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TECHNICAL NOTE 3386

SOME CONSIDERATIONS ON TWO-DIMENSIONAL THIN ATRFOILS
DEFORMING IN SUPERSONIC FLOW -

By Fugene Migotsky
SUMMARY

The aerodynamic characterigtics of indiciglly cambered two-
dimensional airfoils in supersonic flow sre determined theoretically.
These indiclal functions are used to determine the power required to sus-
taln a general time-varying chordwlse deformation. The harmonically
oscillating parebollic mode 1s considered in detsil and stability bounda-
ries are presented for this case. Also, the thickness distribution of a
beam having a parabolic fundsmental bending mode, in vacuo, is determined.

INTRODUCTION

Untll recently, little consideration had been given to the aero-
elastic phenomenea associated with chordwise deformations of wings. Thus,
while spsnwise elastic modes were considered ln most analyses of aero-
elastic phenomens, it was generally sgsumed that the disgplacement of a
spanwlse station was restricted to translatlons and rotatlions. In recent
years more attention has been given to the problems sgsoclated with chord-
wlse deformations. One of these problems is the chordwise bending of a
two-dimensionagl airfoll in & supersonic strean.

Biot (ref. 1) appears to have been the first to consider the static
instgblility of a two-dimensional silrfoll in a supersonic stream. Milles,
in reference 2, investligated the gtatic and dynamic stebility of & can-
tilevered (chordwise) airfoil section in supersonic flow by including
low-frequency aerodynamic forces. In the present paper we consider the
dynemic behavior of a two-dimensional elrfoll in a supersonic strean,
without the restriction of low fregquency in the determingtion of the air
forces. .

The aerodynamic characteristics of alrfolls which ere indleially
cambered in a relatively arbltrary manner are determined, by linear
theory, from known, or easily obtalned, characteristics of an indieislly
plunged alrfoil.® These indieisl characteristics are then used to obtain

1In work performed independently and concurrently, Lomex, Fuller,
and Sluder (ref. 3) have obtained similar results for the rectangulsr
wing, but by a dlifferent method.
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the rate of energy input (power) required to sustain e genersgl time-~
varylng chordwise deformation.

The particular case of the harmonically oscillating parabolic arc
was chosen for detailed consilderation. In addition, the thickness distri-
bution of a beam having a quadratic normasl bending mode, in vacuo, was
determined.

SYMBOLS

ao half-gmplitude of osclllation of leading edge
Ao section mean-power coefficient (See eq. (21).)
Ay, AR functions defined by equation (15)
c chord of wing _
Co speed of spund in free stream
cy gection 1lift coefflclent, sectionzlift

o
en section pitching-moment coefficient,n—l;g X section moment

doC

meagured about leading edge

c, indicial section 1lift coefficient due to angle-of-attack
@ change only
cy indicial section 1lift coefficlent due to pitching on a
4 wing rotating sbout its leading edge
Cmg, indiclal section pitching-moment coefficient due to angle-
of-gttack change only, measured sbout the leading edge
and considered positive when the tralling edge 1s forced
down
Cmg indicial section pitchling-moment coefficient due to pitech-
ing on a wing rotating gbout 1ts leading edge, measured
about the leading edge and considered posltive when the
trailling edge 1s forced down
°m,n generallzed indiciel force coefficient (See eq. (6).)
B Young's modulus
E
Ey 1 - v2
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F,G
Fco ’Fcl

GSO,GS lJGBZ

h

ho

®
Schwartz function, fop + ifop = % f eI 5, <ﬁ> du
Q

functions defined by equation (18)

functions defined by equation (A8)
functions defined by equation (A9)

function giving timewise dependence of vertical position
of wing

half-amplitude of oscillation of midchord point measured
relative to leading edge of wing (sketch (c))

moment of inertls of cross-sectional area of beam with
respect to neutral axis

Bessel function of the first kind of order n

reduced frequency, %%L
lo!

