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PRACTICAL APPLICATION

Milton D. Vau Dyke

SUMMARY

Several recent advances in plane subsonic flow theory are combined
into a unified second-order theory for airfoils of arbitrary shape. The
solution.is reached in three steps: The incompressible result is found
by integration, it is converted into the corresponding subsonic com-
pressible result by means of the second-order compressibility rule, and
it is rendered uniformly valid near stagnation points by further simple
rules. Solutions for a number of airfoils are given and are compared
with the results of other theories and of experiment. A straightforward
computing scheme is outlined for calculating the pressures on any airfoil
at any angle of attack.

INTRODUCTION

Thin-airfoil theory provides a useful first approximation to the
incompressible flow past two-dimensional airfoils, and the results can

be immediately extended to subsonic compressible flow by the Prandtl-
Glauert rule. It is natural to attempt to improve this simple theory by
successive approximations so as to increase its accuracy for thicker air-
foils and higher subsonic Mach numbers. There results a series expansion
of the flow quantities in powers (supplemented in some cases by logaritlxus)
of the airfoil thickness ratio, camber ratio, and angle of attack.

For incompressible flow, the higher-order theory has been studied by
various writers, in particular Riegels and Wittich (refs. 1 and 2) and
Keune (ref. 3). A less straightforward series of approximations was
developed by Goldstein (ref. 4). Perhaps the most concise exposition of
higher-order incompressible thin-airfoil
(ref. 5).

For subsonic compressible flow, the
undertaken by G&tler (ref. 6) . followed. .

theory is given by Lighthill

corresponding analysis was first
by Hantzsche and Wendt (refs. 7

and 8), Schmieden and Kawalki (ref. 9), Kaplan (refs. 10 and 11); and
Imai and Oyama (refs. 12 and 13).1 These investigators treated only spe.
cific simple shapes by rather laborious analysis. Later, it was discovered

ll?hesehistorical references are intended to be representative rather

than exhaustive.
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that particular integrals of the second-order iteration equation can be
expressed in terms of the first approximatiofi(refs. 14 and 15). This
permits the second-order subsonic solution for any profile to be given
in terms of integrals (refs. 15 and 16). However, the resulting solutions
are incorrect everywhere for airfoils with stagnation points, for reasons
to be discussed later.

Recently Hayes (ref. 17’),improving on a result of ~ai (ref. 18),
has given a second-order similarity rule for surface pressure that implies
a second-order extension of the l?randtl-Glauertrule (ref. 19). This
remarkable result was overlooked by earlier investigators because they
did not calculate surface pressures, but were content tith finding surface
speeds, for which the second-order compressibilityrule is more compli-
cated. These rules reduce the second-order problem of subsonic compress-
ible flow past airfoils to the corresponding incompressible problem.

—

However, the solution by successive approxtiations breaks down near
leading smd trailing edges if there are stagnation points. The result is
therefore merely a formal series expansion, which fails to converge near ‘- _
the edges. Ih first-order theory spurious singularities ariseat stagna-
tion edges, but it is known how they csn be taken into account, sfnce
they are integrable. In the second approximation, however, these singu-

U

larities are intensified, so that at round edges they are no longer inte-
grable. In any case, the calculated speeds and pressures are incorrect E’
near such edgesj and more so in the second approximation than the first.

—

Moreover, in subsonic compressible flow the second approximation may be
incorrect everywhere as a consequence of the defects in the first approx-
imation.

—

—

For round edges in incompressible flow, previous investigators have
shown how these defects can be corrected. Riegels (ref. 2) gave a simple
rule that renders the first-order thin-airfoil solution valid near the

-.

edge. Lighthill (ref. ~) gave an equivaler+trule for the second approx-
imation. Recently, corresponding rules have been developed for higher
approximations, for sharp as well as round edges, and for subsonic com-

--

pressible flow (ref. 20).

It is the aim of this paper to combine these recent advsmes into a
unified theory. There results a uniform second approximation to subsonic
flow past any profile at angle of attack, expressed in terms of integrals
that can, if necessary, be evaluated numerically. It may be noted that
the resulting solution is now generally believed to be valid only below
the critical Mach number - that is, for purely subsonic flows. Although
Orilyflow quantities at the airfoil surface are considered here in detail,
the entire flow field can be treated in the ssme way.

For numerical computation, the method initiatedby Germain (ref. 22), W)

and extended by Watson (ref. 22), Thwaites (ref. 23), and Weber (ref. 24)
appears to be the most useful. It requires a knowledge only of the air-
foil ordinates at a specified set of points. A straightforward scheme,

P

based on this method, is given for computing the second-order subsonic
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b
solution for any airfoil. The reader interested only in calculating a
specific case, without necessarily understanding the theory, can turn

Q directly to the section “PRACTICAL NLIMERZCAZCOMI?UTA!J?ION”on page 19.

TEEORY

FYom the preceding remarks it is clear that the solution is reached
in tlu?eesteps. First, the formal second-order incompressible solution
is found by intepyation. Second, this is converted into the correspond-
ing subsonic compressible solution by means of the second-order compress-
ibility rule. Third, this is modified near stagnation points by the
appropriate rules for round or sharp edges. These three steps will be
considered successively.

Formal Incompressible Solution

The expansion of the velocity components in a formal series of powers*
of the airfoil thickness ratio, camber ratio, and angle of attack has been
discussed in detail by Lighthill (ref. 5). It will suffice here to sum-

2 marize his results for the second approximation. We mainly follow his
notation except to make it more mnemonic, and to suppress his psmmeter
E characteristic of the airfoil thickness, which is only convenient in
the detailed analysis.

Accordingly, consider an airfoil of moderate thickness and camber at
a moderate engle of attack to a uniform subsonic stream (sketch (a)). It
is essential that the x axis be
chosen to pass through both the lead-
ing snd trailing edges. Let the upper
and lower surfaces of the airfoil be
described by

Y(x) = C(x) t T(x)
(1) Ai-

Y’ Sketch (a)

where C(x) describes the mesn camber line and T(x) the thickness. The
airfoil extends over the interval ASx~B, which is usually conveniently
taken to be either -15x51 or O~x~l. All symbols are defined in
Appendix A.

First-order solution.- In the first approximation of thin-airfoil
theory, the condition of tangent flow at the airfpil surface is imposed

e, on the two sides
requires that

4

of the chord line y = O rather than at the surface, and

VI

I

Y’(x)
T=

=C’(x) *T’(x) (4
y=o
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a

The corresponding horizontal velocity disturbance on the chord line, which
is required for calculating the surface pressure, consists of a term

.

associated with the airfoil thickness, and snother associated with its r

csmber and angle of attack. For the thickness
—

Ult 1

f

‘T’(E) d~
T=~ -E

Ax.

and for the csmber and angle of attack .+

(3)

.

(4)

The latter result is due to Munk (ref. 25) and the former was apparently
first given by Squire in a paper that is still not generally available.
Cauchy principal values are indicated in each integral.

.

The surface speed is then given to a first approximation by
.>

Q Ult U1c
—=l+~k~u (5) -

Second-order solution.- In the second ~pproximation, the tangency L

condition is transferred from the airfoil surface to the.chord line by
Taylor series expansion. The condition on the second-order increment in
vertical velocity is thus found to be .

