Committee for Aeronsutics
Moffett Field, Calif., June 30, 195k
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APPENDIX A
EXPRESSIONS FOR THE POTENTIAL

In order to write the expressions for the potential in all regions
shown in figure 1, it is sufficient to derive in detail only that for
region V. Having carried out this analysis, one can determine the expres-
sions for potential in other regions without difficulty.

Consider, therefore, equation (13) and let o and T apply to region
Vg. First, it is necessary to determine the potentials Wy and Wg in
the +t,x,¢ space. From equation (11), in conjunction with sketech (f),
it is found that

/72 ¢t 2 toaf (x-x, )5+, 2
xHV -6y (x23) " by Wy (xg + Mby,yy)dty

e % 2 2 )
x-A/t2-§12 o '*/(t"tl) "512"(3{"3(1)
(A1)
t- -x )2+ 2
0 - 1 fo N f o (=%, )5+ ES W (Xy + Mby,y,)dt,
= - 1
Xl( gl) -xl/M N/(t"tl)z - glz-(x-xl)z
4+ £2-E.2 tef (x-x- Y24 £, 2
%\fx 1 o f (x-x,)5+&; Wiy (X1 +Mby,¥,)db, (12)
1
° ° J(t-tl)z- §12-(X-x1)2

where

X, (8;) =%(Xm - m>

With the values of W given in equations (Al) and (A2) it is pos-
sible now to solve equation (6b) for 1V, sketch (g) giving the required
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data in the £,y plane. Thus, if R® = (§-§1)2 - (y-v.)%

‘l"(g:x,Y:t) = -

v £ ~E+y+t t W
W A
THIE VAR VA i
Bt Er(yy,) ¥ g-(y-v,)
2_ 2
W~V
1Y &, ag, YA
T
§+y.. A tz..xz §+(Y"'Yl)
- BryH/EE % B .
Wg-W
%f dylf at BRA+%f ay,
v £-(7-y1) E4y-t
t -E+t-y t
Wa o1 Ha
aL, =+ dy, ag, — +
Er(y-y,) © &+ (y+y2)
o t2-x2
W
L/ a, ag, I,
g+y-o £2-x° E+(y-v,)
2 2
==y t=-x = WB-WA
I f dy, - = (A3)
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Now apply the operation of equation (7) and the potential @V is
given by

E.W T © E.W
meb|fonf i faf wt
¥-¥, y o -(y-yy) *
v Vg2.x2 £ (Wi, ) y+v€2:{-‘é VEB-x2
1\VTBTVA gl(WB"WA)
dyl dgl——TR—a—— + dyl dgl —-—-3——.
Y-t2-x  y-y, N -(y-¥4) !
o £2-x=
EW £, (Wp-W
fdylf w, 2 [ s, f ag, 22
..yl l ¥ ta_xz y_yl Rl
t- t-
f Zy WA|§1=y+yl ydy ft at E. Wy
1 —_——T— - +
0 1 o lY*Yl ” Ry
NE=-x"-y (Wn-W )l t2-x%-y NtZ-x2
f a5 B7UA/ & =y, iy at £, (Wg-W,)
1 - 1 T
Nk f R,3
(o] YY1 0 y+y1 1
(Al)

vhere R,% = £,2 - (y-y;)® and the bars on the integrals signify that
the finite part of the integral is to be taken in the sense definedl in
reference 10 and that the order of integration cannot, in general, be
reversed.® For convenience set

Pyy = - % z In (A5)

For the subsequent analysis to hold, the definition of the finite
part given in reference 10 is essential. This definition differs from
that given by Hadamard when it applies to multiple integrals.

2since the order of integration plays an important role in the fol-
lowing development, integration first with respect to x and then with
respect to ¥y will be denoted fdy;fdx f(x,y) vwhile integration first
with respect to y and then with respect to x will be denoted
[ax [dy £(x,y). When the notation [[f(x,y)dydx is used, the order of
integration 1s immaterial.
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where In 1is the nth integral group on the right-hand side of equa-
tion (AkM).

