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TECHNICAL NOTE 3329

SHOCKS IN HELICAL FLOWS THROUGH ANNULAR CASCAIES OF STATOR BLADES

By Robert Wasserman and Arthur W. Goldstein

A method is presented for calculating supersonic potential flows in
annular cascades of blades by the method of characteristics. It iS found
that helical flows may be adjoined by helical shocks of uniform stre@hj
these constitute a considerable addition to the class of simple flows
available for designing cascades of lifting blades. It was also found
that by selection of the proper variables, the derivatives of the veloc-
ity caponents~ w~ti OCcur fi the ~ter~tic e~tio~, could he
conbined into an exact differential..This form of the equation facili-
tated computations. A flow and several.cascade designs were computed.

DVTKUXJCTION

In studying the flow of air through a compressor, an analytic de-
scription of the behavior of a particle on an “average~ streamline or
stresm surface going through the compressor is quite useful.. This t~e
of analysis requires assumptions such as axial symmetry or flow on sur-
faces of revolution. While they frequently serve well to get a good
over-all picture of the flow, in certain regions of the compressor-these
assumptions are generally untendble. These could he regions in which
the major part of the loss is occurring, so that such two-dimensional.
pictures would be inadequate either for design control or investigation
of the cause of these losses.

In order to construct compressors of msximum effectiveness and ef-
ficiency, it is desirable to have a description of the internal veloci@
field. As a step towsrd this ultimate objective, effort has been applied
to the less general problem of obtaining potential flows of a perfect
nonviscous fluid satisfying boundary conditions required in compressors.
Without assumptions of certain symmetries in the flow, such an analysis
involves the solution of differential equations in three independent
variables. Although several methods for obtaining general three-
dimensionsl potential flows in compressors have been described (refs. 1
and 2), the amount of numerical work re-quiredto get a specific solution.
is formitible.
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2 NACA TN 3329

Thus, since on the one hand present two-dimensionalmethods are
frequently inadequate and on the other hand the existing tbree-
dimensional methods are impracticalwith standsrd computing techniques,
an attempt was made to find simple classes of flows, or close approxi-
mations thereto, which could be used with the boundsry contitions re-
quired in a compressor. In particular, interest was focused on obtain-
ing supersonic fluus for the inlet region of a diffusing cascade of
stator blades. From the class of uniform flows, a flaw can be construct-
ed through a straight cascade of lifting blades by joining such flows
with plane shock surfaces which originate on the blade surfaces. The N
velocity potential is, in this case, a linear function of the cartesian

g

coordinates. For an annular cascade, a free-vortex upstream flow results
m

in shock surfaces which must be oriqnted for uniform shock strength in
order for a velocity potential to exist. The simplest class of such sur-
faces are those linear in e and z, which are the polar angle and axial
distance, respectively, of the cy~ndricsl coordinate system. These
shock surfaces impose certain boundary conditions on the velocity com-
ponents as functions of r (distancefrom polar axis) for the flow on the
dmnstream side. It was found that the solutions which satisfy these
boundary conditions =e helical flows which have velocity components ex-
pressible as functions of two independent variables. The helical flows
for annular cascades are therefore the counterparts of the uniform flows
for straight cascades in that they represent the simplest class which con-
tains the free-vortexupstream flow and which maybe adjoined by uniform
shocks, while the uniform (constant) flows represent the simplest class
which contains the constant upstream flow and which may be joined by
shocks.

Because the upstream flow and the shock-surfacenormals involve
only the variable r, a velocity potential of the form q =bz+ ce+ g(r)
(where b and c are constants)might be tried; that is, the simplest
class of potential flows with a radial component. However, the boundary
conditions imposed by a shock of uniform strength give functional rela-
tions between the velocity components that cannot, in general, be satis-
fied by a flow of this class. Another approach was to try to adequately
approximate the potential function in terms of arbitrary functions of
r and then satisfy the lxm.ndaryconditions exactly. Tbls procedure re-
sulted in inade~te approximationsto the potential-flow equation. In
the end, no potential.flow or approximate potential flow, expressible in
terms of functions of single variables, couldbe found which satisfied
the regyired boundary conditions or approximationsthereof.

