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TECHNICAL NOTE 3401

LAMINAR BOUNDARY LAYER BEHIND SHOCK ADVANCING INTO STATIONARY FLUID

By Herold Mirels

SUMMARY.

A study was made of the laminar compressible boundary layer induced
by a shock wave advancing into a stationary fluld bounded by a wall. For
weak shock waves, the boundary layer is identical with that which occurs
when an infinite wall is impulsively set into uniform motion (Ra.yleigh
problem). A numerical solution was required for strong shocks.

Veloclty and temperature profiles, recovery factors, and skin-
friction and heat-transfer coefflclents are tabulated for a wide range of
shock strengths.

INTRODUCTION

If a shock wave advances into a stationary fluid bounded by a wall,
8 boundary-layer flow 1s esteblished slong the wall behind the shock.
This boundary laeyer 1s often lmportent in studies of phenomens involving
nonstationery shock waves. In & shock tube, for example, this boundary
layer acts to attenuate the strength of the shock which propagetes through
the low-pressure side of the tube (refs. 1 and 2). If the shock tube is
used as an serodynsmic wind tunnel, the test time avallsble may depend,
for long shock tubes, on the time it tekes the boundary layer to introduce
nonuniformities in the test section.

Another exsmple of a shock-generated boundary layer occurs when &
combustible mixture is ignited within a tube. In this case, a shock wave,
followed by a flame front, is observed, as discussed in references 3 to
S. The shock wave 1s particularly strong when ignition occurs at a closed
end. For long tubes, the progress of the flame front wlll be related to
the boundary-layer development behind the shock. Since flame speed is in-
creased by fluld turbulence, & transition from laminar to turbulent flow
will accelerate the flame. Thus, the boundary lsyer mey play & role in
'E,he accselera.tion of a low-speed flame to a detonstion wave in a long tube

ref. 4).
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The boundary leyer behind the shock was studled in references 1 and
2. Both papers were primarily concerned with shock-wave attenustion.
In reference 1, an approximate solution for the boundary layer was estl-
meted by referring to the flow induced within a circulsr cylinder that
is impulsively set into uniform transletion. The validity of this anal-
ogy was not established. In reference 2, the correct boundary-layer equa-
tions were considered. These were integrated with a REAC (Reeves Elec-
tronic Analog Computer). Values of skin-friction asnd heat-transfer coef-
ficlents were presented. However, no veloclty or temperature profiles
were reported. Because of the growing interest in phenomena related to
these shock-induced boundary layers, it was felt that a more detalled
and more accurate study of this boundery-layer problem was warranted.
Such e study was conducted at the NACA Lewls laboratory and the results

are presented herein.l

In the following sectlons, the laminsr compressible boundary layer
behind s shock weve sdvancing into a stationary fluid, bounded by a wall,
ls enalyzed. For weak shocks, an analyticel perturbation solution is pre-
sented. Numerical results for veloclty and tempersture profliles and heat-
transfer and sKin-friction coefficlents are tabulated, covering the range
from weak to strong shocks. The numerical results are correct to four
decimal places.

ANATYSIS
Coordinate Systems

A shock wave of constant strength is consldered to move, parallel
to a wall, Into a statlonary fluld. Let (_ ,¥) be a coordinate system
fixed in respect_to the wall and let U 'and ¥ be velocities parallel
to the x and y coordinates, respectively, as indicated in figure 1(a).
The flow is unsteady in this coordinate system. Let (x,y) represent a
coordinate system moving with the shock wave (fig. 1{b)). The *velocities
parellel to the x eand y coordinastes are denocted by u and v. In
this coordinate system, the flow is steady.

