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SUMMARY

The simultaneous development of temperature and velocity profiles
In the entrance region of a flat rectangular duct is studied. The flow
is assumed to be laminar with negligible dissipation. All fluid proper-
ties are taken to be constant, and the wall temperatures are uniform.
Thermal and velocity boundary layers are calculated using the Kirmén-
Pohlhausen method. Nusselt numbers are reported for Prandtl numbers in
the range 0.01 to 50.

When the Nusselt numbers are plotted against Graetz number RejPr),

x/D
there 1s a separate curve for each Prandtl number. In contrast, the ©
Nusselt numbers for the case of a parabolic veloclty profile throughout
can be plotted against Graetz number a&s a single curve which is appli-
cable for all Prandtl numbers. Beyond the position where the “boundary
layer analysis can no longer be used, curves have been falred to conrect
the Nusselt number results of the present analysis with those of Norris
and Streid, who assumed a pardbolic velocity profile throughout the
length of the duct.

Calculations were also made for a duct having one wall at uniform
temperature and the other wall insulated. Nusselt numbers are reported
for the range of Prandtl numbers from 0.01 to 50.

The results of the present analysls are compared with those for a
single flat plate. For purposes of comparison with the results of Norrils
and Streid, the boundary layer analysis was also used to calculate Nusselt
numbers for the case of an unchanging parabolic velocity profile.

INTRODUCTION

Until recently, analytical studies of laminar forced-convection
flow in tubes and ducts have been concerned primerily with three groups
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of problems. In the first group, a f£luid with & velocity profile that

is already fully developed enters a section of pipse having a wall tempera-
ture different from the temperature of the entering fluld. The inltial
analysis for the development of the temperature proflle was made by Graetz
in 1883 for a round tube. In 1910, Graetz's solutlion was obtained inde-
pendently by Nusselt. Since then, a number of Investigators have recal-
culated and extended Graetz's results; for example, Drew, Jakob, Iee, and
Groeber. A different approach to Graetz's problem was made by Lé%eque

In an effort to obtain better numerical values In the entrance reglion of
the tube sectlon, where Graetz's results are inaccurate. A presentation
of the aforementlioned investigations is given In reference 1 and refer-
ence 2. The problem analogous to that of Graetz for flow between two
parallel planes (flat rectangular duct) has been treated by Norris and
Streid (ref. 3) and by Prins, Mulden, and Schenk (ref. 4).

The second class of problems is concerned wlth the development of
the velocity profile In the entrance region of a pipe with no heat trans-
for. The fluld 1s assumed to enter the pipe with a unliform veloclty.

In the course of 1its flow through the pipe, the fluid 1is retarded by
friction at the pipe wall, so that the velocity profile 1s distorted and
. Pinally becomes parabolic far from the entrance. For the round pipe,
the problem has been studied by Schiller, Atkinson and Goldstein,
Bousseinesq (all reported in ref. 5, pp. 301-308), and Langharr (ref. 6).
The first three used the boundary layer concept in at least part of the
analysis. The analogous problem for the flat duct was treated by
Schlichting (ref. 7) and by Schiller (ref. 5, p. 309), both of whom
agsumed the exlstence of boundary layers. ‘

In the third group are so-called fully developed problems in whilch
‘the heat-transfer end friction parameters do not change along the length
of the duct. The results are applled to long ducts. Examples of fully
developed solutions may be found in the work of Clark and Kays (ref. 8),
where the flow and heat transfer In noncircular ducts 1s studied for the
cages of uniform wall temperature and uniform heat flux.

Only recently has some attentlon been glven to the case of simul-
taneous development of velocity and temperature profiles in the entrance
reglon of a pipe. Solutions for alr flowing in round tubes have been
obtained by Kays (ref. 9) and by Toong (ref. 10). With the assumption
that alr 1s an incompressible, constant-property fluld, a direct numeri-
cal Integration of a simplified energy equation by the use of finite
differences 1s obtained in reference 9. The velocity values required
in this Integration were taken from the results of reference 6. The
analysis of reference 10, which is for high-speed Tlow, assumes that the
eir 1s compressible while the' other properties are constant. The boun-
dary layer differential equations are transformed and then solved on a
differential analyzer for specific values of Inlet Mach number and wall-
to-inlet temperature ratio.
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In the present analysis, simultaneous development of the veloclity
and temperature proflles In the entrance region of a flat rectangular
duct 1s studied. Incompressible, constant-property flulds having Prandtl
numbers in the range 0.0l to 50 are considered. The presence of veloc-
1ty and thermal boundary layers 1s assumed, and these boundary layers
are taan to have definite thicknesses, which are calculated by the
Kermeh-Pohlhausen method. Nusselt numbers are computed for the length
of duct over which the boundary layer analysis is made. Beyond the po-
siltlon where the boundary layer treatment can no longer be used, curves
have been faired to connect the Nusselt number results of the present
analysis with those of refersnce 3, in which a parabolic veloclty pro-
file 1s assumed throughout the entire duct length.

In additlon to the symmetrical situation In which both duct walls
have the same uniform temperature, a second case is treated, in which one
wall 1s insulated and the opposite wall 1s held at & uniform temperature.

The Nusselt numbers obtained In the present analysls should also be
applicable to annuli in which the curvature effects are small (i.e., where
the ratio of the dlameters of the concentric cylinders forming the walls
of the annulus is close to 1), .

So that a comparlson could be made with the results of reference 3,
the boundary layer analysipg was used to study the development of the
temperature profile assoclated with a parabolic veloclty profile through-
out. The development of the temperature profile was also calculated for
the case of a uniform velocity profile throughout (slug flow).

ASSOMPTIONS

The physical model selected for a study of the development of the
velocity and temperature profiles In the entrance reglon of a flat rec-
tangular duct is the followlng: : .

(1) The flow 1s laminar.
(2) All fluid properties are constant.-

(3) The velocity and temperature profiles are uniform across the
entrance section. . .