Thus, while the three-dimensionalproblem is reduced without further
assumption to a two-dimensional one, further reduction seems unlikely.
Consequently, the problem was solved by the method of characteristics in
two dimensions. In the mathematical sense, the flow is two-dimensional
in that the flow problem involves two independent coordinates. In the .4’
physical sense, the flow is three-dimensional in that the velocity vector
fields sre not identical for a set of surfaces as in the csrtesian flow.

--—— —— - .——. -. ——. —.— .
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The following symbols
referred to the stagnation

A,B

a

C,D

F,G

f

h

J

K+

K

%

%X6>%

r

s

T

t

SYMBOIS

are used in this report: (All velocities are
sonic speed as the ~t of velocity.)

constant coefficients ii
tinate transformation

local velocity of suund

constant coefficients in

functions of coordinates

function of r in shock

shock equation F = O and in coor-

coordinate transformation

which define shock surfaces

egpation F = O

component of stream function w, h = h(r,s) = w +. t

Jacobian of transformation of coordinates, J
‘w

[

2vt AB4

1

(T-l)V~B%2A2 sinp -—
sin(~~)

r2(~E)2 +
Ur2(Vs)3 &##2

Mach

Mach

base

vector in Vr,Vs-plane (E = U/a)

nunber normal to shock surface

vectors along helical coordinate

cylindrical an~ helical
of coordinate system)

Curves$

}

cos a

helical.coordinate, M + Bz

coordinate (distance normal to ssds

4corrected stagnation sonic speed, T . 1 - ~ v;/R;

helical coordinate, Cfl+ Dz

— . —-.— —... ...—— --—. .- .__— —-—- —— -.—— _ .—— ----- -—... ..



4 NACA TN 3329

u

ii veloclty component in Vr,Vs-plane

u integral of streamlines independent of t

v --tu* of Y

v velocity vector, T = VrVr + V@Ul + Vz Vz

Vr)ve>vz PhYsical- veloci@ components in cylindrical coordinate system

#,@, vt T.Vr, ?.VS, Y.Vt, respectively

w ratio of U to corrected stagnation sonic speed, W = U/T

w integral of streamlines linear in t

z axial distance of cylindrical coordinates (distanceparallel
to 8xL8 of coordinate system)

a -11
Mach angle, a = sin-l-~= sin ~= sin-l &

P flow angle in Vr,Vs-plane measured from Vr toward

()Vs, f3=tan-1 —
IV:*

r ratio of specific heats

A AD -EC

8 angle of deflection of flow in Vr,Vs-planethrough shock
wave, e = J32-1310r es~4-~3

C+s. slopes of characteristic curves in r,s-surface

e polar angle of cylindrical coordinates
LJ

--— .— —. - .-—. . ......—.
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l?randtl-Meyer
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angle based on W, v=
s

cot a $

*cteristic coordinates

density of gas (relatiyeto stagnation value)

leading-edge vector

potential function

Subscripts:

a,b~c,
d,e,f

h

o

1

2

3

4

refer to fig. 1

hub

leading edge of blade

upstream side of F = O

downstream side of F = O

upstream side of G = O

downstream side of G = O

CONSTRUCTION OF SUPERSONIC DIFFUSOR FLOWS

Passage of Flo~ Through First Shock Surface

T,heflow upstream of the cascade is assumed to be a supersonic fiee-
vortex flowj that is, Vr = 0, rVe = constant, Vz = constant, and the hub

and the casing are circular cylinders. Also, the suction surface of the
blade is initially a stream surface of the upstream flow. When the
leading-edgewedge angle is not zero, an attached shock comes off the
leading edge on the pressure side of the blade. This shock will inter-
sect the hub, casing, and suction surface of the adjacent blade in cer-
tain curves.

