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LIET AND MOMENT EQUATIONS FCElOSCIUATING AIRFom

IN ANmFR’mE uqsTAGGEmDcAscAm

By Alexander Mendelson and Robert W. Carroll

Exact equations are derived for the osc~tory aero@mnic forces
acting in an unstaggered cascade of airfoils fluttering in potential
flow. Aerodynamic coefficients similar to those of the isolated airfoil
are obtained aa functions of the cascade geometry and the phasing between
successive blades; the phashgs considered are zero, 90°j and 180°. It
is shown that 90° ,isa special case of 180° phasing. These-aerodynamic
coefficients are plotted for the special case when sJJ-the airfoils are
vibrating in bending in phase (360° phasing). It is shown that the ef-
fect of ;ascaiihg for tfis case is t~ reduce
@KJ?**

3NIROIJUCTION

greatly the aerodynamic

The flutter of airfoils in a cascade has until recentl.ybeen pri-
marily of academic interest. However, the widespread use of compressors
and turbines in current aircraft power plants has given the problem sig-
nificance. Compressor blades, in particular, are susceptible to vibra-
tions, and some of these vibrations have been attributed to flutter.

The problem of the flutter of a compressor or turbine blade differs
from that of an isolated airplane wing in at least two ways. It is ne-
cesssry to consider, first, the effect of centrifugal force; and, second,
the effect of cascading. The effect of centrifugal force canbe taken
into account with sufficient accuracyby applying the appropriate centri-
fugal.force correctionto the fundamental bending frequency (ref. 1).
The effect of cascading is mch more difficult to evaluate, however,
since it is necessaxy to take into account the interference effect be-
tween the blades, which obviously depends on the cascade geometry. Two
new geometric variables must therefore be introduced; namely, the spacing
between bl.adepand the stagger angle. Ih addition, since flutter is a
time-varying phenomenon, another parameter must be introduced to.take
account of the phasing between the motions of the different blades of
the cascade.

.
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“The problem of flutter of compressor
assuming an infinite cascade of afioils.
anal-Ysisof such a cascade of afioils is

blades is ftist shplified by
A first step in a flutter
to determine the oscillatory

aerodynamic forces and moments acttig on the cascade. Most recorded
cases of compressor blade flutter indicate the occurrence of such flut-
ter at high aerodynamic loading, where the blade stalls and flow separa-
tion occurs, and it would be des=ble to solve the problem for this
case. However, no general methods.for calcukting aerodynamic forces in
nonpotential flow are avaikble. It is therefore necessary, as a first
apprcach, to consider the case h potential flow at low angles of attack.
The effect of flow separation at staKl can then be taken into account 3

N
separately, for instance, by the titroduction of aerodynamic time lags
(refs. 2 and.3) or other mechanisms which may prove useful. The object
of this paper is to present solutions for several special cases of the
oscillatory aerodynamic forces and mom@s acthg on wz inftuite cascade
of airfoils in potential flow. .

The ftist derivation of oschtory forces in a cascade was made in
reference 4. The effect of the wind-turmel walls on a fluttering isolated
airfoil was determined a~roximately. This is equivalent to the special.
case of an infinite cascade without stagger, with adjacent blades being
180° out of phase. The integral equation for the problem was set up and
an approxhate solution obtained by repladng the kernel with a simple
polynomial. The results are not applicable for spacing-to-chordratios
of less than 1. The same problem was solved rigorously in refererice5
and in reference 6 by different methods. The results are obtained in the
form of doubly imfinite series of Jacobian elliptic functions.

Another special case was treated in reference 7. A casc~ with
stagger with all the blades vibrating in phase is considered. The method
is similar to that used in reference 8 for the isolated airfofl. The
form in which the final results are presented cannot be easily used for
numerical calculations. More recently, the general inte~al equation for
a cascade with stagger and prescribed @ashg was set up by Sisto (ref.
9]. Approximate numerical solutions were then obtained for several cases
of zero st~er. The method used is similar to that of reference 4.

The present paper attempts to fill some of the gaps left by the pre-
ciously mentioned investigations. A solutim is obtained for the case of
zero stagger with the blades either 180° out of phase (considered h ref.
6), 90° out of phase, or ti phase. The last two cases canbe handled
approxhately by the method of reference 9. The present paper presents
an exact solution. Furthermore, the results are obtained in a form which
allows a solution ti a s@le straightforwardmsaner on a ddsk calculator,
the f= results being presented in the form of aerodynamic coefficients
which canbe calculated in a stepwise manner by the use of a set of recur-
rence formulas.

- ———.
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The anal.ysis of

3

AERODYNAMIC LIFT AND MOMENT

the oscillatory forces and moments acting on a cas-
cade of airfoils is made using the classical methods. In the-begimning,
the cascade is assumed,to be of inftiite extent with arbitrary spacing
and stagger, as shown in figure 1. The problem is lhter specialized to
the case of zero stagger. The airfoils are assumed to be thin and per-
forming smaLl oscillations in a potential.,incompressible, ideal air-
stream. l?heairfoils and their wakes are replaced by surfaces of discon-
tinuity (vortex sheets), the interaction between the vo?%ices being
neglected. Each airfoil is~performing both bending and torsio~ oscil-
lations, two adjacent airfoils betig out of phase by a prescribed amount.

