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SHOCKS IN HELICAL FLOWS THROUGH ANNULAR CASCADES OF STATOR BLADES

By Robert Wasserman and Arthur W. Goldstein

SUMMARY

A method 1s presented for calculeting supersonic potential flows in
annular cescades of blades by the method of characteristics. It is found
that helical flows may be adjoined by helical shocks of uniform strength;
these constitute & consldereble addition to the class of simple flows
avallable for designing cascades of lifting blades. It was also found
that by selection of the proper variables, the derivatives of the veloc-
ity components, which occur in the characteristic equations, could be
conbined into an exact differential. This form of the equation faclli-
tated computations. A flow and several cascade designs were computed.

INTRODUCTION

In studying the flow of air through a compressor, an anelytlc de-
scription of the behavior of a particle on an "average" streamline or
stream surface going through the compressor is quite useful. This type
of analysis requires assumptions such as axial symmetry or flow on sur-
faces of revolution. While they frequently serve well to get a good
over-all picture of the flow, in certain regioms of the compressor -these
assumptions are generally untenable. These could be regions in which
the major part of the loss is occurring, so that such two-dimensional
pictures would be inadequete elther for design control or investigation
of the cause of these losses.

In order to construct compressors of meximm effectiveness and ef~
ficiency, it is desiresble to have a description of the internal velocity
field. As a step toward this ultimate objective, effort has been applied
to the less general problem of obtaining potential flows of a perfect
nonviscous fluid satisfying boundary conditions required in compressors.
Without assumptions of certain symmetries in the flow, such an analysis
involves the solution of differential equations in three independent
varigbles. Although several methods for obtaining general three-
dimensional potential flows in compressors have been described (refs. 1
and 2), the amount of numerical work required to get a specific solution.
is formidable.
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Thus, since on the one hand present two-dimensionsl methods are
frequently inadequaete and on the other hend the existing three-
dimensional methods are impractical with standard computing techniques,
an attempt wes made to find simple classes of flows, or close approxi-
mations thereto, which could be used with the boundary conditions re-
quired in a compressor. In particular, interest was focused on obtain-
ing supersonic flows for the inlet region of a diffusing cascade of
stator blades. From the class of uniform flows, a flow cen be construct-
ed through a straight cascade of lifting blades by joining such flows
with plane shock surfaces which originate on the blede surfaces. The
velocity potential is, in this case, a linear function of the cartesian
coordinates. For an anmular cascade, a free-vortex upstream flow results
in shock surfaces which must be oriented for uniform shock strength in
order for a velocity potential to exist. The simplest class of such sur-
feces are those linear in 6 &and =z, which are the polar angle and axlal
distance, respectively, of the cylindrical coordinate system. These
shock surfaces impose certain boundary conditions on the velocity com-
ponents as functions of r (distance from polar axis) for the flow on the
downstream side. It was found that the solutions which satisfy these
boundary conditions are helical flows which have velocity components ex-
pressible as functions of two independent varliebles. The helical flows
for annular cascades are therefore the counterparts of the uniform flows
for straight cascades in that they represent the simplest class which con-
tains the free-vortex upstream flow and which may be adjoined by uniform
shocks, while the uniform (constant) flows represent the simplest class
which contains the constant upstream flow and which may be joined by

shocks.

Because the upstream flow and the shock-surface normals involve
only the varisble r, a velocity potential of the form ¢ =Dbz+ch+g(r)
(vhere b and c¢ are constants) might be tried; that is, the simplest
class of potential flows with a radial component. However, the boundary
conditions imposed by a shock of uniform strength give functional rela-
tions between the velocity components that cannot, in general, be satis-
fied by a flow of this class. Another approach was to try to adequately
approximete the potential function in terms of arbitrary functiomns of
r and then satisfy the boundary conditions exactly. This procedure re-~
sulted in inadequate approximations to the potential-flow equation., In
the end, no potential flow or spproximate potential flow, expressible in
terms of functions of single veriables, could be found which satisfied
the required boundary conditions or approximations thereof.