In order that the flow downstream of the shockbe a potential flow,
the change of entropy across the shock must be constant and therefore
the Mach number normal to the shock must be constant. E-the shock sur-
face is givenby F(r,e,z) = O, then F mst satisfy

.-.. . .—.—- —..—. . . . —— .— _— ___ .————— —-—— —-—— -—-—-—- —-
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on F=O. Becsuse the upstresm velocity components ere functions of
r alone, the coefficients of the differential equation (1) for F do
not involve the coordinates O and z. A function F of the form

F =AO+Bz+ f(r)

will therefore satis~ e~tion (1), which reduces to

or

(J[df (T~.vs)2
G = a1~,1(Vs)2

where s is the quantity J@ + Bz, and a

A2 32

7-

1
1 (VS)2

1

(2)

is the sonic speed givenby

a2 ‘-1V2 (when the stagnation sonic speed is takento be the unit=1-T

of velocity). Thus, the class of shock surfaces obtained is

f(r)+s=O (3)

inwhich f is the solutionof equation (2). If it is required that
the casingbe a cylindrical surface of revolution, a reflected shock sur-
face G = O results which intersects the surface F = O at the casing
and which is so oriented that no radial deflection to the fluw will re-
sult from passage through both shocks. The shock surface G = O will
int=sect We
shspes of the
tainedby the
surfaces.

fib and the blade surfaces downstream of F = O. The
hub and suction surfaces downstream of F = O are ob-
condition that the shock F = O is not reflected at these

Fluw Field Downstreemof First Shock

After calculation of the flow through the first shock (1?=0), the
downstream flow fieldmustbe constructed. Helical flows willbe shown
to satisfy the boundary conditions on the shock, thus reducing the prob- .
lem froma three-dimensionalto a two-dimensional flow not restricted

——._ -_ — .--—— —-. . -- -- —



NAC!ATN 3329 7

by the usual symmetries required of two-dimensional flows in cartesian,
cylindrical, or spherical.coordinates. The problem will be further re-
duced to ordinary differential equations by the introduction of charac-
teristic coordinates, and then further simplifiedby the introduction
of the Prandtl-Meyer angle variable.

To obtain the fluw downstream of F = O, consider the boundary con-
ditions imposed by ‘thissurface. For the velocity downstream of F = O,

(4)

where

and the signs of df/dr and the coefficients A and B are chosen to

give VF~~lsO ~<o.and Vr,2 ~ In terms of a helical coordinate sys-

tem given by

rr=

s =A6+Bz
\

(5)

the boundary conditionsby eqpation (4) are

where A = AD

If there

~2.q . T1.q - %% f, -%%f ‘

m ‘m.

%%
V2“Es

al%
= T1.Rs - ~F = * (Drve - @Jz) - ~F

m rr

1

(6)

‘2”% = ~1”~ = ~ (- BrVe + AVZ) = constant

- EC, ~ = (VsxVt)/(Vr.VsxVt),and so forth.

is a potential flow

T=V6

. . -.-— .. . . .. . .. ..— . . ..— ___ __ _ ___ ..— —.
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with components

NACATN 3329

vt=q.~=g

and if it is of the degenerate we having bvi~t = O (helical flow)

where i = r,s,t, then

av~ avs

r=w=o

and Vt is therefore a constant. The boundsry conditions (6) f’ulfild.

this requirement. Consegpently, the equations for the flow downstream
of F= O are written in r,s,t coordinates, and solutions are sought
for which avifit = O.

The continuity equation is

Because

1

(
g

P
)

r-l ~2= Constknt “ 1 - —
2

then

V=v -’+”W2=0
2a

The formula for the divergence (ref. 3), in the case apt = 0, reduces
to

— — - — ..—.—
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V“7=

where J is the Jacobian

J=

of the transformation:

The second term of the continuity equation is

[

.-& v+vrF+v8F+ vtvt) + vQ-(vrF+v81f3 +Vtw
1

9

(7)

where

# s W.V = Vr.(vrVr + vsVs + vtVt) = vr

●

# = Vs.v = V8(VS)2 + vt(vs*vt)

1

(8)

Vt ~ V&v = v8(vs”vt)+ Vt(v’ty )
Because v% is constant, the equation of continuity maybe reduced to

[(F)2-a212‘Vr[ 2-a2@4=-+2+r2@0’@21=”
+2vw~.f. (+)

(9)

where derivatives of # and @ have been eliminated, and the eqw-
tion for zero vorticity

(lo)

has also been employed.