—

V.QI =C’2(X)+ T’2(x)
u

y=o

where

Ult
CJX) =Tc+yT

T2(x) =~T+~C

I

(6a)
.-

(6b)

(We depart here from Lighthill’s notation ~n order to emphasize that the
functions C2 and T2 are effectively the camber and thiclmess for some .—

fictitious airfoil.) The problem is identical with that in first-order
theory except for the condition at infinity, which is readily disposed
of. Thus, corresponding to T2 is the increment in horizontal velocity

-. &J

(7) p
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and corresponding to Cz

(8)

The velocity components on the surface of the airfoil include also
terms arising from the transfer from the chord line to the surface, which
is again effected by Taylor series expansion. Hence the surface speed is
given to a second approximation by

y=l++++~ty+(c iT)(c’’*T’’)+*(i Ti )2(9)9)

Airfoil integrals.- The incompressible solution to second order (or,
indeed, to any order) is thus reduced to a succession of “airfoil inte-
grals” typified by equations (3), (k), (7),and (8). Goldstein (ref. 26)
emphasizes that in first-order theory these integrals csm be evaluated
analytically for practically every profile for which formulas have ever
been proposed. In second-order theory this appears to be true to a some-
what”lesser extent, although the labor of calculation becomes great except
for simple shapes. Often the integrals are most readily evaluated by
guessing (u - iv) as a function of the complex variable (x + iy) that has
the required behavior on the chord line. A short table of airfoil inte-
grals useful for finding second-order solutions is given in
Others can be found in references 26 and 27.

For complicated profiles, exact analytic evaluation of
may be impossible or excessively laborious. Then numerical
may be resorted to, or the profile can be approximated by a

Appendix B.

the integrals
inte~ation
simpler shape

that can be treated analytically. The most useful numerical procedure is
apparently that originated by Gerpain and simplified and extended by
Watsonj Thwaites, and Weber. In this method the airfoil ordinates are
approximated by the trigonometric polynomial

N-I

Y=Co+ I (Cp20S W + trSh rt?)+

ml
A

--x

CNCOS Ne
---------

where 6 is the angle indicated in
sketch (b). The coefficients Cr

‘for ucamber) and tr (for thichess) are
chosen to give the actual ordin~tes at the
2N points for which ,g= mfi/N. In this Sketch (b)
way it is found that the airfoil integrals

can be expressed approximately as sums of
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the airfoil ordinates at”certain pivotal points multiplied by standard
influence-coefficients. The details of this method, as adapted to thin-
airfoil theory, sre given in Appendix C.

E
The numerical computing pro- ~ , J

cedure is outlined.in the last section of tQis paper.
.= ..

...

Second-Order CompressibilityRule

The secQnd-order counterpart of the Pr@idtl-Glauert compressibility
rule is implicit.in an extension o.ftransonic similitude that was initi-
ated by Imai (ref. 18) and caxried to completion by Hayes (ref’.17).
Imai soughtto improve the transonic similarity rule by retaining in its
derivation all terms proportional to the square of the airfoil thiclmess
except one appearing in the condition of taggent flow at the surface.
The correlation of experimental data was uo~ appreciably improved, which
led him to suggest that the neglected second-power term should also be
included. This probably cannot be done. However, in attempting merely
to reproduce Imai’s result as smnownced before publication, Hayes actually
included that term in a second-order rule @r surface pressure.

Hayes’ result is that for two-dimensicmal subsonic or supersonic flow
the ratio of the second-order to first-order pressure term on the surface
is proportional to the parsmeter

[(II -:21)3/2 7: 1~4 : 2(1 -Ma) 1
(11)

where T is some measure of the thickness, camber, or angle of attack.
Now at subsonic speeds the first-order pressure term is related to its
value in incompressible flow by the Pradtl-Glauert rule. Combining
these two results yields the second-order compressibility rule (ref. 19).

In incompressible flow the secgnd-order surface-pressure coefficient
has the form

Cpo(x) = cpl(x)+ACp2(X) (12a)

where the first-order term Cpl contains linear terms in thickness, cem-
ber, and sngle of attack, end the second-order increment ACP2 contatis
their squares and products. Then for the ssme airfoil in subsonic com-
pressible flow, according to the compressibilityrule, the pressure coef-
ficient is

-.

..

.
n-

e

.—

.-.

—

.

.C% =KICp= + K2(~p2) (1$3))
.

where
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\ (12C)

K, = (7 + I)M’+ 4~2
4f14

J
It has been pointed out that the formal thin-airfoil series requires

modification near stagnation edges. The modification must in general be
performed on the speed rather than the pressure. Hence the compressibil-
ity rule for surface speed is required. It is readily found from the
above rule for pressure by considering the small-disturbance series form
of Bernoulli!s equation for compressible flow. Thus it is found that if
the surface speed ratio in incompressible flow is

then at subsonic speeds

qM
l.+KIA#+K*&+KZ -1

()

&=—=
u 2U 2 u

with

(lsa)

(lsb)

K= -1 . M= (7 + l)M= + 4~2
2 8j34

This rule is seen to lack the fundamental simplicity
sure.

Modification for Stagnation Edges

(13C)

of the rule for pres-

Thin-airfoil theory is known to fail near leading and trailing edges
if there is a stagnation point. The flow is actually brought to rest, but
thin-airfoil theory predicts infinite speeds instead. If r is the dis-
tance from the edge, the velocity contains powers of r-llz for a round
edge and for any leading edge with.flow around it (associated with angle
of attack), and powers of in r for a sharp edge. First-order theory
contains first powers of these singularities, second-order theory their
squsres, and so on, so that the formal thin-airfoil series ‘divergesin
some neighbwhood of the edge. Not only are the velocities aud pressure
incorrect near stagnation edges, but nonintegrable singularities appear
in the higher-order expressions for aerodynamic forces.
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False subsonic.solutions.- Even
in subsonic compressible flow, where
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more serious difficulties may arise
the infection spreads in some cases

so that the fo~al second-order solution is incorrec~ not only near the
edges but over the entire airfoil surface. Thus, using the particular
integral of reference 14, Harder anciKlunker gave an expression for the
second-order solution for any symmetric airfoil at zero angle of attack
(ref. 16). However, they noted that their expression does not apply to
round-edged airfoils, for which it contains divergent integrals. A more
deceptive defect appears if their.expressionis applied to a sharp-edged
airfoil such as a biconvex section; then the predicted surface speeds are
finite (except near the edges) but incomect everywhere by a term propor-
tional to M2. This defect arises from the”fact that near the edges the
first-order source~distributionis not approximately the airfoil slope,
as is assumed in thin-airfoil theory. The second-order solution involves

-.

-.

,___

the derivative of the source stren~h which, as indicated in sketch (c),

M*’’:uw
Thin-uirfoil

Aciuai values approximation

Sketch (c)

has sha&p peaks that are missed by
thin-airfoil theory. It is enough to
take account of this shortcoming in
even the crudest fashion. Thus, if
the region of integration is extended
an infinitesimal distauce beyond the “ ‘J_-
edges to include the pulses (Dirac
delta functions) of the thin-airfoil
approximation, Harder and Klunker’s “v
expression yields a solution that is
correct to second order except in the –
vicinity of the edges.