Consider the first of these integral sets. Using equation (Al),
we can write

I, = f &y, f §,46,

g/2
y-t YV (8,5 )7 x-/t2-8,%

dx;

W (x,4Mt, , ¥, ) dt,

o J(£,) - (x-x,)2 - ¢,

In order to simplify this expression, the order of these integrals will
be rearranged so the integration with respect to &, can be carried
out first. The technique of changing the order of repeated integrals
with strong singularities set forth in reference 10 will be used here.
Consider the change of order in the §,, x; plane. Pretend for the
moment, that the t, Integration has
A been carried out. Then the highest
order singularity (since w, is
bounded) in the &,, x; plane has the
&=t order 3/2 which is weak in the sense
% / that no residual occurs when the
% //A f;= }'-); sequence of integration is reversed.
{ The top of sketch (o) shows the area o
X of integration, so immediately

xix %
y x+a/t2-(y-y,)?
‘7‘ I "—'f dy, f dxy
y-t x-t5-(y-y,)%
:\/'bz—(x-xl)2

H

€.4€,

y-yl [§12_(.y._y1)2 ]3/2

t-af(x-x, )B+E -

A (bt )2 (55, ) 2=,

Ter-l(xl+MJt:,l,yl)d'l::L

v
1it-te-x) b

Sketch (o)
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To change order in the £,,t, plane, consult the bottom of
sketch (o). In this case an inherent singularity exists at the con-
fluence of the singularity lines of the integrand; namely, where
E, =y -y, and t; =t —,‘/(x-xl)“'2 + &,%, The change of order can
therefore not be performed directly, but account must be taken of the
existence of a residual term (see ref. 10). This residual is defined
as the difference between the two integrals taken in different orders
over a vanishingly small region surrounding the inherent singularity

(the region heavily shaded in bottom of sketch (o). The residual R
is then,

,./(~ro+ €)®- (x-xl) 2

Ry o lm £,at,
= e—=0
Y-Y, [£,2 - (y-y,)21%/%
t-a (x-x,) 3+, 7 1o
W (3 +Mb , ¥ ) Aty iy (438,72 ) b
t-ro-€ th_tl)z__(x_xl)z_glz e
Af(t-tl)z-(x—xl)2
£ Ak
YY1 [£,2-(7-3,)21%2/(£-51) 2~ (x-x,) 2 - £2°

where ro2 = (x--xl)2 + (y-yl)z. The second integral vanishes (see

ref. 10), and, passing to the limit €—>0 in the first integral, there

results

g (%7 +ME-Mro,y,) _x [y
o 2 I‘o

\

Ri = - X
1 >

where the square brackets again mean that the retarded value is to be
teken. Thus, the integral I, can be reduced to

y x+n/ 2= (7-y1)>

[ ]
I, =-2 dy, dx; (46)
2 f f V2 (y-y,)? o .

y-t x=
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In the same way, the integral I, can be reduced, and

v+t x+a/ £2= (y-y, )2
7
v-t - t%-(y-y,)% °

which is recognized as Kirchhoff's formula, equation (3), with an
acoustic plan form bounded by the circle

(x'x1)2 + (Y"‘yl)z = t2

The reduction of the integrals Ig, I,, Is, and Ig 1is quite simi-
lar, leading to the sum

8 v+t xt+a/12-(y-3,)2 y+w
In = - 1 [Wu] 1
e 4yy dx; - = f dy,
1 o x-ﬁ/te-(y_yl)Z To 2 A
[, ] Y+«/t2—x2 o “ ]
e
Xy (y-v1) ‘ o x-A t2-(y-y,)% °

(AT)

Examination of the limits on these integrals shows their total area
of integration is that shown in sketch (j). But this area corresponds
exactly to the acoustic plan form Sy for a point in region Vg! Hence,

denoting the combination of terms in equation (A7) by CP(l) we can write
simply

o{t) - - = / / 2l axyay, (28)
(Sa)va
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It now remalns to calculate the integrals I through I,,. Desig-

nating their total effect on the potential by CP(2), one can readily
show (since no inherent singularities arise in these cases) that