(4) There exists a velocity boundary layer of definite thickness B.
As on a flat plate, the action of viscocity in the entrance region
of the duct is contined primarily to the fluld layers near the wall,
although in actuality emall effects exist everywhere in the flow. It
will be assumed in this analysis that viscoslty plays a role only In a
definite reglon adjacent to the wall called the velocity boundary
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layer ©. The fluild outside the velocity boundary layer is called the
core. Inasmuch as the fluld adjacent to the wall 1s retarded by fric-
tion, It is necessary that the flow In the core be accelerated in order
that the same mass pass through every cross section of the duct. The
veloclty proflle is taken to be flat throughout the core. The velocity
boundary layer thickness is assumed zero at the entrance section. The
boundary layer grows in thickness along the length of the duct until it
reaches the center line, where 1t meets the boundary layer from the
other wall of the duct. Figure 1 shows dlagrammatically the development
of the velocity boundary layer.

(5) Two temperature conditions at the duct wells are to be
consldered:

(&) Both duct «walls have the same uniform temperature, which
differs from the temperature of the fluid entering the duct; this
will be called the case of heat transfer at both walls.

(b) One of the duct walls is maintained at a uniform tempera-
ture which differs from the entering fluld temperature while the
other wall is insulated; thls will be called the case of heat trans-
fer at one wall.

(6) The viscous dissipation and work of compression are negligible
compared with the heat conduction. .

(7) There exists a thermal boundary layer of definite thickness A.
Since the temperature of the fluld entering the duct differs from the
temperature of the duct walls, there will be a heat tramsfer to (or
from) the fluid. The principal effects of this heat transfer will be
felt by the £luid layers close to the wall, although small effects will
exist everywhere. The assumption wlll be made that the effects of the
heat tranefer play a role only In a definite region adjacent "to the wall
called the thermal boundary layer A. The fluld outside the thermal
boundary layer will be uninfluenced by the heat transfer and will there-
fore have a uniform temperature identical to the value at the entrance
of the duct. The thermal boundary layer thickness wlill be assumed zero
at the entrance section. For the symmetrical case where both duct walls
have the same uniform temperature, thermal boundary layers wilill grow In
thickness along the length of the duct in an identical manner for both
walls. These boundary layers will meet at the center line, where A = a.
For the came where one duct wall 1s maintained at a unliform temperature
and the opposite wall is insulated, a thermal boundary layer will develop
only at the wall at which the heat transfer occurs. The boundary layer
will grow untll 1t reaches the opposite wall, where A = 2a. In general,
the velocity and thermal boundary layers may be of different thicknesses.
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(8) The flow i1s two-dimensional.

(9) The flow 1s steady.

BASIC EQUATIONS

The laws of congervation of momentum, ensrgy, and mass for steady
laminar boundary layer flow with constant properties and negligible dis-
silpation and work of compression are as follows:

u%+v%‘1§=-%%+v.§% (12)
gP.:o (1b)
y
3t 3t 32t ‘
U Ve = (2)
ox Sy ay2
%+%§=O (3)

(The symbols used herein are defined in appendix A.) For the core flow,
which has been assumed nonviscous and uniform across the section, the
momentum equatlon reduces to

v
1 1
hhz=="% % (4)

The pressure term is eliminated from equation (1la) by means of equaticns
(4) and (1b). Then, using the assumption that definite values A and

% are associated with the thermal and velocity boundary layers, respec-
tively, equations (la), (2), and (3) are integrated across the section to
yleld

5 ©au 5
d%{-l: £ (01 - wu dy] + 733]; £ (U, - uw)ay = V%uy- o (5)

al Pt - ca
iz [k(; (t1 - thu dy] =o3 720 (6)

This integration may be found in reference 5, page 136 and pages 614-615.
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&
‘[; (w - T))dy +a(0, -T) =0 (7)

These equations require only that the conservatlon laws be satisfied for
the cross section as a whole. This is a much less stringent requirement
than that imposed by equations (1), (2), and (3), which ask that the con-
gervation laws be satisfied at every point in the cross section.

According to the Kdrmén-Pohlhausen method, the velocity and tempera-
ture are approximated by polynomials in ¥y having coefficlents that are
functions of x. The coefficients are determined by satisfying boundary
conditions at the duct wall and at the edge of the boundary layer and

by using equations (5), (6), and (7).

A simple and convenient éxpression for the veloclity profile in the
boundary layer which glves reascnably good agreement with Schlichting's
more exact results is the following one first used by Schiller:

u =T, [z(%) - (%)2] 0< y< ® (8)

Thls equation satisfles the condltions

u=0aty=0

u=U1

du at y=25% (9)
35 = 0 :

but does not satisfy the condition that at the wall (y = 0), §§%'= &'%ﬁ-

This requirement arises from the evaluation of equation (la) at the wall,
where u = v = 0.

For the temperature profile in the boundary layer, the following
relation 1s chosen: )

t-% 3 17\
———=—I)--(Z) o<ys A (10)
-ty 2 (A 2\A
The boundary conditlons satisfied by thls expresslon are
t =1t
2 t y=0 . (11)
%t _

2

3349
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t = tl
at =
S5t -0 Yy A (ll)
8—_ —
A Cont.

The condition éﬁg =0 at y =0 arises from the evaluation of equation
oy
(2) at the wall.

It is seen from equations (8) and (10) that &, U;, and A remain
to be determined as functions of x. The assumption of constant fluid
properties means that the solution for the velocity (i.e., & and Uj) is
independent of the heat transfer. (The velocity solution therefore will
apply for both the case of heat transfer at both walls and the case of
heat transfer at one wall.) However, the solution of the temperature
problem (i.e., A) requires a prior knowledge of the velocity.

VELOCITY PROBLEM

In a manner similar to that followed by Schiller, the veloclty ex-
pression (8) 1s introduced into the integrated momentum and mass equa-

tions (5) and (7), respectively, to give the following relations between
5, Uy, and x!

(12)

5 5]
o8 o

It is convenient to iIntroduce the dimensionless varlables

16 Diw
x*=£-\-é_-= S
a gl Red
U
o -2 ) (14)
i
p* = 2
a. J

where the equivalent diameter D, 1s equal to 4a for the duct with
spacing 2a. Equations (12) and (13) become
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(mq-7)ﬂﬁ (128) .