.- —

Keune has discovered am alterna-
tive particulsx integral containing
the stream function rather than the

velocity potential, and so has obtained another expression for the second-
order solution (ref. 15). Because the tangency condition is one de@ee .-

smoother for the stream function than the~locity potentials his @q?res-
sion yields the correct result (except ne& stagnation edges) for sharp-
edged shapes. It fails, however, for round-edged shapes, so that his .-

solution for subsonic flow past an ellipse is incorrect everywhere.

Both these expressions can be manipulated by psrtial integration so “–- -“
as to be correct except near stagnation e~es. However, the result is

—

simply that obtained by applying the second-order compressibilityrule to
the expressions for second-order incompressible flow. Hence these more
serious difficulties sre of DO further cofiiernhe”re. They do serve, how-
ever, to warn of the danger of false second-order solutions in more com-
plicated problems. T..--.

Modification for incompressible flow.- For round edges in incompress-
V

ible flow, Riegels (ref. 2) and Lighthill(ref. 5) have given simple rules
that render the formal thin-airfoil solution uniformly valid. The result G

—
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k

is at least a
Riegels foundi

first

9

approximation to the flow disturbances nesr the edge.
a rule ~& first-order theory by considering the conform~l

mapping, and Lighthill found a rule for second-order theory by considering
a contraction of abscissas that shifts the thin-airfoil solution by half
the radius of the edge.

In reference 20 corresponding rules have been developed for higher
approximations, shsrp edges, and subsonic compressible flows. The tech-
nique used there is to consider the exact solution for some simple shape
that approximates the airfoil In the vicinity of its edge. The ratio of
the exact solution for the simple shape to its formal thin-airfoil series
expansion serves as a multiplicative factor that corrects the series
expansion for the actual airfoil. The result should then be simplified
insofar as possible. The relevant rules will be summarized here; the
details sre given in reference 20.

A round-nosed airfoil can be closely approximated by a parabola whose
axis coincides with the initial camber line (sketch (d)). The exact solu-
tion for incompressible flow past the
parabola (resolved into stresming and
circulatory components) leads to the
following rule that converts the formal
second-order solution “~ for surface
speed into a uniformly valid approxima- A
tion

g=

Here ~ is the abscissa measured from
the edge into the airfoil, p is the edge
radius, A is the initial angle of csm- ~
her, and the *..signs refer, as usual,
to the.upper and lower surfaces. Sketch (d)

This rule yields a uniform second approximation to the disturbances
everywhere (except at the other edge, where additional modification may
be required) if the rate of change of curvature of the profile is con-
tinuous, which means that near the edge the thickness has the form

T(x) = bl&+b&031z+. . . (15)

However, airfoils of the NACA four- and five-digit series violate this
requirement, their leading edges hawing the initial form

T(x) =blfi+b@o+b3x031a + . . . (16)



NACA TN 3390 ___ -10

Hence the rule yields only a first approximation near the edge (while
.

leaving a second approximation elsewhere) snd can therefore be replaced’
by the simpler form 6 ““—

(17)

which is Ltghthill’s rule.

The rule for first-order theory is obtained by dropping the term
p/4x. from equation (17). However, it is then advsmtageous to use the
alternative form due to Riegels (ref. 2), which is correct to the same.
order but a great deal more accurate (see r=. 20). It is simply

where q is the angle of the airfoil surface. Analogous
rules can be found for the second-order theory, but their
probably outweigh their slight advantages of accuracy and
they will not be considered here.

(18)

alternative
shortcomings

A
simplicity, so

—
.:

The modification for a sharp edge is ~.md by considering inc?mpress-
y<

ible flow in an angle. If the edge is a trailing edge with Kutta condi-
tion enforced, or a leading
there is no flow around it,

edge at the id~al angle of attack, so that
the second-ordE$ rule is ---

>—.

(19)

where 5 is the semivertex angle, and “~ is the first-order solution.
Otherwise, the circulatory part of the formal second-order solution, which ‘“
consists qf the terms singular like X.‘~12, must first he corrected 6ep-
arately by the rule

after which the remainder is corrected byequation (19).

(20)

Airfoils with two stagnation edges can be treated either by applying ‘
the appropriate correction separately at each edge, or by combining the
rules. The combined rule for two round edges is given in equation (24)

—

of reference 20. Simtlarly, for a round edge at x = -1 and a sharp edge -
“

(with Kutta condition) at x = 1, the combined rule is
G



NACA TN 3390 11

6

$., (1 . ~)=

[’

1/2
I+XHJ-

] {
~.:+h(l. x)+

l+x+p/2t AJ2p(l +x)

(21)

For two sharp edges of equal sngle, both with Kutta condition (as for a
biconvex airfoil at zero angle of attack}, and located at x = +1, the
combined rule has the form of equation (19) with X. replaced by
(1 - X2).

If the pressure is required, It must be calculated from the speed
using the full Bernoulli equation because the disturbances are no longer
assumed to be small.

Modification for subsonic flow.- For round noses, these
. extended to subsonic speeds by considering compressible flow

ola. Thus the counterpart of equation (14) is found to be2

Here, as indicated in sketch (e),
Q is the speed ratio on the sur-
face of a parabola in a uniform
subsonic stream of Mach number M,
with circulatory flow proportional
to a. The combination
Zo = xo?h~o appears in the
first argument of Q, as it does
in equation (14), because of the
connection indicated in sketch (e)
between abscissas of a surface
point measured along the x axis
and along the sxis of the para%ola.
(See also eq. (9) of ref. 20.) The

. factor a is proportional to the

)[*-K= a“tJ_+

& M &u

K= -

)1

12
2 Xcj

rules are
past a psrab-

(22)

M
T-

Sketch (e)

21t should be noted that as M,+ O this rule reduces not to the
d incompressible rule of equation (14), but to an alternative that is

entirely equivalent up to terms of second order. See footnote~ ofref-
erence 20.
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angle of attack of the actual airfoil measured from the Ideal angle at
which the stagnation point coincides with the vertex. It must be found
as the coefficient of XO-112 in the first-order solution

w
‘C$yu. .

The function Q is not known exactly, but a satisfactory approxima-
.

tion is given by the Janzen-Rayleigh solution in powers of M2. For the

special case of Q(*,., M),
.

corresponding to the ideal angle of attack

where a = O, the solution has been calculated to order M4 by Imai
(ref. 23). It is tabulated briefly in reference Xl for 7 = 7/5, where
it is denotedby Q(x/p, M). For other angles of attack, the function .
Q to order M2 can be extracted by a limiting process from Kaplan’s
solution for an inclined ellipse (ref. 29), which gives> with ZO/P = Qj

a/~ = *

‘(q’*’M)‘* [@F+*-& {(1- IF)J5$-$(2Q+V’)+

1+*2 [(=@@ ) (-**+@ lnl-+l@-2q- 1-

The rule for shsrp noses in subsonic flow can be found by considering
compressible flow in an angle. However, this basic solution is not yet
available. For practical purposes the correction is probably negligible
since it is appreciable over a much smaller neighborhood of a sharp edge
than a round one. Moreover, sharp edges he usually trailing edges, in
which case the details of the flow are altered by viscous effects.

EXAMPLES: COMPARISON WITH EXPERIMENT
AND OTHER TwlmRIEs

IncompressibleFlow

It has been seen that the solution for subsonic flow depends on that
for incompressible flow. It is therefore pertinent to test the second-
order theory in the case of incompressible flow, where it can be checked
against the exact results of conformal mapping.