Thus, while the three-dimensional problem is reduced without further
assumption to a two-dimensionsl one, further reduction seems unlikely.
Consequently, the problem was solved by the method of characteristics in
two dimensions. In the mathematical sense, the flow is two-dimensionsl
in that the flow problem involves two independent coordinates. In the
physical sense, the flow is three-dimensional in that the velocity vector
fields are not identical for a set of surfaces as in the cartesian flow.
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The following symbols are used in this report:

SYMBOLS

referred to the stagnation sonic speed as the unit of velocity.)

A,B

c,D

F,G

H

(A1l velocities are

constant coefficients in shock equation F =0 and in coor-

dinate transformation
local velocity of sound
constant coefficients in coordinate transformation
functions of coordinates which define shock surfaces
function of r in shock equation F =0

component of stream function w, h = h(r,s) =w + ¢

o(x,y,z)

Jacobian of transformation of coordinates, J = e
b 4

2
1 cos B . 2 A AB Y%
sin o {' cos (B¥a) [31n o+ (rl Vs | sin B - r(vs)2 ?) ] +

2 2vy ABA|  (y-1)vEBZr2
A® gin B t t
sin(Bxa) - = - cos o
( [rz(Vs)z Urz(Vs)S] ZTZR%AZ
Mach vector in Vr,Vs-plane (M = T/a)

Mach number normal to shock surface

base vectors along helical coordinate curves,

- Vs xVt
Br = froyexve StC

cylindrical end helical coordinste (distance normal to axis

of coordinate system)

helicel coordinate, AP + Bz

corrected stagnation sonic speed, T =1/; - %l v_E/R_E

helical coordinate, C6 + Dz

e e an -
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Vr:Ve:Vz
vr,vs, v

W

£t
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magnitude of T

velocity component in Vr,Vs-plane

integral of streamlines independent of +

magnitude of V

velocity vector, V = V,.Vr + VgrVe + V, Wz

physical veloclty components in cylindrical coordinate system

V-R., V-R;, V-R, respectively

V.vr, V.vs, V.Vt, respectively
ratio of U to corrected stagnation sonic speed, W = U/T

integral of streamlines linear in +

axial distance of cylindrical coordinates (distance parallel
to axis of coordinate system)

= ginl & = ginl L = gin~l &
Mach angle, o = sin U-sin M_sin T

flow angle in Vr,Vs-plane measured from Vr +toward

v =tan-l [ Y5
o B=ten ()

ratio of specific heats

AD - BC

2 1-M8
TH My

angle of deflection of flow in Vr,Ve-plane through shock
weve, € =By ~ By or e=B,; - Bz

slopes of characteristic curves In r,s-surface

polar angle of cylindrical coordinates

3242



a2vee

NACA TN 3329 5

) Pra.ndtl-Meyer angle based on W, v= f cot o %‘?—
g, characteristic coordinstes

P density of gas (relatiye to stagnation value)
T leading-edge vector

@ potential function

Subscripts:

8,9, refer to fig. 1

d,e,f

h hub

0] leeding edge of blade

1 upstream side of F =0

2 dovnstream side of F =0

3 upstream side of G =0

4 downstream side of G =0

CONSTRUCTION OF SUPERSONIC DIFFUSOR FLOWS
Passage of Flov/r Through First Shock Surface

The flow upstream of the cascade is assumed to be a supersonic free-

vortex flow; that is, V. = 0, rVg = constant, V, = constant, and the hub

and the casing are circular cylinders. Also, the suction surface of the
blade is initially a stream surface of the upstream flow. When the
leading-edge wedge angle is not zero, an attached shock comes off the
leading edge on the pressure side of the blade. This shock will Inter-
sect the hub, casing, and suction surface of the adjacent blade in cer-
tain curves.

In order that the flow downstream of the shock be a potential flow,
the change of entropy across the shock must be constgnt and therefore
the Mach number normel to the shock must be consteant. If the shock sur-
face is given by F(r,0,z) = 0, then F must satisfy
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o, W
8 [VF]
on F = 0. Because the upstream velocity components are functions of

r alone, the coefficients of the differentisl equation (1) for F do
not involve the coordinates 6 and z. A function F of the form

= My 7 = constant (1)