Under these conditions Euler’s equations of motion are ftist linear-
ized and then solved for the pressure distribution over the airfoils.
The Biot-Savart theorem giving the induced velocity at any point on the
airfoil.due to the vortex field must also be used to obtain a solution.
Once the pressure distribution is lmown the aerodynamic”lift and moment

$
acting on the airfoil can be obtained by integration. The complete solu-
tion is given in appendix B. The final equations and results wXll be

q given here.
g

General case. - The aercdynsnic Mf’t and mcment acting on an unstag-
gered cascade as obtained in the manner outlined can be expressed h a
form similar to that given in reference 10 for the isolated airfoil.

where (all symbols are defined in appendix A)

a elastic axis position as fraction of stichord b,
midchord, positive toward trailtig edge

b semichord

h bending deflection, positive downward

measured from

a torsional deflection about elastic axis, positive for increasing
angle of attack

P mass density of ati
o

m circular flutter frequency

-— . . . ..—. — —..—--——.——.. .—-— .c-— —. —— —.— .—.——. ..
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w aerodynamic coefficients ~, La, l%, ~ =e tictio~ of the
fOllowing pu’ameters:

k reduced frequency, u)b/V

i%m phase angle between adjacent blades; m = o, l/2, 1/4

A cascade geometric parsmeter given by ~ = fi~a

For the isolated ah’foil these coefficients
reduced frequency k. For convenience, the
eters are used:

a = coth :

where

s

v

The
the

are functions of only the
follow511gadaitional param-

Spacing in units of Semichord

free-stream velocity

fouo-g scheme, as outltied h appen~ c> iS now used to c~c~te
aerodynamic coefficients: Let

%
=O; al=l; bo=l

bs=bj-l+ aj+l

-s E Y_& . c-jCs=u j>o

i=o



\

NACA ~ 3263

m

(+ = E cj+l+2i+ cj-1-2i=

(2i+l)u2i ‘-J
j >0

i=o

a

z
‘j+l+2i + ‘j-l-2i = ~

‘J = ~~
J>o

(2i+l)u2i -J

a

=C+2 E‘j J, ~=J Ci+l

C.j= i-l)J (cJ-l+ Zcj + Cj+llfj

Dj= (-1)!(dj-1y2dj+dj-~)fj “

EJ = (-l)j (e
j-l +Z:j +’j+l~fj

L
--1

FJ= (-l)j (dJ-1+2dJ+dj+l) (dj-zi+ dj-1-2i~

k

-1.

Gj = (-l)J (dj-l+2dj+dj+l) (ej-Zi+ej-I.2i)

i=o

Ao=l

r(z) s gcma function of argument z

(%3) =x(x+l)~+2) ● . . (X+j-1] = ~-

F(l/2, x; x+l/2+q; lfi)= z ~-~-i
i=o

is the ordinary hypergeometric function.

.... —-.-. —— .—. . ...— —-. ————_ ————-—-——---
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P

% ‘w x‘-’bs%!iH%“)-’F(’’2YX;X‘“2 +‘;l”)
(@

w~%%$l/2-m l’xr12
‘1=1+ ~T’T

@

.l+M~=l/2~mr’r12)
‘2 2 &

i=l

P4(X,m) )‘s

2ik +R2
C(k,X,m) = - ik +

%

k2 2ik - 2k2 + R3
D(k,X,m) = ikC - ~ -

%_

if
N

—.————..—
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The aerodynamic coefficients can now be obtained as follows:

NJ

!2

,

.

,,

%=(~+$%-p4+~D

%=+(%+%-+%)++%
-P5+*3+P+J+3(C+D’

The geometric parameters A, S, a,~, T =e functions of
ing and have been tabulated in table I for different spactigs.

The qusmtit ies
aJ

and bj are functions of only the phasing m.

The first 20 values of b have been tabulated in table II for values

of m equsl to O and 1/2! It is to be noted that for m = O, bj is

equal to lfor adl j.

b the equations for cj) dj) ~d ej, the tidex j never takes on

negative values. The quantities c-j> d-j~ e-j nmst always be obtatied

by calculating Cj, dj, =d ej-

m PI) P2Y P3) P4Y and P5 are fmctions of the cascade geometric

parameter A and the phasing between blades m. The functions C and
D are functions of ~, m, and the reduced frequency k. It is shown in
appendix B that the case m = 1/4 (90° phasing) reduces to the case
m= 1/2 (180° phasing) with twice the spactig. For the case of an iso-
lated airfoil, the functions reduce as follows:

s+- p3+o I

A +0 p4 + @
1

PI+ 2 P5 + 1/8

p2+ 1 ,

C(k,m,k) + C(k) Theodorsen’s function i
D(\m,k) + - C(k) -ypc,kil+$

I

.——. .— .—.——. —— .— ———.. ..-——--
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The coefficients ~, ~ l%, md ~ then reduce identically to those

of the isolated airfoil as given in reference 10.

The values of .Aj are independent of geometry or phasing. The
first 30 values are tabulated b table III.