.

w
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Ellipse.-
val -- 1

.

13

Consider am ellipse of thickness ratio T with the inter-
as chord line. It is described by

Suppose that the Kutta condition is satisfied - the rear stagnation point
coincides with the end of the major axis. Then the first-order solution
for surface speed is found, from equations (3), (4), and (~), together
with Appendix B, to be

Proceeding with

~=1.

.

equations (6) to (9) gives the formal second-order result

r1 -x X2
JT2_

F

-x 1 a=

‘Tfa 1+X 1- ‘aTE-z
(m)X2

This can be checked by expandin& the exact result, which

( 26)

The formal second-order solution clearly breaks down near the ends of the
ellipse. It is converted into a uniformly valid second approximation by
applying equation (14) twice in succession, or using the combined rule of
equation (24) of reference !20,which gives

These approximations are compared
for an 18-percent-thick ellipse (which
an NACA 0012 airfoil) at zero angle of

in figure 1 with the exact solution
has nearly the same nose radius as
attack. The precipitate descent

of the formal second-order solut~on towsrd negative ‘fifin~tyis Just dis-
cernible near the nose and is eliminated in the modified theory. It*
should be mentioned that the first-order theory modified according to
Riegels’ rule (eq. (18)) happens to give the exact result,for an ellipse.

d
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Symnetrlcal Joukowski airfoil.- To secgnd as well as first order a
symmetrical Joukowski airfoil of thicbess ratio T is described by

(27)
4TT1=— = 0.7698T
3&

.

By the foregoing procedure, the formal second-order solution is foundto
be

(28a) -

where the first three terms.give the first-order solution. Modifying this
according to equation (14) with X. = 1 + x-and p = &r12 (and X = O)
gives the uniformly valid second approximation

(28b)

In figure 2 these approximations ~e compared with the exact solution
(ref. 30) for a 12-percent-thick section at zero angle of attack. The --
effect of the modification on the second-order result is not discernible
to this scale.

Biconvex airfoil.- To second order a symmetrical biconvex airfoil of’
thickness ratio T bounded by either circular or parabolic arcs is
described by

:..

.

Y= f T(I - X=9, -l<X<l (29)
b

The formal second-order solution is found to be
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(30a)

approximation, the terms
combined equally sharp

valid second
the rule for

In deducing from this a uniformly
independent of a are treated by
edges that was described just after equation (21), with 5 = 2T. The
terms 1. a are modified according to equation (~) tith X. = 1 + x.
(Notice that no modification of these terms is required at the trailing
edge.) The result is

2T

{
~=(1-xz)-1+;T12-(1+ x)~(l+x)-(1-x)~(l-x)] +

()[2;T 3 -y (l-x2)- 3(l+x)ln (l+x) -3(1-x) ln(l-x)+

&l+3x)(l+x)lnw+x) +;(l-3x)(l-x)lnw- x)+ .

;[2(l+x) ln(l+x)-(l+2x)ln (1-x)-k]
}

(30b)

These approximations we compared in figure 3 with the exact solution
(ref. 31) for a circular-src airfoil 18 percent thick at zero angle of
attack. Although the vertex angles are large in this example, the modifi-
cation of the second-order solution is appreciable in such a small neigh-
borhood of the edge that it would be invisible even on a much lsrger plot.

NACA 00XX airfoils.- Symmetrical
(such as the NACA 0012) are naturally

. The airfoil of thickness ratio T is

airfoils of the NACA 0~ fsmily
defined for the interval O ~ x < 1.
described by (ref. 32)

b6xs + bsX4), o~.<1 (31)
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where

, bl = 1.48450
bz = -0.63000
b~ = -I.25800
be = 1.421s0
b8 = -0.50750

With the aid OY Appendix B the first-order

NACATN 3390

T.

—

.

—

.

—

solution is found to be

(32a) —

in agreement with the result given by Goldstein (ref. 26). Applying
Riegels’ rule (eq. (18)) renders this a uniformly valid first approxima-

—

tion except very near the trailing edge.
.

The second-order terms in thickness, in addition to being very com-
plicated, involve integrals that apparently cannot be evaluated in terms

.

of tabulated functions. Accordingly, the second-order terms have been
calculated using the Germain-Watson-Thwaites-Webernumerical method dis-
cussed in Appendix C, with N = 16. The accuracy
is assured by the fact that cruder approximations
results only slightly, as will be seen in a later

The formal second-order solution for surface
form

of this approximation ‘
—

modify the numerical
example.

speed therefore has the

J+#=l+@++++& ~~a-$a2 (32b)

where values of QT from equation (32a) and approximate numerical values

●

x QT QTT Q~~X

o.o~ 1.943 “9.00 8.80 0.50
.05 1.836 .-3.35 5.55 .60
.10 1.’714-1.00 3.25 .70
.20 1.510 -.09C 1.65 .80
;% ;.::9 X&C 1.00 .90

. 0 .58 .95

o:% -0.135
-.220

.485 -.315

.238 -.410
-.12’ -.420
-.440 -.360

%a

0.32
.11

-.08
-.23
-.33
-.34
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Applying
A= O) yields

.

.

equation (14) with p = 1.10187
a-uniformiy valid approximation. However, as discussed

previously, the curvature of the profile does not vary continuously near
its nose, so the result is only a first approximation there, though a
second approximation elsewhere.

The various approximations are compsred in figure 4 with the result
of a “long and elaborate calculation” by conformal mapping for the
NACAOO12 airfoil that is given by Goldstein (ref. 33). Again the effect
of modifying the second-order solution is indiscernible. Also shown is
the “exact” solution tabulated in reference 34. The agreement between the
first-order solution with Riegels’ rule, the second-order solutions, snd
Goldstein’s calculation leaves little doubt that his is the more accurate
of the two “exact” solutions.

Compressible Flow

When extended to subsonic compressible flow, the preceding exemples
can all be compared with other theories or tith experiment. As before,
the comparisons till, for simplicity, be male only for zero angle of
attack.

Ellipse.- Applying the second-order compressibility rule of equa-
tions-o the incompressible solution of equation (~b) gives as the
formal second-order solution for the speed on &L elliptic

~=’+”~(’’a~)++’’:’=~-=~-

r
1‘42”2 - 1) — - ~’1+ (% - 1)X
1;: 2(1 + x)

cy~inder

(33)

For zero angle of attack the maximum speed, occurring at midchord, is
given by

)$ =1+ KIT+$(K2-1)T2 (34)
max

in agreement with the result of Hantzsche and Wendt (ref. 7). Hsntzsche
has also calculated the third-order solution for the maximum speed at zero
angle of attack (ref. 8). Values of the maximum speed ratio calculated
from these smd other approximations for a 10-percent-thick ellipse at zero
angle of attack ere
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First-order theory (or Prandtl-
Glauert rule applied to exact
incompressible value of 1.100

K&rm&-Tsien rule

Second-order theory

Third-order theory

M= 0.70

1.140

1.148

1.151

1.151

M= 0.7’5 M = 0.80

1.151 1.167

1.166 1.184

1,166 1.189

1.172 1.198

Here the K&rn&-Tsien rule has been applied to the exact incompressible
value of.the pressure coefficient, and-the speed ratio then calculated
from Bernoulli’s equation. It is to be anticipated that second-order
theory is more accurate than any of the couipressibilitycorrection for-
mulas such as the K&m&n-Tsien rule, because it allows for a dependence
on the particular airfoil shape and on the value of y. This is seen to
be true for the ellipse.