5% = 5(} - 3#) (13a)
Uy

At the inlet Uf = 1, since Ul ==ﬁ; and for fully developed flow
U? = 1.5, since T, = 1.5 U. The integration of equation (12a) is car-
ried through numerically to U = 1.5 (8% = 1), at which point the velo-

city given by equation (8) coincides with the fully developed parabolic
profile. It should be noted that the velocity solution given here does
d
not Join smoothly to the fully developed parabolic profile, since ;Eg
dx
does not approach zero as UI approaches 1.5. In the neighborhood of
the entrance section, that i, near x* = 0, the solution for the velo-
clty 1s ’ W

5329

(15)

TEMPERATURE PROELEM FOR HEAT TRANSFER AT BOTH WALLS

The cases of A> ® and A <8 wlll be treated separately. An-
other section will be devoted to solutlons for the temperature for cases
where the veloclty profile is unchenging throughout the duct length.

The heat-transfer parameters will be defined in the final section.

Case of A > 5. - For this c¢ase, the velocity profile in the ther-
mal boundary layer 1ls flat for values of B £ y < A. In the region
0 £ y< A, which represents the range of Integration in the energy equa-
tion (6), the velocity profile 1s given by two expressions.

o) (] osves
U

0Ogy<A (16)

u =
u =

1

As & consequence, the energy equation can be written as

5] A
d
2 1 - tJudy + O t, - t)d
dxl ué? (1 Ju dy ]'“4: ( 1 ) y'

(6a)

;
¥
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Introduction of the temperature expression (10) and the velocity expres-
slon (8) yilelds the following dimensionless first-order differential
equation:

*4 , *
+,% _ 1% _ 3 ax (1)
A¥* 120 A*3 2Pr * _

d %F-%a
A

The quantities Ul, *, and x* have already been defined 1n equation
(14), and

* A ,

p* - 4 (148)
The integration of equation (17) to determine the relation between a*
and x* 18 discussed in appendix B. Calculations were made over the
range from A*¥ =0 at x* = 0O to A* =1 (A = a). In the neighborhood
of the entrance, that 1s, near x* = 0, 1t was found that a* = C{/%%,
where C 1s a function of Prandtl\number

Cage of A < 8. - Since for this case the veloclty boundary layer
extends beyond the thermal boundary layer, only a single expression,
equation (8), is required to give the velocity profile for the region
0<y< A. Using the temperature expression (10) and thé velocity expres-
slon (8) in the energy equation (6) gives the following dimensionless
differential equation:

dlofia? 1 a®\ | s axt (18)
N5 5% T 24 42)| T2 F

A

The integration of this equation also is discussed in appendix B. The
remarks already mede for equation (17) concerning the range of integra-
tion and the behavior near x* = 0 also apply to equation (18).

Cases of unchanging veloclty proflle. - The two unchanging veloclty
proflles to be considered are the parabolic and the uniform.

Parabolic velocity profile: The equation for the parabolic profile
with y measured from the duct wall is

s 9 - Cile )

Using this relation and the temperature expregsion (10) in evaluating
the energy equation (6) leads to the following dimensionless differential
equatlion:
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3 %2 1 3 ax*
d(IaA _1_6A*3)=-2P—;? (20)

The solution for the initial conditiomn A*¥ =0 at x* =0 1is

A¥S 3 _ 3 x
5 - 52 Pr * (21)

Uniform veloclty proflle: The equatlion for the uniform veloclty
profile 1is simply

w="

and the solution of the energy equatiaon (6) for initial conditions

A¥ = 0 at x*=0 1s
’ x*
A* = 8x
_ 1/ <= ‘ (22)

Heat-transfer parameters. - The heat-transfer results will be pre-
sented in dimensionless form utilizing the average Nusselt number, which
is defined in the usual way as

Nu = (23)

| &'

For a duct with spacing 2a, the equivalent diameter Dy 1s equal to 4a.

The average heat-transfer coefficient for a length of duct x (and unit
width) in which there is heat transfer at both walls is given by

h (24)

-9 _ Q
A(At) — 2x(1) (At)

The temperature difference to be used remains to be specified. Heat-
transfer coefficlents for three definitions of At wlll be calculated,
and accordingly there will be a set of Nusselt numbers corresponding to
each of the three definitions of At. These definitions are

} () - (t=tp ) )

(At)
1 1ot
Ty - 1J'b‘,x
(At)p = (b, - 1) ? (25)
(At)S - (ty~51) ;’ (tw"b'bjx)
J

3349
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In the first and third definitions, tb,x represents the bulk tempera-

ture corresponding to any position x. The bulk temperature is most
convenlently obtained from the steady-flow energy equation

- = 9 _ Q
(tb:x tl) mey, - p2a(l)ﬁﬁp (26)

in which the kinetic energy and gravity differences have been taken to
be negligible.

The ‘total heat transferred at both duct walls In a length x and

wldth equal to unlty is
x .
ot
dx . 27
%), )

The derivative in equation (27) is evaluated from the temperature ex-
pression (10) to give

‘ X
Q=+3k(tw-‘t1)“/0" % e (28)

All the quantities necessary to evaluate the Nusselt number are
given in equations (24) to (26) and (28); the results are as follows:

Ju, = 0.25 Gz 1n|—— 29a
1 Z (;_3) : | (29a)
‘ Nuz = 0.25 Gz B (29Db)
—_— ' B
Nu.'.’) = 0.25 Gz m (29¢)

The symbol Gz represents the Graetz number, which is defined by

2 —
o = BedPr _ l6a Dqﬁ? _ 16Pr
x/D, kx T

(30)

The other dimensionless group appearing in equaticn (29) 1s given bj

3 fx* ax* '
-2 [T & 31
o, o | (31)

In goneral, B depends separately upon Prandtl number and x. By vir-
ture of the relation between Graetz pumber and x* given in equation
(30), B may also be considered a function of Prandtl number and of Graetz
number.
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Inspection of equations (29) shows that in the most general casé,
the Nusselt number willl depend separately upon two other dimensionless
groups. For examplse,

. N
M = £(Gz,Pr)
or, alternatively, : ‘ } (32)
—_— X ’ ’
fu = £(x%,Pr) = r( /De,Pr)
Red
S

For the case of simulbtaneous development of the veloclity and temperature
profiles, the Nusselt number depends separately on two other groups, as
showvn in equatian (32). However, for the case of the parabolic velocity
throughout (and for the case of the uniform velocity profile as well),
reference to equations (20) and (21) shows that B 1is & function of
Graetz number alone. Hence, for these unchanging profiles, the Nusselt
number depends on only the Graetz number.