F = A8 + Bz + £(r)

will therefore satisfy equation (1), which reduces to

Wy . 2 )
& -G -5
dr a‘lM'n,l re
or > (2)
arf (?l'vs)2 2
Ay Sl 2w
(dr)z a]Z_M.E,l(VB)Z Ve) )

vwvhere s 1is the quentity A9 + Bz, and a 1is the sonic speed given by

a2 =1 - %l V2 (when the stagnation sonic speed is taken to be the unit
of velocity). Thus, the class of shock surfaces obtained is

2(r) +8=0 (3)

in which £ is the solution of equation (2). If it is required that
the casing be a cylindrical surface of revolution, a reflected shock sur-
face G = 0 results vhich intersects the surface F =0 at the casing
and which is so oriented that no radial deflection to the flow will re-
sult from passage through both shocks. The shock surface G =0 will
intersect the hub and the blade surfaces downstreem of F = 0. The
shapes of the hub and suction surfaces downstream of ¥ =0 are ob~
tained by the condition thet the shock F =0 1is not reflected at these

surfaces.

Flow Field Downstream of First Shock

After calculstion of the flow through the first shock (F = 0), the
downstream flow field must be constructed. Helical flows will be shown
to satisfy the boundary conditions on the shock, thus reducing the prob-
lem from a three-dimensional to a two-dimensional flow not restricted

3242
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by the usual symmetries required of two-dimensional flows in cartesian,
cylindrical, or spherical coordinates. The problem will be further re-
duced to ordinary differential equations by the introduction of charac-
teristic coordinates, and then further simplified by the introduction
of the Prandtl-Meyer angle variable.

To obtain the flow downstream of F = 0, consider the boundary con-
ditions imposed by ‘this surface. For the velocity dowvnstream of F = O,

VF
V2 =T1 - 2% [T ()
where
2
8 "2 l Mn’l

1 Y'+l M’ﬂ, 1

end the signs of df/dr and the coefficients A and B are chosen to
give VF-\71>O and Vr’z g;:. < 0. In terms of a helical coordinate sys-

tem given by
r=r

8

A + Bz (5)

t = CO + Dz

the boundsry conditions by equation (4) are

-a15,f* 3
TR TR - e - ST
- = = aL151 1 838y

‘Z(DI‘VQ-CVZ) -]ﬁ.'l' > (6)

x,
o
I
i
o]
W

o= = o= 1
VR, = V;-Ry = x (- BrVg + AV,) = constant J
where A = AD - BC, R, = (Vsx¥)/(Vr.VsxV), and so forth.

If there is a potential flow

T=va

e e ma e et i - ot — ————
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with components

H
]
ol
<
N
gl
&
I
g

P
0
]
o)
<
I
el
e

V't =Rt-

<
H

and if it is of the degenerate type having avi/at = 0 (helical flow)

where i = r,s,t, then

th Bvs
ds = ot =0
th Bvr
5 =5 =0

and Vi is therefore a constant. The boundary conditions (6) fulfill

this requirement. Consequently, the equations for the flow downstream
of F=0 are written in r,s,t coordinates, and solutions are sought

for which Bvi/B'b = 0.

The continuity equation is

1 = - = Vp
= V+(pV) = V- L
5 (V) V+¥-=2=0
Because
A
T-1
p = constant - (l - L;-]; Vz)
then

V'V - i2 V'Wz = Q
28

The formula for the divergence (ref. 3), in the case J/dt = 0, reduces
to

3242
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V-V = -3_—' [aa? (3Vz-V) + aés' (JVs-V)]

where J 1s the Jacobian of the transformation:

= o(x,y,2) 1
J = Bsr,s, T) ~ Vr-vsxvt A (7)

o
[

0 The second term of the continuity equation is

-—l-vra(vvr+vvs+vvt)+vsa(vvr+ v® + vyvP)
2a2 BE‘. r 8 t 3-8_ r vs Vtv
where
vE = PV = Vr.(v.Vr + v Us + v Wt) =
© v® = V8.V = v (Vs)2 + vy (Ve.Vt) (8)
Ve o= V.V = vg(Vs.VE) + \r.b(Vt')2

Because v, is constant, the equation of continuity may be reduced to

[(vr)z—a]aar 2v7ys JF [(v‘*) -ea@(\vs)ﬂa"s f[az-*rz(v-ve)] 0
(9)

where derivatives of v' and v® have been eliminated, and the equa-
tion for zero vorticity ]

Bvr ovg
s "5 =0 (10)

has also been employed.