_Assume that, at time + = 0, the two coordinate systems colnclde._
If us is the velocity of the shock wave relastive to the wall, then X

end x are related by X = X - u t. Similarly, the axisl veloclties a.re
related by u =u - us. Note 'bha.t the wall moves wilth velocity u, =

in the steady coordinate system.

lThe writer's present interest in the shock-induced boundsry-layer
problem was stimulated by a private communication from Prof. N. Rott of
Cornell Universlty, who ls studylng heat-transfer problems assoclated
with shock tubes.
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Boundary-Layer Equations

The Prandtl boundery-layer equatlons apply for the flow in the vicin-
ity of the wall (except at the base of the shock, where the boundary-layer
assumptions break down). Assuming the flow to be laminar and dp/dx = 0,
the equations of motion are, for x >0,

g%li + g_s__l = 0 {continuity) \
a a _1 a Bu
u5‘3+v§:7_35§<u3§)(mntum) 8 (1)
1
2
(BB 2 68
p = pRT (state) Y,

The additional symbole are defined in appendix A. The boundary conditions
for x >0 are

u(x,0) = -ug u(x,=) = u,
v(x,0) = O T(x,=) = T, (2)
T(x,0) = T,

These are the usual boundary conditions, except that the fluid at the wall
moves with velocity u(x,0) = yu, = -u, in order to satisfy the condition

of zero slip at the wall. It wlll be aessumed that the wall tempersture

T, 1is constent. The magnitudes of u,, Ty, and Es depend on the shock

strength and can be found from the normel shock relstions quoted in ap-
pendix B. The ratio uw/ue increases from a value of 1 for a very weak

shock to a value of (v + 1)/(r - 1) for a very strong shock wave. Thus,
in the steady coordineste system, the u velocities in the boundary layer
have a maximm et the wall and decrease monotonicelly to the value in the
free stresm (es indicated in fig. 1(b)).

Transformation. - Equations (1) and {2) are transformed to & system
of ordinary differential equations with the methods of references 6 and 7.

From the continulty equation, a streem function V¢ exists such that
o¥/dy = pu/pw, -0¥/dx = pv/p,. Following reference 6, a similarity parame-

ter 1 18 defined according to the relastion
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y
n = 4/%-2%; L[; §§ dy (3)

and the stresm function is written as

v = EEy £(n) (4)

Note that f!' = u/ue. As 1n reference 7, the viscoslty is assumed to vary
linearly with temperature. If the viscosity is referenced to the wall

value,
Mo
() ©

Substitution of equations {3), (4), and (5) into the momentum equa-
tion ylelds

£rU 4+ £E" =0 (6)

with the boundary conditions

£(0) =0
£1(0) = u,/u, (7)
£' (W) =1

Equatlion (6) is the familisr Blasius differential eguation. However, the
tangential veloclty boundary condition at the wall (£'(0) = uﬁ/ue) is dif-

Perent from the zerc value ususlly encountered in studles of viscous flow
past & semi-infinite plate. Numerical intearation is requlred except for
the limiting case of a weak shock, [(uw/ue) - 1] <<, for which an

analytical perturbation solution is possible.

For T a function of 17 only, the energy equatlon becomes
T 4+ o' = -ofy - 1) ME(£")2 (8)

assuming that the Prandtl number o¢ is constant. Since equatlon (8) is
1inesr, the general solution for T can be expressed as the linear super-
position of the solution for zero heat transfer plus the effect of heab
transfer. Thet is, T/Te can be expressed ln the form
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(9)
where r(n) satisfies
r 4+ o frt = —2% 5 (£m)2
u, .
o 1) (10)
r(=») =r'(0) =0
and s(n) satisfies
s" + o fs' =0
(1)

S(O) = 13 S(w) =

Note that [(u /u ) - 1] M, = IE I/a. is the Mach number of the external

flow relative to the wall. For an insulated wall, the coefficient of
s (in eq. (9)) equals zero, so that the wall temperature is

2
?%Li:“L%_l_[(ﬁ- ) M] x(0) (12)
u, e

e

Thus, r{0) is a recovery factor based on the Mach number of the external
flow relative to the well. Eguation (9), in terms of T .40 18
b

2
%=1+%i[<-}‘ef-- )M] w) o (-3 at o)

Equatione (10) and (11) can be expressed in quadrature form

r==< ) f [z7(£)1° az f [£"(6)1 % as (13)

u
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- ﬁ"[f"om“ dz/ ANEUICHE" (14)

For o = 1, these equations can be integraled to yield

2
.
=] - = (15)
o
e
s = fr -1 (16)
Ep

e
The solutions for other Prandtl numbers are discussed later.
An glternate system of equations is described in eppendix C.

