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TECHNICAL NWE 3387

USE OF ‘NONLINFAR31CIESTO CCNPENSATE FOR THE EFFECTS OF

A RATWIJMITED SERVO ON TBE RESPONSE OF AN.

AUTCAUITICALIYCONTROLLED AZRCRAFT

By Stanley F. Schmidt and William C. Triplett

suMMARY

Hydraulic servos of the type normally used in airplane+autopi.lot
ccaibinationsare nonlinear over the greater portion of their operating
ranges. One of the most important nonlinesrities is the limit on output
rate which often results h oscillatory or unstable airpkne responses
to large input commands and sluggish responses to small error signals.

*’ These undesirable effects can generally be compensated for by introducing
other nonlinear elements into the systern.

“ This report describes a simple method for determining the nonlinear
gains required to give optimum responses for step inputs of all magni-
tudes. This method is based on the fact that the control surface moves
at its maximum rate during practically the entire transient maneuver and
thus the servo system can be considered as a stiple “~ff” type CON
troller. The method requtres a knowledge of the tremsfer function that
describes the airplane response but ignores the dynamics of the servo
and requires only simple hand

The present trend toward

Calcuktions .

INTRODUCTION

the elimination of the human pilot as the
W- c~ntroller h modm W@+peed aticraft has led to severe require-—
ments for autopilot performance. In many applications the autopilot must
be capable of controlling the aircraft thrdughvioknt maneuvers and at
the ssme ttie must give rapid and precise response to small error signals.

Many of the problems encountered in automatic cmntrol of aircraft
do not appear in other applications of servomechanisms. For exsmplej the
airplane has a complicated dynamic response that vsries over its opera%
ing rsmge. Furthermore, the autopilot is required to develop large

.’ forces or moments and still meet strict requirements with reg=d to size
and weight. For this reason hydraulic servos sre generally employed,
and oil flow to the cylinder is restricted not only by the limits on size.
and weight
fore, is a

but also by structural considerations. The net result, there-
servo with limited output rate.
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Thus, even though its over-all response ch==cteristics are extremely n _
complex, the autopilot for many purpmes can be considered as a simple
linear system with a limit on the rate of control surface deflection. It v
is this limit on the control-surface rate that is often a major source of
difficulty in designing a system that is stable for large ‘inputsand suf-
ficiently responsive to very still :ommands. Adjusting the system parame
ters to give a stable response for large inp@s usually results in slug-
gish responses to small inputs.

One way to compensate for such undesirable effects is to design
system parameters as functions of error. Considerable effort has been
expended on this general problem of developing nonlinear elements to
improve the performance of linear as well as nonlinear servomechanisms.
References 1 and 2 ere typical exsmples in which phase plane methods of

—

analysis are used.
.

In this report, however, a different approach was
necessary in considering the more complex case that is characteristic of”
an airplane-autopilot cmnbination. A method is developed for’designing
appropriate nonlinear functions of error into a ratelimited system to
give large gain levels for small errors and low gains for large errors so
that satisfactory responses maybe obtained with step inputs of any mag-
nitude. The method is illustrated by two examples which consider hypo- “4
thetical airplane-autopilot ccmibinationswith control–surface rate
limiting. ‘

.

NOTATION

P

t

pitch angle, deg

pitch-angle input, deg

roll angle, deg

roll-angle input, deg

error, deg

Laplace operator

timej sec

control+urface switching time, sec

servo error, volts

aileron angle, deg

elevator angle, deg

gain constants, volts/deg

“*

.
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+ K~,K@ gain constamts, volts/deg/sec

K~(e) nonlinear gain function of c, volts/deg
.

‘4
K*E) nonlinesr gain function of c, volts~deg~sec

A dot over symbol indicates derivative with respect to time.

EFFECTS OF SERVO RATE LIMITING ON TYPICAL
AIRPLANE AUTOPII#I!SYSTEM

In figure 1 is shown a block diagram of the roll-control channel of
a typical airplane-autopilot combination. The system consists of a roll–
rate feedback for stabilization and a roll–angle signal as an attitude
reference. The servo is assumed to have the opemloop transfer function

68 50
—=’ —
Ve p

●l

With aileron position feedback, the closed–loop servo response is
.