If chaeracteristic coordinates ¥ and 1 are introduced, then the
equations for r and s in terms of £ and 17 are
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where { satisfies the quadratic equation
(o2 - ()] €2 + 2v¥vet + [s200)2 - (7] = 0 (12)

(ref. 4) with two roots

_ -vTve ¢ a[vs] V()2 + (v/]vs])? - a2 (13)

Qi ag _ (vr)z

The characteristics flow equations are simplified somewhat by uti-
lization of the following relation from equation (12):

_ a2(vs)2 - (v8)°
a2 - (v)°

£t

and the form which results is

vr [a.z + 12 (Dv® - th)z/Az]é:_c_ O\
oF

ov,. ) dvg .

+ — =
gg— - E r 8.2 - (vr)_z
> (14)

=0

ovy. g  T[a2 4 £2 (Dv® - B\r'l")z/A2 or
R e = i

Equations (11) and (14) are to be solved in a region downstream of

F = 0, with the boundary conditions on F = O given by equations (6).
Present experience by the authors in the use of these equations indi-
cates that, when the trapezoidal rule of integration is used with finite
differences, an integral converges more rapidly when the velocity incre-
ments given by the first two terms are combined into an exact differen-
tial. This cen be accomplished by introducing the Prandtl-Meyer expan-
sion angle v and the direction angle B as the varisbles defining the
flow. The velocity vector V may be expressed in terms of the set of
unit orthogonal vectors Vr, Vs/|Vs|, and R./|R;| s

L B
[Re] TRg]

= v® Vs
V = vlvr +rvSl Tos]

3242
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The velocity componments v* and v8/|]Vs| give a vector U, where

ﬁ:U(cos BVr + sin B I:—sl)
8

Therefore,

v* =U cos B, v&/|vs|

U sin B

Since v, = v and

vE = V8.V = Vs- (v,.Vr + vgVs + w,Vt) VS(VB)Z + v (Vs-Vt)

then

v, =U cos B

=UsinB -V VsVt
8 Jus[ Tt (ve)2

The characteristic slopes { :h/ |Vs] involve not only U and B,

but also a2 =1 - -Y-;—l- (v? + V.E/R%) and therefore the coordinate r by
means of R_E. However, if a modified stagnation sonic speed T is in-

troduced where T2 = a2 + T,;—l U2 and the velocity is referred to this
speed, then an exact differential may be constructed. Let W be the

ratio of velocity U +to the modified stagnation sonic speed

a

W=

-1 2
V2 - Lok vi/R
VWhen the Mach angle o is introduced, where

sin o =

2
U W

R S, ——
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there are obtained
ts _
]-v—B]- = tan (B + G.) (13&)

and
ds = |Vs]| ten (B F a) ar (11a)

in place of equations (13) and (11). With the definition

vsfcotm-%

the flow equations (14) become

dv:th+KH:-q:—=0 (14a)

where

2
=1 -cos B |.:2 A - : B
K = 1o G{cos(B Fa) [s:m %+ (ersl sin P r(vs)?2 U) ]+

_ 2wy ABA (v-1)vBer? con @
Ure(ve)3| | zTeREAC
For the method of characteristics to be useable, o must be real, and

therefore U > a. That is, the velocity component in the Vr,Vs-surface
must be supersonic rega.rglless of the magnitude of Vio

sin(B.-ha.)[ n B

— gi
ré(vs)2

For trapezoidal integration, the following formmlas are used to
calculate conditions at point c¢ (fig. 1(a)), where c¢ is connected with
point a by a curve of 1 = constant and with point b by a curve
& = constant:

Vo - Vg +Be - By + [K ] o (log e - log r5) =0 )
8, - Bg = ['Vs' tan (B - a')]c,a. (ro - )
, f (15)
Ve = Vp = Be + By + [K ]o 3 (log Tp - log 1) =0
8 - Sp = [IVs] tan (B + d.)]c,-b (re - 1)

—————— e e = = =

5242
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where the square brackets indicate the average of values designated by
subscripts. The four equations will determine the .four quantities Ves

Bes 8oy Y- Iteration is required for accurate values of the X's.