Relation between y and 7. - For x constant, the relation be-
tween y and 1n 18, from equation (3),

n
1% _ T
/\/Em"j T 9 (27)
o) W

Substitution of equation (12a) into equation (17) yields

T R A
(18)

For o =1, equations {15) end (16) can be substituted into equation (18)
with the following result:
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1 7e e e
Y R A S
2 XV T; EE .
Ye
u

L2l | E (e -n) +£(1-£7)+£(0) - £

Le

If the wall is insulated, equation (19) becomes

1 TR - -

B e

1) +f£(1 - ') +£"(0) - f"}

o=

s YN,

(20)

Equations (18) to (20) are useful for obtaining velocity and temperature

profiles in terms of y rather than 1.

Perturbation Solution for <u

If the shock wave 1s week, (u_/u ) - 1 is small, end a perturbation

analysis in terms of this parameter is posslble.

SOINEI

n=0

(212)

(21p)

(21c)

Substituting equation (2la) into equations (6) and (7) and equating coef-
ficients of [(u /u.) - 1P end [(u /u.) - 1}* yield, respectively,
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fO"' + fofo“ = 0

(22)
£5(0) = 0; £4(0) = £4(=) =1
£01 4 £GP + £150" = 0
(23)
£.{0) = 05 £1(0) = 15 £1(=) = 0
Integration of equstions (22) and (23) gives
fo =1
(24)

f - o)+ AE[1 - en()]

so that

o et - [[l-exp( )M SRTCE

2

£' =14 [erfc(—/-‘?_z)]c-—: - ) + OG"’; - ) »(25)
f"=-%(§-§-)e'"2/2+o%-)z )

Substituting the preceding solution for f into equations (10) and (11)

and equeting coefficlents of (—%- - ) yield
e

2
" + onrd = -;‘:(- oge
(28)
rg(0) = ro(= =0
0" + oms) =0
(27)

85{0) = 1; sy(=) =0
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Integration of equation (26) ylelds (from results of ref. 8)

1/2 1(/2 2 ’
4 o] -0 1 U
-’E<2 - U) exp<—§q— sinZ6 ® O<ﬁ— ) ) (28)

e
gin~l 4/%

The integral of equation (27} is

8 = erfc (/\/gn) + O<% - 9 (29)

From equations (28) and (29),
r(O)—%( C_I )l/2<—-sin14/_)+0( ) (30}
s’ (0) =-,\/§—§+o<;—l:-1) (31}

where r(0) is the recovery factor and s'{0) is used to calculate heat

transfer. Equations (22) to (31) (neglecting the higher-order terms)
ply if an ini‘inite plate is started, impulsively, with velocity

[Puw u.) - 1]. The latter, often termed the “"Rayleigh problem," has been

much discussed. The zero-order solutlon indicated by equations (28) and
(30) wes obtained in reference 8 in a study of the serodynamic heating
assoclated with the Raylelgh problem.

In reference 1, the boundary layer behind a shock wave advanclng into
a stationary fluid was estimated by analogy with the Rayleigh problem.
The work of the present section shows that this approach 1s exact for week
shocks.

Numerical Solution

For other then weak shock waves, a numerical solution of equations
(8), (10), and (11) is required. This was obtained by Lynn U. Albers with
the use of an IBM card-programmed electronic calculator. The integration
technique is described in sppendix B of reference 9. The results, correct
to four decimal places, are tabulated in teble I. Values of £, f', and
" are given for u,/ug of 1.5, 2, 3, 4, 5, and 6, while va.lues of r,
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r', s, s', \jgh r dn, and k/gh s dn are presented for uW/ue of 2, 4,

and 6 (with ¢ = 0.72). The dsta of table I plus the perturbation solu-
tion of the previous section define solutions covering the range from very
weak shocks to very strong shocks.