In the seineway the second-order solutions are readily calculated .

for the Joukowski and the biconvex airfoilsl and are found to agree tith
the results that Hantzsche and Wendt obtained by laborious analysis. .-—-

NACA 0012 ai.rfoil.-The formal first- and second-order solutions for
NACAOOXK airfoils in subsonic flow are eatiilyobtained from equations (13)
and (32). The second-order solution can then be rendered uniformly valid
near the nose using equation (22), although again the modification is sig-
nificant in only a very small region of the nose.

For the NACA 0012 airfoil at zero angle of attack, Fmmons has calcu-
lated the flow field at Mach numbers of O, 0.70, and 0.75 using the numer-
ical relaxation method (ref. 35). The last of these Mach numbers is super-
critical, so that the flow contains shock waves, and is beyond the scope
of the present theory. The pressure distribution calculated by the relax-
ation method for M = 0.70 is compared in figure 5 with the results of
first- end second-order theory and various other approximations. The
relaxation soluti.cmfor incompressible flow is also shown in comparison
with Goldstein’s “exact” solution, and is seen to be inaccurate near the
nose. The solution for M = 0.70 probably contains similar inaccuracies,
however, just as for the ellipse the pressure coefficients calculated by
second-order theory may be slightly less negative thsn the true values
near their minimum.

Experiments on NACA 0015 airfoil.- Experimental pressure distribu-
tions in two-dimensional flow over the NACA 0015 airfoil at high subsonic
speeds exe reported in reference 36. For zero ‘&gle of attack; the critl- ‘“
cal Mach number is approximately 0.70. The measurements at this Mach num- –
ber are compared in figure 6 with the results of first- and second-order c
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theory and of the two
to the incompressible
nately, the model was

19

common compressibility correction formulas applied
flow values tabulated in reference 34. Unfortu-
imperfectly constructed, and the ordinates were

inaccurate nesr the nose and midchord. Otherwise, the measured pressures
are in satisfactory accord with either second-order theory or the re”sults
of the Karm&n-Tsien rule.

PRACTICAL -ICAL C@lPUTATION

The following computing procedure yields the formal second-order
subsonic solution for the surface speed or pressure on any airfoil at my
angle of attack. It requires a knowledge only of the airfoil ordinates
at seven points along the chord. It is based on the foregoing theory
together with the numerical method of Germain, Watson, Thwaites, snd Weber
that is discussed in Appendix C.

Computing Procedure (N = 8)
.

(1) Tabulate the ordinates Yu snd Yz of the upper snd lower sur-
. faces at the seven pivotal points Xn listed in table I. (The x axis

must pass through the leading and trailing edges.)

(2) Calculate the

T1=-
2

corresponding

(Yu - Yz),

values of

c S* (YIJ+Yz) (35)

(3) Using the influence coefficients of tables 11 and 111, calculate

7

T! =
z

ensT6 c!’=
z

1

fnsCs

s=1 S=l

‘7 7

T!” =
I

gnsTs c“ =
z

hnscs

S=l S=l

(36)
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4. Using table I (with a in radians), calculate

U1c UIC*
r
1 -x—=—

u u
+CL—

x

?. Calculate

‘ltT+~C,T2=_ Cz=~C+~T
u u

6. Using the influence coefficients of.tables II and

7 7
Uat

I
cnsT2s - &azj U2C—=

1
dn~C2s

u 2 T=
S=l S=l

*
—

(37) -.

(38)

III, calculate

(39)

.-

7. Using the compressibility factors of’table IV, calculate

Lll~ (uztT + cc” )+TT’’++C’2+&2 +

201[

Ulc 2 “Ulc

(

u2C
+

T
* K1T+K2 ~ + CT” +

.

.-.—

-.

C“T + C’T’
)

Ult Ulc

1
+(K2-l)T~ (40)

or .

yfi= = -’=(?W-K’[2*’2*+2(C*T)(C’’’T”)--
(41)

.—

The t signs refer to the upper and lower surfaces of the airfoil. .
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Remarks

1. The summations of steps (3) and (6) are conveniently carried out
by tabulating C!and T in columns that can be matched with successive
columns of tables II and III while cumulative multiplication is carried
out on a desk calculating machine.

2. If the airfoil slope and second derivative can be found more
directly, step ($3)can be simplified by omitting the calculation of Tt,
C’, T“, and C“.

3* The results near the nose can be rendered valid by the use of
the modification of equation (22), but the effect is often insignificant.

4. Seven pivotal points yield sufficient accuracy for most purposes.
If conditions near the nose of a thin airfoil are of interest it may be
necessary to repeat the computation using 15 pivotal points. (The values
of T and C already calculated can be used again.) Table Z gives the
additional pivotal points and angle-of-attack solution, and table V gives
the influence coefficients for calculating u/U; additional tables can be

. prepared for calculating the airfoil slope snd curvature if they are not
known otherwise.

-,
5* The above scheme is designed for calculating a single case. If

the same airfoil is to be calculated at more than two angles of attack,
it is economical to subdivide the computing scheme to separate terms in
a and a?. Similarly, the scheme should be subdivided if more than two
thickness or canber ratios are to be calculated for the same family of
airfoils.

6. For NACA airfoils T is the basic thickness and C the cs.mber
line. To second order it is immaterial that the thickness is added normal
to the camber line rather than to the chord line.

Example

The following table gives the complete computing sheet for calculat-
ing the first- and second-order increments in surface speed for an
NACA 00XX airfoil (of unit thickness ratio) at zero angle of attack and .—
zero Mach number:
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r

n x 97 Ultu.= ‘+ “
~11 T&3 Uat A%

T -TJ-

1 0.038ti0.26316 1.8936 3.0914-54.7210.498324.8040-4●8180
2 .14645 .44236 1.6158 .8652 -8.928 .714783.1691 -.4062
3 .30%6 .49990 1.2906 -.0235 -3.636 .645171.8200 .0028
4 .50000 .44051 .9053 -.5445 -1.939 :;;::; ● 5719 -.1340
5 .69134 .30843 .4909 -.8063 -1.048 -.3081 -.3063
6 .85355 .16199 .0824 -1.0163 -1.574 .01335-.6913 -.4298
7 .96194 .04499 -.5951 -1.0879 1.643-.02677-.9888 -.3230

The accuracy of this solution w$th only seven pivotal points is
indicated by comparison with the following values, which were obtained
analfiically for Aq~U and tith 15 pivotal points for A~/U:

*
x Ult Aq= A&—=— .

u u u
0.14645 1.6166 -o ●4009
.50000 09003 -.1348
.85355 .0725 .4239

.