1
1 + o.02p

This simplified representation of the servo
its response is so much faster than that of
example the airplane roll-angle response is

3

is usually justified because
the airplane. For this
defined as

9 = 8.1
& p(l + o.3p)

Cross-oupling terms have been ignored and the airplane is assumed to
have a single degree of freedm in roll. The constants were chosen as
typical of a high-peed airplane.

By means of an electronic simulator the gain constants Ke and
K& were adjusted to give the desired response to a step input (a rea—
s&nabQ
line of

.

.

fast response with little overshoot) such as shown by the solid
figure 2. Values of the gain constants for this condition are
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& =3.33 -

and
“

‘b = 0.417

Also shown for comparison is the more sluggish response obtained when
Kc is reduced to 1.67.

When an aileron rate limit of 50° per second is introduced, the
solid line of figure 2 is, strictly speeking, descriptive only of respob
ses to inputs of no greater than 0.30 since the maximum rate is attained
when ve is lvdt (fig. 1). For larger cowands the system is nom
linee.ras indicated in figure 3. Here aileron- and roll+ngle responses
for step inputs of 2°, 5°, 7.5°, 10°, and l~” me plotted. For an input
of 2° the aileron rate is limited for only a short the, and the response
differs very little from that shown in figure 2. For larger inputs, how-
ever, the response becomes oscillatory and finally unstable for a step
command of 15°; in each case the control surface moves at its maximum a“
rate (*500 per see) until the roll angle has essentially stabilized at
the comand input. By reducing the gain Ke the stability for large
Inputs could be improvedj but then the response to small inputs wouldbe .

sluggish, as indicated in figure 2.

To generalize on the control motions shown ’infigure 3, it canbe
stated that to correct an initial error in the shortest time, the control
surface should move at its maximum rate, reverse direction at precisely
the right time, ~d travel at its maximum rate in the oppmite direction.
The fact that a response is sluggish indicates that the control surface
has changecidirection too soon; an oscillatory response means that the “.
surface has traveled too far before changing direction. Thus, with a
fixed control=surfacerate there is an opthm?m reversal point, or ‘~switck
ing the” ts for each input magnitude.

During practically the entire transient response (~1> 2.00), the
operation of the s~stem is essentially the seineas an ~*omff” or “bane
bang” type of controller commanding a fixed plus-orainus control-surface
rate. The only variable quantity is the time at which the rate changes
sign.

It is apparent from figwe 3 that the proper control-surfacemotion
can be attained for step inputs of different magnitudes only if the si~
nal to the servo is modified in some fashion. The method described in
the following section makes use of this fact in establishing gain level
as a suitable nonlinear function of error. k-—

.
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DESCRIPTION OF METHOD

The proposed technique for determining the proper nonlinesx gains
for compensating the effects of rate limiting can best be describedby
use of illustrative examples. The first example considers the system of
figure 1, while the second exsmple shows how the same basic method can
be applied to a more complicated situation.

Example 1

The first step is to determine the optimxn switching time, ts, as
a function of cpi. This is done by calculating the airplane roll respo~
ses to a number of constant-rate (50° per see) triangular inputs as shown
in figure 4. These maybe calculated readily by evaluating the response
to a constant-rate aileron input and using the principle of superposition.
Curve@, for exsmple, shows that if the aileron moves at its msximum
rate for 0.35 second and then changes direction, the airplane will attain
a maximum roll angle of 39.4° in approximately 0.92 second. Thus, to
obtain the quickest response to a step input command of 39.4° without
overshoot, the system gain should be adjusted so that the aileron will
reverse direction at 0.35 second.

The values of t~ corresponding to the vsrious peak values of q
from figure 4 are plotted as the solid line in figure 5. This curve is
labeled “optimum” because it defines the response requiring the least
time to reach and remain at zero error. Furthermore, it marks the bound–
ary between an oscillatory and a n~ershoot response. For purposes of
comparison, switching times indicated by figure 3 (for K= of 3.33) are
also shown. As expected, the switching times sre greater than optimum
over most of the rsmge, indicating an oscillatory system. When ?& is
reduced to 1.67, figure ~ indicates the system to be sluggish for inputs
less than 20° but still oscillatory for larger commands.