If characteristic coordinates ~ and q are introduced, then the
equations for r and s intermsof~ and q are

(n)

. . - . . —-. -—-— —--- — —— —.—— —— .. ..— —— --- ———.—- . . .—



10 NACA TN 3329

/

where ~ satisfies the

[
az- (Vqq

(ref. 4) with two roots

quadratic equation

[!2 + 2~@~ + a2(Vs)2 - (VS)2] = o (12)

The characteristicsflow equations are simplified somewhat by uti-
lization of the following relation from equation (12):

a2(Vs)2 - (vs)
2

!+C- =
a2 - (#)2

and the form which results is

}

(14)

Equations (11) and (14) are to be solved in a region downstream of
F = O, with the boundary conditions on F = O given by equations (6).
Fresent experience by the authors in the use of these equations indi-
cates that, when the trapezoidal rule of integration is used with finite
differences,an inte@al cczwerges more rapidly when the velocity incre-
ments given by the first two terms are combined into an exact differen-
tial. This canbe accomplishedby introducing the Prandtl-Meyer expan-
sion angle v and the direction an$le P as the variables defining the
flow. The velocity vector ~ maybe expressed in terms of the set of
unit orthogonal vectors Vr, Vs/lVsl, and ~/11+.1 as

# Vs ‘t %

‘= Fvr+FiFT+TzrTKT

--—. ——— -—_ ___ ..-— ——-
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The velocity components # and #/lVsi give a vector fi,where

Therefore,

Since vr = #

@

then

The

but i3h0

means of

troduced

\

F=ucosp,

and

= Vs.(vrVr + v~Vs

characteristic

‘r =

vEylVsj =UsinP

+ Vtvt) = VS(VS)2 + Vt(vs=vt)

u Cos p

U sin p Vs.vt
‘s=—- Ivsj ‘t (VS)2

slopes ~~lVsl involve not only U and P,

‘-1 @ + v~/~2) and therefore the coordinatea2=l-—
2(

r by

~:. However, if a modified stagnation sonic speed T is in-

where T2 =

speed, then an exact
ratio of velocity U

When the Mach angle

‘-1 U2 and the velocity is referred to thisa2+~

differentialmaybe constructed. Let W be the
to the modified stagnation sonic speed

‘=&
a is introduced,where

)

-... . . . . . — ----- .—. __.__— _____ __ _. -. —- ——. -— -----



12 NACA TN 3329

there are obtained

L* -

rr
= tan (~ T a)

Vs

and

ds=lvsltan(p Ta)&

inpkce of eptiou (13) and (n). With the definition

the flow equations (14) become

dvw3j3+I&=0

where

(U.a)
N
a
N3

(14a) ~

,

[

P? 2vt AB4

1

~ (y-l)v~B2r2
sin (~ *u) —sin~-

}

cos a
r2(Vs)2 Ur2(Vs)3 2T~4A2

For the method of characteristicsto be useable, a must be real, and
therefore U > a. That is, the velocity component in the Vr,Vs-surface
must be supersonic regardless of the magnitude of vt.

For trapezoidal integration, the following formulas are used to
calculate conditions at point c“(fig.
point a by a curve of q = constant

E = constant:

‘c -va+pc- ~a + [K+L,a

‘c - ‘a =[~Vsl tan (13-

Vc - vb - $C + ~ + LK-lc,b

‘c-% =[lvsJt= (B+

l(a)), where c is connected with
and with point b by a curve

(log r= - log ra) = O

1a, c,a (rc - ra)

1

(15)

(log rc - log ~) = O

a)1c,b ‘rc -%)

.—— -- —.. - — . —. —.—
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where the square
subscripts. The

brackets indicate the average
four equations will.determine

PC> S=, r=. Iteration

Continuation

of values designated
the.four gpantities

is required for accurate values of the Kis.

of Flow Field Through Reflected Shock

13

by
vc,

To continue the solution downstream, the condition that the casina
be a cylindrical surface (vr = O) is app~ied. The calculations Up to -

this point cover the region ABC (fig. l(b)), which is boundedby the
first shock and the two characteristic curves ~ = constant (AB) and

v = constant (BC). The regyired reflected shock is again assumedto
satisfy equation (l)j that is, if the shock is givenby G(r,s,t) = 0,
then G satisfies