It is seen that the solution using seven piv_o$alpoints yields ample
accuracy. .—- .——

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics

Moffett Field, Calif., Dec. 1, 1954
-.=._
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APPENDIX A

NOTATION

A,B abscissas of leading and trailing edges, respectively

a factor proportional to angle of
angle

bn coefficient of Xn’= in series

c(x) camber of airfoil

c~(x) camber of fictitious airfoil in

attack measured from ideal

for airfoil ordinate

second-order solution

%? surface-pressure coefficient

%1 first-order surface-pressure coefficient

w
‘%2 second-order increment in surface-pressure coefficient

cns,dns,~,.
}

influence coefficients for calculating velocity, slope,
fnsjgns>hns~ and second derivative of airfoil ordinate

coefficient in trigonometric polynomial approximation
to c

analytic function of complex variable

imaginary part of f(z) on unit circle

first-order compressibility factor, #

second-order compressibility factor,
v

free-stream Mach number

number of subdivisions of chord line in numerical integra-
tion

surface speed ratio on parabola in subsonic flow

(Seeeq. (32b).)

flow speed on surface of airfoil

first- and second-order increments in q



24 NAC!ATN3390

R

T(x)

T=(x)

tr

real part of f(z) on unit circle

thickness of airfoil

thickness of fictitious airfoil in second-order solution

coefficient in trigonometric polyno.tialapproximation
to T

u free-stream speed

velocity perturbation parallel to chord lineu

v velocity perturbation normal to chord line

x abscissa

abscissa measured from edge into airfoil

distance fr~m round edge measured along initial tmgent
to camber line f z -“

Y(x)

Y~,Yz

ordinate of atifoil

ordinates of upper and lower surfaces of airfoil, respec-
tively

ordinateY

z complex variable

angle of attack

m

coefficient in numerical calculation of u

adiabatic exponent of gas

coefficient in numerical calculation of Y~

semivertex angle of sharp e-~e

e polar angle

angle of airfoil surface to chord line

terminal angle of camber line to chord line
-..

coefficient in numerical calculation of Y“Wp
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v

P

T

( )0

( )M

( )1

( )2

( )t

( )C

“( )“

(-)

( )*

( )’
( )m

( )n

( )P

( )~
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factor that is 1 or~ (See eq. (C12).)

radius of round edge

airfoil thickness ratio

4— T for Joukowski airfoil
3n

~,
also (in Appendix C) perturbation velocity potential

P

*
s ~iso (~ Appendix c) perturbation stream function

value at zero Mach number

value at Mach number M

first-order approximation

second-order approximation

component associated with thickness

component associated with csmber

formal series approximation

uniformly valid approxtiation

and angle of attack

part not involving singleof attack

derivative

value at

value at

index of

index of

mth pivotal point counted from trailing edge

nth pivotal point counted frcm leadlng

sumation, counted from trailing edge

summation, counted from leading edge

edge

.

.
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1.

2.

3*

4.

5*

6.

7*

8.

9*

10.

The following are the

APPENDIX B

AIRFOIL INTEGRALS

Cauchy principal values for x2 ~ 1:

J’‘ldE= ~n 1+X
~ l-x

-1

1

{+
d~ .X IXL*-2

x-
-1

{
‘-$d~

( )

1+X 2 -g.x2x~—-
1-X

-1 3

.
—

.

.



t

G P
-!=

. .

;+3
P

,U-m

1’7MI-J
LI%A

M

P

g II
II

P
II

z’
I

I

IUIP
1

1



28 NACA TN 3390

.

22.

23.

24.

25.

26.

27.

28.

.

.

29.

30.

31.

.

.



NACA TN 3390 29 -

.

.

●

✎

.



30 NACA TN 3390

.

AwENmx c

.

THE GERMAIN-WATSON-THWAITES-WERERMETHOD

The numerical procedure introduced by Germain (ref. 21) can be
sdapted to give approximately the thin-airfoil velocities on sny profile
in terms of its ordinates at certain fixed points. In the ssme way the ““ =
airfoil slope snd second derivative can be calculated. Thwaites has
applied Germain’s procedure to thin-airfoil.theory (ref. 23), end Weber
has systematized the calculation of the slope ad surface velocity for
uncsmbered airfoils (ref. 24). Here we must treat also cambered airfoils

-..

and find the second derivative. It iB conve~ient to derive all these
results from Watson’s analysis (ref. 22).

Let f(z) be regular within the unit circle, and on the unit circle
have the form

f{ eie) =R(0) + ii(0) (cl) ‘
*

(Our R and I sre Watson’s ~ and e.) Then following Germain, Watson
a~roximates to R by the trigonometric polynomial .

N-I

R(9) %co +
z

(crcos re + trsti re) + CNCOS NO (C2)
—.

r= I
.-.

which can be made to coincide with R at the !2N equally spaced pivotal
points @ = @m = ~/N. Thus he derives approximate formulas for I (aside
from a constant), R’, Y’, JR, and ~1 in terms of the values of R at
the pivotal points times fixed influence coefficients.

In thin-airfoil theory the complex perturbation potential q + iv
is regulsr outside the unit circle in the absence of circulation. Inver-
sion shows that this involves a chsnge in sign of either the real or imag-
inary part, since f(e-fe) =R - iI. Hence ((p,-$)or ($,cp)may be iden-
tified with (R,I).

In thin-airfoil theory the tangency condition on the perturbation
stream function..$ is V = -Y, where Y is the airfoil ordinate. There-
fore, in order to obtain a solution in terms of the airfoil ordinates we

a

identify (Y,-q) with (R,I).
.
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*

.

Stresmwise Velocity Increment

Let x run from O at the leading edge of the airfoil to 1 at the
trailing edge, and

x .2 l+COS
2(

Then the streamwise perturbation velocity

e)

on the airfoil

2 a
3se

(C3)

is given by

(C4)

Now according to Watson’s equatians (10),
of circulation the values of ~/& at the points em ire

(24), and (27’),in the absence

.

[-

$ N,

. .*)m.~’,pYm+p,,p= 0,

p=o

Now since $=-P = $p~

P’o

P = even, not 01 (C5)

1
N(1 P = odd

- Cos ep)’ J

lN-1
n.

j @pYrn+p= ~mYo + ) ~P-mYp + ) ~p+rnym-p.+~I?-IuYN (c6)

Yo =

.

This

Symmetric airfoils.- For a
yN= O. Then according to

form is

shown, using

N-1 -
Um
—= T cmpyp)
u L

P=l

u

P=l

symmetric airfoil Y~-p = -Y and
equations (c4), (c5), and (c6Y

Cmp 2.—(~p-m -Pp+m)
sin em

convenient for calculating the crop. It is also easily
trigonometric identities, that

(C7)
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Cmp .

N
sin Om’ P- m=()

0, P -m= even, not O

[-

4 Sinep
N(COS em -

P - m =“odd
Cos ep)z’

which is Weber’s result.

.

.

(c8)

-—

Antisymmetric airfoils.- For a cambered airfoil of zero thickness
Y~~-p = Yp. The ordinates Y. snd yN of the leading snd trailing edges

.-—

do not vanish in general, although in the present second-order theory the
.-

axis is chosen so that they do. Equation (E$) gives .

2N-L N-1

I
Bpym+p = 13~% +

z
(~p-m + Lp+m) yp + ~N-myN (C9)

p=o ‘“
-r

p=l .

the
ing

This expression represents the velocityon the unit circle into which *.._
afrf~il is mapped. The Kutta condition.willbe violated at the trail-
edge of the airfoil unless the expres~ion happens to vsnish for m = 0.

.

Adding a component of circulatory flow chsmges the velocity on the circle
.—.

by a constant. Hence the Kutta condition i8 enforced by subtracting from
the expression ofequation (C9) its value at m = O, so that

-.

