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SUMMARY

TRANSFER IN ENTRANCE

1.m’E3

The simultaneous development of temperature and velocity profiles
in the entrance region of a flat rectan@Lar duct is studied. The flow
is assumed to be laminar with negli~ble dissipation. All fluid proper-
ties are taken to be constant, and the wall temperatures are uniform.
Thermal and velocity boundary layers are calculated using the K&rm&-
Pohlhausen method. Nusselt numbers are reported for Prandtl numbers in
the range 0.01 to 50.
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When the Nusselt numbers are plotted against &aetz nunher
~’

there is a separate curve for each Prandtl number. h contrast, the
Nusselt numbers for the case of a parabolic velocity profile throughout
can ?)eplotted against Graetz number as a single curve which is appli-
cable for all Prandtl nunibers. Beyond the position where the”boundary
layer analysis can no longer be used, curves have been faired to connect
the Nusselt nwiber results of the present analysiswith those of Norris
and Streid, who assumed a parabolic velocity profile throughout the
length of the duct. “

Calculationswere alao made for a duct hatig one wall at uniform
temperature and the other wall insulated. Russelt numbers are reported
for the range of l%andtlnwnbers from 0.01 to 50.

The results of the present analysis =e compared with those for a
single flat plate. For purposes of cmnparism tith the results of Norris
and Streid, the boundary layer analysis was also used to calculate Nusselt
numbers for the case of an unchanging parabolic velocity profile.

INTRODUCTION

Until recently, analytical studies of lam- forced-convection
flow h tubes and ducts have been concerned primarily tith three groups

.
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problems. In the first group, a fluid with a velocity profile that
already fully developed enters a section of pipe having a wall tempera-

ture dif%ent &om the-temperature of the enteri& fluid: The initial
analysis for the development of the temperature profile was made hy Graetz
in 1883 for a round tube. ~ 1910, Graetz’s solution was obtained inde-
pendentlyby Nusselt. Stice then, a number of investigators have recal-
culated and extended C&aetz’e results; for example, Drew, Jakoh, Lee, and
Groeber. A different approach to Graetz’s problem was made by L&veque
h an effort to obtain better numerical values in the entrance region of
the tube section, where &aetz’s results are inaccurate. A presentation

a
*

of the aforementioned investigations is given in reference 1 and refer-
m
K1

ence 2. The problm analogous to that of Graetz for flow ‘betweentwo
parallel planes (flat rectangular duct) has been treated by~omis and
Streid (ref. 3) and by fiins, Mulden, and Schenk (ref. 4).

The second class of problems is concerned with the development of
the velocity profile in the entrance region of a pipe with no heat trans-
fer. The fluid is assumed to enter the pipe witha uniform velocity.
h the course of its flow throu@ths pipe, the fluid is retarded by
friction at the pipe wall, so that the velocity profile is distorted and
finally becomes parabolic far from the entrance. For the round pipe,
the pro%lem has leen studied by Schiller, Atkinson and Goldstein,
Boussinesq (all reported inref. 5, pp. 301-308), and Langharr (ref. 6).
The first three used the boundary layer concept in at least part of the
analysis. The analogous problem for the flat duct was treated by
Schlichting (ref. 7) and by Schill.er(ref. 5, p. 309), both of whom
assumed the existence of boundary layers.

b the third group are so-called fully developed problems h which
‘theheat-transfer and tiiction parameters do not change along the length
of the duct. The results are applied to long ducts. Ekamples of fully
developed solutions maybe found in the work of Clark and Kays (ref. 8),
where the flow and heat transfer in noncirtilar ducts is studied for the
cases of uniform wall temperature and unifo?m heat flux.