flight Mach nudber
static pressure
z = 0 plane

discontinuity in pressure across

loading coefficient, %ﬁ

loading coefficient correspondingnto a normal velocity
distribution equsl to iﬁLiﬁ?Ell.

loading coefficients corresponding to unit steps in h(t)
and R(t), respectively

<1|g3-

e}

dynamic pressure, % pOV02

time

time to reach steady state

Co‘t
c
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cot
maximum thickness of sirfoll section
flight veloelty

perturbation veloclty componeﬁt In =z direction on upper
gsurface of z = O plane

energy required to sustaln the motion
Cartesian coordinates

angle of aettack, radlans

Gamms, function

function giving chordwise dependence of vertical position
of wing sectlon

thickness of beam

angle of piteh, radians

masg per unit length

Polsson's ratio

digtance from leading edge of wing section
dengity of undisturbed air

density of wing material

varigble of integration -

Vot
chord lengths traveled, -

chord lengths traveled to reach steady state
perturbation veloclty potential

frequency of oscillation, radians/sec

2

reduced frequency parameter, ﬁ%ﬁﬁjz

differentiation with respect to "t and &, respectively
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AFRODYNAMIC CHARACTERISTICS OF INDICIALLY CAMBERED ATRFOILS

The problem considered in this sectlion ig the determingtion of the
indicilal functions (pressure, 1ift, and moment coefficients) for a thin,
two-dimensional airfoll that starits from rest and suddenly moves with a
constant, supersonic, forward velocity and simultaneously attains a chord-
wise variation of normal velocity. The basic, linearized, partial differ-
ential equatlon for this problem, in terms of the perturbation potentisl
0, may be written

Oxx * Pzz = P4t (1)
when the fluid at infinity is at rest z
with respect to the xz coordinate X
system. The boundary condition to be

satisfied is that the normel wveloclty
Wwu be a speclfied funetion of dis-
tanée from the leading edge of the
airfoil (x + Mt,) in the region traced
out by the ailrfoll in the =xzt, space x=-Mt
(sketch (a)). The loading coefficilent !
P, In terms of the perturbation poten-
tial, is then given by the relation

po—t 2 (2)

" VoM dt,

w, glven

x=-Mt,+¢c
Loading Coefficient

Sketch (a)
The solution to this boundary-
value problem has been obtained for ¢
the plunging airfoil, thet is, q—g-l
wy = constant (see ref. 4). At super- X

gonic speeds, this solution applies as w,,=0
well to the case shown in sketch (b) u
Where wyu =0 for O <x< - Mi; + E.
Thus, 1f Po(x,t1) is the loading coef-
ficient for wy = 1 in the shaded wy =1
region of sketch (a), and if P(x,t,t:1)
is the loading coefficient for w, as
in sketeh (b), then #
tl

Sketeh (b)
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P(x,t,t,) = Polx - &,t;) for - Mt; + t <x S ¢
(3)

=0 for — O0Sx - Mty +¢

Since the theory is linear, the loading coeffilcient for an airfoil with
arbitrary wy(t) can be obtained by superposition of elementasry solutions
of the form given in equation (3). Note that in this supexposition it

1s necessary that w be a function of ¢ only. The superposition gives

Mt
P(x,%1) = Po(x,t1) wu!x=-Mt1 +fx W(E) Polx - E,81) & (ke)
o}

which, upon introducing o = x - ¢, may be written in an alternste form
of the Duhemel integral - :

P(x,t;) = Po(xytl)'qu=_Mtl+\]nx w'(x - o) Polo,t1) do (ko)
LMt -

Generslized Indicial Force Coefficients

In characterizing the aerodynamic properties of an airfoll that is
only pitching and plunging, it is generally sufficlent to give only the
usugl 1ift and moment derivatives (i.e., Cig? , ete.). For an air-
foll undergolng more complex chordwise deformatidns, it is found that
more information gbout the distribution of loeding on the airfoil is
needed. This additional information is conveniently represented 1n the
form of nondimensionasl generalized force coefficlents which are deflned
ag follows: Let the normal velocity of the alrfoll be glven in the form