-y+t x+/t3- (y+y, )2 _
CPV(.e) f & f t o ji Ty Sy (x4, ¥, )at,
ey . y

=%

-(Y"'Yl) o [(t-t,)%- roz]ﬂt-'tl)z—
~y+a tE-x= o
1/ oy, | ax,
0 X-N t2_(.y_+yl)2
ter, P

N, Yyy, wyu(x Mt ,y,)at,

o [(tty)2 - r2IW(%-t)2- 1,2

2 .

o t-r
ax Y byy, wy(x,+Mt,,¥,)dt, (19)
1
2 z_ .2
X, (7+¥1) Sxg e L(840)% - moM(t-81) - 7y

vhere r.%=(x-x,)% + (y+y,)%. DNow let

r t-r
T W lhyy, wy(x 4,y )dt,

-x; /M [(t"tl)z-roa]v(t-tl)z-rlz’

C(x1,¥1) = 4 . (A10)

t-r
f Y Wy g (x4, )dt,
J

x; <0

x1>0
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In terms of this expression, equation (A9) can be written simply

ql\((j)=‘]%2' ff C(xlyyl)dxldyl (A11)

(SC )va
where the area (Sc)va is illustrated in sketch (k).

In order to give expressions for the potential in every region of
the wing shown in figure 1, one can show that it is only necessary to
vary the areas over which the double integration in equations (A8) and
(A11) are carried out. This is evident in connection with the source

(2)

portion O , for in every case

1 W
oo L [ 1l axey, (a12)
2n To
Sa,
and only the acoustic plan form Sz changes with the region. In the

case of 9(2), the part of the potential due to the existence. of the
side edge of the wing, equation (All) can be generalized and written

q)(2)=;l'2' ff C(xl)yl)d-xldyl (A13)
, Se

where the integrands are defined in every case by equation (A10) and
only the "reflected" acoustic plan form S changes with the region.
The region Se 1s always bounded by portions of the "reflected" circle.

(x-%,)2 + (y+y,)% = +°

and the "reflected" ellipse

2
<‘§ X1"Xm> + (y"‘yl)a = 'l':m:2

Figure 2 shows sketches of both S¢ and Sg for all regions in figure 1.
The absence of a sketch indicates that the corresponding integral does
not exist for that region.
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APPENDIX B

THE GENFERALIZED INDICIAT FORCES
The Loading Coefficient
In order to determine total forces acting on the wing, it is first

necessary to obtain expressions for the loading coefficient Ap/qo.
According to the linear theory

. Ap L o9
o TS (81)

so 1t is necessary to differentliate each of the expressions for poten-
tial. As an example, consider, as in Appendix A, just region Vg of
figure 1. The loading coefficient will be divided into two parts

AP(l)/qo and Ap(2) /a, to correspond to the potentials ¢(1) ana 9(2),
Thus, using equation (A11)

(2) ~y+t x+-,\/t§ (y+yl)

éa) ay X gy, -
l 0
Y%/ 1y 1:2‘UOM f f JE e 3t

~y+V £Z-x2

A T
1 a_tl

f dy,, f : —g% dx, (B2)
° X, (y+y4) '

slnce the derivative passes the x,,y,; integration without effect.
Referring to equation (A10) for the function C(x,,y,) we next find its
derivative with respect to +t. Write T = t-t;; then for x, <O

i, /M b, Hyyl iy (%, + Mt - MT,¥,)dT

C(x1,¥1) = f . (Ta_rOZ)JT_z_:l—a__

Ty
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and

a vy wy(0,7)
(ORI

thx, M V by, aa—t{wu(xl+Mt—M'r,yl)}
(s

aT (B3)

Ty

Notice that if w; does not depend on (x; + Mtl) the integral term in
equation (B3) vanishes, while if it does, then the integrated term is
zero. Next, for x; > O,

t byy, wny(x, + ME-MT,¥,)
r, (12 - ro2)W 72 - rl2

and

S vy, O Mt - MT, }.
e [Tyy. Wy (Xq 55 £ DAY 3t W (% + Ty¥1)

1
= = + ar  (BY4)
ot (t2—r02) /tz_rlz ey (2 - ro2)a/ T2 - rlz

In this case, both terms exist unless 1wy is not a function of (x, +Mt,),
in which case the integral vanishes.