● — = ~, ~ = constant
R &

(16)

on the surface G = O. However, since the coordinate t is not explic-
itly involved in any of the coefficients of the derivatives of G in
the homogeneous differential equation (16), it is possible to find a
function G(r,s) of r and s only, which will satisfy the contition
(16). Furthermore, since on the boundary

that is,

/1vr,4 = ~.~4 = vr,3 - a353 ~ IVG‘= a function of r or s

‘B,4
bG

/1 i‘~~9~4 = Vs,3 -a353m VG =a functionof r or s

vt,4 = Ii@74 = vt,3 = constant

the boundary conditions =e compatible with the assumption of a helical
flow in the field downstream of the shock surface G = O. That is, Vr

and Vs are functions of- r and s alone, and vt is constant. *

before, the problem is a two-dimensional one in the r,s-plane (contain-
ing Vr, Vs).

. .. .— -. . . . . .-— — .——-- — .—— .-—-—-- .-— ——- - —-. .-.— ----



14 NACA TN 3329

A typical situation wti.charises in the calculation is shown sche-
matically in figure l(b). The velocities me supposed known on a curve
def which crosses the shockwave the problem is to extend the solution
first to the point P and mibsequentlyto a new region containing the
point P and the extended portion ep of the shock curve. The normal
Mach nunibermaybe regarded as known, since it is constant and equal to
the value determined at the tip (point C, fig. l(b)) from the velocity
in the Vr,Vs-plane and the defections of the mow at

In addition to the shock equations, there are also
tions relating the velocity parameter v, the direction
the position of the point P with those of the points
are located on the-characteristics curve q = constant.
integration these equations are

the shock.

available equa-
angl.e ~, and
d and f, which
For trapezoidal

‘3-vd- ~3+~d+LK-13,d(logr3 - logrd) =0 )

‘4-vf- ~4+$f+ [K-14,f(logr4 - logrf) =0 J

S3 - .d = [lVS] tan (P + ~)]3,d(r3 - rd)

‘4 - ‘f = [Ivs itan (~ + ~)]4,f(r4 - rf) 1

(17)

(18)

.

where the subscripts 3 and 4 refer to the point P upstream and
downstream of the shock surface, respectively. The double subscript and
square brackets refer to an average between the points. It is necessary
to locate d and f in order to obtainby interpolation the values of
the quantities required. By utilizing the slope of the shock and the
curve q = constant, there are obtained the intersections

[rtVsjtan(P+u)_j3 ~- [rlVsl tan(~+)ls,e
log rd= log re + (log r3 -log re)

rlVs tan@+u) ~3,d-[rlvsltan(~-a)~d,e

[rlVslta(*)14,f-[rlvsltm(~)13,e(logr3 ~ogr)
log rf= log rg+

rlVsltan(&+a)j4,f-[rlVsltan(&~)lg,f -1(1:)
where 8W is the wave angle of the shock
of the shockwave. By subtraction of the
and utilization of

and tan (p + %) is the slope
characteristicequations (17)

(20)

-...— _—._-..- -———- —-. —



NACA TN 3329 15

where s is the deflection angle of the fluw passing through the shock,
there results

‘3- V4 +== (~~ - Q - (Vf - ~f) + [K-]3 ~(log rd - logr3) -
>

B-lh,f(logrf - @3r4) (21)

Equation (21) maybe solved in conjunctionwith the condition of
constant normal Mach nrmibersand the shock relations by the following
process: (1) Assume values of M3j then find values for V3 and ~

from supersonic-flowtables. (2) Calculate (3w. sin-1(~,#M3). (3)

From shock tables and values of M3 and Ow, find values for 8, M4,

and V4. (4) The correct solution is that for which V3 - V4 + s is

equal to the value calculatedly equation (21).