Although theboundary layer neture of the present analysis does not
allow calculations to be made for very long ducts, it is Interesting to
notice the behavior of the various Nusselt numbers at great dlstances
from the entrance. To this end, expression (24) for h 18 introduced
into the defining equation (23) for the Nusselt number to give

— QD

Nu = EK?KET (33)

For very long ducts, the duot surface area A becames very large. Also,
the bulk temperature of the stream will approach the wall temperature.
Inspection of the definitions (25) shows that as A approaches infinity,

Atl'+ 0 At

> (et | (54)
(t’ -tl)

2 .

Equation (33), then, indicates that as A approaches infinity, Nu,
and Tuz approach zero. Nul appears to be an indeterminate form, the
limiting value of which has been determined iIn reference 3 as 7.60.

Atz -

TEMPERATURE PROBLEM FOR HEAT TRANSFER AT ONE WALL

The temperature problem, as before, must be formulated separately
for A>® and A < 8, It should be noted that this separate formulation

3349
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is necessary only for © < &, where different formulas are required to
describe the veloclity profiles In the boundary layer and in the core.
When © = a, the velocity profile is fully developed and the parabolic
formula gives the veloclty over the entire cross sectlon. In all cases,
the calculatlons are limited to A < 2a.

Cage of A >0. - A sketch of the development of the velocity and
thermal boundary layers for this case is given here.

Tnsulated wall
LLLLLLLLTLT LI LT N LS L LSS

yA/—Aé/////\{/'//////// 7777777
X tw

It 18 seen that the thermal boundary layer, growing into the duct from
the wall at temperature +t, eventually will meet the velocity boundary
layer developing along the opposite wall. The meeting will occur when
A =2a - 5. In the region preceding this meeting, that is, for values
of &< A'<(2a - 9), the analysis already given for the temperature
problem with heat transfer at both walls for A > 8 is wvalid.

For (2a - 8 < A < 2a, it is necessary to use three formulas to ex-
press the veloclty proflle.

@0 e

w=T7 . 5 <7< (@2a-d) & (35)

2a- 2a- 2 )
Uy 2( z Y) - ( 5 ) (ca-B< y< A

=1
I

=t
1l

J
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Introducing these relations together with the temperature expression
(10) into the energy equation (6) leads to the following result:

- x4
*) 1.% 18%¥% 1 5 1 %2 . 1 %3
d(Ul{35 +3 A*_leA*S 8A+10fA +243A +

(2-8%) (1-e) - (z-s*)z[u-e) 254 %]— (z-a*)*”[_g. -1 f‘?] .

(2-8%)* [(l-e) —5 %%] - (20%)5 —E— - (2-6%)8 B )
* A

8A 104% 124%3
¥*
3 ax
’ T ZEr ¥ (36
A
where
-kt
8% s*2
4 2
P o= - L
g% 8"
gz—L.
%2 -
5

The solution of equation (36) is discussed in appendix B.

Case of A < ®. - The formulation of this case is identical to the
analysis already made for the temperature problem with heat transfer at
both walls for A < 5.

Heat-transfer parameters. ~ The Nusselt number ﬁl-z based on the
temperature difference (At), = (&, - t1), 1s chosen for presentation of
the heat-transfer resultis, since it is the one most conveniently used In
calculations. If the equivalent dlameter Dy 1is taken as 4a as befors,
the expression for Nu, for the case of heat transfer at one wall becomes
identical to eguation (29b).

PRESENTATION OF RESULTS
Hoat-Transfer Results

__ Dusselt numbers for heat transfer at both walls. ~ The results for
Nu; are plotted in figure 2 as a function of Graetz number for Prandtl

3349
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numbers in the range 0.0l to 50. The curves obtalned from the boundary
layer analgsis (s0lid 1lines) terminate at the Graetz numbers correspon-
ding to A" =1 (A = a). The curve of reference 3 for a parabolic velo-
city profile throughout (dot-dash line) is given for Graetz numbers be-
low 100. Curves have been faired (dotted lines) to connect the results
of the present enalysis with those of reference 3. Figure 3 shows the

results of Nuj replotted with - éze as abscissa and Prandtl number
- d

ag paramster.

The ﬁﬁé results are plotted agalinst Graetz number on-figure 4 and
. ,

are replotted against on flgure 5. Prandtl number appears as a

parameter on the curves. For practical applications, ﬁﬁé will be the
most convenient Nusselt number to use since it 1s based on the simplest
temperature difference. The solld lines on figure 4, which represent
the results of the boundary layer analysis, can be fitted to within 3
percent by ‘the followlng equatlons: ,

. 1
ir To1l2.
D 2 2] .
o _ Q.64 Gz | 4 5(2E 0.0l< Pr< 2 (37a)
k 1/2 Gz
Pr’ oo
_ 1l il
WDy  0.664 Gz° 9
= = T 1+6.27 P—Il) Pr = 10, 50 (37p)
Py /6 Gz

The function ¢ appearing in equation (37a) 1s equal to (ZRr)-l/3 for
values of Pr 21 and is obtained from figure 1l for Pr < 1. The

faired curves for ﬁﬁé shown on figure 4 are consistent with the

faired curves drawn on figure 2 for ﬁﬁl, in accordance with the
relation —
4=Nul
— Gzl. - T Gz
Nup =L - e (38)

The results for ﬁﬁé are plotted in figure 6 on separate grids és a
)
Red

also been presented In the form of ﬁﬁé because they are often glven
this way In the literature.