RESULTS AND DISCUSSION
In the steady coordinate system, the boundery-leyer similarity parem-
Yo :
eter 1s n = /vl 1:::: TW dy. Transforming to the unsteady coordin_a.te

system accordling to the rela.tion X=X+ uwt end considering station

X =0 glves 1’ 4{ f - dy. Thus, the boundary layer

behind the shock wave has features of =@ Blasius type flow or a Rayleigh
type flow, depending on whether the observer is statlionsry with respect
to the shock wave, or wall, respectively.

The Rayleigh viewpoint is used herein to correlste and discuss the
numerical data. That is, attention is fixed at statlon X = 0, and the
boundary-layer development for t >0 is considered. The velocity which
cheracterizes the boundary-laeyer development is u U, Simllarly, a
characteristic length is (uw ue) t, which is the distance a particle in
the free stream moves relative to the wall in time +. The form of the
Reynolds number used herein can then be defined as

- u z
Re = B ~ el ¥ - (32)

Boundary-Layer Proflles

The parameter [(u,/u)) - £'1/[{u, /u.) - 1] varies from & value of
zero at the wall to a value of 1 at the edge of the boundary layer. A
boundery-layer thickness B may be defined as the value of y correspond-
ing to [ (u,/ug) - £'7/[{w,/u,) - 1] = 0.99. Values of the boundary-layer-
thickness parameter 8//‘/ t have been computed assuming r=1.4 end
an insulated plate, for o of 0.72 and 1.0 {using e {18) and (20)).
These are tebulated in table II. It is seen that (B 4/ ob); increases
with increasing u,/u,. As expected, the values for o = 1 are greater
than those for o = 0.72 (for u_/u, # 1). This is due to the fact



NACA TN 3401 _ 11

that the larger recovery factor of the former leads to higher temperatures
near the wall snd therefore a larger velue of y corresponding to a -

given 1.

Velocity profiles for uw/u of 1 (1imiting case of very weak

ghocks) and 6 are plotted in figure 2. Curves for intermediste values
of uw/u lie smoothly between the curves in the figure. No marked

departure from an error function type velocity profile is indicated.

Skin Friction and Hest Transfer

The shear stress at the wall is given by

du 1Y% 1
Tw T “w(E?)W = Pyle 415’%;; £"(0)

Because of the coordinate system used, Ty is negative. If (uw - ue) is
used as & reference velocity, & positive local friction coefficient can

be defined as cp = JTV/%pwcuw - ue)z. Then, using the Reynolds number
as defined by equation (32),

cp AfFS = -/\/—ui"(o) - (33)
e e

Values of cf/JEE are tabulated in teble IL. These vary from the Rey-
leigh value of 1.128 at u,/u, =1 to 0.935 at wu,fu, = 6. The corre-
sponding value of cfAJﬁé for incompressible flow past a semi-infinite
plate (Blasius problem) is 0.664.

The heat transferred into the fluld from a unit area of the wall,
per unit time, is

qa= 'kw(g§> N/Z wi Tw,i) s'(0) (34)

Defining & heet-trensfer coefficient h by h = (T, - Tw,i)/q and a

Nusselt number by the relation Nu = h{u,6 - u.) t/kw permits the Nusselt
number to be written as
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\E

1]
]
w
(D‘:Ii:n Q

The relation between skin friction and heat transfer can be expressed in
terms of & Reynolds analogy perameter Afo ceRe/Nu. The factor Ao i1s

included, since, for uw/ue =1, o che/Nu is a constent. For o =1,
the parsmeter equals 2 at ell values of uw/ue; vhile for o = 0.72, the
persmeter increases from 2 at w,fus =1 to 2.07 at u /u, = 6.