Only recently has some attention been given to the case of simul-
taneous development of velocity and temperature profiles in the entrance
region of a pipe. Solutions for air flowing in rotid’tubes’have-been
obtained byKays (ref. 9) and by Toong’(ref. 10). With the assumpticm
that air is an incompressible,cons~t-property fluid, a direct numeri-
cal inte~ation of a simplified ener~ equation by the use of finite
differences is obtained in refe&ce 9.” tie velocity values required
in this integrationwere taken from the results of reference 6. The
analysis of reference 10, which is for high-speed “flow;assumes that the r
air is compressiblewhile the’other properties are constant. The boun-
dary layer differential equations are transformed and then solved on a
differential analyzer for specific values of inlet Mach number and wall- .

to-inlet temperature ratio.
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lh the present analysis, simultaneous development of the velocity
and temperature profiles 5n the entrance region of a flat rectqgular
duct is studied. Incompressible, constant-propertyfluids having Prandtl
numbers in the range 0.01 to 50 are considered. lh presence of veloc-
ity and thermal boundary layers is assumed, and these boundary layers
are taken to have definite thicknesses, whioh ame calculated by the
K&m*-Pohlhausen method,. ~usselt numbers are computpd for the length
of duct over which the boundary layer analysis is made. Beyond tlw po-
sitiq where the boundary layer treatment can no longer be used, curves
have been faired to connect the Nusselt number results of the present
analysis with those of refererme 3, in which a Iarabolic velocity pro-
file is assumed throughout the entire duct length.,

In addttion to the symmetrical situation in which both duet walls
have the same uniform temperature, a second case is treated, h which one
wall is tisulated and the opposite wall is held at a uniform temperature.

The Nusselt numbers obtained in the present analysis should also be
applicable to annuli in which the curvature effects are small (i.e.,where
the ratio of the diameters of the concentric cylinders forming the walls
of the annulus is olose to 1), ‘

So thirha comparison could be made with the results of reference 3,
the boundary layer anal~is was used to study the development of the
temperature profile associated with a parabolic velocity profile through-
out. The development
the case

The
velocity
tangular

(1)

(2)

(3)
entrance

(4)

of a uniform
of the temperature profile was also calculated for
velocity profile throughout (slug flow);

ASSIJMPTIOI?S ..

physical model seleded for a study of the development of the
and temperature profiles 3n the entrance region of a--flatrec-
dnct.ls the follow5ng: ,--

The flow is laminar. ..

All fluid properties are constant.-

The velocity and temperature profiles are uniform across the
section.

There exists a velocltyhoundary layer of definite thickness 5.
As on a flat plate, the action ofviscocity in the entrance region
of the duct is conrined primarily-to the fluid layers near the wall,
although in actuality small effects exist everywhere in the flow. It
will be assumed in this analysis that viscosity plays a role only in a
definite region adjacent to the wall called the velocity boundary

.,-— . —-— — ————..-— —-— .————— ————
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layer 8. The fluid outside the velocity boundary layer is called the
>’

core. Inamnuch as the fluid adjacent to the wall is retarded by f&ic-
tion, it is necessary that the flow in the core he accelerated in order
that the same mass pass through every cross section of the duct. The
velocity profile is taken to be flat throughout the core. The velocity
boundary layer thicbess is assumed zero at the entrance section. The
boundary layer grows in thickness along the length of the duct until it
reaches the center Hue, where it meets the boundary layer from the .
other wall of the duct. Figure 1 shows diagrammaticallythe development
of the velocity boundary layer.

m
+
!2

(5) Two temperature conditions at the duct walls are tole
considered:

(a) Both ductwalls have the same uniform temperature, which
differs from the temperature of the fluid entering the duct; this
will be called the case of heat transfer at both walls.

(b) One of the duct walls ismatitained at a unti?ormtempera-
ture which differs from the entertig fluid temperature while the
other wall is tisulated; this will be called the case of heat trans-
fer at one wall.

(6) The viscous dissipation and work of compression are negligible
compared with the heat conduction.

(7) There exists a thermal boundary layer of definite thickness A.
Since the temperature of the fluid entertig the duct differs from the ‘
temperature of the duct walls, there will be a heat transfer to (or
from) the fluid. The principal effects of this heat transfer will be
felt by the fluid layers close to the wall, although small effects will
exist everywhere. The assumption till be made that the effects of the
heat transfer play a role only in a definite region adjacent’tothe wall
called the thermal boundary layer A. The fluid outside the thermal
boundary layer will be Unitiluencedby the heat tremsfer and will there-
fore have a uniform temperature identical to the value at the entrance
of the duct. The thermal boundary layer thiclmess till be assumed zero
at the entrance section. For the symmetrical case where both duct walls
have the same uniform temperature, thermal boundary layers will grow in
thickness along the length of the duct in an identical manner for both
walls. These boundary layers till meet at the center ltie, where A = a.
For the case where one duct wall is maintained at a uniform temperature
and the opposite wall is hsulated, a thermal boundary layer will develop
only at the wall at wl@ch the heat transfer occurs. The boundary layer
will grow until it reaches the opposite wall, where A = 2a. In general,
the velocity and thermal boundary tiyers may be of different thicknesses.
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(8) The flow is

(9) The flow is

two-dimensional.

steady.