B ER

and let Ppn be the loading coefficient corresponding to a normal veloc-

n
ity dietribution equal to (E—iEMEl) , that is, for ap =1, ap = O
for m # n. We define the generalized force coefficient as

_ VO -M‘t1+c % + Mtl m
tm,n = 5 C Pn(x;tl) dx (6)
-Mt,
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For the special cases of m and n equal to O and 1, equation (6) reduces
to

N
Co,0 T "C14

fo1 T " r (7
C1,0 = Cmy,

Ci,1 = Cmg J

Thus, the coefficient cp,n may be consldered to be a generalization of
the usual 1ift and moment derivatives.

Inasmuch as the loading corresponding to an arbitrary normal-velocity
dlstribution can be expressed as a function of the uniform-downwash load-
ing, 1t follows that the force coefficients for arbitrary n can be
obtained from those corresponding to n = 0, To this end we substitute
equation (4) into equation (6) to obtain, for n > O (so that

s, = ©)

) _J"Mtl*’c(x + Mt> s [ nlx - )" Po(o,t1) do
-Mt, Mty o

C

Interchanging the order of integration, we have

Von =Mt ,+c -Mt,+c a1 o
Cm,n = Eﬁ;ﬁigb/\ Polo,ta) dcu/; (x + o) (x + Mt,)™ ax
=Mty

n-1
Denoting the inner integral by I(c) and expending (x - o) by the

binomial expansion we obtain

I(e) = " nf C:)s GO CEOR
r=0
(-0)® (B2 2 G
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. The second integration then glves the desired recursion relation
for n>0

em,n(ty) = }: <% N ;) = i i)f ) Cr,o +

=0

o _ r
(-n)" Cm+n,o ( )it (8)
=0 _

which relates the coefficients for arbitrary n %o those for n = 0.2

The coefficients cp,o for indicial plunging are given in the Appendix
for m between O and 4, and, in integral form, for arbitrary m.

POWER REQUIRED TO SUSTATN A CHORDWISE DEFORMATION

Genersal Considerstions

The dynemic stabllity of a linear osclllating system is determined
by the rate of energy flux into the system. For an alrfoll deforming in
an air stream, this energy srises from the aerodynsmic forces acting upon
the airfoll; if power 1s required to sustain the motion sgainst the 1lift
forces, the motion 1s stable, conversely, if power must be extracted from
the system in order to sustain the motion, the motion is unsteble.

Let us assume that the positlon of the mean line 3z, at any instant
of time 1s given by (in an axls system attached to the ailrfoil)

= u(t) ¢(£) (9)

Then, the power required to sustgin this motlon against the 1ift forces

W= - pr(g t)—de.

o}

2An equlvalent recurrence relation was obtained in reference 3 for
the more difficult cage of the rectangular wing.
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may be written

W= - ﬁ(t)chp(g,t) () at (10)

o}

The normal velocity distribution across the airfoil, which deter-
mines the loading on the airfoil, is given by

Wy = Vo St + St (11)

or

wy = Vot t (&) n(t) + t(&) h(t) : (12)

Thig downwash distribution may be considered as the sum of two contribu-
tione; the Pirst arising from the instantaneous position of the airfoil
and the latter resulting from the instentaneous normal veloeity of the
airfoil relstive to an observer moving with the sirfoll. Now the load~
ings resulting from each of the terms in equation (12) may be obtained,
by the Duhamel integral, from the loadings corresponding to unlt steps
in h(t) and B(t). Thus, the loading coefficient for a motion as des-
cribed by equation (9) is

t t
P(t,t) = —aa—,gf py(g,7) nlt - T) ar + aa—tf Pa(e,™) B(t - 7) dr  (13)
O

(o

where Py 1is the loading coefficient corresponding to a unit step in
h(t), that is, Wy = Vot ' £}, and Pfi is the loading corresponding to a
unit step in H(t), that is, wy = §(E).