After determining the desired switching time as a function of input
magnitude, the next step is to find a nonlinear function that will cause
the aileron to reverse direction at the proper time. While there are
several possible choices, the most obvious is the replacement of ~
with a nonlinear function of error. At the instant the aileron reverses
its direction of motion the signal Ve to the servo has just reached
zero. Thus at time ta (from fig. 1) with K~= 0.417

Ve = K=c -o.417@–8a ‘o (1)

.,
For a given ~i, t is taken from figure 5; & is calculated as shown
in figure 6; and ~a 5S equal to ~0 ts. As outlined in tabl& I the

. desired value of K=s for each ~ is obtained directly from equation
(1). The error angle e at ts is simply qi - q.
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In figure 7, IQ, designated as K=(c), is plotted as a function of ● —
error and is the gain level necesssry for an optimum response.

—
At ZerO

error the curve indicates an infinite gain;
—

however, this value is phys-
ically impractical and.has no significance because for small errors the , : -
system operates primarily in its linear range. Thus with K@ fixed at
0.417, Ke should be restricted to a value of 3.33 as shown by the dot-
ted line so that in its linear rsnge the system will have the response
characterized by figure 2.

By use of an electronic analog computer the response of the system
with this nonlinear gain function was determined and is shown in figure
8. It can be seen that the system has a rapid and stable response for
inputs as large as 600. It should also be noted that for the larger
inputs, two reversal points occur before the system remains within its
linear range. While only the first point was considered in the calc~
lation of the nonlinear function, the analog computer results show that
the succeeding reversal points (which occur whenever equation (1) is
satisfied) are properly timed for a near optimum response.

The same improvement in system response maybe obtained by making
the damping parameter K? rather than Kc the nonlinear function of
error. The calculations are similar to those for the previous case and

:*.-

are also shown in table I. In this case K= has a fixed value of 3.33,
and at time ts .

The term K@ is plotted as a nonlinear function of e in figure.9 which
indicates an infinitely large negative gain at zero error. As in figure
7 this value is not significant and for small errors K“(e) may have the
value of 0.417 shown by the dotted line. zThe correspon ing system respon-
ses shown in figure 10 are almost identical to those shown in figure 8.
Thus, either Kc or “

?
may be replaced by an appropriate nonlinear

function of error to ob ah satisfactory airplane responses to a wide
range of step ccmmmnd inputs.

Example 2

This example shows how the basic method may be applied to the more
complicated system shown in figure 11 which is the block diagrsm of the
pitch channel of a typical airplan~utopilot combination. ‘

The transfer function of the airplane contains an exceptionally
large lead term in the numerator (1 + 2.2p), and hence it was necessary
to include-the capensating network

.

w
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s’

.

1.2
1 +1+2.2-P

in the system in order to o%tain a satisfactory response even for the
linear case with no rate limiting. The system parameters were adjusted
to give the response shown in figure 12. In this case

‘6 = 1.3

With an elevator rate ltiit of 50° per second the response became
.

unstable for input comands greater than 2.50 as shown in figure 13.

The calculations involved in expressing K6 as an optimum nonli~
ear function of error are the same as described in Example 1, except
that at time ts, when the signal to the servo is zero, the following
condition applies

or

(2)

For each given 13i,the quantities e, ~, e, and Se are calculated at
the proper t~ as illustrated in Exsmple 1 (figs. 4 to 6 and table I);
Equation (2) may then be written as

Kee + VI = 1.3; + 8e (3)

where

1.!2K.@
v~’— 1 + 2.2p

(4)

To solve equation (2) for Kee it is first necesssxy to evaluate vl at
the time ts corresponding to each given value of ei. This may be done
by writing equation (4) in the form
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The solution of this
3) with zero initial
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differential equation (as shown for example in ref.
conditions is

ts %3——

f
vl(ta) == e 2“2 o e+ &e(t)dt (5)