Substitution of equations (B3) and (B4) into equation (B2) will now
yield an expression for the loading coefficient corresponding to the
influence of the side edge;
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-y+t x+ o £2- (yy ) 2

<Ap > ( 2) "“aln f dy A/ )-Fy'y'l xlz yln d.xl
do = l+n 1 *
0 Ve 72UoMe o - /‘bz-(y+yl)2 (£2-152) ‘\/‘t_z—-_l?

-y+t x+w £2- (y4y;) 2
o,

w [ o
o x-w t2-(y+y, )

t-r Y AR
f YV (xp e )Py Ray, a0
- d'yl
A [(t-t1) 315214 (6-t,)3-r, % Yo
/12
fo) 1 -y+ t —x2
f ’ )-I-yyl Xy yyaxy - M1 f ay
1
= /‘tz-(yﬂrl)e (t2-ro2) W t8-r, 2 o
o t-r, 4,/-4_( Mt )Z-l n
f ax TIy \ Xy HT, ¥y dty
1 +
x-w t2-(y+y,)® 0 [(t-t,)2-r 21/ (t-t,) 2, 2
~y+ N 12-x2 o
Mi f dy, f dx;
°© Xl(y""yl)
t-r,

-
N/ lyy, (x,4Mt, )" "ty Mat,

“(xy M) [(E-t)P-ro2W(t-t,) 21, ®

(B5)

The explicit form of 4wy, glven by equation (2), has been inserted and
it is assumed that 1 > 1. ’




48 ' NACA TN 3286

1
The portion of the loading coefficient corresponding to @% ) can be
found readily and is &

<ér_>
a,

() ey, fy+t . (/TP (772)2) + (x4 T2~ (7-77)2). o
D e ——— 1 1

Va MUge LR o . WA (Y"yl) 2

leyH:y ndyl‘/ax+«./1;2-(y~~yl)E [xl+]511(1l:--ro)]7"'l i

1 To 1
X=-« t2- (Y"yl) 2
T+ t2-x2 o [xl+1~1(1:-ro)]7'"l
Ml\/ﬁ yidy, dx, +

. i 1. . 12 To
o x- tz"(y"yl)z

+ V5% -x® o [ 4M(t-10) 177
M1 ylndyl f d'xl -

I
° X1 (y-¥1) ’
VB X2
~ e e e N
f ¥, ay, (B6)
© Jtz' (y'yl)z

It is clear that, even for small values of the indices 1 and n,
the required integrations for the determination of total forces on the
wing pose formideble problems. There is, however, a property of the
loading coefficient corresponding to vertical velocity distributions of
the type chosen here (eq. (2)) that will materially shorten the requisite
labor. This may be expressed as follows, adopting the convention that

Apzn/qo corresponds to a downwash distribution proportional to
(226 ) L 32

1-1,n
S TN (B7)
¢ Q0

ox Y
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or,

0 fe

Apl i,n
f —q—_ (xl:Y:t)d-x]_: 1>0 (B8)
-Mt °©

Detalls of Evaluating the Generalized Indicial Forces

In calculating the generalized indicial forces by means of equa-
tion (36), it has been shown that only the value zero need be taken for
the index 1. Thus we must find

c-Mt

on
F‘;n -2 f (x+Mt)'jdx fs v8 22 (B9)
g bcj+g+1 A 95

The values of the loading coefficient Ap°"/qo, &are found by differentiat-
ing the expressions for potential given in the first part of this
appendix.