Special case, m = O: For the case of dl the blades vibrating in
phase (m=O), a few simplifications can be made.

aJ=O

%
=1 forsU j

~2
-J

cs=~la

~2 -j

‘3=—
a

(U-1)2

‘I=x%

T “‘ F(-1/2, x; X + l/2; 1/%)

For this case, therefore, the bending coefficient ~ is obtained

3JIclosed form. The preceding results scanbe obtained by summing the
series for the appropriate quantities or by integrating 11, 12, 16, and
17 of appenti B directly for m = O.

APPLIc.A!rloNAND REsums

As an example, the case in which all the blades are vibrating in
phase (m=(l)w3X1.be considered. Ekperhmrbl data on compressors indi- “
cate that the only important type of vibration occurring is one of pure
bending. For this case, then, the only aerodynamic coefficient that
need be considered is ~.

. —
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The functions PI and P2 are plotted in figure 2 agatist the

cascade geometry parameter k. The real and imaginary parts of the cti-
cula.tionfunction C are plotted in figure 3. It is to be noted that
C is a function of both the spactig and the reduced frequency, whereas
the P functions are independent of the reduced frequency.

In figure 3, over the range of reduced frequencies from zero to 0.6
and sPacings S = 1.67 to 3.33 (this corresponds to solidifies of 0.83
to 1.67), the real part of the circulation function C is independent
of reduced frequency for practical purposes, whereas the hnaginary part
of C varies linearly with reduced frequency.

With the P functions and the circulation function C available,
the aerodynamic bending coefficient ~ was computed and plotted in

figure 4. The values for the isolated airfoil sre also plotted on this
figure. It is tobe noted that ~ (as well as the other coefficients)

is complex. The real part of ~ is in phase with the displacement and
can do no work; the imaginary part is in phase @th the velocity and cor-
responds to the damping component and can do work. Whether this system
is stable therefore depends on the sign of the out-of-phase component or
*-p@ of q. The real part of ~ is practically independent

of reduced frequency and mies only slightly with spacing in the range .
considered. The hnaginary part of ~, however, varies appreciably

both with reduced frequency and spacing. This is further Lldx.strated
in figure 5, where the coefficient ~ has been plotted against spac-
ing for a reduced frequency of 0.4. The results of figure 4 agree
well with those of reference 9 for a spacing s of 2.0, which is the
only one considered there. Some of the data from that reference are
plotted in the figure.

Since the imaginary part, or out-of-phase component of ~, corres-

ponds to the aerodynamic damping, figure 4 shows clearly that the effect
of cascading is to reduce &peatly the aerdynsmic damping when the blades
are vibrating in phase. For example, at a reduced frequency k of 0.4
and spacing S of 2 (solidity of 1), the aerodynamic damping is approxi-
mately one-half the value for the isolated airfoil. At a reduced fre-
quency of 0.1, the damping is reduced to almost one-third the isolated
airfoil value. The higher the solidity, the lower the aerodynamic dsmp-
tig becomes. However, for this particular phasing (all the blades vibrat-
ing in phase), the dsmping never actually goes to zero in pure bend@
except in.the 13m3t of inftiite solidity.

The equations for the
eral cases on a cascade of

CONCLUDING REMARKS

oscillatory aerodynamic forces acting h sev-
airfoils in potential flow are derived. The ‘

aerodynamic bending coefficient is calculated and plotted for the case
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where all the blades are vibrating in
of cascading is to reduce ~eatl.y the

NACA TN 3263

phase. For this case, the effect
aerdynsmic damping force.

The results of this investigation can be used in the study of stalJ
flutter phenomena h a cascade in a manner similar to the use of the
classical flutter theory of the isolated airfoil for the stall flutter
of the isolated airfoil. Aerodynamic time lags can be introduced into
or characteristictimes (ref. 2) csn be deduced frcnnthe aerodynamic lift
and moment equations. The 13mar part of the blade characteristic (ref.
IL) is directly obtainable, and the nonltiear part, if hewn, might be
treated by the methods of reference 2. The general usefulness of this
approach, for both the isolated airfoil and a cascade, must, however,
still be determined.

Lewis Flight Propulsion Laboratory
National Mtisory Ccmmittee for Aeronautics

Cleveland, Ohio, July 16, 1954
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APPENDIX A

l-l

SYM80LS

The follotig symbols are used in this report:

a

,

b

f(t),f(q),g(pj

h

i

k

L

M

elastic axis position, measured from midchord, as a
fraction of semichord b, positive toward trailing
edge

coefficients in recurrence formulas given in tti

Semichord

functions defined

coefficients used

in text

in evaluating integrals, given in text

base of natural logarithms

functions of indicated variables

bending displacement of airfoil, positive downward

G

titegals defined by eqs. (B40) and (B41)

reduced frequency, rob/V

lift per unit span

aerodynamic coefficients in lift equation, defined in
text

moment about elastic axis

aerodynamic coefficients in moment equations, defined
in text

phase angle lag betw,en any two adjacent blades, as
fraction of ti radians, 5/2c, appendix B

.—.—.— ..— .—— .— - —— —.-— ----
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.

functions defined in text‘1/p2~p3Y

p4#5
.