Continuation of Flow Field Through Reflected Shock

To continue the solution downstream, the condition that the casing
be & cylindrical surface (Vr = 0) is applied. The calculations up to

this point cover the region ABC (fig. 1(b)), which is bounded by the
first shock end the two characteristic curves & = constant (AB) and
n = constant (BC). The required reflected shock is again assumed to
satisfy equation (1); that is, if the shock is given by G(r,s,t) = 0,
then G satisfies

M- l—;—g-l =M, 3 = constant (18)

on the surface G = 0. However, since the coordinate + 18 not explic-
1tly involved in any of the coefficients of the derivatives of G in
the homogeneous differential equation (16), it is possible to find a
function G(r,s) of r and s only, which will satisfy the condition
(16). Furthermore, since on the boundary

= = VG
4-V3"3353—VG—|

Ve 4 = '1'\71.-74 = V. 3 - a3dz g%/]VGr a function of r or s

mq
A"
TS
]
ol
N
1

a function of r or s

_ oG
Vs,3 = 8393 a;/lVGl
Vt,4 = Rt‘f4 = Vt,s = constant

the boundary conditions are compatible with the assumption of a helical
flow in the field downstream of the shock surface G = O. That is, v,

end vg; are functions of-r and s alone, and vy 1s constant. As

before, the problem is a two-dimensional one in the r,s-plane (contain-
ing Vr, Vs).
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A typical situetion which arises in the calculetion is shown sche-
metically in figure 1(b). The velocities are supposed known on a curve
def which crosses the shock wave; the problem is to extend the solution
first to the point P and subsequently to a new region containing the
point P and the extended portion eP of the shock curve. The normal
Mach nmumber may be regarded as known, since it is constant and equal to
the value determined at the tip (point C, fig. 1(b)) from the velocity
in the Vr,Vs-plane and the deflections of the flow at the shock.

In addition to the shock equations, there are also available equa-
tions relating the velocity parameter v, the direction angle B, and
the position of the point P with those of the points 4 and £, which
ere located on the characteristics curve 1 = constant. For trapezoidal
integration these equations are

Vg - Vg - Bz + Bg + [K_ 13 4(log rz - log rg) = 0
(17)
Vy = Ve =B, + Byt [K_]é’f(log r, - log rf) =0

8z - 8g = [l ve| tan (B + co)]s,d(rs - ry)
(18)
By = Bp = [leltan (8 + “)]4,,.’_(1'4 - f)

where the subscripts 3 and 4 refer to the point P upstream and
downstream of the shock syrface, respectively. The double subscript and
square brackets refer to an average between the points. It is necessary
to locate d and f in order to obtain by interpolation the values of
the quantities required. By utilizing the slope of the shock and the
curve 1 = constant, there are obtained the intersections

[r[Vs]tan(B«L)]s a-[x|ve] ta.n(B+9w)]5 e
108 Tq= 198 Te * [r[va [tan(pra)] 5 o-[F[Ve[an(B-a)]g, ¢

(Llog T - log re)

[ersltan(B—l-a.)]4 g-[r]vs|tan(prow)]5 o

[—I Vsltan(Bw)h £~ [rIVsltan(ﬁ_a,ﬂg . (1og Ty~ log r,)

(19)

log rf= log r

where 6w is the wave angle of the shock and tan (B + 6w) is the slope
of the shock wave. By subtraction of the characteristic equations (17)

and utilization of

Bé = Bs + € (20)

3242
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where & 1is the deflection angle of the flow passing through the shock,
there results

Vg =V, + &= (v‘1 - ﬁd) - (vf - Bf) + [K_]S’d(log ry - log r3) -

[x_] 4, i,(1og rp - log r4) (21)

Equation (21) may be solved in conjunction with the condition of
constant normel Mach numbers and the shock relstions by the following
process: (1) Assume values of Mz; then find values for vz and az

from supersonic-flow tables. (2) Calculate 6w = sin'l(Mn’ z/Mz). (3)

From shock tables and values of M; end 6w, find velues for &, M4,

and v,. (4) The correct solution is that for which Vg - Vv, +& 1is
equal to the value calculated by equation (21).