Substituting equation (13) into equation (10), and interchanging the

order of integration, we obtain the following expression for the power
required to sustain the motion against the 1ift forces

. t
W= - qoﬁ(t)[h/‘ At - 1) Ap(7) at + n(o) Ap(t) +
o

|a

6, c .
& [T - ag) ar o) w0 | (1)
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Where

A (%) fcrh(e.,t) £(e) a
° (15)

aa(e) = 2 [pae,e) e(e) a
[o]

The indiciel loading coefficients P, and Pf can be obtained from
equation (4) and the problem of obtaining the power required to sustain

a given motion 18 reduced to a series of quadratures. It should be noted
that if the function ¢(&) is a polynomial, the functions A and Af
can then be obtained in terms of the generalized force coefficients Cm,n-
This will be illustrated later where ¢(&) is a quadratic function.

Application to Sinusoldal Oseclllations

We assume now that h(t) is given by

h(t) = ho sin wt (16)

Substituting into equation (1L) gives

. w2ng? K we [T 2¢
W=_20_2_I:fAhcoswtd'r+v-c—)fAﬁsinw‘td'r+v;Aﬁcoswt+
o o

t t
sin%t(fAhsmwTdT--‘u;—gfAflcoszd'r>+
o o

t t
cos 2wt Ay cos wTt 4T + & A
o Vo Jo

Introducing the functions F(t) and G(1) such that for 0 = 1 =< t:

gin wT d’r)] (17)

An(T) = Ap(t) + F(7)
(18)

An(t) + a(r)

AR ()
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and substituting into equation (17) gives, after integrating and simpli-
Tying,

) o[ pt . £
W=_3°—h—giw_[fF(T)cosw'rd'r+%‘}th)+V£0fG('r)sinw'rd'r+
o o

.nt o t
cos 2wh <f F(T) cos wr dT + _cé‘;_ﬂot_) + -;‘;—g-f G(7) sin wr d'l') +
o

o
£ t t
sin 2wt (ﬁhﬁ—lw +f F(T) sin wT 4T - $—§f (1) cos wr d:r)} (19)
o o

Since the functions F(7) and G(T) vanish for + 2 tg, where 15 1is the
time to reach steady state, the integrals in equation (19) become con-
stants. Thus, the power reguired to sustain the osecillations, after the

transients die out, reduces to the form

] 2.2
w:-ﬂﬂoa—-‘*—’—(A+Acosawt+Bsin2mt) (20)

Upon substitution of the nondimensional frequency k = é*’Tc and the chord
: o]
lengths traveled ¢ = Y-Z-E, equation (20) becomes

24 2 -
W = —eh—°-ck——v—°‘19 (Ao + Ao cos kg + By sin hkp) (21)
where
®a . Qa
Ao=-f F(p) cos 2xp dp - An(opy) -2kf G(p) sin 2kp dp
“o . (o)

(22)
a Qg
BO=-A(2‘£)-fq)F(q>)sinakcpdcp+kf &{p) cos 2kp dp

(o] (o]

and

Ah(CP) - Ah(q)a)

F(p)

G(p) = An(e) - Aj(oa)

Thus W is a function which oscillates sbout a mean value with twice the
frequency of the oscillation of the motion. For considerations of dynamic
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stability, the constant Ao is the significant parameter. A positive o
value of Ay indicates that, on the average, there must be a steady influx -
of energy into the system 1n order to sustain the motion, that is, the -
system is stable, conversely, a negative value of Ao means instebility. '

QUADRATIC CAMBER DEFORMATIONS

We 'shall consider, in this section, the application of the preced- —
ing analysis to the case of an airfoil which is assumed to oscillate in )
such a manner that, at eny Instant of time, Iits mesn line is & simple - -
quadratic function. ‘A question which naturslly arises is: Does this
agssumed quadratic function correspond to a normal vibratory mode of a
beam whoge thickness distribution is a reasonable approximation to those
used in airfolls? In order to help answer this question, we shall first
consider the problem of determining the thlckness distribution of a bean o -
which has a prescribed vibratory mode shape;® in particular, we shall pre-
scribe the assumed quadretic funcition.