P’ pressure at any point on atcfoil, function of ttie

4 smplitude of pressure difference

4’ pressure clifference at a point on airfoil, pu’ - pt’,
function of time 3

N
spacing between blades in units of semichord bs

T

t

u

v.

v

geometric psrameter defined by ~

t hne

local velocity component

free-stream velocity

local velocity component
tiection

in free-stream dkrect ion

perpendicularto free-stream
.

#

coordtite in free-stream direction in units of semichoti .X)X1

Y coordinate perpendicular to free-stream direction in
units of semichord

~ displacement of airfoil

stagger angle

a

r total circul.ation about a5rfoil

vorticity distribution for reference atifoilT

vorticity distribution h wake of reference airfoilTw

5 phase angle between two Wacent blades

gecmetric parameter defined by cs -coth Ac

tramsfomed variables of integration defined in appen-
dixes C and D .

x

. — .
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gemetric parameter

air density

geometric parameter

geometric paramder

velocity potentisJ

defined by ~ eip

circular frequency of oscillation

Subscripts:

i,j,n,p,q summation indices

u ~er surface of airfoil

z lower surface of airfoil

The subscript n is used also to indicate,the n‘h airfoil

.—.——. —.— .—~ -- --
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c

General Theory

The analysis of the oscillating airfoil of infinite aspect ratio
in a cascade proceeds along classical lines. The airfoil is assumed to
he of small csniberand thiclmess and performing infiniteshal oscilla-
tions h an incompressible ideal fhid moving at a velocity V at
inftiity.

The airfoil.smd its wake are replaced by a surface of discontinuity
or vortex sheet of strength T‘ over the airfoil and Yw’ in the wake.
This surface of disconttiuity is assumed to lie in a horizontal plane
parsdlel to the direction of flow. The vertical displacement due to the
interactionbetween vortices of this sheet is meglected, this displace-
ment being assumed smaU cmpared with the horizontal motion. The
assumption of smald.perturbations to the free-stresm velocity permits
the linearization of Ner’s equt ions and, with.the introduction of a
velocity potential, Bernoulli’s equation for nonsteady incoirpkessible
flow is-obtained. -The

Ner’s equations

& (V+u) +

derivation‘is given here h debil for completeness.

for two-dimensional flow can be written

&)(V+u) & (V+u) + v $ (V+u) = -: ‘

~+(v+u)y+v~=-k ‘
1

(Bl)

%5P
.

Considering only ftist-order terms and realizing V is a constant give
the linearized Ner equations as

$+ V2 =-$ %-

1

%-
g+v g=-; ‘

}

(B2)

The velocity potential q is now titroduced:

ag
‘==

*
‘=5 }

(B3) .

_——
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Equation (B2) csm now be written

which leads directly to Bernoulli’s equation for nonsteady motion

The airfoil and its wake sre now replaced
T’ on the airfoil aud T,.’ in the wake.

velocities of upper
r’ or yw’. For a

and l~wer surfaces of
point on the a~oil,

where

15

= f(t) (B5)

by a vortex sheet of strength
The difference between the

the vortex sheet is therefore
therefore,

which upon integration gives

fix
9U - P&’%

Equations (B5) and (B6) then give

Apt = pu’

Centinuity of pressure
equation (B7) becomes,

rw ‘

(B4)

(B6]

h the wake requires that 4 be zero there, and
for the wake,

.

(B9)

----- ..—. . ..— — ..—_ ~.— - — —.. . —— .—
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The assumption of simple harmonic motion wXCl now be made, so that
.

Y’ = yeti

v’ = ve

T’ =reM

Y-w’=Twe

J

1
r’ = I’e~ = eti

‘ml

r~.
-1

Ap’=beti

Equation (B8] now becomes

(B1O) ij
IN

J’

x
yw+ik TwdXl=-ikr (B8a)

1
5

Equation (B6a) is a shple nonhanogeneous inte~l equation with the
kernel equal to 1. Its solution is

-5JS(X-1)
rw=-~re (Bll)

Equation (Bll) gives the vorticity distribution in the wake as a function
of the totsl cticulation around the airfoil. It can also be obtained
from the condition that the total circulation around the system compris-
tig the atioil and the wake must equal zero.

With the use of eqmtion (B7) the pressure distribution over the
airfoil can now be written in the following form:

(B12)

The lift and moment about the elastic axis csm be found by inte-
grating the pressure distribution as follows:

.

..—. —.—— —
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E’

.

J
1

L= -Pvb - Tdx-ipVbk
-1

..

M= -PVb2 ~1 ,(x-a)dx-- ib%vk
J-l

Vorticity Distribution
.-

1X’

/’f Taxldx
-1 -1 1

in a Cascade

Consider an infinite cascade of airfoils of chord 2, stagger angle
f3,-kd spacing s as indicated in figure 1. ‘l?heairfoils are replaced
by vortex sheets, the vorticity of the nth sheet beimg designated by
use of a subscript n. The Biot-Savart theorem is applied to give the
induced veiocity at a point x on the reference airfoil due to w element
of vorticity of strength Y. located at the point (~, ns cos ~).

,,.
dvn .

u L

.-rn(x - Xl)dxl
. .

