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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2694 

A METHOD FOR STABILIZING SHOCK WAVES IN CHANNEL 

FLOW BY MEANS OF A SURGE CHAMBER l 

By Stanford E. Neice2 

SUMMARY 

In order to stabilize normal shock waves in channel flow against 
the effect of disturbances originating downstream, a method based on 
mass removal from the channel by means of a surge chamber was developed 
and experimentally tested in an intermittent blowdown-type wind tunnel 
at Cornell University. A theoretical analysis of the flow in a channel 
shape similar to that used in a typical double-throat supersonic wind 
tunnel indicated that the mass-removal technique was effective in damping 
the motion of the normal shock caused by a strong compression pulse 
originating downstream. The results of experimental tests were in quan­
titative agreement with the theoretical analysis. Further experiments 
indicated that the mass-removal technique was effective in damping the 
oscillatory motion of the normal shock caused by continuous small, random, 
downstream disturbances. 

INTRODUCTION 

An important factor in the design and operation of supersonic wind 
tunnels is their large power consumption. A large part of this loss 
results from the fact that supersonic channel flow can be converted into 
subsonic flow only through a normal shock wave (see ref. 1). A success ­
ful method for reducing this power loss is to lower the Mach number at 
which the shock occurs. This method has led to the use of the "double­
throat" type of supersonic wind tunnel. 

For the most efficient operation of the double-throat wind tunnel, 
the normal shock is placed in a position just downstream of the second 
minimum section. However, disturbances originating downstream in the 
diffusor and exhaust system will interact with the normal shock and cause 
lThe body of this report is a thesis which was submitted in February 1950 

in a partial fulfillment of the requirements for the degree of Master of 
Aeronautical Engineering in the Graduate School of Aeronautical Engineer ­
ing, Cornell University, Ithaca, New York. 

2Now at the Ames Aeronautical Laboratory, Moffett Field, Calif. 
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it to be displaced from its original position. If these disturbances 
are strong enough, they can cause the shock to be permanently displaced 
to a position upstream of the test section. Subsonic flow will then 
exist in the test section and the wind tunnel is said to be "unstarted." 
In order to avoid this highly undesirable condition, it is often neces ­
sary to place the normal shock quite far downstream of the second mini­
mum section . Operation with the shock far downstream of the second 
throat results in an increased power l oss and defeats partially the pur ­
pose of the second minimum section. 

The power consumption of the double-throat wind tunnel could be 
reduced if there were a suitable method for stabilizing the normal shock 
against the effect of these disturbances, thus permitting the shock to 
be placed closer to the second minimum section . It is the purpose of 
this paper to show how the use of a surge chamber, connected to the chan­
nel immediately upstream of the operating position of the normal shock, 
can produce the desired stability . 

The author is grateful to Professor Arthur R. Kantrowitz for his 
suggestion of the topic, advice throughout the investigation, and for the 
information contained in Appendixes A and B. 

SYMBOLS 

A area of transverse slit 

a speed of sound 

cp specific heat at constant pressure 

cv specific heat at constant volume 

M Mach number 

m mass flow 

P characteristic quantity, 
2cy --- a + u 

R 

p pressure 

Q characteristic quantity, 
2cy a - u ---

R 

R gas constant 

S area of channel 

T temperature 

t time 
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u velocity of shock wave 

u velocity of fluid 

x station along channel 

ratio of specific heats 

p density 

entropy 

Subscripts 

a conditions behind steady- flow normal shock 

b conditions behind leading edge of pulse 

c conditions at rear of pulse 

s conditions relative to moving shock wave 

o standard conditions 

1,2, 3, 4 , 5 conditions in various sectors of the characteristic 
diagram 

Superscript 

average values 

THEORETICAL CONSIDERATIONS 

Stability of Normal Shock Waves 
in Channel Flow 

---- - --

3 

In the normal operating condition of a conventional double-throat 
supersonic wind tunnel , the shock wave converting the supersonic flow 
to subsonic flow will occur downstream of the second minimum section as 
shown in sketch (a). The normal shock wave in this case is in its pri­
mary stable equilibrium position which means that it will return to this 
position after undergoing small displacements. 
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Secondary stable 
equilibrium 
p osition 

unstable 
equilibrium 
position 

Sketch (a) 
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Primary stabl. 
equilibrium 
position 

There are two other equilibrium pOSitions, also shown in sketch (a), 
which occur at poi~ts in the channel where the channel area is the same 
as the area at the primary stable equilibrium position. At the indicated 
position in the convergi ng part of the channel, the normal shock is in a 
condition of unstable equilibrium . Consequently, if the shock were to 
exist in this position, then any displacement, however small, would cause 
the shock to assume either stable position, depending upon the direction 
of the displacement. 

Displacement of the normal shock from the primary equilibrium posi­
tion can be caused by disturbances originating downstream. These dis­
turbances propagate upstream through the subsonic flow in the diffusor 
section and interact with the main shock. The resultant shock is then 
set in motion and will undergo a displacement proportional to the 
strength of the disturbance . As pointed out in reference 1, a compres­
sion disturbance will cause the shock to be displaced upstream in the 
direction of the unstable equilibrium position. If the compression dis­
turbance is strong enough to cause a displacement of the shock upstream 
of the unstable equilibrium pOSition, then, as has been pointed out, the 
shock will assume the secondary stable equilibrium position shown in 
sketch (a). Subsonic flow will then exist in the test section, and the 
tunnel will be unstarted. 

Operation of the Surge Chamber 

In the method presented herein, the shock position is stabilized by 
the appropriate use of a surge chamber, which, in effect , creates a 
counterdi sturbance which neutralizes the action of a compression disturb­
ance coming from downstream . 
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The surge chamber is connected to the channel (see sketch (b)) by 
transver se slits at a point just upstream of the primary equilibrium 
position . In the normal running condition, the surge chamber is at the 
same pressure as that existing in the channel at the position of the 
slits . The normal shock, set in motion by interaction with a compression 
disturbance, crosses the slits, thus raising the pressure in the channel, 
and causes air to flow out of the channel into the surge chamber. 

Surge 
chamber 

Sketch (b) 

The removal of mass in this manner , in effect, produces an expansion 
which propagates throughout the channel . Part of this expansion inter­
acts with the upstream-moving shock wave and dissipates some of the 
energy supplied by the initial compression disturbance . By varying the 
opening of the transverse slits , a sufficiently high rate of mass 
removal may be obtained to bring the shock wave to r est before it passes 
the unstable equilibrium position. A normal shock brought to rest in 
this manner will then return to its primary stable equilibrium position 
downstream of the second minimum section . 

By the application of the method of characteristics for nonsteady 
·one - dimensional flow, it is possible to trace the interaction of the 
normal shock and compression pulse on a time-displacement diagram and to 
determine the effect of mass removal to the surge chamber . In order to 
analyze this problem, however , it was necessary to develop an extension 
to the existing method of characteristics which includes the effects of 
mass removal from a point in the channel . 