The heat-fransfer results have

function of Graetz number and
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Kusselt numbers for heat transfer at one wall. - The ﬁﬁé values
for heat transfer at one wall are given on figure 7 as a function of
Graetz number for Prandtl numbers in the range 0.01 to 50.

Comparison of Nusselt numbers with those of other analyses - Two
comparlisons are made.

- (a) In reference 3, it is suggested that entrance region Nusselt
numbers for similtaneously developing velocity and temperature profiles
might be obtained using the results for heat transfer from a flat plate
to a fluid having veloclty U. The flat-plate results can be put into
the following form to faclilitate a comparison with the Nusselt numbers
of the present analysis:

L
— . 0.664 Gz 2
Bu, = /2 (39)
Prie
For Pr 21, many Investigators have found that ¢ = Pr 1/3. 'For Pr< 1,

¢ does not appear in the literaturs; it is calculated in appendix C of
this report and 1s glven In figure 11 " The flat-plate results of equa-
tion (39) are plotted in figure 8 and are compared with the Nuz results
of the present analysis for three representatlive values of Pr - 0.1, 2,
and 50.

(b) The boundary layer analysis has been used herein to calculate
the development of the temperature profile for an unchanging parabollc
velocity profile throughout the duct length. The Fusselt numbers (for
heat transfer at both walls) obtained from this analysis are compared
in figure 9 with those of referemce 3, in which a different method of
analysis is used. The values of Nul and Nu3 are almost colncldent
in the range of Graetz numbers_conslidered and appear as a single line on
figure 9. Comparison of the Nuz values from the two investigations is
also made in figure 9.

Veloclty Results

Velocity values calculated from equation (12a) are plotted in figure
10 as a function of XV _ x* with the dimensionless distance from the

aZg
wall y/a as a parameter. Included for comparison on the same figure
are curves representing the results of Schlichting (ref. 7).

DISCUSSION

Nusselt numbers for heat transfer at both walls. ~ Figure 2 shows
that when Nusselt numbers for the case of slmiltaneously developing
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veloclty and temperature profiles are plotted agalnst Graetz number,
there 1s a geparate curve corresponding to each Prandtl number. In con-
trast, when the Nusselt numbers for the case of a parabolic velocity
profile throughout are plotted agalnst Graetz number, a single curve re-
sults which is applicable for all Prandtl numbers. For any glven Prandtl
number, the Nusselt number for a flow with a developing velocity profile
is greater than (or, at least, equal to) that for a flow where the velo-
city profile 1s parabolic throughout (at a fixed Reg and x/De) because
the velocltles near the well are higher for the developing veloclty pro-
file than for the parabolic profile.

The curve of reference 3, based on & parabolic velocity profile
throughout, is shown In figure 2 for the smaller Graetz numbers, where
the boundary layer anelysls can no longer be used. The previously men-
tioned 1limiting value of Nuy of 7.6 1s attained in the solutipn of

RegPr
reference 3 at Gz = —E%ﬁ— =4, If fully developed heat transfer 1s de-
e

fined by the criterion that the limiting value of ﬁﬁi 1s achieved, then
it 1s seen that for a given Reynolds number, flulds of low Prandtl number
attain fully developed heat transfer in shorter lengths of run (i.e.,
lower x/Dy) than do fluids of higher Prandtl number.

It 1s expected that at a sufficlently large distance from the be-
glnning of the duct, the velocity conditlons In the entrance region
will cease to play an Important role In determining the average Nusselt
number. It is reallzed that only at Infinity will the Nusselt numbers
based on a developlng veloclty profile colnclde precisely wilth those for
a parabolic profile throughout the duct length. For practical purposes,
however, the differences should become negligible at same finlte location;
80, curves have been faired In figure 2 connecting the Nusselt numbers
from the boundary layer analysis with those of reference 3. Although in-
herently inexact, this extrapolation at least provides an estimate of the
locatlion at which the effect of veloclty development is negligible.
Figure 2 indicates that the Influence of velocity development ceases at
lower Graetz numbers for the fluide of lower Prandtl number.

The use of the Graetz number as an Independent variable allows the
convenlent comparison on one graph of results for the case of simultane-
ous development of the thermal and velocity profiles for different
Prandtl numbers with a single curve representing the results for a para-
bolic veloclty throughout. Further, the extrapolation of the curves for
simultaneocus development of the boundary layers to Joln with the curve
for the parabolic veloclty can be made convenlently for all Prandtl num-
bers on a single graph wlth Graetz number ag abscissa.

Flgure 3 1s a replot of figure 2 in which E%EQ is used as absclssa

e
d
and Prandtl number appears as parameter. The curves shown represent
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the results for the case of simultaneous development of velocity and

temperature profiles. The results for the case of a parabolic velocity
profile throughout, which can be plotted as a single curve as a function
of Graetz number, would appear as a series of curves with Prandtl number

X
éDe. These curves do not
®4

as parameter if they were plotted against
appear on fligure 3.

The influence of Prandtl number on Nusselt number is clearly shown

3349

X
In figure 3. At a given value of —£§§3 the fluids of higher Prandtl
number have higher Nusselt numbers. This result is In qualitative agree-
ment with the usual heat-transfer correlations, which show Nusselt number
increasing with Prandtl number for a fixed Reynolds number. The depend-
ence of Nusselt number upon x/De for a fixed Reynolds number (and a
fixed Prandtl number) is also clearly shown in figure 3. As has already
been noted, the value of x/De corresponding to fully developed heat
transfer decreases with decreasing Prandtl number.

Figures 4 and 5 show trends similar to those which have been polnted
out for figures 2 and 3. The faired curves shown on figure 4 are consist-
ent with those drawn on figure 2.