By iteration a convergence might be reached in which equation (21)
and the shock relations are first solved only roughly for values of V3

Vy4s 33, and. Bg- Solutions are then obtained for ry end rp, Tollowed

by interpolation for the required variables at those points. The proc-
ess is then repeated with refined values of the coefficients. However,
this process will often fail to converge for weak shocks because the
condition of constant normasl Mach number and the condition on

Vz - V4 +& are nearly the same. Therefore, the solution is nearly

indeterminate and will fluctuate widely from one approximation to the
next. That these two conditions are not suitable for determination of
the shock wave maey be seen from the following considerations. When the
shock is weak, vz - v, » &, and equation (21) gives a value for

Vz -V, + & = 26, Also, a condition of constant normesl Mach mmber

corresponds to constant pressure ratio. Graphs of shock-wave golutions
will show that, for assigned velues of the pressure ratio and €, the
incoming Mach mumber is nearly indeterminate.

Since for weak shocks the solution is practically indeterminate, an
alternate procedure wes used, which involved the assumption of a value
for one parameter such as 54. The value of v 4 WAY then be determined

from the second equetion (17). By using the approximation vz =V, + &

in equation (21), a value is then determined for .e; this value is sub-

stituted into equation (20) to determine Bz and v, =V, + & Tables

are used to find MS from Va5 end the wave angle is then calculated

from 6w = sin"l(M3/Mn z). The results should be checked for consist-
J

ency with the shock tebles. If the agreement is not close enough, a new
value for B 4 is assumed.

et et v e — - ———— . ——
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It has been found expedient in the solution to fix a value for rs

and to permit 8z and the points d and f to fluctuate from one

iteration to the next, because the locations of 4 and f vary only
slightly thus permitting rapid convergence and because the size of the
network is controlled.

When the solution for the shock is started at the casing, the situ-
etion is somewhat different in that B = 90°, but a value for v is not
availeble. However, if the point P is chosen close enough to C +that
variation in parsmeters may be neglected from C +to the point on the
casing corresponding to £, no great increase in computation will result
because the size of the interval on the shock curve can be repidly in-
creased after the solution is begun. Such a procedure is valid, because

it can be shown that it results in a solution continuous at the point C.

BLADE AND HUB SURFACES

After the flow field has been obtained, the hub and blade surfaces
may be computed by using the property that they are stream surfaces and
therefore contain the velocity vector V. Because the equation of con-
timuity

V-(pV) =0
is satisfied, there exist two independent stream functioms wu,w which
satisfy the equations
Vu-V =%V =0

These functions may be identified by examining the expanded form of the
continuity equation )

2 (p1v) + & (o1v°) + = (p3v%) = O

where J (=r/A = (Vr-VsxV¥t)~1) is the Jacobian of the transformation of
coordinetes. Becsuse all the quantities pJvi are functions of r and
g only, then the last derivetive is zero and the remainder of the equa-~
tion indicates the existence of a potential function u(r,s), which is
the stream function of the flow. Then,

or

or

— - . - - — - b P e e = — .- e - - JR—

3242
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Vu = pJ(v¥r - vIVs) = pixR,

The surface u = constant is therefore the solution of

dr ds

v
With the first solution assumed known, then the second stream function
w cen be found such that
oV = VuxVw
For an arbitrary path element dR,
p ARV = Vu dR-Vw - Vw dRVu = Vu aw - Vv du
whereas for a path element on the surface u =.constant, there results

a pA-dRXV _ pA-dRXV AR« AXV
W = s = 0= = - ==
A-Vu PA-TXR, R+ AT

where A 1is an arbitrary vector such that A-vu ,1- 0. If, for example,
A = R,., then

\Tt V't
dw = -~ dt + 2= d5 = - db + — dr
ve =

where, in the course of the integration, u is to be regarded as con-
stant. In integrated form,

vt
w+t=h(u,s)Ef—ds
w V°

The coefficients of integration may be exchanged for those computed in
the field, so that

u=%prr (Jvs] sin B dr - cos B ds)

Since u may be calculated by integration on eny path, the integrations
sre made on characteristic curves; these curves were chosen because the
data have been computed on them. Therefore,

ds = |Vs] tan (B £ a) ar
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and

T+1

-1
1 sin o dr 1 al ersI dr
uw=xx p Ur|vs| cos (P + ) =X cos (B + @)

The upper sign is used for integration on curves of 1 = constant and
the lower, for curves of & = constant. The sonic speed is given by

£=(1-L1];W2)=____1__
2 a 1+%¥M2

where

TE"/I-%J—'V.%/RE

and M = 1/ sin o. Thsat is, a./T is taken as the ratio of sonic speed to
stagnation sonic speed, which is consistent with the values of v, o, or
M.