I 

J 
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The Method of Characteristics Including the 
Effects of Mass Removal at a Point in the Channel 

The method of characteristics for isentropic, inviscid, nonsteady, 
one -dimensional flow in a channel of constant cross section was first 
introduced in 1859 by Riemann (ref. 2). In reference 3, the work of 
Riemann was extended to include variations in entropy and channel area, 
while in reference 4 the effects of heat transfer were considered in 
some detail. The general procedure followed in those papers, and 
expl oited in the present analysis, was to define certain characteristic 
quantities from considerations of the one-dimensional equations of 
motion and continuity. These characteristic quantities, designated as 
P and Q,3 are associated with the two families of characteristics in the 
flow field. 

In the present analysis the equations of continuity and motion are 
modified to include mass r emoval from the channel, and the effect of 
mass removal on the characteristic quantities, P and Q, is determined. 

The equation of continuity for one-dimensional flow is 

o ( 1) 

If, however, mass is removed from the channel through openings in 
the walls, the continuity equation takes the following form: 

dP d . dID 
S dt + dx (p uS) + dX = 0 (2) 

In the present analysis it is assumed that t he mass is removed from 

the channel at a constant rate (~ = 0). Consequently, the equation 

of motion for one-dimensional flow remains unchanged as 

o 

3These quantities, as used in refer ences 3 and 4 as well as the present 
analysis, differ only by a factor of 2 from the Riemann invariants as 
given in reference 5. 

_ J 
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With the aid of the first l aw of thermodynamics, the equation for the entropy of a perfect gas can be written in the following differential forms: 

( 4) 
d T) 2cp R = R d(loge a) - d(loge p) 

By the use of equations (4) and the equation of state for a perfect gas in the form pip = RT, equations (2) and (3) can be brought into the following forms , respectively: 

2cv da 2cv da dU d(loge S) - - + - u - + a - + ua ----R dt R dX dX dX 

dU dU 2cv da 
- +u - + - a --
dt dX R dX 

a2 dT] 
-- = 0 
lR dX 

By adding and subtracting equation (6) frOID equation (5), the following relations are obtained: 

d (2C) d (2C ) d(loge S) dt R
Y 

a + u + (u + a) dX . R
V 

a + u + ua dX 

d 
dt 

a2 dT] ~ DT) + ~ dm _ 0 
)'R dX - R Dt pS dX -

( 2CY 0 - a) d (2Cy o + ua R a - u + (u _ a -
dX R 

a2 dT) a Dll a dID 
0 ),R dX - R Dt + pS dx = 

d(loge s) 
dX + 

( 5) 

( 6) 
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where the notat ion 

D 0 0 -=-+ u -
Dt ot ox 

( 8) 

defines an observed rate of change while mOving with the fluid particles 
at a velocity u . 

The character istic ~uantities, P and Q, are defined as 

and the observed r ate of change while moving along a characteristic line 
in the fluid is defined symbolically as 

a 0 0 
- = - + (u ± a) 
at at ox 

(10) 

where the pl us (+) or minus ( -) signs are associated with P and Q fam­
i l ies of characteristi cs, r espectivel y . 

From the definitions of e~uations (9 ) and (10) , e~uation (7) can 
be written as 

oP == - ua O( loge S ) + a2 oT] + ~ DT] 
5 t oX ,R oX R Dt 

oQ o(loge S) a2 on a DT] 
- == - ua - - - + .- -
o t dX ,R oX R Dt 

a om - --
pS ox 

a om ---
pS ox 

which expresses the rate of change of the characteristic quantities 
al ong their respective paths . 

(11) 
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From equation (10), the following can be deduced: 

Along a P characteristic 

511 I = 011 + (u + a) 011 = D1) + 
5t ot Ox Dt 

P 

Along a Q characteristic 

51) I == 
5t 

Q 

(1) 
- + 
ot 

(u _ a) (1) = D11 
oX Dt 

(1) 
a­

Ox 

9 

(12) 

The channel area of a wind tunnel will depend only on the station 
along the channel . Consequently, the rate of change of this quantity 
along P and Q characteristics, with the aid of equation (10), is 

5(loge S) 
(u + a) 

o (lOBe S) 

5t 
P 

Ox 

(13) 

5( loge S) 
(u - a) O(loge S) 

5t Ox 
) 

Q 

Since the removal of mass from the channel has been assumed to take 
place at a constant rate , the change in mass flow is, therefore, a 
function only of the distance along the channel . From equation (10) the 
rate of change of this quantity along the characteristic lines can be 
expressed as 

5m I 
5t P 

5m I 
5t 

Q 

= (u + a) Om 
dX 

(u - a) Om 
ox 

( 14) 
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With the aid of equations (12), (13), and (14), and noting that the 
particle entropy change DT]/Dt will be zero in the absence of heat 
transfer and shock waves, the variations in the characteristic quantities 
will then be 

ua ( s) + ~ oT] a oP = - -- 0 l oge om 
u + a ),R Ps( u + a) 

( 15) 

oQ ua o(loge s) + ~ oT] a om 
u - a )'R PS(u - a) 

It should be pointed out that the quantity om will itself have a 
positive or negative sign, depending upon the direction (upstream or 
downstream) which a characteristic crosses the point of mass removal. 
The quantity am can also be expressed in the following form: 

am ( 16) 

where dm/dx is positive if mass is removed from the channel and 6x 
will be positive for the downstream direction. 

The magnitude of the quantity Om can readily be evaluated by con­
sideration of the equations of continuity and momentUm referred to the 
dimension perpendicular to the channel. A simplification is pOSSible, 
however, since the pressure rise across the shock wave, the pressure 
difference between the channel and the surge chamber, is generall y 
sufficiently large so that the flow through the slits is choked . In 
this case, therefore, 

10m I = p* a* A 

and the variation of P and Q, produced by mass removal only, reduces to 

!oPf 
a2 p* a* A ---

(u + a) P a S 

( 18) 

a2 * a* A 
IOQ I p ---

(u - a) p a S 

J 
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In equation (18), the ambient stream quantities in the channel correspond 
to stagnation conditions with respect to the cross flow through the 
transverse slits. Consequently, the following ratios are constants: 

p* 
0.634 - = p 

(19) 

a* 
0·913 = a 

The resultant magnitudes of P and Q, due to mass removal, and assuming 
the flow through the slits is choked, are 

lop I 0 · 578 (u 
a2 A 
+ a) S 

(20) 

15Qi 0·578 
a2 A -

(u - a) S 

The effects of shock waves and large entropy discontinuities are 
not included in the foregoing theoretical considerations. Both these 
effects were present in the analysis by the method of characteristics. 
A discussion of how these effects are handled is given in Appendix A. 