Determination of Beam Having a Quadratic Normal Bending Mode i o

The differential equation for the transverse vibrations of a simple
beam of nonuniform thickness is gilven by

32 (p.x 3% 32
5§—2< de2 = - kS (23)

The boundsry condltions for g free-free beam sre glven by the vanishing .
of the shear and bending moment at the ends 6f the beam L

%z\ _ o _ _ -
<lIa§ =3 E113g> 0 ‘at x=0 and x=c (24)

Specifylng the mode shape to be . - .

= hy sin wt [ (}g - € ) J | (25)

8Mathematically, this problem ig the inverse of the usual vibrating-
beam problem in which the beam thickness distribution is specified, B
together with certain boundary conditions, and the normsl modes are to be _ L.
determined. Here, in the Inverse problem, s mode shape ls specified and
the thickness distribution is to be obtained.
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and substituting into equstion (23) we obtain

< >dg2 - [c_hz (et - £%) - {?;] (26)

Since, for a solid beam of rectangulsr cross sectlon with thickness 7
end width b

I=2L  and u= pyby

equation (26) may be written in the form

< - -p“cz“’z) = 5—-— (27)

d§2 2Ey

Similarly, the boundary conditions (24) reduce to

1(0) = n(e) =0 (28)
Assuming a solution of the form
1 = bo + bat + bt (29)

gubstituting into equations (27) and (28), and solving for the coeffi-
cients bg, by, and by, we find that

a0 _ 1
ho 5
bo=o
by = cw. fu/5E;

o'
N
i
1
e
a
\J
=
fr}

or that

1 = w\pe/5EL (ct - &%) (30)
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Upon substitution of the maximum thickness T, the thickness distribution
may also be writlten as -

2 (et - £3) _ (31)

From equations (30) and (31), it follows that the frequency of the assumed
mode shape (eq. (25)) must be -

- &@m (32)

It can be shown further, by applying the Stodola ilteratlon method (see
ref. 5 : p. 313) that the normsl bending mode given by egquation (25)

with EQ = % ig the fundamental mode. Thus, We have shown that a solid
0

airfoil with a parabolic thickness dilstribution has, for its fundamental

chordwise bending mode, one of the assumed gquadratic functions.

Aversge Power Required to Sustain the
Quadratic Camber Oscillation

For the particular case of the harmonlcally oscillating parabolic
arc (see sketeh (e)) we have

h(t) = hy sin wt
. (33)
- £ _%
c(g)--uﬁc—zwc 5
The indicisl loading coefficient 2 A
Py, corresponding to a downwash sinwt
varistion c R
8 L
Wu <= VOC'(ﬁ) = Vo'{i' <€.§§> + <E>:|; ‘ E
hy 1 >

mey be written as o a ::;""”—__——5\\\\\\\\

Py = - 8X° P, + h%‘l Py  (3%)

Sketeh (c)
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Similerly, the indicial loading coefficient Pj, corresponding to a down-
wash distribution wy = L(E) = -4(E2/c®) + h(g7c) - (ao/ho), becomes

Pp = -WPo + 4Py - %% Po (35)

Substituting equations (33)-(35) into equation (15), comparing the terms
obtained with equation (6) end using recurrence relstlon (8), we obtaln

= 1.6 (- % CO,O + Cl,o - % C3,0> + "[' % (CO,O - Ecl,o) (36)

A‘E = 16 <% Ci,0 - % 02,0 + 34’0) + h% (— 201’0 + 2(:2,0) + (%) led
(37)

Substltuting the wvalues of m,o from the Appendix, we obtain Ah and
Ap, as functions of Mach numbe? M and nondimensional time to; Tthese
functions are presented in equations (A7) and (A8) of the Appendix and
are plotted in figure 1 against ¢, the chord lengths traveled, for sev-
eral Mach numbers and two values of ag/hg.