[
2YC(X”- xl)z

1
+ (ns’cos p)2

(’14]

Measuring tYom the y’ sxis; this can be writtti ‘

Tn(x - xl - ns sin p)dxl
-dva”=--

.[

(B14a) -

23t(ns cos f3)2+ (X -“x1 - ns Sti p)
7

Summing over all n and htegrattig f%cxn-1 to _ change equation
(B14a) to

J’
a-

E
Y-n(x- xl - m ‘sin p)%

v(x) = - *

[

(Ills)
m-b IISCOBp + i(x-xl-nsShlq COBp - i(x-xl-nssinpj

-1 .“

The assu@ion is now made that any two”adjacent blades are out of phase
by an angle

5 =arm O<m <l’ .

. .

—.. . ..— .—— ._ ————-_. —
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This angle is constant through the cascade. The vorticity distribution
of the nth blade is therefore out‘ofphase with t~t of the reference !
blade at the origin by an angle

,~=21’arm

or

(B16)

where T is the vorticity distribution for the reference blade. Sti- N

stitut~ yn into equation (B15) results in

n- *-

The titiite sums cam be evaluated (see ref. 12)..

-A@m) (x-xl)
n

Substituting now equation {B18) into equation (B17) gives

a

I
w

-l(an-l) (x-xl)

J
x(2m-l)(x~-x)

T(xl)e x r(xlk
v(x) = -& dxl+~

Silill X(X1-X} Si.nh X(xl-x )
%

-1 “ -1

(B19)

It should be noted that although eqyati~ (B18] is not valid for
m= 0, equation (B19) is valid for all m. Equation (B19) gives the
induced velocity at a point on the airfoil due to the complete vortex
field of the cascade. It reduces to the we~-known equation for tbe

—— ——..— ..— —. — —— —.



NAC.ATN 3263

isolated airfoil when the
of the condition that the
component of the velocity

19

spacing s goes to infinity. Ifuse is made
normal induced velocity must equal the normal.
of the airfoil, then eqpation (B19) gives the

relation between the normal component of motion of the airfoil and the
vorticity distribution. The probla then becomes one of solving equation
(B19) for the vorticity distribution as a-function of the a~oil. motion.
Once the vorticity distribution is known, the pressure distribution can
be calculated from equation (B12).

The solution of the general equation (B19) will not be attempted
here. Insteadj several spe~ial cases of zero stagger will be considered.
For this case, ~ = 0, k= X = fi/sjand equation (B19) reduces to

Equation (B20)

m= o

1m=-
2
1

m=-
4

For m= 0,

r‘T(xl)cosh ~(l-ti)(xl-x)
v(x) = & dx~ (B20~

. Sinh X(x,-x)
w -L -L

will now be solved for the following three values of m:

all.the blades are in phase

@jacent blades are 180° out of phase

adjacent blades are 90° out of phase ‘

f

A“- cosh ~(X1-X)
v(x) = & T(xl)

Sml X(X1.X) %
-1 1

The second equation follows from Kelvin:s theorem, since
Y

‘-T(xl)dxl=o.
For m= l/2, -1

. (B22)

——.-—... .. . ——. . —.. — —.. ..— -— —.— —-— ---— ------
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For m = l/4, “

f

a

cosh ;(XyX)

v(x)” = * Y-b+ s~x(x~-x)

-1. ,

“f.i& .- r (q)

‘at %: Sin+(xl-x)
-1

NACA TN 3263

#

.

‘

(B23)

- The case for “-m=.1/4 therefore reduces to”the case of m = 1/2 with
twice the spacing. The same result can be obtatied from purely physical
considerateions. Thus only equatiops (B21) and (B22) have to be solved.

ti ordgr to solve equations (B21) and (B22), a transformation of
vartibles so to that used.M reference 6 will be made. Let

‘tam x=
J

l/u -
. . .

Equatims (B21) and (B22),c& then be written in terns of I.Land q,
making use-of equation (B20), to”become

ik
x= —+m

2
(B25)

where m takes on the yalue of O or 1/2. Or, more briefly,
-,

.

ES(P)= * L‘1‘(q) dv (B26)
-1 w-n

where g(p) and f(~) correspond to the appropriate parts of equation (B25).

Equation (B26) has an explicit solution for f(q), first obtained
in reference 13 and proven rigorously for the real domain in references
14 and 15. With the condition f(l) finite, the solution is

—
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The solution of equation (325) can now be written directly.

21

(B27)

The second tite~l cm
integration:

be partly evaluated by reversimg the order of

Substituting equation (B29) into equation (B28) results in

also

(B29)

(B30)

(B31)

Equation (B30) can be inte~ted as indicated in equation (B31) to obtain
the total circulation around the airfoil r .

——--.—. . . . ....— .. . .. —- ——.. -—. .— ._ _ . . .. --- .——. ——— - -
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t ion
sure

(B32)

Eqpations (B30) and (B32) give explicitly the vorticity distribu-
over the airfoil. With the vorticity distribution known, the pres-
distribution and hEnce the ldft and moment can now be calculated.