In performing the characteristics analysis, it was also necessary 
to consider three types of interactions involving shock waves; namely, 

1 . Interaction of the pulse shock with the steady-flow normal 
shock 

2. Interaction of the resultant shock with the flow out of the 
channel at the instant the shock crosses the transverse 
slits which open into the surge chamber 

3. I nteraction of the resultant shock with expansion waves 
from downstream which "catch up" with the shock and 
change its strength 

The method of solution for each of these interactions consist s of a 
s eri es of successive approximations and is discussed in Appendix B. 

l 
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APPLICATION TO PARTICULAR DESIGN 

Prel iminary Considerations 

Shape of channel . - The method of characteristics as developed herein 
was used to study the stability of t he steady- f l ow normal shock in a 
small double - throat supersonic wind tunnel equipped with a surge chamber. 
The contour of the channel is given in figure 1 . The Mach numbers at the 
test section and the second throat were 1.64 and 1. 42, respectively . The 
supersonic part of the channel was designed according to the steady- flow, 
two "..dimensional method of characteristics . A diffusor half angle of 2 0 

was used in order to minimjze separa tion losses in the subsonic part of 
the flow. In the operating condition, the equilibri um position of the 
normal shock occurred 5.8 inches downstream from the first minimum 
section, that is, 1.3 inches downstream of the second throat and 0.3 
inch downstream of the transverse slits . The Mach number immediately 
upstream of the normal shock was 1 .55 . 

Construction of velocity profiles .- With the shape of the channel 
and the position of the normal shock now specified, the steady-flow 
velocity profile was computed and is shown in figure 2. The initial 
properties of a pulse originating downstream in the diffusor section are 
generally not known since they may arise from a variety of causes . It 
was shown in reference 1, however, that the velocity profile of a pulse 
takes a definite shape as it t r avels upstream, regardless of the condi ­
tions at its origin; the upst ream section of a compression pulse will 
steepen to form a leading- edge shock, while the velocity profile of the 
expansion phase of the pulse behind this shock will assume a slope given 
by 

(~)pulse = - (~)steadY f l ow 

All the disturbance pulses considered in this analysis are compres ­
sion pulses having this shape of vel ocity profile . Two such pulses are 
shown in figure 2, superimposed on the steady-flow velocity profile at 
the position of impending intersection with the steady- flow normal shock . 

Determination of initial £low conditions .- In order to start the 
characteristics analysis , the f l ow conditions, including the values of 
the characteristic quantities (eq . (9)) must be determined at all points 
in the channel at the time of the intersection of the pulse shock with 
the steady- flow normal shock . The details of this computation are given 
in Appendix C. 
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Analysis and Results 

The method of characteristics was first applied to the channel, 
without mass removal, to find the "critical" pulse, that pulse which will 
supply sufficient energy to displace the normal shock to the unstable 
equilibrium position and, hence , unstart the flow. The order of magni­
tude of the critical pulse can be determined according to the methods 
of reference 1 where it was shown that, in the vicinity of Mach number 1, 
the velocity-profile area of the critical pulse 4 will be equal to the 
area between the steady-flow velocity profiles formed by the normal 
shock in the stable and unstable equilibrium positions (see fig. 2). 
This rule will, of course, give errors for Mach numbers greater than 1 
but can be used as a first approximation. The present analysis, using 
the method of characteristics, showed that the critical pulse had a 
velocity-profile area about 6S percent of that given by reference 1. 
This result is in agreement with an investigation described in reference 
6 which indicated a velocity-profile area of approximately 65 percent. 
The critical pulse is the small er pulse shown in figure 2. A time­
displacement history of the resultant shock formed by the interaction of 
the critical pulse with the steady-flow normal shock is given in figure 3. 

It was decided, as an appropriate measure of the effectiveness of 
the surge chamber, to determine the size of transverse slit necessary 
to 'prevent unstarting of the flow by a pulse having a velocity-profile 
area double that of the critical pulse already determined. This double 
critical pulse is the larger pulse shown in figure 2. Figure 3 also 
presents time -displacement diagrams for the resultant shocks formed by 
the interaction of the steady- flow normal shock with the double critical 
pulse for the following conditions: no mass removal, l/S-inch transverse 
slits , 1/4-inch transverse slits. It is evident that 1/4-inch slits are 
close to the smallest size which will dissipate the action of the double 
critical pulse. 

In all cases, the pressure in the channel, at the point of mass 
removal, was sufficiently large to cause the mass flow into the surge 
chamber to be choked, thereby allowing the use of equation (19) to com­
pute 5P and aQ across the slits. 

EXPERIMENT 

Part of the experimental phase of this investigation consists in 
generating strong compression pulses in the flow and observing the inter­
action of the pulses with the steady-flow normal shock for the wind 
4The velocity-profile area of a pulse is the area between the steady-flow 

velocity profile of the channel and the velocity profile imposed by the 
pulse. 
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tunnel in one of the two foll owing operating conditions: (a) slits into 
surge chamber closed, no mass removal; and (b) slits into surge chamber 
open 1/4 inch . By means of a modifi ed shock tube, it was possible to 
generate pulses having a velocity pr of ile approximately the same as 
those used in the characteristics anal ysis . Hence, these experimental 
tests could parallel the analytical studies by determining the relative 
strengths of the strong pulses which would just unstart the flow under 
the stated oper ating conditions . 

A further check on the effects of mass removal was made by operating 
the wind tunnel with the normal shock just downstream of the transverse 
slits and observing the effectiveness of the surge chamber in damping 
the movement of the shock caused by the incidence of small random dis­
turbances . Since small random disturbances are encountered more often 
than strong pulses, it was felt that this test might be more representa­
tive of actual operating conditions. 

Apparatus 

Wind tunnel and optical system.- The experimental tests were car­
ried out in a small intermittent super sonic wind tunnel in the gas dynam­
ics laboratory of the Graduate School of Aeronautical Engineering, 
Cornell University . The width of the channel was 1 inch. The only modi ­
fications to the tunnel were the construction of new nozzle blocks, as 
shown in figure 1, and the construction of a bracket for mounting the 
pulse - generating device at the end of the diffusor. The transverse 
slits , which connect the channel to the surge chamber, were adjustable 
to allow an opening up to 1/2 inch . The surge chamber was designed to 
be large enough so that the pressure would not change appreciably within 
the l ength of time necessary for the shock to travel from the stable 
e~uilibrium position to the unstable e~uilibrium position and return. 

The optical apparatus consisted of a schlieren system of conven­
tional design and was provided with two light sources. A continuous 
light source was used for visual observation and also, in conjunction 
with a conventional camera shutter , for taking schlieren pictures with 
exposures of 1/25 second . The other light source, used for photography 
only, was a high- intensity spark having an effective duration of 1 micro ­
second . 