Nusselt numbers for heat transfer at cne wall. - Nusselt numbers
for a channel iIn which one wall is held at a uniform temperature while
the other wall is Insulated are shown in figure 7. The results are gilven
in the form of Nup, based on the temperature difference (At), = 4y - 47,
because 1t is the most convenlent one to use in calculatlons. There
are at present no solutions of this case for very long ducts. It 1s
suggested that englneering estimates of the heat transfer for ducts
with Graetz numbers of 3 or less be obtained from the relation

Nuy, = 0.5 Gz

Comparison with other calculations. - Nusselt numbers of the present
analysis for simultaneous development of veloclity and temperature pro-
files are compared in figure 8 with those for a single flat plate im-
mersed in a fluid moving with a velocity U parallel to the plate. Tt
is suggested in reference 3 that the flat-plate results mlight be used
in the entrance region of a duct. For glven Reynolds numbers, the agree-
ment between the flat-plate results and those for the duct becomes
poorsr as x/.De increases. This is to be expected, slnce the veloclty
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U, of the fluid_in the core departs more and more from the free-stream
velocity Ue (= U) of the plate as x/Dy increases. The agreement
appears to be poorer for the fluids of higher Prandtl number because at
a glven Graetz number, higher values of x/De are assocated with the
higher Prandtl numberg at a given Reynolds number.

A check on the boundary layer analysls was sought by calculating
Russelt numbers for the case of a parabolic veloclty profile through-
duct length. This case had already been treated in reference 3
using Lév8que's method for Graetz numbers above 400 and a direct numeri-
cal integration of the energy equation for Graetz numbers below thils
The agreement of the curves in figurs 9 is consldered very good
in view of the approximations in the boundary layer analysis and those of

out the

value.

Lévequs'

Tongitudinal heat flow in fluld.

g8 method.

-~ The boundary layer energy egqua-

tion' (eq. (2)) 1s derived from the general energy equation for a constant-
property, nondissipative flow by neglecting the longitudinal conduction

of heat

%4
3 2"

k g;% compared with the transverse conduction k ——

The

condition A/x << 1 is usually assumed sufficient justifica%ion for
deleting this term. However, it 1s sti1ll possible that the longitudinal
conduction can be neglected even 1if A/x is not small compared wilth 1.
Thus, the condition Aflx << 1 1is sufficient, but not necessary, for de-
leting the longitudinal conduction term. When this condltion is not sat-
isfied, the rigorous check as to whether the longitudinal conduction
term is negllgible 1s to obtaln a solution of & problem in which 1t has
not been deleted.

For the lowest Prandtl numbers considered in this report, the con-
dition A/x << 1 18 not satlsfied In the length of duct for which

the boundary layer analysis is made.

5 shows

at which point A =

For example, inspection of figure

that the solid curve for Pr = 0.0l terminates st — ® - 0.7x107¢%
ed
Since Dy = 4a, this would correspond to x/A = 0.6

for a Reynolds number of 2000.:

Since no solution for the energy equation containing the term

R

k S;E has been obtained, there is no rigorous basis for deleting it in

those cases where the condition é-<< 1 has not been satlisfled.
X

Neglect-

2
ing the term k ELE- for a £luld of very low Prandtl number can be Justl-

Ox'

fied only on the basis of the resulting slmplification of the energy

e e e e % e et et i o | e e e o~ e ——
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equation. For this reason, the results for the flulds of very low
Prandtl number may be less accurate than the other results of this
report.

Velocity profile. ~ The expression (8) chosen to describe the veloc-
ity profile in the boundary layer had the virtue of simplicity and gave
reasonably good results, as may be seen by comparison in figure 10 with
the more exact values of Schlichting. It has already heen noted that al-
though the velocity solution obtalned in this report coincides with the
fully developed parabollc profile when O = a, 1ts approach to the fully
developed parabola 1is not asymptotlc. However, it i1s not expected that
any other polynomial expression for the veloclty could be used throughout
the entire length of the channel and asymptotically approach a parabola.
(Basically, it would not be expected that any boundary layer analysis for
the velocity should lead to a solutlion which approached the fully devel-
oped parabola asymptotically.)

A solution for the velocity proflle which approaches the parabola
apymptotically at infinity can be obtained by using a boundary layer
analysis at the begimnming of the duct and another method of analysis
at great distances from the entrance. This is the method used by
Schlichting. Such refinements in the calculation of the velocity pro-
file would have degtroyed the simpllcity of the analysis for the tempera-
ture problem which has been used in this report.

The final check of the Influence of the approximate velocity profile
on the heat-transfer results can be made only when a more exact solution
to the energy equation 1s avallable. For the simpler problem of heat
transfer from a flat plate, the author has verified that good Nusselt
number results can be obtained with the KﬁrménéPohlhqusen meothod even
though the veloclty profiles are approximate.

Validlty of thermal boundary laysr calculatlons as A ap-
proaches a. - Whether or not good heat-transfer results can be obtalned
from a boundary layer calculation for A +values near a depends upon
the extent of the Interaction which 1s actually taking place in the
duct as a result of heat transfer from the opposite walls. It is felt
that the boundary layer model will give good results only 1f this inter-
action is small. The values of A are In a sense arbitrary, since
they depend to some extent upon the degree of the polynomial which 1s
taken to approximate the temperature profile. For one cholce of poly-
nomial, the condition A = a may be achieved at a position In the
duct where the actual interaction of the heat transfer from the oppo-
site walls is negligible. On the other hand, for another polynomial,

A = a8 may occur at a location at which there is congiderable inter-

action actually taking place in the duct.
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For a parabollc veloclty profile throughout the duct length, the
Nusselt numbers calculated from the boundary layer analysis up to A = a
agree quite well with the resultg of reference 3. In fact, when the
boundary layer calculatlon was extended to A = 1.3a, the Nusselt numbers
8ti1ll agreed to wlthin 3 percent. Thls good agreement seems to Imply
that the boundary layer model 1s still valid for A approaching a, at
least when the veloclty proflle throughout is parabolic.

For simultaneously developing temperature and veloclity profiles,
no other solution presently exlests with which the results of the present
analysis can be compared. So, no completely conslusive statement as to
whetheyr 1t 1s wvalld to carry the calculation of the temperature profile
to A =a can be madse.