However, at this point in the calculations & is an unknown function
of error and an exact solution is impossible. To obtain a first approx-
imation of vl(t~) it may be assumed that K~ remains constant until
time t~. Thus

●

(6)

Here e(t) =f3i -e(t) where e(t) is the lmown response to a constan~
rate elevator input. This integral can be evaluated convenientlyby
meam of graphical or numerical integration to give vl(ts) ex~essed in
terms of Ke. This approximate value-is then substituted into equation
(3) to giVe a close if not exact value of Ke for each ei. “

More precise results couldbe obtained by repeating the solution of
equation (5) with actual values of KG obtained in the first trial.
While there maybe cases where more than one iteration is required, it
was found in the present example that V1 was small compared to KGC
and that a second solution was not necessary. The quantity Kc as a
nonlinear function of error is plotted in figure 14 and the corresponding
system responses are shown in figure 15. Comparison with figure 13 shows
a marked improvement in the performance of the system.

DISCUSSION

—

The method illustrated in this report was designed to give an opti–
mum response with zero overshoot. By neglecting the lag of the servo it
was assumed that the control surface respondedfitantaeousl.y at a fixed
rate when the servo error signal changed sign. ‘However, when the systems
were simulated on the analog ccunputer,a representative value of servo
lag was ficluded. The small overshoots apparent in figures 8, 10, and
15 are the results of this lag and also of possible inaccuracies in the
analog simulation. In any event, the results indicate that the simpli–
fied method is valid when considering servos with reasonably small time
constants.
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In some cases it may be desirable to puxposely design
have a given overshoot for all input magnitudes. The same
Is applicable; and in Example 1, if a lo-percent overshoot

9

a system to
basiC method
is desired,

the abscissa scale of figure 5 is merely multiplied by 0.90. With refer-
ence to curve~of figure 4, a switching the of 0.35 second would now
correspond to an input comnand of O.% of 39.4° or 35.5°, but the response
would actually reach a peak value of 39.40.

It is also possible to expand the basic method to include position
limits in addition to rate limits. The procedure is the same except that
the triangular inputs, such as shown in figure 4, are cut off at the
value corresponding to the position limit. The switching time is still
the point at which the control~urface rate becomes negative. For the
two examples in this report it was found that the addition of position
limits would have a stabilizing influence.

In general, the etfects of limiting on a particular system canbe
shown clearly by plots similar to figure 5. These canbe used to good
advantage to obtain qualitative and even rough quantitative measures of
system performance without resorting to the calculation of ccmplete time
responses. After determining the optimum curve for a particular system,
it is a simple matter to plot corresponding curves for various ftied
values of system gain. As long as the switching time remains below the
optimum curve, the step response has no overshoot (if none exists in the
linesr system withno limiting). If ts is greater than optimum for a
particular input, the response is oscillatory or even unstable, necessitat-
ing a decrease in system gain (Ke) or an increase in feedback gain (K~).

In this regard it is interesting to note that figure 9 indicates
that with the nonlinear (rat+limited) system the damping parameter (~)
must increase with increasing error in order to obtain an optimum
response. This is in direct contrast to a common practice for improving
the response of linear second-order systems (ref. 1) where it is neces–
sexy for the dsmping to decrease with increasing error, thus allowing
fast response to large errors while effectively preventing overshoot.

In Example 1, the rolllng accelerati~ t is proportional ~ the
steady state to the control+urface rate ba. ThUS, a Unlit on Ea
effectively limits the second derivative of the output q, and may be
termed an output-acceleration limit. Similarly, a ~a position limit
would restrict g and could be specified as an output.+elocity limit.
In this sense an acceleration limit is generally destabilizing, but for
the type of systems considered the addition of a velocity limit tends to
tiprove the stability.
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As an extension to the present study a more complete generalization
of the effects of acceleration and velocity limits would be of interest.
This broader investigation should consider systems of vsz’yingdegrees of
complexity and also the effects of external disturbances other than pure
step commands.

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Moffett Field, Calif., Oct. 15, 1954.
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Figure l.- Block diagram of rolLccmtrol sydxm used.in Example 1.
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