Pulse tube .- The compression pulses were generated in a small shock 
tube which was mounted on the end of the diffusor . The shock tube, 
called a "pulse tube ," differs from the conventional design, described 
in reference 7, in that the r earward wall of the high- pressure chamber 
is placed close to the diaphragm . The l ongitudinal dimensions are pro ­
portioned so that the front of the expansion wave reflected from the back 
wal l just overtakes the shock at the forward end of the tube . At this 
instant the velocity distribution over the length of the tube decreases 
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almost linearly from a large negative value behind the shock to a very 
small positive value at the rear of the pulse. Figure 4 presents a 
typical analysis by the method of characteristics of the flow in the 
pulse tube together with a plot of the velocity profile. It will be 
recalled that the velocity profile of the compression pulses used in the 
theoretical analysis (see fig. 2) jumps discontinuously through a shock 
wave to a large negative value and then increases almost linearly to 
zero . Hence, the pulse tube generates a compression pulse with the cor­
rect shape of velocity profile needed to check the prediction of the 
theory. 

The following dimensions of the pulse velocity profile are required: 
(a) the velocity discontinuity at the shock front, and (b) the velocity~ 
profile area. The velocity discontinuity at the shock front of the pulse 
is determined by the initial pressure ratio across the diaphragm. The 
area of the pulse can be adjusted to the required value by changing the 
over-all length of the pulse tube. The pulse tube can be designed to 
give precisely the required velocity-profile area corresponding to only 
one particular value of the velocity discontinuity at the shock front. 
At other values of velocity discontinuity, the profile area obtained in 
the pulse tube will differ slightly from the profile area required in 
the theoretical analysis. This difference, however, was found to be less 
than 4 percent throughout the range of values employed in the experiment . 

The pulse tube was designed according to the dimensions of the 
double critical pulse shown in figure 2 . This pulse had a velocity dis­
continuity, 6u/ao ' across the shock front of 0 . 515 and a velocity-profile 
area of 1.57 (units of u/ao X inches). It was anticipated, however, 
that there would be losses in pulse strength caused by the pulse travers­
ing the gap between the end of the pulse tube and the end of the dif­
fusor, as well as losses resulting from the separated flow in the 
diffusor. It was estimated that these losses would cause a reduction in 
the over -all pulse velocity profile of 20 percent . For purposeB of 
design, therefore, the dimensions of the double critical pulse were 
increased by 20 percent which brought the velocity-profile area to a 
value of 1.90 (units of u/ao X inches) and a leading-edge velocity 
discontinuity, 6u/ao' of 0.610. Two additional analyses were carried 
out for weaker pulses. From these analyses the relation was determined 
between the velocity-profile area and initial pressure in the high­
pressure chamber of the pulse tube. The graph of this relation is pre­
sented in figure 5. 

Figure 6 shows the entire test setup with the pulse tube in its 
operating position at the end of the channel. A larger photograph of the 
pulse tube is shown in figure 7. Also shown in figure 7 is the diaphragm 
rupture mechanism which consisted of a needle attached to a solenoid 
switch . Closing the circuit of the solenoid switch caused the needle to 
be displaced inward, thus rupturing the diaphragm. Due to the deflection 
of the diaphragm under pressure, a filler plate was attached to the back 
wall of the high-pressure chamber (see fig. 8). The size of this plate 
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was approximately equal to the added volume caused by the diaphragm 
deflection and, consequently, acted to keep the pulse size closer to 
that dictated by the theoretical design. 

Procedure 

In order to study the effect of mas s removal against the action of 
the compression pulses from the pulse tube, tests were conducted with 
the transverse slits 1/4 inch open and were repeated with slits closed. 
The procedure in both cases was to fill the high-pressure chamber in the 
pulse tube to a desired pressure, then start the wind tunnel and bring 
the normal shock to its proper position downstream of the second throat. 
The diaphragm of the pulse tube was then punctured. The effect of the 
interaction of the compression pulse with the steady-flow normal shock 
was observed on the schlieren screen: Either the normal shock returned 
to its stable equilibrium position downstream of the second throat or was 
driven to the secondary stable equilibrium position upstream of the test 
section . These tests were repeated with different values of pulse-tube 
pressure until that pressure corresponding to the critical pulse was 
determined . 

In order to determine the effect of mass removal against the action 
of small random disturbances, a second series of tests was carried out 
with the air flow from the end of the diffusor partially blocked. The 
sharp diversion of air at this point created random pressure variations 
which were propagated upstream through the diffusor. It was felt that 
the disturbance level created in this manner would correspond roughly 
to disturbances produced by the exhaust system of an actual wind tunnel. 
For this part of the experiment, the normal shock was placed in a posi­
tion at the downstream edge of the transverse slits. The effect of mass 
removal to the surge chamber was observed by comparing the oscillation 
of the normal shock when the slits were 1/4 inch open with the oscil­
lations present when the slits were closed. An attempt was made to show 
this effect by taking schlieren photographs with a spark (l-microsecond 
exposure) and with an exposure of 1/25 second . The normal shock wave 
was photographed at both these exposures, first with the slits open 
1/4 inch and then with the slits closed. If mass removal is effective 
in damping oscillations of the shock wave, there will be a close simi­
larity between the 1/25-second and l -microsecond exposures. 

RESULTS AND DISCUSSION 

The experimental tests to determine the effect of mass removal 
against the action of strong compression pulses revealed that the pulse 
necessary to unstart the tunnel with 1/4-inch transverse slits was 
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produced by a pulse-tube-chamber pressure of approximately 62 psi gage. 
With the transverse slits closed, the pulse necessary to unstart the 
tunnel was produced by a pressure of about 28 psi gage. As shown in 
figure 5, the velocity-profile areas corresponding to these pres sures 
are 1.80 and 0.87, respectively. The velocity-profile area of t he pulse 
required to unstart the tunnel with 1/4-inch slits is approximat ely 
double the area required with slits closed . This result is in agreement 
with the theoretical analysis, as shown in figure 3, which predicts that 
the action of the double critical pulse will be dissipated by mass 
removal through 1/4-inch transverse slits. 

The second series of tests demonstrated the effect of mass removal 
against the action of small random disturbances. With the slits open 
1/4 inch, the normal shock was never driven upstream by the random dis­
turbances, and a marked decrease in the oscillation of the normal shock 
was noted as compared with the oscillations present when the sli ts were 
closed. 

Schlieren photographs, with exposure times of 1/25 second and 1 
microsecond, were taken with the transverse slits both closed and open 
and are presented in figures 9 and 10, respectively. The oscillat ory 
motion of the normal shock, caused by the random disturbances, can be 
observed in figure 9 by noting the difference in clarity between the 
photographs taken at the two exposure times. The effect of mass removal 
in damping these oscillations is to be observed by comparing t he relative 
clarity between the 1/25-second exposures of figures 9 and 10 and, also, 
by noting the similarity between the 1/25-second and l-microsecond expo­
sures of figure 10. 

When taking s nhl ieren photographs, the shock could not be positioned 
visually because t he visual screen was blocked by the photographic plate 
holder. An approximate shock position was fixed by reference to the 
settling chamber pr essure . Under these condition s it was difficult to 
photograph the normal shock at a desired average position . As a result 
of this difficulty, the photographs of figure 10 show the normal shock 
at an average position farther downstream from the transverse slits than 
was desired. Although some damping is indicated by the relative clarity 
of the 1/25-second exposure in figure 10, as compared to the l-microsecond 
exposure, the effect is not as striking as was observed visually. 