After contours of u = constant are established, then at appro-
priate points on the contours r, a, and o are determined and the
following integration is made:

h(u,s) = LAQPI as/lvs| | RsRg o
) % > >
ve Rf U sin B R§

with
™

,‘/ r-1,.2
1+ 5 M

The leading edge of the blade is defined by & curve that lies in
the surface F =0 and on wvhich r assumes a set of values rp<r<ry,

where 1), 1is the inner wall radius. Cousequently, r may be used as a
parameter for the curve

U=a/sina=TW =

sg = 8g(rg)

g = %o(zo)
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vhere the subscript O indicates the leading edge. However, the con-
dition that P = 0 esteblishes a condition on 8g, and the leading

edge is given by

8 = = f(ro)

tg = tp(zp)

When h(r,s) is calculated, the integration on surfaces of constant wu
may be started from the curve F =0 with a boundary value of h = 0,
so that h(r, - £(r)) = 0, and consequently hy =0 and

Wo =bhg - tg = - to(ro). A sequence of values of ry will result in a
sequence for wg, sy and therefore ug, so that the the following func-

tional relation is given between w and wu, which defines the stream
surface in question: .

W= - to(ro)
u = u(rg;89) = ug(rg, - £(rg))

A section of this surface at constant + is obtained by assuming
values of h, which in turn define w = h - t. The stream-surface rela-
tion between w and u +then gives the ‘correspondence between h and
u, thus determining the desired curve. A section at constant r is ob-
tained by assuming values for s, which then define h, u, w, and
t =h - w. A section at z = constant is determined by substituting
the value of + in terms of h and w(u)

t =h - w(u)
in the following relation between 2z, s, and +:
Cs - At = (BC - AD)z
Then,
Cs - Ah + Aw(u) = (BC - AD)z
expresses & relation between r and s +that, with
A0 =8 -~ Bz

determines the section.
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If A=0 and 2z is constant, then s = constant,
t =0 = h(r,8) -~ w(u) gives the desired relation between r and ©

for constant =z.

Finally, the Pactors involved in the selection of the function
to(ro) are considered. One factor of importance in fabrication is the

wedge angle of the blade as measured between the intersections of the
blade surfaces in the region near the leading edge with plane elements
normal to the leading edge. These angles are obtalnable directly as the
deflection angles for oblique shocks where the gas velocities are com-
ponents normal to the leading edge. . If the leading-edge vector is given

by

ds

= dt
T Rr+RS-aI—+RtE'

]

the condition thet T-VF =0 determines ds/dr = - £'(r). Then,

-'E=Rr-f=(r)Rs+Rt%;°-

The magnitude of the velocity required is then [TxV]/fx|, and the ef-

fective Mach number and wave angle are ——l?ﬁ and sin~1 (Mn__;__lil" l) s
ale| | o |

respectively. The deflection angle can then be evaluated from standsrd
tebles as a function dt/dr and from the initial shock surface.

EXAMPLE

As an example, a flow field was calculated for the following condi~
tions: The free-vortex upstream flow was determined by the assumption
of a Mach mumber of 2.0 at an angle of 45° with respect to the axial
direction and lying in a cylindrical surface r = 1.0. The curve rep-
resenting the intersection of the initiel shock with the surface
r = 1.0 was determined by setting s = 6. The shock strength was also
assumed by setting Mn,l = 1.0927.