It is convenlent, in evaluating equation (B9), to consider the inte-
gration with respect to y first. Setting

8 g on
.
o ¢ %o

it is found that I seems to have different representations according
to the interval in which x lies. These expressions can, however, all
be expressed b{ the same formula. The portions of L corresponding to

the parts @(l and Q(z) of the potential are similarly signified, and
we have

1(2) - e {(-l)n ne’ [Ko(n+g)+KM(n+g)J -

nUoMe (n+g+l)'

[n/2] n+g&1 2
pzo < n+g+l o [Ko(Eu-l) + KMmu-l)]} (B:
(2) _  &on  JI(n,8) -
b (UMeTHE  20+E [K°(n+g) ¥ KM(mg)} ' =
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cos"l(-x/'b)
Ko(ntg) = tHH&HL R P, f sin®"&*1 gap

cos™1(%xp/tm)

Ky(n+g) = % tytH8TT R.P. f sin" & a0
(o]
M (n-n, ® (n+n )
J(n,g) =% f A/__f /712‘1112 an,
1-q

and [n/2] means the greatest integer contained in n/2. The function
J(n,g) may be expressed as summations, and it has the property

J(n:g) = J(g,n) (Bl3)

The sum formula is, with g + p =

[p/2]

e = (1) & 12 (21)[ <-2i+l 2g2+l> 5 <p—22i+l, 2g2+2>:| *
= |

-1 [p/=2] g-1
(-1)® p 3 (233 1\ . (p-2i+2j+3 2g-23-1\
7 2% z (-l) B o 2 o B o 2 o
i=0 j:o

[p/z]

z <21> z <2j+l 2g+3> <p+2g—21+2,j+3 ;) (B14)




NACA TN 3286

51
Values of the function J(g,n)
n
g 0 1 P2l 3 J-l- 5
0 T -2
1.,k
1 1 = l;ﬁ-l- 3
5._8 1 29 16
2l "3 2 e 15
n |22 8 1 .23 32
3 3 gLt s 3 256" " 35
8 32 11 129 128 1 5329 256
|32, 32 L = 1 -
6k 5| 15 2_5%’T 105 M 1638k 315
ST T T - B (A O . A R
15 256 21 8k Lhog6 63 5 65536 693
where <21;> is the binomial coefficient
®
21 (21)1(p -21)1
and B(p,q) is the beta function \
l -
B(p,aq) =f £ (1-0%" ax
(o]
/2
= f sin?Pt g cos™i ™t ode ? (BL5a)
O
= 1(p) r (q)/T(p + Q) J
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The function J(g,n) has been calculated for g,n taken 0,1,2,3,4,5.
Because of the property (Bl3), it is only necessary to glve a triangular
array, which appears in the above table.

Now consider the functions Ko(V) and KM(v) » defined after equa-
tion (B12). It is convenient, for computational purposes, to express
these in terms of the incomplete beta functions, defined as

cos™*(x)
Bl-xz (p;a) =2 f sin®™* o cos= 3t 6de
o
1ex@ (B15b)
=f eP71 (1-£)%7 at

(¢]

A tsbulation of the lncomplete beta functions is available in refer-
ence 11. Note that when the symbol B is written without a subscript,
the complete integral is meant, that is, in equation (B15b), x equals O.
It is necessary to exercise some care when interpreting Ko(v) and Ky(v)
as beta functions because of the upper limit. Thus, since

-1
cos~t(-x/t)
Ko(v) = £+ R.P.f sin’ 't 0ae
(o]

we have the following cases:

|
a

(i) x> t, R.P. cos™® <~ %) =

]
d.

Ko (v)

V+1 v+2 1
B _— =
(53)
(11) 0<x < t, R.P. cos™® (— %> = cos~1 <— %) = - cos'l<%>

Ko(V) = %—f[%cﬁf %) Bl—(x/t)‘g(!;_e’ %> ]
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(i11) -t<x< 0, R.P. cos™? (- %) = cos™1 <_ %)

V+1

o) =2 (R 1) |

(iv) -Mt <x < -t; R.P. cos™t (- %) =0
Ko(v) =0
A similar line taken with Ky(v) leads to