CONCLUDING REMARKS 

In order to s tabilize normal shock waves in channel flow against 
the effect of dist urbance s origi nating downst r eam, a method based on 
mass r emoval from the channel by means of a surge chamber was developed 
at Cornell Univers tv. The stabilizing action is initiated by the motion 
of the p a C' { - N normb.l. sho k caused by t he di sturbances and requires 
the u. no add_ vlonal power facilities. 
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With the use of the method of characteristics (extended to include 
mass removal at a point in the channel), the flow was analyzed in a chan­
nel shape similar t o that used in a double-throat supersonic wind tunnel. 
It was found that the mass - removal technique was effective in damping the 
motion of the normal shock wave produced by strong compression disturb­
ances . 

To check the findings of the theoretical analysis, a series of 
experimental t e s ts was performed in a small double -throat wind tunnel into 
which compression disturbances of known strength were introduced by a 
pulse generating device. The experimental results were in quantitative 
agreement with the results of the theoretical analysis . An additional 
series of experimental tests was performed in which it was found that the 
mas s - removal technique was effective in damping the oscillatory motion 
of the steady- f low normal shock caused by small r andom disturbances . 

From the theoretical and experimental results, it can be concluded, 
therefore, that the mass - r emoval technique is effective in stabilizing 
normal shock waves against compression disturbances originating down­
stream, and that the performance can be accurately computed by the method 
of char acteristics. 

Ames Aeronautical Laboratory 
National Advisory Committee f or Aeronautics 

Moffett Field, Calif . , Mar . 31, 1953 
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APPENDIX A 

APPLICATION OF THE METHOD OF CHARACTERISTICS 

ACROSS STRONG DISCONTINUITIES 

Normal Shock Waves 

The change in each of the characteristic ~uantities, P and Q, and 
the entropy,~, across a normal shock wave may be computed using the 
customary Rankine-Hugoniot relations. However, in the construction of 
characteristic diagrams where solutions across shock waves are re~uired 
many times, it has proved convenient to prepare two auxiliary charts to 
facilitate these computations. To begin with, it is desirable to define 
the two classes of shock waves. A P shock is defined simply as a shock 
wave which, on a time-displacement diagram, is moving to the right rel­
ative to the fluid. Conversely, a Q shock is a shock wave that moves 
to the left relative to the fluid. In addition, all velocities are taken 
to be positive for movement from left to right and negative from right 
to left. 

The first of these auxiliary 
charts expresses the change across 
a shock wave in the ~uantity P in 
terms of the corresponding change 
in Q. Consider a P shock in 
channel flow as shown in sketch (Al) • 
The changes in the characteristic 
~uantities, expressed in non­
dimensional form by dividing by the 
speed of sound, al, is 

2cv 
~+~---

(p2 - Pl ) R 
al P al 

2cv 

(~ - Q~ 
-- a2 - u2 -

R 

al P al 

2 I 

Sketc~ (Al) 

2cv 
al - ul --

R 

(Al) 

2cv -- al + ul 
R 
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Sket ch (A2) 

2cv 

(P2 Pl ) R 
al p 

2cv 

(~ - Ql) 
--

R 

a.l p 
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Upon transferring to a coordinate 
system moving with the normal shock, 
as shown in sketch (A2 ) , it is found 
that the relations given in equat ion 
(Al) now become 

~ - (U - ~) 
2cv al + (U - Ul) 

R 

al 

(A2 ) 

~ + (u - ~) 
2cv 

al - (U - Ul ) 
R 

al 

Equa.ti on (A2 ) is essentially unchanged from equat ion (Al) since it mer el y 
involve s the additi on and subt r acti on of the shock vel ocity, U, in the 
numerator of the right side . This observation serves to i l lustrate the 
fact that (P2-Pl) /al and ( ~-Ql)/al are independent of coordinate 
system. Equation (A2 ) may be br ought into the foll owing form : 

(P
2 - Pl \ ~ ( 2;v _ U - u2 " _ ( 2;v _ U - Ul) 

al )p al ~ ) al 

(A3 ) 

(Qe - Ql) ~ ( 2Cv U ~ U2
) _ ( 2;v + U - Ul) 

= -- + 
al P al R al 

I n terms of quantities l isted in the standard steady- flow normal -
shock t able , 

MSl 
U - Ul 

al 
(A4 ) 

Ms 
U - U2 

2 ~ 

j 
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Equations (A3) then becomes 

(p2 - Pl ) a2 (2Cv ) _ (2Cv _ M ) 
al P al R - MS2 R Sl. 

(A5) 

(Q2 - Ql) a 2 ( 2Cv ) (2Cv ) 
al P al 

R + MS2 - R + MSl 

With reference to any of the standard steady-flow normal- shock tables , 
the chart of (P2-Pl)/al as a function of (Qe-Ql)/al can be constructed. 

For comparison, a Q shock in 
channel flow would be represented as 
in sketch (A3). Upon transformation 
to a coordinate system moving with 
the shock velocity, U, the flow would 
be represented as in sketch (A4). 
The change in the characteristic 
quantities for the case of the Q 
shock would now be 

(P2 - Pl ) 
a 2 (2Cv + -U +~) _ (2Cv + 

al Q al R a2 R 

(~ - Ql) ~ (2;v _ -U + U 2) _ ( 2;v _ 
al Q al ~ 

Sketch (A3) 

Sket~h (A4) 

-U + U l ) 

al 

(A6) 

-U + U l) 

al 
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In terms of quantities listed in .standard steady-flow normal-shock 
tables 

-U + Ul 

al. 

-u + ~ 

~ 

and equations (A6) then become 

(P2 - Pl ) ~ (2Cv ) (2CV ) ----+M - -- + M 
al Q al R s2 R Sl 

('k - 'h) ~ (2Cv ) _ (2Cv _ M ) --M 
a1. Q al R s2 R s1. 

(A7) 

(AS) 

Comparing equations (AS) with the corresponding equation for the 
P shock, the following rule can be stated: 

(A9) 

The curves of (P2-Pl)/al as a function of (Q2-Ql)/al for a P 
shock can, therefore, be used f or Q shocks by merely interchanging the 
ordinate and abscissa . 

J 
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The second of the necessary charts concerns the entropy change 
across a normal shock. The following relation expresses the entropy 
change between any two equilibrium conditions of a perfect gas. 

23 

(AlO) 

For a normal shock, however, the ratios a2 /al and P2/Pl are related 
through the Rankine -Hugoniot equations. With the use of a standard set 
of steady- flow normal - shock tables , it is therefore possible to compute 
(~2 - ~1)/IR as a function of a2 /al only. 