\

Lift and Moment on A=oil. in cascade

Consider the airfofl shown h figure 6. The upward displacement
at any the t of a point x on the airfoil is

y(x,t) = - h - b(x-a)a (B33) .

The induced velocity V(x) must satisfy the condition that the flow
is everywhere tangentisJ to the surface. E the induced velocity in the
x-direction is small compared with free-stream velocity V, this condi-
tion leads to

(% $v(x) = v + ) (B34)
=-(~+Va-bti+@

The lift and moment are given by

J

1
L=b 4(X)’X = “

J 1-bb4(E)’E .
-1

1
M=b2

f
Ay (x)(x-a)dx

-1

(B35)

(B36)
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Combining equations (B13), (B30), (B32], (B35), and (B36) and per-
forming considerable algebraic manipulation, the lift and moment can be
mitten in the following form:

(B37)

where

~S pz(~,d -~pl(@d C(k,k,d

[ 1 Pl(k,m)
LaS~~+P3(h,m) -~P2(Xjm) l+ C(A,m,k) -

kz 1

C(X,m,k)

%=(++;)%- ‘@,d + - D(@,k)

}

(B38)

--..— -—..—_ .— ...—— ——..—. .—.-—. . . . - -.
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l+i ~ke N 16

and the’ I‘s represent the following titegrals:

I (B39)

(&+l-j)rn-l
(e-q)m

&2LP
( &+pjm

(B40)
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* 16 =

17 =

18 =

1

J’-1

r-1
r-1

@l&
(q-q)m

@id
(&-qp

@Lr2
(&-q)m

(log

(
..
log

It is to be noted in the preceding integrals that ‘

The integrals in equatik (B40) are “functionsof only geometry and
phasing between blades (?L and m). “ The T functions are therefore
functions of geanetry and phasing only.~ The integrals in equation (B41) ‘
are functions also of the reduced frequency k. The C and D func-
tions are therefbre functions of reduced frequency as well.as of geome-
try and p~SiIlgo The inte@s in eqqation (B40) are evaluated by inte-
gration around a closed contour in the ccmplex p@e. The details sxe
given in appendix C. The integrals in equation (B41) are evaluated by
means of the hypergeometric-integrsl. The details are given in
appendix D.

b the limiting case of the isolated airfoil (X = 0), the following—
limiting values are obtained for the varioy.sfunctions:

X+o pl(k,m) + 2 p2(X,m)+ 1

P3(A,m) + O P4(A,m) ~ 1/2 P5(X,m)~

C(A,m,k) + C(k), ‘j!heciiorsen:sfunction

$D(X,m,k] ~ - C(k) - ~ (1 - C(k)) + ~

-—-.—.,——--. -.—. . ..— .-. . — .—_—_ .-_ —.—_________ .. . ..- ~_. ____ _____ ___
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Equations (B37) and (B38) then reduce to those for the isolated
airfoil; ~, ~, ~, and ~ reduce identically to the coefficients

for the isolated airfoil given in reference 10.

.

.

—
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AEPENm Xc .

EVALUATION O.FINTEGRALS 11 TO 15

27

The integrals 11 to 15 are evaluated by integrating around a

closed contour in the complex ~-plane, where the tipping function re-
lating the q-plane to the ~-plane is given by

‘ +(g+m) .“--”” ; - (cl)

By use of equation (Cl~, equation (B40) can’be written as double
integrations around the closed contour C (fig. 7). Let

t+,=6- &=$

Then

11-$ 1(c-@m-hc-c4)”-lJ@ J’(~t-~ )rn-l(c,-cp-l
~ (c-cl)wc-c.Jm ~ ~ (C’-cy(c’-c,)m.

~W1 .C ~

12. + ! J’(C-C3)WC-C4P-?~ (V-cl)%’-cyl ~c,-::~:,c) & (C’-C5)(C’-CJ

c (c-\)wc-cJm ~ (c’-&Jwc’-c4)m (C1-C’)(C’-CJ‘c’ ‘c

1~-$

1

(@m-l(c-c4)m-1 f+ 1.8 (cl-c)(C-C=J

‘1

(C’-cl)w<’-cdl-l
(c-c~)m(c-c-y .IC-CJ(C-C4 @+i+-%’”’&%(H$d” ‘c(c’-cJm(c’-c4)m ,.c

J’ [
(c-cJm-l(c-Q)m-l i+ log (cl-c)(C-CJ

2
14-$ If

(cl-c)M-l(c.q.y((I+12
(GC3)(C-C4) “ dc~ dc

c (c-c~)m(c-cJm
c (c’-c3)m(c’-c4)m(~’-c)(c’-~c)

J’(C-C3)”-HC-C4)”-1Q-&15-& [(~w(C1-C)(L-CJ2
If

(c’-c#Wc’-cJl-l(<I+1)2 (C’-CJ(C’-C4)
(C-CI)WC-CJM c H3)(C-C4) (c’-cJm(c’-cJm (c’-c)(c’-c)c)

a
1% (C1-C’)(C’-CJ‘c’ ‘c

c

(22)

It i8 to be noted that in integrating around the closed contour C, the
integration path C’ in the ~-plane is actually bein~ traversed twice.
Each-integration around C

If the integrations in
the’various integrands must
one of thaj since they are

fis~ therefore be ~vided-by 2.