The mean power coefficlent Ay 1s obtained by substituting the
expressions for Ay and Ay from the Appendix into equations %22) and
(23) ana integrating. The method of integration 1s very briefly outlined
in the Appendix and the final results for the integrals appearing in
equation (22) are given in equations (A9) and {A10) of the Appendix.

The functions Fey,Fc,,0s5,0s,,0s, Which occur in equations (A9) and

(A10) are plotted in figure 2 against ®© for several Mach numbers. The
mean power coefficient Ao, as a function of ®, is presented in figure 3
for several Mach numbers and two values of ao/hg. It will be noted from
figure 3 that regions of instability (Ao < O) exist at the lower super-
sonic Mach numbers.

Whenever regions of both stability and lnstability exist, it is
usually convenient to delineaste these regions by stabllity boundarles
which separate the two regions. To this end we note that Ay may be
written in the form
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+ Feo(M,B) + GSO(M,m)] +

Ag = 32
15 M2 - 1
<ho> [ ; JM_Z_E + Fe,(M,0) + Ggl(M,E)):] +

<§§>2 : + Gg(M,B) (38)
ho JME -1 2

that is, a quadratic function of the parameter ag/he which determines
the location of the fixed points of the osecillastion. Thus, for given M
and ©, at most two roots exist for Ap = O, For the limiting casse of low
frequency, a simple expression may be obtained for the values of ao/ho
corresponding to the stability boundary; this solution is

ac) _ __ 1 M2 - 3 /-hM4+12M2-3>
<ho>‘M2-1< R AT (39)

The stability boundaries for the harmonically oscillating parabolic esrc

are presented in figure 4 with ao/ho plotted against & for three Mach

numbers at which the boundaries exist. These boundaries are presented in
g different form, obtained by cross-plotting the curves of figure 4, in
figure 5 with ag/hg plotted against Mach number for several velues of
the reduced frequency k. -

It will be noted that the motion is always stable for Mach numbers
greater_than 1.65 regardless of the location of the nodasl points and of
the frequency of oscillation. In addition, the stability boundaries also
disappesr for all values of Mach number and ao/ho vhen k 1s greater
than 0.65. These limits on Mach number and frequency, when applied to a
solid steel airfoll with guadratic thickness distribution and with the
agsumption that the mode shape is not affected by the air forces, show
that the motion can be unsteble only if the thickness ratio is less than
1.5 percent. It should be noted that this limit on thlckness ratio is
valid aonly to cases where a one-mode anslysis applies. It has been found
(ref. 2) that a two-mode approximstion ylelds another stabllity boundary
which is associated with the coalescing of the frequencies of the two
modes when the ratlo of serodynamic to elastic forces becomes large. In
such cases, a more complete snalysls would be required.
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CONCLUSIONS

A recurrence relation for the generallzed force coefficients for
indicially cambered two-dimensionsl airfoils in s supersonic flow has
been determined theoretically from the response of an indicially plunged
alrfoil. The rate of energy input required to sustain s genersl time-
dependent chordwise deformation has been obtained in terms of these indi-
cilal functions. The particular case of a parabolic chordwise bending
mode was considered in detall, and sgtability boundaries were obtained
which show that this mode is unstable only for Mach numbers less than
1.65 and reduced frequencies less than 0.65. In addition, it has been
shown that a beam with parabolic thicknese distribution has a quadratic
fundemental chordwise bending mode in wvacuo.