The recovery factor for u,/u, =1 18 glven by equation (30). Evalu-
sting this equation for o = 0.72 gives =r(0) = 0.885. The recovery
factor for o = 0.72 dincreases with increasing uw/ue to a value of 0.920
at uw/ue = 6. These compare with the value 0.845 for flow past a seml-

infinite plate at o = 0.72.

Thus, for the range of u /u, investigated, the numericel results

for skin friction, heat transfer, and recovery factor (in terms of the _
persmeters defined herein) depart relatively less from Reyleigh (u /fu, = 1)

values than from the Blasius values for equlvalent flows past a semi-
infinite flat plate.

CONCLUDING REMARKS

The lamipar boundary layer behind a shock wave advancing into a sta-
tionary fluld, bounded by & wall, has been determined. Varlous boundaxry-
layer paremeters have been tabulated for several shock strengths.

With incresassing Reynolds numbers, the laminer boundsry leyer behind
the shock will become unstable, and transitlon to turbulent flow will
vltimately occur. A theoreticel study of the stabllity of this lesmlnar
boundery layer would be of interest. §Shock-tube experiments might provide
eriteria defining the transition to turbulent boundary-leyer flow as well
as the charscteristics of the turbulent boundaxy layer. At present, little
is known sbout the structure of such turbulent houndery layers, and it is
felt that some experimental data should be availeble before an analytical
study 1ls attempted.

Iewls Fllght Propulsion Leboratory
Natlonael Advisory Commlttee for Aeronautics
Cleveland, Ohio, December 10, 1954
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The followlng symbols are used in this report:

a
Ce
°p
erf(x)

erfc(x)
£

h

Re

r(0)

APPENDIX A

SYMBOLS

speed of sound

. 2
local skin-frietion coefficient, -'l:w/ E‘E pw(uw - ue)]

specific heat at constant pressure

X
error function, (Z/A/§)~]; e’yz dy

complementary error function, 1 - erf(x)
function of 71 defined by eq. (4)

heat-transfer coefficlent, (T, - Ty 4)/a

thermal conductivity

Mach nunber

ue/Be

Nusselt number, h{u, - ug)t/ky

pressure

local rate of heat transfer

gas constant

Reynolds number, (u, - ue)ztfvw
function defined by eq. (10)
recovery factor

function defined by eq. (11)

gtatic temperature (ebs)

time

13

velocities parallel to x and y coordinates, respectively
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a,v velocities parallel to X &and y coordinates, respectively

Ug velocity of shock wave relative to wall

X,y coordinates parallel to and normal to wall, respectively, and
moving with shock’wave (fig. 1(Db))

%y coordinates parallel to end normal to wall, respectively, and
stationsry with respect to wall (fig. 1(a))

T retlio of specific heats

velue of y for which (u,/u, - w/u.)/(u,/uy - 1) = 0.99

(i.e., boundary-layer thickness}

1 varieble defined by eq. (3)

Mg value of 1 at y=29d

31 coefficient of viscosity

v kinemastic vlscosity

p mess density

g Prandtl number, pcp/k

Ty local shearing stress at wall

'3 stream function

Subscripts:

b undisturbed flow in front of shock wave (appendix B)

e flow external to boundary layer

i insulated-well problem

conditions at wall (y = ¥ = 0)
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APPENDIX B

SHOCK RELATIONS

o~
-

For convenlence, some useful shock-wave relations are noted herein:

Uy & Uy
Tps 2y Wy

Consider flow in g steady coordinate system. Let subscript b designate
undisturbed flow in front of the shock wave; and subsceript e, the flow

behind the shock wave and external to the boundsry layer.

u, = u., 80 that M, = u,/sy = u,/ey. Then,

oy (r+1)M
Yo (y-1)M + 2

ey

] for
E + 5
s = Z
e Uy
(r+1) 2 - (y-1)
e
= _u%__— for
86— <« 1
u'e

(r+1) u—“: - (r-1)