2N-1 N-I.

I r (B@pym+p+(@m - ~o)yo+ ~ p-m+ ~p+m - @p)yp + (~N-m - ~~)y~
—

p=o p=l (C!lo)

Hence, according to equations (C4) and (C~)

N—
P=o

1

—-

Um

L
dmpyp J

2dmp = —
{
(Pp-m+ fip+m- @p),

1
P i 0, ~ (Cll) ,—=

u sin @m

The
for

expression fQr dmp can be written more concisely in a form mitable

computation as
.—
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1.

.

Now

or,

I
&

tip =+ (~p-m+~p+m-~p), v= 2’ ‘=O’N

}

(C12)sin em
1 otherwise

Slope of Airfoil

The airfoil slope is given by

2 dY
Y’=g=-— —

sin e de (C13)

according to Watson’s equations (29), (31), ~d (34)

2N-1

)1dY

[

o, Po=

Gm=
~pYm+p, 7p =

I

(C14)

p=o - * (-~)p ~ ~~o~pep~ p+o

since 72N-p = - 7p

N-I N— -.

)1~
dem= 7p-myp -

I
7p+m,y2N-p (C15)

p=o P=l

Symmetric airfoils.- Using the symmetry conditions again gives for
symmetric airfoils

N-I

Y; = I 2empyp, %p = - — (7p-m + 7p+m)
sin em

p=l

Antfsymmetrtc airfoils.- Similsrly, for csmber lines

N

y~ . I fmpYp, f~p = a (7p+m - 7p-m)sin em
p=o

(c16)

(C17)
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Second Derivative
.

—

The second derivative of

Y“Eg=

.

the airfoil crcdinateis given by

(c18)

An approximation for d2Y/d02, which is required here, is found by extend-

ing Watson~s analysis for the first derivative, as he suggests. Following

closely his section 2.k gives, after some computation,

[“
-(~ - up - 1)

2N-1

)1
9

I

P’o
d2Y
~m= Wpym+p> Wp = (C19)

p=o
(-1)p

(
~N”-l 1

)- cos ep ‘
p+o

Synmfetrtcairfoils.- By the foregoingprocedure, it is found that
for symmetric airfoils

y; = Vp+m) - COt em(7p-m + 7p+m)l

(C20)

Y; =

Antisymmetric airfoils.- Similarly,

N

I 4V
hmpYp~ hmp = — [(Wp-m +

0ill%m
p=o

Tables

for camber lines
.“

LJ.p+m)- cot f3m(Yp-m - 7p+m)l

(C21)

The six sets of’influence coefficients required for calculating
Y’, sndY” for both symmetric amd antisymmetric airfoils are tabu-u/u,

lated & tables II and III for N = 8. Tn addition, the coefficients
required for calculating u/U are given in table V for N . 16. These .-

values have been checked by applying them to a number of simple shapes .
flat plate, ellipse, etc.,- for which the approximation of the airfoil by

&-
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.

a trigonc.metricpolynomial is exact. The values are believed to be accu-
rate to within one unit in the last place..

For convenience of computation, the coefficients have been renumbered
so that the pivotal points sre counted from the leading to the trailing
edge. This renumbering is indicated by using indices (n,s) rather than
(~,P)●
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TABLE I.- PIVO’I%LPOINTS AND ANGLE-OF-ATTACK SOLUTION

39

F%?-h=l’
I # n 1

010 I co H00
1 .038060
2 .146447
; ●g:30:;
~ :;;;;$

7 :961940
8 1.000000

5.027339
2.414214
1.496606
1.000000
.668179
● 414214
●198912

)

1
2
3
4
5
6

i

.009607

.038060

.084265

.146447

.222215

.308658

.402435

.500000
9 ●597545

10 .691342
11 .777785
12 .853553
13 .915735
14 .961940
15 .990393
16 1.000000

rl-x~~
.o.1~318
5.027339
3.296558
2.4m214
1.870868
1.496606
I..a8504
10000000
.820679
.66&79
.532511.
.414214
.303347
.198912
.098491

0
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TABLE II.- INFLUENCE COEFFICIENTS FOR THICKNESS, N = 8.

1 2 3 4 5 6s 7

1 20.90501 -4.07193 0 -0.22417 0 -0.07193 .0
2 -7.52395 11.31371 -3.35916 0 -.29769 0 -.13291
3 0 -4.38896 8.65914 -;.g;g o -.38896 0
4 -.58579 0 -3.41421 -3.41421 -.9578
5 0 -.38896 0 -3;15432 8.65914 -!.38896 o
6 -.13291 0 -.29769 0 -3.35916 11.31371 -7.52395
7 0 -.07193 0 -.22417 0 -4.07193 20.90501

I ens —— I
% 1 2 3

1 -6.30865 -4.99321 1.53073 -0.82843 0.63405 .;.::;;: 1.08239
2 17.04789 -1.41421 -4.71832 2.00000 -L.40461.

-;.~;2; 8.05468
-2.26582

-.44834 -4.82842 2.61313 -2:39782 3.69552
2 -4.00000 5.65683 0 -5.65685 4.Oocoo -5.65685

-;:;:@& 2.39782-2.61313 4.82842 .44834 -8.054-68 8.92177
2 -1.41421 1.40461-2.Omoo 4.71832 1.41421-17.04789
7 -1:08239 .66364, -.63405 .82843 -1.53073, 4.99321[ 6.30%5

s 1 2 3 4 5

1 -414.3920 106.2602 -w .6863 3.5867 -L.3726
,2 99.4783 -160.0000 62.4057 -IJ..3137 3.8960

46.6274 76.5287 -97.6081 y.46g2 -11.3137
,: -46.8824 -11.3137 54.0559 -84.0000 54.0559

35.3137 2.0190 -11.3137 50.4692 -97.6081
,2 -23.03x5 o 3.8960 -ly; -yg
7 11 ●3137 -.2495 -I.3726 .- .

6

-0 .2@j
o
2.0190

-11.3137
76.5287

-160.0003
m6. 2602

7
u. 3137

-23.0316
3593~37

-46*882&
46.6274
99.4783

-414.3920

T
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TABLE III.- INFLUENCECOEFFICIENTSFOR CAMBER, N = 8

dn~

0

1
-8.382= O

1 a.5841 -4.84984
2 -9.640 11.31371

.94495 -4.38896
: -1.5307 0
5 2.1165 .38896
6 -.8120 0

11’.1644 8.84g4
i -21.2445 -11.31371

1
-13.13707 3.41421
6.30865 -9.22625
9.2262 1.41421
-306955 6.16478
2.1647 -2.82843
-1.5307 1.83522
1.2262 -1.414.EI
-1.0823 I.22625
.5197 -.5857’9

1

415.3214
-541.5880
68.14!31
144.5686
-181.823k
19495097
-.2CYI.0304

202.5097
-101.6159

3

-0.”43835
●28130

-3.75057
9.05055
-3.69552

.87669
-.57900
7.mg73
-8.85484

4 I q[617

o -0.19570 0
-.32589 .28130 -.07193

-.57900 0
-$.05260 .39141 -.24509
8.00000 -3.69552 0
-2.60426 9.53583 -3.75490
0 -3”75057 I-1.31371
5.98275 7.10973 4.07193
-8.00000 -9.09748-11.31371

-o:~;;;(

-.81x3;
.944gf

-1.5307:
2.U65Z
-9.64-04(
38.069ti
-29.k8721

3

-1.61991
3.69552
-6.16478
.44a34

y.22625
-2.61313
1.83522
-1.53073
.72323

3

-4.9706 -g.Z;;
80.1516
MO. Oooo 32:$)$109
29.4458 -66.4121
40.0000 21.8234
-52.0732 21.4903
56.0000 -29.1087
-5Jg5& 31.4315

a -16.0044

4 I 5 I 6 I 7

1.Coooo

H
-0.72323 0.58579

-2.16478 1●53073 -1.22625
2.82843 -1.83522 1.41421
-5.22625 2.6133 -1.835
0 -::yg5 2.82843
5.22625 -6.16478
-2.82843 6.16478 -1.41421
2.16478 -pm: g.2p
-1.00000 . .