BASIC EQUATIONS

The laws of conservation of momentum, energ, and mass for steady
laminar boundary hYeI? flow with constant properties and negligible dis-
sipation and work of compression are as follows:

$ 0Y=

(la)

(lb)

(2)

(3)

(The symbols used herein are defined in appendix A.) For the core flow,
which has been assumed nonviscous and uniform across the sectian, the
momentum equation reduces to

(4)

The premure tezm is eliminated from equaticm (la) by means of equations
(4) and (lb). Then, ustig the assumption that deftiite values A ~d
b are associated with the thermal and velocity bounda~ layers, respec-
tively, equations (la), (2), and (3) are integrated across the section to
yield

‘d
G 05(U1-U)..]+%J’(U,-U).Y=,$f (5)

g=()

d
[)FO

A (tl - IIt)u dy = m
$ y=o (6)

This integration may be found in reference 5, page 136 and pages 614-615.

—---- ———-..—— ____ —-.———
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(u -U1)dy+a(U1 -~) =0
o

(7)

These e~uations require only that the conservation laws be satisfied for
the cross section as a whole. This is a much less stringent requirement
tjuanthat tiposed by equations (1), (2), and (3), which ask that the con-
servation laws be satisfied at every point in the cross section.

According to the E&m&-Pohlhausen method, the velocity and tempera-
ture are approximated by polynomials in y having coefficients that are
functions of x. The coefficients are determined by satisfying boundary
conditions at the duct wall and at the edge of the boundary layer and
by using equations (5), (6), and (7).

A stiple and convenient expression for the velocity profile in the
boundary layer which gives reasonably good agreement with Schlichting’s
more exact results is the following one

This equation satisfies the conditions

u=Oaty=

U=ul 1

—
first used by Schiller:

0< y~ 5 (8)

o

au

J

aty=ti
&=o

(9)

but does not satisfy the condition that at the wall (y = O), $u-&
2a~v”

This requirement arises from the evaluation of equation (la) at the wall,
where u = v = O.

For the temperat~e profile h the boundary layer, the following
relation is chosen:

The boundary conditions satisfzed by this expression are

f

t y=o
a2t o

—=

a+’

(lo)

(11)

—
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t=t~

ai y.A (11)
$.=O

Cent.

The condition %— = O at y = O arises from the evaluation of equation
ay2

(2) at the wall.

It is seen from equations (8) and (10) that 5, U
+’

and A remain
to be determined as functions of x. -The assumption o constant fluid
properties means that the solution for the velocity (i.e., 5 and Ul) is

independent of the heat transfer. (The velocity solution.therefore will
apply for both the case of heat transfer at both walls and the case of
heat transfer at one wall.) However, the soIution of the temperature
problem (i.e., A) requires a prior knowledge of the velocity.

VELOCITY PROBLEM

Ih a manner similar to that followed by Schiller, the velocity ex-
pression (8) is introduced into the integrated momentum and mass equa-
tions (5) and (7), respectively, to give the following relations letween
8, Ul, and X:

8 () 6–=31-—
a

‘1

It is convenient to introduce the dimensionless

where the equivalent diameter De is equal to
spaoing 2a. Equations (12) and (13) become

(13)

variables

(14)

4a for the duct with

—- —–———.——— .—. —
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(12a)

(13a)

>’

.

At the inlet U! = 1, since U1 = ~; and for fully developed flow

u; = 1.5, since u~ = 1.5 6. The integration of’equation (12a) is car- gi

ried through numerically to ~ . 1.5 (5* . 1), at which point the’velo-

city given by equation (8) coincides with the fully developed paraholic
profile. It should be noted that the velocity solution given here does

not join smoothly to the fully

does not approach zero as UI
the entrance section, that is,
city is

A

d~
developed parabolic profile, sinoe —

dx*
approaches 1.5. Xn the neighborhood of
near X* = 0, the solution for the velo-

I/’

“1 II10 x*-1= —
3 (15)

~ PROIKEM FOR HEATTRAHS~ AT BOTH WAILS

The cases of A> 5 and A < b will be treated separately. An-
other section will be devoted to solutions for the temperature for cases
where the velocity profile is unchanging throughout the duct length.
The heat-trensfer parameters will be defined in the final section.