(C2] are to be performed, the properties‘of
be considered. It wiIl suffice to discuss
all of the same general type.

.. . .. .— .,.. ---- —— —.—.— .—-— . .—.— .— -— —— —.—... — ——— .-— -—
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Consider the tite~al 131

NVJA ‘IN3263

.

defined by

.

and <4=- Llj x well as s5mple poles at ~ and lf~. The transfer- ‘-

mation (Cl) maps every point in the q-plane Mm a pair of reciprocal
potits in the ~-plane. That part of C which lies below the real.axis
is therefore the reciprocal of that part of C which lies above the
real-axis, -d every petit which is outside the contour c has its
reciproc~ point inside the
appear h reciprocal.pairs,
and one inside the contour.
tour (see fig. 7).

Considering the branch
and C3 and frm ~= and

centour. ‘l?@singularities of the integrand
one of ea,chpair lying outside the contoux
The poles at ~ and l/~ lie on the con-

pdnts, branch cuts are now made between ~2
~~ to infinity ss shown. The intef.gandis -

now unique and stigl.=-valued~ver the path of integration. Fmthermore,
it can readily be shown that stice the tite~and of 131 is invariant

under the mapping ~‘ + 1/<’, (this evidently must be so because of (Cl)), ‘
the sum of the residues at ~ and 1~~ must vanish identically. Con-

. sequently, any other centour such as CO, equivalent to C but exclud-

ing the poi@s ~ and 1~~, may be us~d.
.

The jntegrand of 131 is therafore andyhic

enclosed by the curves Cl and C2 as fidicated

therefore be expanded into a Laurent series about
this annular region. ~ A-1 is the coefficient

this series, then

131 = 21riA-1

in the annular region

in the figure. It can

the origin valid in
of the 1~~’ term h

(C4]

b order to expand the inte~d tito a Laurent series about the
origti vsJid in the fidicated annul.us,,equations (C2) wild.be written
as follows:

,

.—
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I

Pa) (“)
❑ -1 m-l~+1 1+<

, @--AJyJ~

1(-)()

8-1 m-l
1+1 1+:

, RJ(’-$

13 .-+

J( 1i:5;:F1~m]’-’’p~ ?;::~”W](l!;(;::,,””,,”” ‘c

4--:j=[-M]k-$TJ’;?&:;:;~:;:;:c,,dcldc ~

15 --&

P

+)m-:(:);l~og&[,-,,[( ~$~::,;-’~ogm]/:; ;;~,,,)d.

, ‘;-*)$-$)

(C5)

where

u5qu L.~--!4

{2 !3
=Ei- C S2-1 = coth $

.,

Each intern can now be obtained in the form of a Laurent series about the origin by expmdlng each

bracketed quantity (noting that each of these ~eriei3 wIU converge at leaet within the .anm.ILua) and

multipQdng the resultant serie6 together. h this way, ror exea@e, tie coefficient of l/~ ‘ can

be obtained and the inner integration performed, TMS coefficient will, in gene-, be m ~flm~

series in ~. The procem then has to be repeated to carry out the second integratim. The final

reeult will be a doubly or triply infinite serlea in d. The process Is evidently extremely long EQd

l.aborioue. However, it cm be greatly simplified by eruploylng a aet of recurrence. formles which cm

be obtained by Impection of the series, whereby each term of a given minite aerle@ Is obtained in

terms of a previously given series. The caJ-culation SC- M m fo~o~: Let
N
Co
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d

4) ‘“;%l=l-;bo=l-

bJ =bj-1 + *j+l

E =J+l+zi + cj-1-2i = ~
‘j= ~a (2i+l)u2i -J

E dj+l*2i + dj-1-2i =
‘d =

(2i+l)u2i
‘-s

i=o

Cj = @ (Cj-l + 2cj
+cj+l$+z~’i+]

j-l

F~= (-l)j (d~-l+2dj+dj+l~
z (dj-zi+ dj-1-2i)
i=o

j-l

Gj= (-J]J(dj-l+zdj+dj+~l z (ej-2i + ‘j-l-2i~

i=o

i!!
N

——— ..—___ —
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Then:

m

%=+(+O+IJ)
‘5 =

j=l
‘J

31
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.

APPENDIX D

EVALUATIONOF ll?I!EGMIJ316 TO 18

Let

T
=“ ‘c-l

T

T’= ‘+
‘v-v1

The order of titegration is reversed smd.the logs are expanded in order
that equations (B4) can be written as follows:

(l.-T’V)-ldv all

(MI% )-m(l-Trv)-l dv dvl + $16 log ‘c

?8 = T 2-”s X J1”VT-1’’-V1’-1’2$ -:)-”2 J1” “’’-”2
i=l j=l o 0

(@1~2(l-n )-m(l-T’v )-1 dv dV1 -t- ~ log T - ~ 16 10g2 T (D2)

——. ——_ —
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The inner titegral is
nent of v . This titegral

33

the same for all ttiee, except for the expo-
can be evaluated b t- of Appa*s hyper-

geometric function in %0 variables of the ftist kind (refs. 16 and 17).