By iteration a convergence might be reached in which equation (21)
and the shock relations are first solved only roughly for values of V3,

V4) P3} and P4. Solutions are then obtained for rd and rf, folluwed

by interpolation for the required vsriables at those points. The proc-
ess is then repeated with refined values of the coefficients. However,
this process will often fail to converge for weak shocks because the
condition of constant normal Mach nwiber and the condition on
V3 -V4+8 are nearly the same. Therefore, the solution is nearly

indeterminateand will.fluctuate widely from one approximation to the
next. That these two conditions are not suitable for determination of
the shockwave may%e seen from the following considerations. When the
shock is weak, V3 - V4 = 8$ and equation (21) gives a value for

V3 -v4+s=2e. Also, a condition of constant normal Mach nuuiber

corresponds to constant pressure ratio. Graphs of shock-wave solutions
will show that, for assigned values of the pressure ratio and e, the
incoming Mach nuniberis nearly indeterminate.

Since for weak shocks the solution is practically indeterminate, an
alternate procedure was used, which involved the assumption of a value
for one parsmeter such as 114. The value of V4 may thenbe determined

i%omthe second equation (17). By using the approximation V3 =V4+ e

in eqpation (21), a value is then determined for .ej this value is mib-
stituted into equation (20) to determine ~3 and V3 = V4 + & Tables

are usedto find ~ from V3, and the wave angle is then calculated

from * = sin-1(~~,3). The results shouldbe checked for consist-

ency with the shock tables. If the agreement is not close enough, a new
value for J34 is assumed.

. ...... .. —------- . -—-—------——— --—-- — .-. --
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It has been found expedient in the solution to fix a value

and to permit S3 and the points d and f to fluctuate frm

TM 3329

for r3

one

iteration to the next, because
slightly thus permitting rapid
network is controlled.

When the solution for the
ation is somewhat different in

the locations of d and f vary ouly
convergence and because the size of the

shock is started at the casing, the situ-
that p = 90°, but a value for v is not

available. Huwever, if the point P is chosen close enough to C that
variation in parameters may be neglected from C to the point on the
casing correspondingto f, no great increase in computation will.result
because the size of the interval on the shock curve canbe rapidly in-
creased after the solution is begun. Such a procedure is valid, because
it canbe shown that it results in a solution continuous

BLADE AND HU6 SURFACES

After the flow field has been obtained, the lniband

at the point C.

blade surfaces
maybe computed by using the property that they are stream surfaces and
therefore contain the velocity vector ~. Because the equation of con-
tinuity

V“(pv)=0

is satisfied, there exist two independent strem functions U,W which
satisfy the equations

Vu”v = Vw.v = o

These functions maybe Mentifiedby exsmining the ~nded form of the
continuity equation

where J (= r/A = (Qr.VsxVt)‘1) is the Jacobian of the transformation of
coordinates. Because all the quantities @vi ~e ~ctions of r ad

s only, then the last derivative
tion indicates the existence of a
the stream function of the flow.

i&=pJvs

is zero &dthe remainder of the equa-
potential function u(r,s), which is
Then,

or

all= pJ(vf%r - Fas)

or

.

— . . — --—---—— -— --- -— --—--
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Vu = pJ(v%r - #Vs) = p~l$

The surface u = constant is therefore the solution of

17

aras
7=7

With the first solution assumed known, then
w can he found such that

pv = Vuxvw.

For an srbitrary path element dR,

the second stream function

p dRx’T=vuaR*vw -vwaR*vu=vu aw-vwau

whereas for a path element on the surface u =.constant, there results

PA*tmxv
dw=—=

A*Vu

wher~ A is an arbitrary vector

A ‘% then

such that AOVU # O. If, for example,

Vt #
dw=-dt+-ds=-dt+-dr

@ 6

where, in the course of the integration,u is to be regarded as con-
stant. In integrated form,

The
the

coefficients of integration maybe exchanged for those computed in
field, so that

u=*fPur(lvslsinP*-cosP*)

Since u may be calcnlatedby integration on any path, the integrations
are made on characteristic ~vesj these curves were chosen because the
data have been computed on them. Therefore,

* ds=ll?sl tan(~~a)dr

----- .. . ------- .—— —— ..— ——..— ___ _____ ... ..——. _— --— .— —.. ___ ______ . . . .
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and

NACA TM 3329

d
y+l

J’ sin a dr awrlVsl dr
u =** pUrlVsl ~o~ ~Ta =*;

Cos (p?a)

The upper sign is used for integration on curves of q = constant, and
the lower, for curves of ~ = constant. The sonic speed is given by

where

N

8
to

and M= I/sin a. That is, a/T is taken as the ratio of sonic speed to
stagnation sonic speed, which is consistentwith the values of v~ a, or
M.