(1) x>+, Ky(v) = 0

3 _ 1M, V1 2 1
(11) -F<x <, Ky(v) = Yok [Bl-(xm/tm)2< 2’ 2>}

] & iMooVl a1
(1i1) - + <x < M,KM(V)—QBtm [23(2,2>

B <ﬂ i)]
1-(xn/tm)2\ 2 ° 2
() -6 <x <ty ay(v) = et p(2, %)

The generalized indicial force chngn can now be expressed as

8a, J(g,n) nig!
on on 1 n g *_J
F, = Tl =+ 2(-1) ——=— Iy (g+n) +
B cdtErntL {“[ o8tn (-1) (n+grl)t ] [ °
[n/2] g+n+1-2p
*Ili (s+n)] - n) 2

*-J _ *#1J _
&) G | @0 -1 @0} e

H=0
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where
i c-Mt ; cos-l(—x/t)
I8 (v) =f (x+ Mt) dx[t"“ R.P.f sin’ T2 ede] (BL7)
-Mt o]
c-Mt cos ™ (xm/tm)
*Ifd (v) =f (x+ Mt)° dx[%. o Tt R.P.f sin’ GdG:I
-Mt o]
(B18)
It is convenient to express these forces in terms of dimensionless
quantities. Thus setting
t
XO = -'Z—{.’ ‘bo = E
we have
1-Mto
+V+2
*Ig ) = o’ (x0+MtO)j dx, [to"“ R.P.
-Mtg
cos 1 (~xq /1) '
f © i’ tt ede] = IR 1 3y (B19)
o]
J J+v 1Mo V+1
* +V+4-2 +Mt
L) =c f (30 + Mto) 9 dxo M(%) R.P.
-Mto B
t
cos—1 —m%.
-+ V!
X0t 510 ¥+ gag | = V2 I (v) (B20)
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and
(sl
(0% (nj;f;.)! ] [Ig (gim) +
[n/z] é g+rn-21
den -3 (EL
p=0

[:g (2p-1) + Ifd (2u-1)J } (B21)

The integrals Ig(v) and Ij(v)
can be simplified by reversing
order of integration. This can be
accomplished in a straight-forward
manner by merely inspecting the region
of integration in the x,,6 plane.

Consider first the integral Ij(v) ,
Depending upon the relation between the
chord length and the time, we see -
from sketch (p) - that reversing the
order of integration results in three
different possibilitlies for the upper
limit of the 6 integral. However, if

we define Xo such that
(1)xo=to,o<to<_Ll
1 1
il) Xg = L=-Mty; —— < tp < ——
( ) O' 0> l_O_M_l
1
(1i1) X~ = ~tn; — <« t
o T Mol g7 st

55
A}Xo
/-.M/o T
’o RN
772 T
-4 ¥ Xo=—%c0osE
—ﬁlé{
(i) O< b <I/(M+l)
pre
L
72 7 Y]
I~Mle T\ 1, = — cos6
~1, = _
‘M’oﬂ

(i) I/MH) < L < 1/M-1)

Ao

/
ZEE 51
X,=~1, cos&
-t -
J1=-Mto-
‘Mfo T

(iii) 1/M-1) <1,
Sketch (p)
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then, in every case, Ig (v) can be written

NACA TN 3286

cos™1(Xo/t0) J+1
TVt f % Jtv+a 541 ) pd+1r
1d (v) = sin’*t edap - 2 }; (-1)" M
o FTSHRVA 31 *
r=0
cos™2(Xo/to)
V+1 r
J/\ sin 6 cosTodo (B22)
o)
and, similarly, 1t can be shown that
cos—* 1Mo /6o
My 71:
Ij(v) L JF *o/%0 41V gag +
BV+2 Jv+2
o
J+V+2 cos’l(:xo/to) v
sin 9 cos® 646

§ () e

3+v+2

(B23)
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APPENDIX C
DERIVATION OF RECIPROCITY RELATIONS

According to reference 5, the reciprocity relation for general
three~dimensional unsteady motion can be written