Te

Ty~ Uy Ty
o) - -1 52
6 Eu% -1 for

" S E_wj
Us\ T Ue

Note that
\
; (B1)
T = l.4
J
\
(B2)
T = l.4
\
F (85)
T = 1.4
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APPENDIX C

ALTERNATE FORMULATION OF BOUNDARY-LAYER PROBLEM

The trensformation based on equation (3) leads to a system of equa-
tions identical to that which arises in boundary-layer studies of the
flow past a semi-infinite flat plate, except for the non-zerc veloclty
boundary condition gt the wall. Thls sytem was convenlent for numerical
computation, since a variety of flat-plate boundary-leyer problems had
previously been solved at the NACA Lewls lasborstory, and the card-
programing for the IBM electronic calculator was already established.

An slternste system can be obtained by normallzing the momentum-
equation boundery conditions. That is, the parameter uw/ue appears 1ln

the differential equation rather than in the houndary conditioms. Such
a system leads more directly to the correct . physical paremeters of the
problem and ig described by the followlng equations.

Define ¢ and g(f) according to the relstions

cmAfZn (c1)
I 1 Uy Uy
g(L) = T \& £ - o £ (c2)
a‘;-— 1

Using equations {Cl) and (C2), equations (6), (7), (10), and (11) become

g
gi& + Q-z—g- ue =0
dgs dgz C _E__W‘ g
© (c3)
2(0) = (dg) . (dg) -1
EE §=O —d—'g gnn
Wy
alr ug ~ * ar _ _ Yy gz_g_ G w
ol e E w90
g ? (ca)
dr
= e ,
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u.w.
d? € E; -t ds 0
=2 4+ 0 - — =
at® By X (cs)
Ue

s(0) = 1; s(=) = 0

Note that, for X = 0, { = 1/A/2v_%, which is the correct parameter for

the Rayleigh problem. Also dg/af = [(uw/ue) - f']//[(uw/ue) - 1], which

is & normalized velocity. Finally, the reduction of the system to a
Reayleigh problem, for uW./ue = 1, is more apperent from equations (C3)

to (C5) than from equations (6) to (11).
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~ LANTNAR BOUNDARY LAYHA BEEHIND SHOCK WAVE

TABLE I.

(a) 3olution of momentum aquation for w,/ue = 1.5, 3.0 and 5.0

19
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(b) Solution of momsentum and energy equation for ugfu, = 2.0

PABLE T. - Continoued.
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-~ Concluded,

TABIE I.