In applying the method of char ­
acteristics across a normal shock 
wave, a compl ete solution involves a 
knowledge of the six quantities as 
shown in sketch (A5) . In the present 
analysis, which is concerned only 
with Q shocks, the quantities PIJ 
Q1 J Q2 J and ~l are known, either 
from boundary conditions or from 
previous computations . With the aid 
of the chart of (P2 - Pl )/al as a 
function of (Q2- Q1 )/al' the value of 
P2 can be determined . Accordi ng to 
the definitions of P and QJ the flow 
velocity and speed of sound may be 
computed from the following general 
relation : 

P + Q 
a 

4cv/R 

P - Q u 
2 

P, 

x 

Sketch (A5) 

(All) 
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With the value of ~/al now known, ~2 can be determined from the chart 

of (~2-~1)/YR as a function of ~/al. 

strong Entropy Discontinuities 

When a large entropy discontinuity exists in a fluid, the pressures 
and velocities on each side of the interface are identical. For this 
condition, equation (AlO) becomes 

~2 - TJ1 

yR 
2cp G~) = - log yR e al (Al2) 

from which the speed-of-sound ratio between conditions on each side of 
the interface is 

e (Al3) 

Since the velocities on either side of the interface are constant, the 
difference between the characteristic quantity P across the entropy 
discontinuity is expressed as 

2cv 
R 

(Al4) 

Substitution of the expression for the speed-of-sound ratio in equation 
(A13) into equation (Al4) gives the following relation: 

(Al5) 
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By a procedure analogous to that used in obtaining equation (Al5), 
the following expression can be written for conditions across the inter-
face: 

(Al6) 

Combining equations (Al5) and (A16 ) yields 

e 
2Cp _ 1 

+ 1 (Al7) 
or 

By a similar procedure to that used in obtaining equation (Al7), the 
following expression can be obtained: 

(AlB) 

For very small entropy discontinuities, the first term of the series 
expansion for the hyperbolic tangent may be sufficient, and equations 
(Al7) and (AlB) reduce to the form given in equation (15) in the text of 
this report. 

The application of equations Dot 
(Al7) and (AlB) to the determination 
of the flow quantities across a typi -
cal strong entropy discontinuity can 
be shown with reference to sketch (A6). 
The quantities Pl , Q2' ~l ) and ~2 are 
known from boundary condi~ions . The 
problem is to determine Ql and P2 . 
From equations (A17) and (AlB), the 
values of (p2 - Pl ) and (~2 - ~l) can 
be computed from known conditions . Ql 
and P2 can then be computed since 
Q 2 and Pl are known. 

Sketch (A6 ) 
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APPENDIX B 

TYPICAL INTERACTIONS 

The theory of wave interactions is discussed in reference 5. HOVl ­

ever, the solution of any actual interaction process requires a procedure 
for numerical computation, and this aspec t of the problem is hardly 
touched upon elsewhere in the literature . Accordingly, an attempt is 
made here to present a practical method of solution for those interac ­
tions encountered in the present analyses . 

Interaction of Two Q Shock Waves 

This i nt eraction is encount er ed when the shock wave at the l eading 
edge of the compression pulse encounters the steady- flow normal shock. 
A schematic diagram of this interaction is given in sketch (Bl) . The 

interaction of the two 

Com­
bined 
shock 

discontinuity 

Reflected 
disturbance 

shock waves r esults in 
(1) a single strong 
shock wave which moves 
upstream with a velocity 
intermediate to the 
interacting shocks j 

Steady ~-Pulse shock 
flpw

k 
5 

s"oe ---t 

x 
Sket ch (Bl ) 

( 2 ) a strong entropy 
discontinuity which 
moves dOlmstream wi th 
the velocity of the 
fluid j and (3) a weak 
r eflected disturbance 

which, as shOlm in r eference 5, \-Till be a rarefaction wave . The method 
for solution is given in the following outline form: 

Given : 

1 . All conditions ( p , Q, u , a, ~) i n sectors 1, 4, 5 . 

2 . Velocity i s constant across entropy discontinuity: u 2 = u 3 . 

3. Q and ~ are constant across t he reflected disturbance . 

Q 3 = Q4' ~3 = ~4' 

Find : 

1 . All conditions (p, Q, u, a, ~ ) in sectors 2 and 3 . 

~ . The vel ocity of the combined shock . 

-.~ 
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Auxiliary Charts (See Appendix A) 

1. (P2-Pl)/al vs (~-Ql)/al for Q shock. 

2. vs ~ for normal shock. 
al 

3. Steady-flow normal-shock tables. 

Procedure: 

27 

2. Obtain (P2 -P1 )/al from charts of (P2 -Pl)/al vs (~-Ql)/al for 
Q shock. 

4. Obtain vs for normal shock. 

5. Compute (Qs - Q2) from equation (Al8). In equation tAl8) replace 
subscript 1 by subscript 3, and use the given value of Qs 
in computing the factor (Qs + P2 ). 

6. Compare Qs (computed) with Qs (given) and repeat steps 1 through 
5 until these quantities are equal. 

7. Compute Ps from equation (Al7) replacing the subscripts as 
indicated in step 5. 

8. With Qs from step 6 and P3 from step 7, compute Us and ~ 
with the use of equation (All). 

With conditions in sectors 1 and 
2 now known, the velocity of the result­
ant shock can now be computed. Consider 
the motion of this shock as shown in 
sketch (B2). When transformed to a 
coordinate system moving with the veloc­
ity of the shock, the picture then 
assumes the form shown in sketch (B3). 
The Rankine-Hugoniot relations may be 
used with reference to this latter 
sketch. As such, 

} (Bl) 

Sketch (B2) 

Sketch (J 3) 
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The velocity of the shock U may be determined from either of the equa­
tions (Bl ) with the aid of a set of steady- flow normal- shock tables. 

A numerical example of t his procedure may help . In practice it is 
f ound convenient to express all velocities, and also P and Q, as multi­
ples of a standard vel ocity . I n thi s case the standard velocity is t aken 
as the standard speed of sound) ao (1120 ft/sec )) and the values of u ) 
a ) P,and Q listed are actually u/aO) a/aO) P/aO) and Q/ao . The follow­
ing initial conditions are given in sectors 1) 4) and 5: 

o 
2 .836 0.822 

P5 0.654 

4.131 

0.290 

0.079 
4.870 1. 034 

:= 0. 079 

Foll owing the specified procedure , the r esulting solution is 

2 .648 

3· Compute P2 5· 571 U 2 0 .280 

Q2 5 ·011 a2 1.058 

L!_ • a2/al := 1. 288) hence (1l2 - lll ) hR :: 112 hR 0 .212 
f r om chart of ~T]/YR vs a~/al 
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5. (D3-De)/rR = 0.133 (D3-De)/4cp = 0.0133 

tanh (~3-~2)/4cp 0.0133 

6. 

7· 

8. 