With no loss in generality, C = 0, D = 1. The formmle for K:.t
reduces to

K, = & tan (B F a)
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In constructing the network of points not on a shock, the first
calculation gave accurate values of v o’ Bc, T, ec when the assump-

tions that [K+]c,a. = [K, ], and [K-]c,'b = [K_],, were used. However,
the coefficients [K,],, [K_]., ten (B, - «,), and so forth, were calcu~

lated and one iteration executed as a check. This calculation was based
on a net with an increment in r of approximetely 0.05 between adjacent
computed points of a characteristic curve. When a point for extension
of the shock curve G =0 was calculated (F = 0O was calculated by a
direct integration), the first iteration gave an accurate answer and a
second was required for a check. If good estimates are made on the
variation of the coefficients, the first iteration could serve as a
check on the first integration.

The net of characteristic curves and the initial and reflected
shocks are drawn in figure 2 in the surface normal to the diffuser axis
and viewed in the direction of flow. The Mach number contours resulting
from the velocity component normal to the surface downward through the
sheet and the calculated r,0 components are also shown. These conbtours
are, of course, discontinuous et the shocks.

Stream functions are shown in figure 3. The values of u have been
divided by w,, which is the value of u for the entire flow in the

region 0.7  r € 1.0 upstream of the first shock, in order to indicate
more clearly the equal increments into which the flow has been divided.
Similarly, the contours of h = constant are shown with values of h
divided by a displacement of z equal to 0.06556 times the tip radius.
If a blade is assumed to pass through the shock surface F =0 at

z = 0, then the h contours are blade pressure-surface sections at con~
stant 2z, spaced at axial-distence increments of 0.06556 times the tip
radius. If 20 blades are assumed, then st r = 1.0 +the preceding blade
is encountered at 6 = - 18°, which corresponds to h/0.06556 = - 4.8,
These sections were computed and then shifted 18° to indicate the pres-
sure and suction surface of a blade at the same z-location rather than
the chennel between two blades. The hub surface to the right indicates
the hub at the suction surface.

A different shepe for the blade can be cobtained by assuming
w = w(u) instead of w = 0. For example, if the pressure surface of the
blade is to contain a radial line, then, wvhen z =0, & must be zero.
Therefore, on the initial curve, w(u) is established by

w(u) = h(u,8) - z = h(u,0)
From this equation, h can be determined for each pair of values u,z,

and consequently the value of O can be determined from the value of
h(u,8) and of u. Curves of this type are shown in figure 4, where the
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blade sections are teken at equally spaced values of z. The suction
side of the blade is computed as for the previous example (fig. 3), with
the assumption of 20 blades.

EVATUATION OF METHOD

Calculation of helical flows by characteristics requires more time
than for cartesian flows, but the time involved is not prohibitive. The
main advantage of the method is that it gives rigorously a more genereal
class of flows than have been heretofore available by two-dimensional
methods. It is now possible in a larger variety of circumstances to
give a qualitative description of actuel flows in three-dimensional ma-
chines and to broaden the approach to the design problem. As a design
method, it has the disadventage of not permitting the description of the
blade shape, hub, and casing surfaces in advance of the calculation.
However, once a flow is computed, a variety of blade shepes may be com-
puted, depending upon the assumed spacing and leading-edge orientation.
These blade shapes include swept and tilted blades, thus permitting a
new degree of freedom to the designer.

A restriction on shock-wave orientation for cascade design 1s evi-
dent on comparison with the class of uniform flows. These uniform flows
mey be joined by plane shock surfaces of any orientation provided that
the normal Mach mumber is supersonic. The helical flows, on the other
hand, when joined by shocks of uniform strength, generally glve rise to
flows with a varisble helical covariant velocity component vg in addi-

tion to the radiel component. Shock surfaces are therefore limited to
the class containing the vectors Rt normal to both Vs and Vr. That-

is, the coordinate s mst not be changed as long as Vg is not con-~
stent. When vy 1is reduced to a constant, then & new class of shocks

may be used and. the varisble s may be modified. In the case of the
anmular cascade this does not represent a limitetion in design procedure,
because the uniform flows are inapplicable and the helical flows are

required.

Lewls Flight Propulsion Leboratory
Nationel Advisory Committee for Aeronsutlcs
Cleveland, Ohio, September 14, 1954
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& = constant

(a) Interior point in continuous fiow reglon.

r=1. Cc

0
F = 0 (£irst shock)
1
(B

& = constant G = 0 (reflected shock)

(b) Boundaries and shock waves.

Figure 1. - Notation for points in flow field.
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