Practical departures from condlitions of analysis. - Various condl-
tlons of the present aralysis which may not be completely satisfied in
practical application wlll be discussed.

(a) Variable fluild properties: In some fluids, the variability of
properties has a marked effect on the heat-transfer results. The proper-
ty varlations tend to alter the shepe of the velocity proflle as well as
to create free-convection currents. Correctlons for the Nusselt number
to take iInto account property changes are dlscussed in references 3
and 11l.

(b) Entrance conditions: In any real apparatus, the entrance veloc-
ity and temperature profiles will be determined by the shape of the
transition section between the header and the duct and by the heat trans-
foer to the fluid in the header. There may be nonzero values for the
Velocity and thermal boundary layer thicknesses at the entrance section
associated with nonuniform profiles.

(c) Uniformity of wall temperature: In almost any real apparatus,
1t 18 not expected that a uniform wall temperature can be malntained In
the nelghborhood of the entrance section; since, In addition to the pos-
sibility of heat conduction from the duct walls to the header, the ex-
tremely high heat-transfer coefficlents near the entrance section tend
to make the temperature nonuniform.

(d) Heat transfer at ome wall: In practice, for sufficiently long
ducts, there may be deviations from the condition of zero heat transfer
from one wall to the fluid even though that wall may be insulated from
the external surroundings. This may occur when the thermal boundary
layer growing from the heated wall contacts the opposite wall, thereby
causing a temperature rise of the opposite wall in the reglon where the
contact takes place. There will then be a conduction of heat from the
warmer parts of the wall to the cooler parts which are located nearer
the entrance, and some of this conducted heat will be transferred to the
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fluid. Except for cases of thick walls made of high conductlvity material,
thie gecondary heat transfer to the fluild is expected to have very little
influence on the results of the analysis. Of course, for those ducts
vhich end before A = 2a, the condltlon of no heat transfer to the fluld
at one wall is achiseved by insulating the wall from its external
surroundings.

CONCILUDING REMARKS

The simultaneous development of temperature and veloclty profililes
in the entrance region of a flat rectangular duct has been studied
using a boundary layer analysis. The Kefrmeh-Pohlhausen method was used
to calculate the thickness of the veloclty and thermal boundary layers.
Incompressihle, constant-property flulds having Prandtl numbers in the
range 0.0l to 50 were consldered. Both duct walls were assumed to have
‘the same uniform temperature.

Nusselt numbers were calculated for the length of duct for which
the boundary layer analysls was made. It was found that when Nusselt
numbers were plotted against Graetz number, a separate curve for each
Prandtl number resulted. In contrast, when the Nusselt numbers for the
case of a parabollc velocity profile throughout were plotted against
Graetz number, a single curve resulted which is applicable for all
Prandtl numbers. For any given Prandtl number, the Nusselt number for
a flow with a developing velocity profile is greater than (or, at least,
equal to) that for a flow where the velocity profile 1s parabolic through-
out the duct length. Beyond the position where the boundary layer treat-
ment can no longer be used, curves have been faired to connsct the FNusselt
number results of the preosent analysis wlth those of reference 3, in
which a parabolic veloclity profile wes assumed throughout the length of
the duct.

Calculations were also made for a duct having one wall at uniform
temperature while the other wall was insulated. Nusselt numbers are re-
ported over the range of Prandtl numbers from 0.01 to 50.

Nusselt numbers from the present analysls were compared with those
for a single flat plate immersed in a fluid moving with velocity U,
which 18 equal to U, the average velocity in the duct. The Nusselt
numbers for the duct exceeded those of the plate. Thils difference
increased wilth distance from the Inlet. So that thls comparison could
be made, the Nusselt numbers for a flat plate for Prandtl numbers sub-
stantlally less than 1 were calculated.

The boundary layer analysis was used to calculate Nusselt numbers
for a parabolic veloclity throughout the duct length. These resulta were
in good agreement with those of reference 3.
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It 1s expected that the Nusselt numbers obtalned for a flat rec-
tangular duct will apply for an annulus for which the diameter ratio
is near 1.

Lewls Flight Propulsion Laboratory
National Advisory Committee for Aeronautlcs
Cleveland, Ohloc, September 30, 1954
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APPENDIX A

SYMBOLS

The following symbols are used in thils report:

Gz

Bl

surface area of channel walls through which heat ls belng trans-
ferred, sq ft

half-spacing between parallel walls in & duct or annulus, ft
dimensionless group defined by eq. (31)

specific heat at constant pressure, Btu/(1b)(°F)

equivalent diameter for a duct or ammulus, 4a, ft
dimensionless group defined by eq. (36)

dimensionless group defined by eq. (36)

Graetz number,
/Do

dimensionless group defined by eq. (36)

average heat-transfer coefficlent, KTQ_—V Btu/(sec) (sq £t) (°F)

A%)
thermal conductivity of the fluid, Btu/(sec) (ft) (°F)

mass rate of flow through cross section, 1b/sec

bDg
average Nusselt number, <

c
Prandtl number, _ﬁg = Y '
o

static pressure, lb/sq £t

heat-transfer rate, Btu/sec

UDg _ T4a
Y]

diameter Reynolds number,

static temperature, °F

bulk temperature of fluld at position =x, OF
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wall temperature of channel or annulus, OF
temperature of fluld at entrance section of channel or annulus, OF -

temperature of fluild far from surface of a flat plate, OF

average velocity of fluid, ft/sec
velocity in core, ft/sec

T
dimensionless veloclty in core, __;L.
U

free-stream velocity for flat plate, ft/sec
velocity component in x-direction, ft/sec
velocity component in y-direction, ft/sec
coordinate measuring distance from entrance of channel, fi;,

dimensionless coordinate, ( eATAR
apal

transverse coordinate measuring distance from channel wall, ft
thermal diffusivity of fluld, k/c o, £t%/sec

thermal boundary layer thickness; £t

dimensionless thermal boundary layer thickness , Afa

velocity boundary layer thickness, £t

dimensionless velocity boundaryAla;yer thickness, 5/8;
kinematic viscosity of fluld, £t2/sec

density, 1b/cu £t -

dimensionless group defined by equation (C4)
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APPENDIX B