Ap,
\./ff q (xl,yl’tl)wz‘(x]_:ylftl) dx,dy,4%t; =
(o]
v

Ap
f f —q—a(xa,ya,tz)wl(xz,yz,tz) ax dyat, (C1)
o}
v

where the volume of integration V is that swept out in x,y,t space by
the wing. The subscript 1 refers to the wing moving in the forward direc-
tion and subscript 2 refers to the wing moving in the opposite direction
in the same manner. The coordinate systems are related by

X, = -Xp+c - M fe 7”
T/ = —
y, = ~-Y¥, + 28 T
t 2 X=c-Ml,
2s
t, =~ T4+ T -
* 2 - X< -Miy ¢ C - |
Xp
where s,c are wing semispan x==-M1 %
and chord, respectively, and T X,sc- Mt
is some fixed value of time. ! /
These quentities are elucidated
in sketch (q). ~ = =T
\ 473
Now let the wing associ- 1,
"ated with the subscript 1 have
the vertical velocity distribu- Sketeh (q)

tion

X, + M, t s-y\2
Wl(xl}ylitl) = P P

and that associated with the subscript 2 have

%, + M6, \d /5 -y, \8
Vo(Xps¥psts) =< 2c 2> < c 2)
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1. X+ Mt \ S y5-8\2
C Cc

(1 ) x1+Mtl>J<yl-s>8
¢ ¢

Substitution of these results into equation (Cl) yields

Then

wl(xa’yz’tz)

Wo (xl:yl:tl)

T c-Mt, Xy +Mb, J 28 7, -5\ Apln
fd'blf dxl 1- -——c—— f dyl = qo =
o "Mtl e}
¥ o-Mta Xpd Mbp \L [0 ke
+ -
f d'tzf ax, <1 - _?—'_.c__?_> f &y, <3’2c S> Ap
(o] (o) q‘O

-Mto (02)

Equation (C2) can be differentiated with respect to T, yielding

c-MT
J R® AN :: in
[ o [ () 4
-MT o) %o
c-MT 1 A8 -8 \2 AplE
[ (28 o, (Y 22
5 9%

~MT

The binomlal expansion is now performed:

), ot (e [T (222Y P (8 2
p=0 =

1

) Qe[ e (e M (2] 2
e o

=0
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In equation (C3) the spanwise integration is carried over the whole wing,
but it can easily be reduced to integration over, say, the left panel by

use of the factor [l+—(—l)g+n]/2. Thus, equation (C3) can be written

(-l)gi (-1 (ﬂ) [1+(-1;})f+n]/2fc~m dx1<x1+MT B

c

p=0 -MT
8 1 g+n
5-7.\8 apl®  _\n u<z>[l+(-l) 12
[ o (5R) To- 7)) () =
[¢] : H=0
B %, +MI\M & B =Yo\2 Aplg

[oee(5) [ es(E) 2
T (&4 / (¢ q'O

By comparison with equations (36) and (37), it is seen that the integral

terms in the last equation correspond to the generalized indicial Pforces

1
f“: and fﬂﬁ, so that the summations can be written

i(-l)”(ﬂ) e = i (-L* <f;> £l (ck)
n=0 H=0

where the quantity (g+n) must be an even number.
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TABLE I.- VALUES OF GENERALIZED INDICIAI, FORCES, F;g

in
is defined b
jg v

equation (36). It is the response for a mode shape having a unit ampli-

‘tude
(222 (2
mode < o c
and a loading induced by a unit value of w/Uo,

r n
Moo (Xt Mt ¥
= - (xe) (3)

in

Je

The generalized indicisl force coefficient F

The table gives values of F

against time (actually chord lengths
traveled) for

n
o

0,1,2
0,1,2,3,4,5
= 0,1,2, 3:’*:5
=1.1, 1.2
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Figure 1l.- Reglone used in the analysis of a rectangular wing in supersonic unsteady motion.
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Figure 2.~ Sketches of areas of integration, Sy and Sy, for all regions

in flgure 1.
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Figure 2.~ Continued.
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Figure 2.- Concluded.
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