After contours of u = constant are established, then at appro-
priate points on the contours r, a, and a are determined and the
folluwing integration is made:

h(u,S)

‘f$”=vtf* .

with

u= a/sin a = TW =

+

The leading edge of the blade is defined by a curve that lies in
the surface F = () aUd on w~~ r as-es a set of -ues rh Sr ~rt>

where rh is the inner wall radius. Consequently, r may be used as a

parameter for the curve

so = so(ro)

to = to fro)

“t
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where the mibscript O indicates the leading edge. However, the con-
dition that F = O establishes a condition on so, and the leading

edge is given by

‘o = - f(ro)

to =to(ro)

When h(r,s) is calculated, the integration on surfaces of constant u
may be started from the curve F =0 withaboundary valueof h=O,
so that h(r, - f(r)) = 0, and consequently ~ = O and

wo. ~-to. - to(ro). A seqyence of values of r. will result in a

sequence for wo~ so and therefore ~, so that the the following func-

tional relation is given between w and u, which defines the stream
surface in question:

w=- to(ro)

u= u(ro,so) = ~(ro, - f(rO))

A section of this surface at constant t is obtainedby assuming
values of h, which in turn define w = h - t. The stream-surfacerela-
tion between w and u then gives the ’correspondencebetween h and
u, thus determining the desired curve. A section at constant r is ob-
tainedby assuming values for s, which then define h, u, w, and
t =h-w. A section at z = constant is determinedly substituting
the value of t in terms of h and w(u)

t =h -W(U)

in the following relation betweeq z, s, and t:

Cs - At = (BC - ~)Z

Then,

Cs - Ah + Aw(u) = (~ - ~)Z

expresses a relation between r and s that, with

A9=s-Bz

determines the section.

----- . . . . .. . . . . . . . ..._. —_ ——- —-.—— ...-— — —.. . —— -—.. .-. .——. ______ .-.
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.

If A = O and z is constant, then s = conmant,
te= =h(r,O) - w(u) gives the desired relation between r and O
for constant z.

Finally, the factors involved in the selection of the function
to(ro) are considered. One factor of importance in fabrication is the

wedge angle of the blade as measured between the intersections of the
bla& s~faces in the
normal.to the leading
deflection angles for
ponents normal to the
by

region nesr the leading edge with plane elements
edge. These angles are obtainable directly as the ~
oblique shocks where the gas velocities are com- m
leading edge. If the leading-edge vector is given

F.~+R&+R&

the condition that ;*VF = O determines ds/dr

~.~-ft(r)Rs+~~

= - f!(r). Then,

The magnitude of the velocity required is tlien 1~~1/~%1, and the ef-

17*1
fective Mach mmiber and wave angle are —

a[%l ati ‘in-’ (;~r’)’
respectively. The deflection angle can then be evaluated from standard
tables as a function dk/dr and from the initial shock surface.

As an example, a flow field was calculated for the following condi-
tions: The free-vortex upstream flow was determinedby the assumption
of a Mach number of 2.0 at an angle of 45° with respect to the axial
&Lrection and lying in a cylindrical surface r = 1.0. The curve rep-
resenting the intersection of the initial shock with the surface
= 1.0 was determinedly setting s = e. The shock strength was also

~ssumedby setting %,1 = 1.0927.

With no loss in generality, C = 0, D = 1. The formula for K&
reduces to

K+=&tan(13~a)

.