F1(n+l/2;m,l;n+2;T,T’) (D3)

I’(n)Gawa function of argument n.

The hypergeanetric function F1 is deftied h terms of a double
inffiite sum in T and T’. -

F1(n+l~2;m,l;n+2;T,T’)= Zz( /y~)fJ~~
n+l 2 m

H @
(n+2,p+q)p!

where

(njp)”~
9

n(n+l)(n+2) “ . “(n+p-1) =rrn~

@(Ti)q (D-4),

F1 can also be eqressed as a single infinite sum of O= hgpa-

geometric functions.

. ao

F1(n+l/2;m,l;n+2;T,T’) = Zf
n+l/2,p)(l+m,p

(n+2,p)p! (F -p,l;l+m; 1 -$
)

(where F -p,l;l+m; I - ~
)
is a polynomial given

F(-p,l;l+m; 1
-F~=f”&

q=o

P
=

1 ‘-’’’-’*’:(’ -?)-’
q=()

(D7)

. .

-—— .—. ...._. .. —__ _- ——__ ______ .. .. . . .. _
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Upon mibstituttig back into equations (D2), the followfng integral re-
mains to be evaluated:

“W F(q +“1/2, X+’; X+’ + 1/2; 1/%) (D8)

‘%%s% ?’-’ -F(l/2, X; %+1/2+’; l/%)

(ref. 18)

Equations (D2) can now he written as follows:

l-x-m &

where

(D9)

.
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tith

and

Ao=l

.mQw2
*i+j@-t-l i+j+p+2 ++j+P

~ = kd p (.q~ ( ,d(w,d
P P! E (x*;/2,q)(l+m,q)

@T)-q F(l/2,x;X+1/2+q;1/~)
q=i)

(D1O)

Bp T?

(D1.1)

Then equations (B38) for C and D can be written as follows:

2ti+R2
C(X,m,k) = ‘-m + —

RI

kz 2ik -2k2+R3
D =ikc-~-

‘1

(D12)

.,

——-.—-—--.—--..-—— ——— . _____ ....— .__ =______—.-— ———=_ —____
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TABLJZI. - GEOMETRIC PKMMETEM

s

ix
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.2
3.4
3.6
3.8
4.0
5.0
0

1

3.1416
2.8560
2.6180
2.4166
2.2440
2.0944
1.9635
1.8480
1.7453
1.6535
1.5708
1.4960
1.4280
1.3659
1.3090
1.2566
1.2083
1.1636
1.1220
1.0833
1.0472

.9817

.9240

.8727

.8267

.7854

.6283
------

&

1.0037
1.0066
1.0107
1.0160
1.0227
1.0308
1.0402
1.0509
1.0629
1.0760
1.0903
1.1057
1.1220
1.1393
1.1574
1.1763
1.1959
1.2162
1.2372
1.2588
1.2809
1.3266
1.3740
1.4230
1.4734
1.5249
1.7957
------

0

1.0903
1.1220
1.1573
1.1959
1.2372
1.2809
1.3265
1.3740
1.4231
1.4733
1.5249
1.5774
1.6308
1.6850
1.7401
1.7957
1.8517
1.9085
1.9657
2.0235
2.0813
2.1985
2.3164
2.4351
2.5552
2.6760
3.2867
------

Txi63

293.27
92.434
35.312
15.876

7.9398
4.3474
2.5757
1.6235
1.0756

.74615

.53585

.39687

.30253

.23585

.18787

.15238

.12565

.10508

.088f357

.076178

.065934

.050747

.C40292

.032811

.027299

.023138

.012345
----------

I

T

1.0000
1.0000
1.0000

.9999

.9999

.9998

.9996

.9994

.9991

.9987

.9981

.9975

.9967

.9958

.9947

.9934

.9920

.9905

.9888

.9869

.9848

.9803

.9752

.9695

.9634

.9568

.9190
------
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g
IN T

T
1
2
3
4
5
6
7
8
9

10

TABIJZII. - b~ coEFFICmS

m=()

1
1
1
1
1
1
1
1
1
1

1

bj

ml/2

1
0
.5

0
.375

0
.3125

0
.2734

0
.2461

d

3

11
12
13
14
15
16
17
18
19
20

b,

m=o

1
1
1
1
1
1
1
1
1
1

d

ml/2

o
.2256

0
.2095

0
.1964

0
.1855

0
.1762

J

3

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1
.2500
.1250
.07812
.05468
.04101
.03222
.02618
.02182
.01855
.01602
.01402
.01240
.01107
.00996?
.00902$

J
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

A-J

0.008232
.007546
.006950
.006429
.005970
.005563
.005200
.004875
.004582
.004318
.004078
.003860
.003660
.003477
.003309

.- —.-.-——.. . .._—. — ——-. . . . . ..-— — ..-— —— .-.-y ~.— .——. -————- .-
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Figure 1. - Cascade geometry.
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C(X,k)

I I
Real PSZ% of C(X,k)

.16 Spacing,
B

5.33

.lz

.08 —r 2.50.

.04
2.00

1.67

0

-. 1

-. 2

\

-.3

= W - of C(A,k)
\

4.-.
0 .1 .2 .3 .4 .5 .6
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