Amesg Aeronsutical Laborstory
National Advisory Commlttee for Aeronsutics
Moffett Field, Callf,, Oct. 11, 195k
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APPENDIX
GENERALIZED INDICTAL FORCE COEFFICIENTS

The generalized indiciasl force coefficients for a plunging two-
dimensional airfoil traveling at supersonic speeds may be obtained by
integrating equastion (6) for n = O., The results of the integration are
given in the following expressions. . _

<i <t
O=to=§31
4
Co,0 = = 3 (Ala)
2
2 .t
Cl,o - ﬁ + -_l%- (AE&)
3
t
2,0 = - 5 + T2 (A3e)
1 3 3M 4
= -2 {2+ 2}t Alg
5
Csy0 = % ¥ % <% + " ) to (a52)
Cm.o = - il - hto f cos u(M - cos u) du (A68)
’ (m+ )M 7lm+ LM Jo -
1 <y < 1. _
Nel- 0= F-1
b1 Mbto - 1 1. 2
Co,0 = = = [:ﬁ arccos 10 + N arccos(t, + M - t M%) +
% Jto2 - (1 - Mto)z:’ (Alb)
_ 211 to® Mtg - 1 1 2
Ci,o = - = [M( 2 ) erceos ==+ T = arccos(to + M - toM ). +

= +’.°gf Jto2 - (1 - Mto)g:l | (A2p)



NACA TN 3386 19

2,0 = - %{(ﬁ% > arccos Mto -1, 1{21 = arccos (tg + M - tM°) +
1 2tg | £ 2 T 2 ( 2
ﬁ”m*?ﬁ*? o2 | Jto2 - (1 - M) (43p)
c -2 ¥ - arccos Seo = L
3 O T m O S tO
M%I grccos (to + M - toMa) +
oG @) (@9 ] -G
(Alw)
o =" {[ (—g— + 2M2> tos_] arccos &Qt—o:-—l +
arccos(‘bo + M - tM®) + ['5%4' + %9 +
M, L 2 8 8
(EJ’ﬁ)tO *\30 * 5 to® <15M+ o *
M—53> to"'} Jeo? - (1 - M’Go)a} (45b)
L 1 Mto - 1 1 w2
em,0 = - (m_-i-—i)—'n' [}7{ arccos tg + — arccos(to + M - tMZ) +
Mto - 2
m+l parceos —-L>
tOM f < Yo Jeos u(M - cos u)mdu] (A6D)
o
1
to ST
I
o0 T TETT ae)
C1,0 = - —me (A2c)
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L
02’0 = =- 3 T—M ) (A3C)
a0 = - —mm—— (Abe)
RN T . ¢
| ca,0 = - — (a5¢)
? 5VM2 - 1
cm,o = & (A6c)

-(m+l)'JM2-l

Functions Associsted With Quadratic Camber Deformations

The indiclal coefficients Ap and Ap, for the quadratic camber
deformation, may be obtained by substituting equations (Al) through (A5)
into equations (36) and (37) to obtain:

0 = tg S g
- _
Ay = 16 [iﬁ— - <—&-+M) to4:| +;2;<- -Biﬁf) (a7a)
2 to2  2to° 1 M= 5
Aﬁ=l6li-l5M+3(;'i- 30 +<'§+T5— to]+
16 8to2 | 32t0° A AN
(%,3) 16 oot a2 +<’]’55) - % (Be)
1 < < 1
R T

2 2
A %[;6%_ - 16 (% 1) 1" v (- o J arccos M= 1

1%{-3% [6 - 10Mto + (M2 + 3)to2 + (13M + @'Is)tos:l +

<%’é: [’§+8’°9J} Jto® - (1 - Mto)® (4T0)
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} () [3%- %+

1 2 t 2t0°
SIS A B SRICEE

Af = = *
=57+ @) (o) w5
4[5 H ) >t
%{% [ - 3 - 31t + @3 + m) to% - (29 + EM)tc® -
(1?6+83M+ 6M3>t04}+<%%> l:%+-h%z9- <%+3§g>to2] +
Glﬂl)z <. %)} Jtoo - (1 - Mto)® (A8b)
o
to 2 g
Ap =0 (ATe)
wemmES® @] e