Q3 + P2 = 10.441 Use Q3 (given) 

QB 4.871 (computed) as compared to 

Q3 = 4.870 (given) 

P3 4.432 

U 3 0.280 

~ 0·930 

From ~ = 1.966 0·583 - = 1.288, Ms and Mt32 a~ ~ 

as found in shock tables 

From equation (Bl) U = -0-340 

Shock Wave Crossing Transverse Slits 

A schematic diagram of this interaction is given in sketch (B4) . 

Transverse slits 
/ Entropy discontinuity 

/ 
3/ 
/4 

5 

Sketch (B4) 

Refl~cted 
disturbance 

x 
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As shown here, the resultant shock moves upstream and crosses the slits. 
The pressure difference between the channel and the surge chamber causes 
fluid to flow out of the channel through the transverse slits . This mass 
removal results in an immediate expansion which interacts with the shock 
wave and reduces its strength and velocity . The cnange in strength of 
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the shock wave introduces an entropy discontinuity into the fluid, as 
well as a small reflected disturbance. The method of solution for this 
interaction is given in the following outline form: 

Given: 

1. All conditions (p, Q, u, a, ~) in sectors 1 and 5. 

2. Velocity is constant across entropy discontinuity: u2 = Us' 

3. Q and ~ are constant across the reflected disturbance: 
~4 = ~s and ~ = Qs ' It should be pointed out here that if this 
r efl ected disturbance should be a compression wave, then the 
invariance of ~ and Q from sector 4 to 5 will not be strictly 
valid. Inasmuch as the disturbance is extremely weak, however, 
the variation of ~ and Q is so small that, to the accuracy of 
this analysis, it cannot be detected. 

4. Dimensions of the transverse slits. 

Find: 

1. All conditions (p, Q, u, a, ~) in sectors 2, 3, and 4. 

2 . The velocity of the shock after it has crossed the transverse slits. 

Auxiliary charts necessary (See Appendix A): 

1. (P2-Pl)/al vs (~-Ql)/al for normal shock. 

2 . (~2-~1)/IR vs a 2/al for normal shock. 

3. Steady-flow normal-shock tables. 

Procedure: 

1- Assume (Q2-Q1 ) /al' 

2 . Obtain (P2-Pl)/al from chart. 

3. Compute P2, Q2' u2 ' a2 · 

4. Obtain ~2 = ~3 from chart . 

5. With the aid of equations (15) and (20), compute P3 , ~, u3 ' and 
a 3 • Since the average values of the speed of sound and flow 
velocity must be used, an iterative procedure is necessary to 
perform this step. This iteration can be performed best by first 
using u = u2 a.r.c1 a = a2 • From the values of % and a

3 
thus 

_J 
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computed, new values of u and a can be computed. Repeat this 
process until sufficient accuracy is obtained. 

6. compute (Qs - Q4) from equation (Al8) replacing subscript 1 by 
subscript 4 and subscript 2 by subscript 3. Use the given value 
of Q4 in computing the factor (Q4 + ps). 

7. Compare Q4(computed) with Qs(given) and repeat steps 1 through 6 
until these quantities are equal. 

8. Compute P4 from equation (Al7) replacing the subscripts as indi­
cated in step 6. Use ~ from step 7 to compute us' as. 

9. Compute the speed of the shock after crossing the transverse slits 
using equation (Bl). 

A numerical example of this procedure is presented with 1/8-inch 
transverse slits on both the top and bottom of the channel and the follow­
ing conditions given in sectors 1 and 5: 

Tl1 
- = 0 
'YR 

Ps 5 · 571 Us = 0.280 
Tls 
-= 0.212 
'YR 

Qs = 5 · 011 as = 1.058 

Following the specified procedure, 

1- Assume ( ~-Q1)/al 2 · 368 . 

2. Obtain (P2 -Pl ) /al = 0 .177 from chart . 

3· Compute P2 = 5 · 529 

~ 4 . 784 

4. From ~/al = 1.255 

5. By iterative procedure 

Qs - Q2 0 .179 

P s P2 = - 0.096 

U2 0·372 

~ 1.031 

( 112 - 111) hR 11/'YR 11s/'YR 0.165 

J 
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6. 

7. 

8. 

9· 

and 

0 .235 

1.040 

tanh (~4-~3)/4cp = 0.0047 
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0.0047 

Q4 + P3 = 5 · 011 + 5 · 433 10.444 Use Q4 (given ) 

(Q4 - Q3) = (p 4 P3 ) 0 . 049 

Q4 5·012 (computed) as compared to 

Q4 5·011 (given ) 

P4 5 · 484 

~ 0 .235 

a4 1 . 050 

~ 
Using al = 1.255 , obtain MSl = 1. 857 and MS2 0 . 604 from 

shock tables . From equati on (Bl) U = -0 . 251 

Expans ion Wave Overtaking Shock Wave 

The leading - edge shock wave of the strong compression pulse is fol ­
loved by an extended expansion zone . This expansion zone propagates 
upstream more rapidly than the shock and, herlce , overtakE::s and -v,~e akerls 

the shock . The process is actually a continuous cne but, in applying 
the method of char acteristics, the expansion zone is considered to be 
built up stepwise from a seri es of expansion ',mves . 

I 

J 
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A diagram of this process is shown in sketch (B5). The overtaking 
expansion wave interacts with the shock wave and reduces its strength 

Shock 
wove 

Sketch (B5 ) 

discontinuity 
Reflected 
disturbance 

)( 
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and velocity . The change in strength of the shock wave introduces an 
entropy discontinuity into the fluid, as well as a small reflected dis ­
turbance. The method of solution for this interaction is identical to 
that presented previously for the interaction of two Q shock waves. 
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APPENDIX C 

DETERMINATION OF THE INTIAL VALUES OF THE 

CHARACTERISTIC QUANTITIES 

The velocity profile for a given pulse has been superimposed upon 
the steady- flow velocity profile at the time of impending interaction 
of the pulse shock with the steady- flow normal shock. Since the condi­
tions in the r egion upstream of the disturbance pulse are unchanged by 
the presence of the pulse , the speed of sound and all other properties 
of the fluid in this region are known from the s teady-flow conditions . 
It remains necessary, therefore , to evaluate only the speed of sound 
throughout the region downstream of the pulse shock . With the velocity 
profile of the channel already known, the characteristic quantities can 
then be calculated fr om equation (9). 

The following procedure can be used to determine the speed of sound 
ab immediately downstream of the pulse shock: Let sketch (Cl) r epresent 
the flow conditions in the neighborhood of the upstream edge of the pulse. 