.. . . .
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In constructingthe network of points not on a shock, the first
calculation gave accurate values of UC) PC, rc, ec when the assump-

tions that [K+]c,a “ [K+]a ad [K-]c,b - [K-h were used. However,

the coefficients [K+]c, [K-]c, tan (BC - UC), andso fofih, were calcu-

lated and one iteration executed as a check. This calculationwas based
on a net with an increment in r of approximately 0.05 between ~acent
computed points of a characteristic curve. When a point for extension
of the shock curve G = O was calculated (F = O was calculatedly a
direct integration),the first iteration gave an accurate answer and a
second was required for a check. If good estimates are made on the
variation of the coefficients,the first iteration could serve as a
check on the first integration.

The net of characteristic curves and the initial and reflected
shocks are drawn in figure 2 in the surface normal to the diffuser axis
and viewed in the direction of flow. The Mach ?nmibercontours resulting
from the velocity component normal to the surface downimrd through the
sheet and the calculated r,e components are also shown. These contours
are, of course, discontinuous at the shocks.

Stream functions are shown in figure 3. The values of u have been
dividedby uh> which is the value of u for the entire flow in the

region 0.7 e r ~ 1.0 upstream of the first shock, in order to indicate
more clearly the equal increments into which the flow has been divided.
Similarly, the contours of h = constant are shown with values of h
dividedby a displacement of z equal to 0.06556 times the tip radius.
If a blade is assumed to pass through the shock surface F = O at
z = 0, then the h contours are blade pressure-surface sections at con-
stant z, spaced at axial-distance increments of 0.06556 times the tip
radius. If 20 blades are assumed, then at r = 1.0 the preceding blade
is encountered at f3= - 18°, which corresponds to h/O.06556 = -4.8.
These sections were computed and then shifted 18° to indicate the pres-
sure and suction surface of a blade at the same z-location rather than
the channel between two blades. The hub surface to the right indicates
the hub at the suction snrface.

A different shape for the blade canbe obtainedby assuming
w= w(u) instead of w = O. For example, if the pressure surface of the
blade is to contain a radial Une, then, when z = 0, e must be zero.
Therefore, on the initial curve, w(u) is establishedby

w(u) =h(u,O) - Z =h(u,O)

From this equation, h can be determined for each pair of values U,Z,
and consegpently the value of e can be determined from the value of
h(u,e) andof U. Curves of this type are shown in figure 4, where the

— ---- .- ----- .—- — ---
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blade sections are taken at equally spaced values of z. The suction
side of the blade is computed as for the previous example (fig. 3), with
the assumption of 20 blades.

EVALUATION OF METHOD

Calculation of helical flows by characteristicsrequires more time
than for cartesian flows, but the th in~lved iS not pro~bitive. me
main advantage of the method is that it gives rigorously a-more general
class of flows than have been heretofore available by two-dimensional
methods. It is now possible in a larger variety of circumstances to
give a qualitative descriptionof actual flows in three-dimensionalma-
chines and to broaden the approach to the design problem. As a design
method, it has the disadvmtage of not permitting the descri~ion of the
blade shape, hub, and casing surfaces in advance of the calculation.
However, once a flow is computed, a variety of blade shapes maybe com-
puted, depenting upon the assnmed spacing md leading-edge orientation.
These blade shapes include swe~ and tilted blades, thus permitting a
new degree of freedom to the designer.

A restriction on shock-wave orientation for cascade design is evi-
dent on comparison with the class of uniform flows. These uniform flOWS
maybe joinedby plane shock surfaces of any orientation provided that
the normal Mach nuniberis supersonic. The helicsl fluws, on the other
hand, when joinedby shocks of uniform strength, generally give rise to
flows with a vsriable helical covariant velocity component vs in addi-

tion to the radial component. Sho~k surfaces are therefore limited to
the class containing the vectors ~ normal to both Vs and Vr. That.

is, the coordinate s must not be changed as long as vs is not con-

stant. When vs is reduced to a constant, then a new class of shocks

maybe used and the vsriable s may be modified. in the case of the
annular cascade this does not represent a limitation in design procedure,
because the uniform flows sre inapplicable and the helical flows are
required.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, Septeriber14, 1934
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(a) Interior point in mntinuous flow region.
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(b) Boundaries and shock waves.

Figure1. - Notation for points in flowfield.
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