The integrals appearing in equation (22) for the mean power coeffi-
cient may be evaluated by integrating by psrts, meking the transformation

, and reducing the many integrals to the Poisson

. S
L VCRNE T
integral representation of the Bessel functions (ref. 6)

<‘> (coa zu)(1l - uz)n_% du
NT T <% + )

By means of successive applicatlion of the Bessel function recurrence

Jn(z) =

relation
2n
Jn-l(z) + Jn+l(z) =z Jn(z)
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the sine and cosine integrals in equation (22) cen be reduced , after
conglderable manipulstion, to the forma

M
fM-lF(q))cOS oo dp = - I:FCO(M,G')) + <%) Fcl(M,c'u):I (49)

e}

where

G . EM4(IMZ + 1) ] .
M2 - 1)%/3(2)2  (u2 - 1)%/3(a)*

Jo<%> cos &')l:_ (}‘16244;( 1'11-'5)29;2(1(_3)4 :| + Jg <§>sin G[(Ma : 11)03/32( a_)) 3:] +

Jl@ m[(M&;ds_<f§i - (";’)3] . Jl@m m[ (ﬁiﬁ(?; ;2(134]}

FoolM,0) = 16 {r0y01,3)|

- M2 0l - M2
Fcl(M:"-") = 16 fOR(I\'&"H))[(M2 - ]_)Msjﬁ(m)a:l *do GTD cos ® l:(M2 - 1)5/2(5)2] "

J1 <§> sin ® I:(Mz - 335/2(5)2J

"/;M-lG(Cp)Sin Sy ap = - % I:GSQ(M,E)) + <§> Gg, (M,8) + (%)2@2(34,6))]
(410)



where E

=

_ 1 - M2 12M4+16MB-] -[ﬂﬁ-l =)

Gsn(M’w) = 32 '{ R~ fOD(M"“’)I" N YT o/2r-al T fOT(M’w) - " 2 - .
C L I5NM" - 1 R L - 1)77=()S (M - L) ey

E

-

i
9gtt

1 ) 1 P 1o + 16°
3(M2 - 1)5/2(5)] +Jo (“D coe B [15 NME - 1 ¥ 15(M2 - 1)5/2(p)2 ¥ (M2 - 1)9/2(5)4]

n L 1M2(2M2 + 8) @ . M ]
To @ oln B [15(M2 T e7Em) T 15(ME - 1)/ (m)e ] th @ cos & [ 15(M2 - 1)3/2(p)

[ 1 o oM(M2 - 2)  hMS(eME + B3WP + ‘6)]‘
MR - 1 15(M2 - 1)5/2(@)2  15(M2 - 1)9/23(g)+ JL

gln @

_ [ 1 we ] r 1 T
Goa(M,5) = 36 5 g + Tonl¥s “’)L(m2 ) e e e

)Y IS, VO Y
JO (ﬁ cos w |- ~  far - = {2 1\5/2/ \2 + Jo sin m - we )3/2{3 +

2 = af 1
N L JNDM = L \ne o= XY 2\ T L

El

@ i M {8 3 1 o WS s o) ]
T (ﬁ R RN 3/25] o (M) o [ MNME -1 3(M2 - 1)%/3(a)> }

(,8) < b4 L+ 2, (4 ;F_____,_A_H!lm” s AN\ O |
S U e |+ 30(@) com s =) + () o= 8 (s /f

€2
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In the 1limit as fregquency goes to zero these integrals become

M

S |
- 32 - (20 8
R fo Flwleos 2 & = e nyer <h°> |:3(M‘2 - 1)3/2] ()

and

M
M-z

1lim kf G(p)sin 2kp dp| = O (a12)
k-0 o}
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