CALCULATTON PROCEDURE

It was desired to use a rapid and accurate calculation procedure for
equations (17) and (18) which also provided a continuous check. Equation
(18) will be considered in detail. An identical procedure was usged for
equation (17). . |

If the differentiation indicated in equation (18) and +the
substitutlon

dx* dUi

x*

ax dUl —x dU} = <5+ (B1)
=

are made, the followlng first-order differential equation is obtained:

* *2
ogléb - 14
ao¥ N5 g* 8 _«2
1 _ 5 (B2)
= =
da 3 _l*z 1A*2_§A*2 L1 ¥
op* pp UI' 5 g% 24442 5 U,{S*z 4 U*S*s

Since 5 and U ' are simple functions of U from equations (12a)
and (13a), the numerical Integration of equation (B2) to £ind U] asa
function of A¥ can be carried out without recourse to =x* This inte-
gration was performed using the Runge-Kutta method. In order to provide
a continuous check at each step of the calculation, -the value of Ui
obtained for a A* was immediately used to compute an x* from equation
(13a) by the Runge-Kutta method. Alternatively, a check value of x*
wag calculated from the following integrated form of equation (18):

*
IR 3 F Y S W B A AU*;_A*Z__]._A*S an*
37|00 \B oF 2 2 U5 5% 2L 2
. 0 )

(B3)

using Simpson's rule and the values of Ul and &* obtained from the
integration of equation (B2).

The starting value of dU’l‘/dA* was obtained by using the two

*
results Ua{ -1= 1'%5— and A = C /=¥, which satisfy equations (13a)
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and (18), respectively, as x¥ -+ 0. Tt should be noted that equatlion
(B2) can be used only until 8* = 1 (U¥ = 1.5), at which point the
velocity is assumed to be fully developed and UY' Decomes equal to
zero. After the veloclty profile has become fully developed and U”](:
and 5'_{ become constants, eguation (18) can be integrated directly.

Other integration procedures were attempted for equations (17) and
(18) involving iteration and interpolation of U¥ against x¥*, but these
were found to be less accurate and no faster thani the method described,
and they did not provide a simple continuous check.:

It was necessary to calculate only a few points with equation (36).
Performing the indicated dlfferentiation would have produced & large -
number of terms redqulring extenslve setup time. It was decided to lterate
equation (36), since fairly good guesses could be made for the
values, and Interpolation of U”{ against x* was fairly accurats in
the reglon consldered. :
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APPERDIX C

LAMINAR FORCED CONVECTION ON A FLAT PIATE FOR Pr < 1

A flat plate in an infinite domain is assumed to be alined parallel
to a flowlng stream having uniform veloclty and temperature upstream of
the plate. The plate temperature t,; 1s held at a value different from
that of the approaching stream. Distinct thermal and velocity boundary
layers, A and O, respectively, are assumed to grow along the plate.
The cage of A >% 18 considered here. A diagrammatic sketch of the
physical model 1s given. . ,

[
////T//(f{bf//f///
W

The integrated momentum and energy eqhations for a constant-property,

nondissipative laminar flow In a boundary layer are

5 .
a - -y Ou

= j(: u(T, u)fiy V5 o ~ (sa)
i A

d ot

—_— - udvy =

Ir £ (tw ~ t)udy = @ 5 520 (6b)

The veloclty In the boundary layer 1s expressed as a polynomial in
¥ wlth coefficlents that are functlons of =x.

This expression satisfies the following boundary conditions:

u=20

y=0
Pu _
dy?
u="0

y=5
u _ o
Sy
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The solution of equation (5a) can be obtained immediately without re-
course to the temperature by using the velocity expression (C1) and
is as follows (it may also be found in ref. 12, pp. 69-70):

B 4.64 _ 4.64 » ©2)
x =X ~/Rog
v

The temperature distrlbution in the boundary layer is also expres-
gible as a polynomial In y having coefficients that are functions
of x.

0L ygA (c3)

Thls expresslion satisfies the followlng conditions:

‘l7='bW
=0
%4
.__2.=0
t = te
= A
% _of -
Sy

In obtaining the solution to equation (6b), it is necessary to notice
that In the range 0 < y < A, the velocity must be expressed by two
geparate functions. In the range O y < 9, expression (Cl) applies;
while % < y < A, the veloclty is given by u = U,. Equation (6b) may
be rewritten as

5 . A ’
d _ ot
£ (tg - tludy + U, = \/6‘ (te - t)dy = > o (cs)

Inserting expressions (Cl) and (C3) in equation (6c) ylelds a first-
order differential equation for A with & solutlon convenlently glven
as

i

A=¢,5=4_'6.4_2_‘ . - . (c4)
U _x ;

-2
—

v
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where ¢ . ls the following function of Prandtl number:

- 3 R ) '
0% - @ = g5 - 0.4 (cs5)
Values of ¢ are plotted against Prandtl nomber In figure 11l. Also
plotted in figure 11 is the line [ 0.5 + 2:61 , which is a good approx-
- e Pr172

imation of ¢ for Pr < 0.1.
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The average Nusselt number is calculated from the definitiaon

ﬁ:% (232)

X o x
kf (6!: dx -
o \%)o _3x [ a
2 x A

= Q
A YO 0 E Y C o B

where

(24=)
0

Performing the indicated Integration and inserting the value of h in
equation (23a) glve the final result for the average Nusselt number.

= 0.664 E (ce)

Nu = )

a-
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Figure 1. - Development of velocity boundary layer in entrance region’
of a flat rectangular duct.
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Figure 7. - Plot of average Nusselt number Nup against Graetz number for flat rectangular.duet with heat transfer at only
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Figure 9. - Cowparison of results of present analysis for parabolic velocity profile throughout duct length
with those of reference 3.
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Figure 11. - Numerical values of function ¢ defined by relation A = ¢&, where A and b
are, respectively, thermal and velocity boundary layer thickness on single flat plate.
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