Superimpose a velocity -U on the 
flow field , t hus converting t o a 
coordinate syst em which r epr esents 
velocities relative to the upstream 
edge of the pulse as shown in sketch 
(C2) . The local speeds of sound, 
aa and ab, as well as the ambient 
pressure, temperature, and entropy, 

Sket c-h (Cl) are independent of coordinate system 

Sket ch ( C2 } 

Equations (Cl ) can be combined 

ua - ub 
== aa 

and remain unchanged . With reference 
to sketch (C2), the following rela­
tions can be obtained : 

ua - U 

1 aa MSa 

(Cl) 

j Ub - U 

ab MSb 

t o give 

MSa - MSb 
ab 

(C2 ) 
aa 

J 
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which expresses conditions across a stationary normal shock. Since ua, 
ub' aa' and Pa are already known, the ~uantities ab, MSa' and MSb can 
be determined from e~uation (C2) by a trial and error calculation with 
the use of any of the standard tables for flow across a normal shock. 
The solution to e~uation (C2) will also determine the pressure ratio 
across the shock from which the value of Pb can be computed. From the 
integrated form of e~uation (4), namely, 

the value of ~b can also be determined. 

To compute the speed of sound at all pOints downstream of the pulse 
shock, the following assumptions were made: 

1. The entropy is constant from the rear of the pulse shock, 
station b, to the end of the channel. 

2 . The pressure at the end of the pulse, Pc ' is the same as 
the steady-flow pressure at that point. 

3. The speed of sound along the pulse varies linearly with the 
flow velocity. 

From assumption (1), the expression for the entropy change between 
stations b and c is 

( c4) 

By assumption (2) and e~uation (c4), the speed of sound at the rear of 
the pulse , a c ' can be determined since ab and Pb are known. With the 
velocity profile of the channel already known, assumption (3) permits 
~~ evaluation of the speed of sound at all paints along the pulse . The 
values of the characteristic ~uantities, P and Q, (e~. (9)) can now be 
evaluated at all points in the channel at the time of impending inter­
section of the pulse shock with the steady-flow normal shock. 



1. 

2 . 

3· 

4. 

5· 

6 . 

7· 

l 

NACA TN 2694 

REFERENCES 

Kantrowitz , A. R.: 
in Channel Flows . 

The Formation and Stability of Normal Shock Waves 
NACA TN 1225, 1947 . 

Riemann, B.: Uber die Fortpflunzung ebener Luftwell en von endlicher 
Schwingungsweite . Abhandlungen der Gesellschaft der Wissenschaften 
zu Gottingen, Mathematish-physikalische Klasse B, p 43 , lB5B- 59 . 

Kantr owi tz, A. R.: Heat Engines Based on Wave Processes . Paper 
pr esented before the Annual Meeting of the A. S .M.E., Nov . 194B. 

Kahane , A., and Lees , Lester : Unsteady One -Dimensional Fl ows with 
Heat Addition or Entropy Gradients •. Jour . Aero . Sci ., vol . 15, 
no . 11, 1948 . 

Courant , R., and Friedricks , K. 0 .: Supersonic Flow and Shock Waves . 
Interscience Publ ishers , New York, 1948 . 

Kantrowi tz , A. R., McDonald , E. E. , and Perry, R. : The Response of 
a Normal Shock in a Channel Fl ow to Small Disturbances Coming f r om 
the Rear of the Channel. Cornell University Graduate School of 
Aer onautical Engineering, April 1949 . 

Hertzberg, A.: An Exper imental I nvestigation of Two -Dimensional 
Non-Steady Shock Wave Phenomena . Cornell Uni vers i ty Gr aduate 
School of Aer onaut ical Engi neer ing, Sept . 1949 . 

----~-.- --



It) Tab/e of ordinates .... : 
Station Ordinates 

0 .500 Surge chamber 
.2 .5/0 

--~'-+I- 2 .5 8 ------1 .4 .530 
.6 .555 II:> 

.8 .580 
/.0 .600 
1.2 .620 

2° /.4 .635 
1.6 .645 
1.8 .653 

2.0 .660 
2.5 .665 
3.0 .660 
3.25 .652 
3.5 .640 
3.15 .630 
4 .0 .620 

't t =::........... I ( ...-..~ '-r tl-t-- .... -- - Y - -~ - tl 

~t;t;n5.5_1:~ ~ J~ 
1--·--------/9.2 I 

~-------------------3095 , I 4.25 .6/0 
4.5 605 

~ Figure I.-Channel shope and nozzle-block design for test section Mach number = 1.64 (all dimensions in inches) 

!Z 

~ 
~ 

8 
!Z 
f\) 
(J\ 
\0 

+="" 

l.AJ 
-.l 

J 



::::'Itl~ 

.~ 
~ 

~ 
~ 
~ 
~ 
~ 

2.0 

/.6 
Normal-shock equilibrium positions 

I I 

~able ~tab7 
................... 

\ v/ Steadrf/OW TOfile 
1.2 

Superimposed pulses 

~~ I I 
/' ---; - Critical pulse [ DOUble critical pulse 

I ----~ --- - / 
I _ L.- - - __ L - - l H- - -------

04 

-
~~---

~ 
_ . . - '--- - -

00 2 4 6 8 10 12 14 16 

Distance in inches from first minimum section 

Figure 2. - Velocity profile of channel showing superimposed pulses in position of impending 
intersection with normal shock in stable equilibrium position. 

\JJ 
OJ 

s; 
o 
> 
Li 
f\) 
0\ 
\.0 
+" 



NACA TN 2694 

~ 
~ 

14~--~--~----~~----~~-------------. 

12~--~~~)~1--------+------~ 
I , 

I 
\ 

(o)Criticol pulse, 
no mass removal 

(b) Double criticol pulse, 
no mass removal 

(c) Double critical pulse, 
1/8 inch slits 

(d) Double critical pulse, 
1/4 inch slits 

\ (d) 
IO~--~~~------+-------+-------~----~ 

8~--~~~--~--+-------+-------~----~ 
(c) I- Second minimum I section 

.~ t)~~~--~~~--~--~----------+----------r--------~ (b) 

I Position of 
transverse slits 

4~--~--~~~r-~~-----+-------1------~ 

I-unstable 
I equilibrium 

position I 

2r---+---~---+--~~-r----~------~~------~ Pulse shocks 
I 

Critical pulse 
I 

Double critical pulse 

O~--~--~--~--+-~--~+-~----~----~ 
Steody-flow normal 
shock at stable I 
equilibrium postion 

I 

Distance from first minimum section, inches 

39 

Figure 3. -Interaction of critical and double critical pulse with steady 
flow normal shock for various amounts of mass removal. 
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Pulse area = 1.905 
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(b) Velocity profl'le with length dimension corrected by scale 
factor 0.585 to produce desired pulse area. 
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Figure 4.-Analysis to produce pulse with leading-edge velocity 
discontinuity, Ll g , of -0.610 and velocity-proftle area, 

o 
(: vs inches) of 1.905 
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Figure 5 - Relation between pulse tube chamber pressure and 
velocit y-profl~e area. 
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(a) Exposure, 1/25 second. 

(b) Exposure, 1 microsecond . 

Figure 9 .- Normal shock in channel under the influence of random disturbances 
originating downstream j transverse slits closed . 
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(a) Exposure , 1/25 se cond . 

(b) Exposur e, 1 microsecond o 

F igure 10 .- Normal shock in channel under the influence of random disturbances 
originating downstream; transverse slits open 1/4 inch . 
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