-o.5197t
I.08235
-1.226!2:
1.5307:
-2.1647f
3.6955;
-9.2262~
-6.308@
13.13707

hns

12. 000Q
-22: 62:;

22.62’74
-56.0000
22.6274
16.mo
-22.6274
i2.000o

-I_6.oo44
31.4315
-29.1087
21.4g03
21.8234
-66.4121
32.~9
13.4903
-9.701.2

28.9706
-;g.::z

-&m:

W: 4458
mum.0000
8u.1516
-4.s)706

-101.6159
202,5097
-200.0304
194.5097
-181.8234
M&5&

-541:5880
415.3214

-
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TABLE IV.- COMPRESSIBILITYFACTORS (y = 7/5)

M

0’
.10
.23
.25
.30

● 35

:$
a50
.55

.60

.65

.70

.75

.80

.85

.90

.95

K1 I K2
I

K2-1
I

Ks-1

1.00000
1.0Q504
1.02062
1.03280
1.W828

1.06752
1.09109
1.11978
1015470
1.19737

1.3000
1.31590
1.hoo28
1.51186
1.66667

1 ● 89832
2.29416
3.20256

1.00000
1.O1OI-6
L. okp~
1.06933
1.10477

1.15129
1.Zi224
L 29260
1.40000
1.5465J+

1.7523k
2.05275
2.51M5
3.27755
4.674o7

~. 67085
16.1679
61.6651

0 0
.O1OI%2 .005081
.042708 .02135h
.069333 .034667
● 104770 .052385

.15u294 eo~6k7

.2122h5 .106122

.292603 .1k6302

.400000 .ammo

.546545 .273272

.T523& .376172
1.05275 .526373
1.51465 .757324
2.27755 1.13878
3.67407 1.837o4

6.67085 3.33543
15.1679 7*58393
60.6651 30.3325

.
.

=?3=
—
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TABIJ V.- IIWLUENCE COEFTICIE~S, N . 16.

.-

.

cm I
n

1 2 3 4 5 6 7 B 9 10 u 12 13 14 u
1 82.o.1331-17.061350 .4.651170 4.136340 -o.o%vlo
~ -29.5h391kl.axm-11.a3=o

4.oai2b o 4.017-C? o
-.TW7 o

-J.o13bb o
-.l&13 Q -.q6bI o - .04ml o -.0305 0 -. LY’3537

-16.@E423.W24-8.%w15o
2 1.*T o

-.@@ o
-~.x 2?.62742 -7.6$@ o

-mop o -.@k2 :*UW ;.oyw/ o - .0J@8 o
-.671w. o

5 0

- .a~l.a o
.; .,53ey5 o

-.07W o -.oa5
+.qsti lg.2b@+ -6.s5M6 -.67346 0

6 -.6by% -I. 14677 0
-.23&3 o

-7.7273 l-I.m27 2.56330 0 -.@lag o ..@68 ;“*’7 L*
-.13038 0

0 ..4616j o
-.*37 o

i -.W -.@f@ ;“’sw Lcgg6 “:.m %%$ 2:%+% -%76954 ;.wn %$196 ;.wE’ . %62 NW3 :.E%@

-.*42, :.=’3 :.lm l?’’” %37 ;.m% %@ ::~ :@: %% -h2738 i.’35a -&7 ;.W65 -.6J@6
9 0
LO
11 0 -.~ o
L2

-.1938 0 -.23513 0
-.OW o

4.95M6 1924304 -g 05216 0
-.0W3 o -.lI.CM o +wl.8 o .7. 15$@z3 .22.&-@ -~ * -; .’9$ 0

13 0 -.04yM o ..qwl o
-.67431 0 -2. *17

o -. fsx$a o ..63963 0. -8:*45 28:79W -16.2s4% o
lb - .oa63j’ o - .Ww o -.ob~ ;. -. O-/&l o -.18013 0
v o ..o@.k o

-,pyq o
-.~w o -J12&a o

-11.m~ 41.8!.w2 -@ .543gl
-Jm-P o -.13634 0 ..6>u7 o -15.06135 eaolm

\
x
~
o
1
e
3
4
5
6
7
8
9

10
u
12
J.3
14
u
16
—

1 2 3
&.@@b o -2.67w
a&m5 -18.607??3 .2m18
.37:l@ $Rul& .lg,a

AM
-5.24355 -0. -L1.gemo

.8237g .1.$2402 .295e8

-Z.wrn o -1.52330
-A61@ ,3-/653

-;%J o ..65089

.;.94803 o
.m3 -:~~

2, E8333 l.olm l.ola

-.7a7~
7,6037-2 Lm.6 x%
..67332 0 -.*3

B.6Y5W 23. b18g5
E:P3S5 -83.62r03 -57.W18

b

4 5 6 7 8 9 10 u 12 13 lb 15

0 4.67654 0 4:&m o
-1.%820

-0.2U29 o -o.lgm o -o:QATl& o -o.a@
.m79 -.3m?l -.13ya .I.as5 -.063% .W79 -.0?L67 -.01,J14 .Wgb

.1 .Om o .:53: 0 .J2bcq o .:=7 o -:% o -.67332

$226% .16417 -.768s9 -.225U. mm
.::9AY3 o

--w -.oblu2 -. COEL9
.:%J

-%% x!% &5M6
+5& o ..26Q67 o

-.W

-.@J5 o

-Jm .19W -.@u9 - .0s70

o- .Wn -7.9=+7 17. -6.70.247 0 -.&O% o -.41b16 o -:% o -.9hao3
.- .6. 16.z67JI -6.?393

o -.57413 0

;Jm4

-J* <$g -/@x.5 ::1

-!% :y%% ;!@ -j; ,M& ;.72333 .55%5 ;.W &!z&
.:y& o

-.53494
- :i!~6 o -.

. M@ .&6yl .231513 .57354 -.24744 :37374 -6:5v54 19.91%8 4.5*7 “%% -JMo5 :
0 -;.:%
lfkap ;:%i% ; .35347 i :x: )zlfm

-7.9* 22.*IP2 -u.$&m o

‘“8317 ‘.6S!5163 -:.% -$32M4 31:~# -~.pxVI.2J+7
:T

?&8%9 l;:% &3t3A7 lx%!!% le.msa ii%: 1°.61R34 15:6W 16.552hs.@83 -33.67937 -34.63654 -32.tuoal -32mcQam -3Qb359 -3 .63$5+ -39.16- -45. 25-K -=% -X:$% -%%%

J-
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