{d) Sclution of momentum and energy equation for u"/be - 6.0

-

NACA TN 3401

REDoMm QMO DERAQO N0 TREFEH MO AVYMN Hed0b
- VYONQY YORNO OGN QEAWLYT HoMDOE- Ondwd 00000 O0O0OO
[ RWOANNES WVMdArAd M~HOM oYM AN QCDOoO0 POCCC 00000,
1 MEACHe QNYNY NeRdAY HO000 Yoot oo 0C08C0 0Q00Q0o
g =BERARN IR A e S SEEEN ONEMES ORRERY O RRRES
. oMk NoHOUN Somwd Dot 08231 NO~DMN NNEEHD 00000
COHYE VWMoY YYHNM YOYTO QAVRTHN dHD00 CO0Q00 COoOQod
o SCOVYNE TN MODWUY MANHRH QCOOPO 000GO0 d0000 00000
Q@MY TRMNGH oS acage ool goooo 20dog goaoocd
3 PR 1S qaeQdeQ P SRS ReREe ReNSe geawd
I — - =
g
) 5 Ow®mor HOLMO WNHoWw ORGQ HOMOG HAMMYT YTT0G BOGLY
¥ OMMEG WTYHOO0 WYY NOGONR MITYY LBWMNG LHDODWY WVNWVNWG
ol @ SO0 TOAYY EOMOO e M ITNM PN (IO IO OO (Ao
o OV MMWNYY YYTN LYY LOBEY VUNODL LIBnKLn  Linnonag
w b= Rk R T 00 2 e S Al Sl Akt S S e
o
1 =
b
3
7 COOHS HOMYM HNENRY WADNN VNONY ANO®O VOrYM URH WO
o OV BHDLD TAHAAYO YOO®- VOHBH OVTEUR HHEAISO COQD0C
=] OWOQYW WHHOO HoltLe WKV MARNE-Y 00500 0Q000 QOOOC”
3 Y | gness aseng wemad 4MQgeQ 99082 Q9299 9QQQg 2€qo9
n - - oy =
NEALON VBiThE O¥Yt-d wowwe donllk MY-HOW YTadd QQCoCo
NOTHE HEOMD FTONYR *TOORY ROWVEN GHNOO CODOO COOO0O
& HOYrr T @DOMN OWRON WMYINNHY HOoDODO 00000 CO0O0O0 CODOC
. OO@RNY NYEETR UNHOC 0C00Q C00oBDh CcEDCO TOAOC OQ0OoC
P B A -] . R - S T eTe e aRae e i e e eeiie
=] i s
5 ONHAD VN IRe¢ FODED MOVN VOGN WUMACO wrrdcd QLKA
OO0 Whmwg® wWANMTH QWON MYVWE WVOWONDN M0 B~
ke Qo0 M Oodaw wadan MYImn MURLIN VLIEDD VRHBOY LD
G| QAR M FLn VKMYWYY YVveWw Yowewd vwiewwe Woowo wwowowe
P v e P A B S A At A A R e s r  mamoee
. :
OHOOY ~ W@ HROHE® YUY O Neante RN NEHCO0
= OCN@M~WN MAVYW ~ARYO OOTO Mevya® NMeA0C 00QQQ
bl OrWOY DOTHVYN ATV MUONN NMNCHOD 0000 ©000O0
| Hades wwodv Noven @HHocC Tl QRRQQe QQOQqQ
wr-tdy dtoddd LT R - * ' b
= - - .
armein FAMAOOD oo Moo A0 onndesy HQO000
- QOO TrHrNY MONOS GONMH MEYNNd 0O0DO0Q O00QQO
oy ConNY T PYTOO YNHKRD WUYEdHd C000dYM 00000 QOoOCO
Qrdtd QAR MAH-HS 99397 {eQdY Qaavy Qagad
VETMEN Qe Soree A SHeided e me
OrOnE WY OTVVEOY VONRN OYRUEAD @K Mannn
OOArMOAdYd NOOHO WHOYrH®R AYOOW QNONY YYWSTT TETTYE
bl ONYTIO DNMYRO NBSNO0 oo OEOENT  GEIeN e
QoY QMuNg QMR YNneS Hand MmO Y%
o v cdecde wmnen menane 4444& Pt M&&&&
i =)
= My VYO QNMmY NON-O% Qr@nT MORQN OHANY WOK DN
d " =t rvddrdd Jdddd cdoictoded dodcdickad el e

T

A



NACA TN 3401
TABLE ITI. - SKIN-FRICTION AND HEAT-TRANSFER COEFFICIENTS
f=19
Prandtl number, o

0.72 1.0
N A N B R Fc=
1.0 11.128 3.64 2.0 3.64 2.0
1.5 ]1.057 ———- - 4.33 2.0
2.0 |1.019 4.55 2.032 4.91 2.0
3.0 .979 mm——— | eeaaa 5.91 2.0
4.0 .958 5.86 2.060 6.80 2.0
5.0 .944 === | ee--- 7.63 2.0
6.0 .935 6.94 2.074 8.42 2.0
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(b) Coordinate system fixed with respect ta shock wave.

Figure 1. - Coordinate systems used to study boundary layer behind shock advancing into
stetionary fluid.
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Figure 2. - Boundary-layer velocity profile. (u,/fu, = 1 re-
fers to limiting case of very wesk shocks.)
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