Case of A>5. - l?orthis &se, the velocity profile ti the ther-
mal boundary layer is flat for values of 5 < y < A. In the region
0< y< A, whfch represents the range of integration in the energy equa-
tion (6), the velocity profile is given by two expressions.

(8)

U=ul O<y<A (16)

As a consequence,the energy equatlon,can be written as

.

.
—.——.
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Introduction of the temperature expression (10) and the
sion (8) yields the following dimensionlessfirst-order
equation:

9

velocity expres-
differenkial

d

K

~ A*
~ 5*2 1 5*4

.]

3 (IX*-$6*+.—-—— .——
8 A+ (17)

120 A& 21? A*

The quantities U?, 5*, and x* have already
(14), and

A*=4
a

The integration of equation (17) to determine

b~en defined in equation

-(14a)

the relation between A*
and X* is discussed h appendix B. Calculations were made over the
range from A* = O at x* = O to A* . 1 (A = a). In the neighborhood
of the entrance, that is, near x* = O, it was found that A* = C“&,
where C is a function of Prandtl number.

Case of A <b. - Since for this case the velocity hundery layer
extends beyond the thezmal boundary layer, only a single expression,
equation (8), is required to give the velocity profile for the region
04y<A. Using the temperature expression (10) and the velocity expres-
sion (8) in the energy equation (6)gives the following dimensionless
differential equation:

$@$-&~~=&~ - (,8]

The integration of this equatian also is discussed in appendix’B. The
remarks already made for equaticm (17) concerning the range of integra-
tion and the behavior near x* = O also apply to equation (18).

Cases of unchanging velocity profile. - The two unchanging velocity
profiles to te considered are the parabolic and the untiorm.

Parabolic velocity profile: The eqyation for the parabolic profile
with y measured from the duct wall is

Using this relation and
the =ner~ equation (6)
equation:

u=,.5+(L)-(i$] ~ (19)

the temperature expression (10) h evaluating
leads to the following dimensionless differential

--- . ..-_ —. —— ——-— ————. __— —.
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-4

Yhe solution for the initial condition A* . 0 at x* . 0 Is

**3
—_
5

(20) -

(21)

Uniform velocity profile: The equation for the uniform velocity
profile is stiply

and the solution of the energy equation (6) for tiitial conditions
A* =Oatx*=Ois

(22)

Heat-t~fer parameters. - The heat-tramifer results will be pre-
sented in dimensionless form utilizing the average Russelt nuder, which
3.sdefined h the usual way as

me
fi=~ (23)

For a duct with spacm 2a, the equivalent diameter De is equal to 4a.
The average heat-transfer coefficient for a length of duct x (and unit
width) in which there is heat fiansfer at both walls is given by

(24)

The temperature difference to he used rematis to be specified. Heat-
transfer coefficients for three definitions of At will le calculated,
and accordingly there will be a set of liusseltnumbers correspondingto
each of the three deftiitions of At. These definitions are

(At)l =

(At)2 =

(At)3 =
(t#t~)+ (%-% ,x)

2
J

(25) “

‘,/

—
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In the first and third definitions, %,x represents the hulk tempera-

ture corresponding to any position x. The bulk temperature is most
conveniently obtained from the steady-flow energy equation o

(~,x+=--+ Q.-
P P2a(l)ucp

(26)

in which the kinetic energy and gravity differences have been taken to
be negligible.

The total heat transfemed at both duct walls in a length x and
width equal to unity is

Q=-2~xk(90dx (27)

TIM derivative in equation (27) is evaluated frcm the tempefiture ex-
pression (10) to give

Q

All the quantities
given in equations (24)

= + 3k(~ - tl)
J

‘tit
T0,

(28)

necessary to evaluate the Nusselt number are
to (26) and (28); the results are as follows:

fi2 = 0.25 Gz B

(29a)

(2%)

fi3 = 0.25’Gz
*

(29c)

The symbol Gz represents the Q%etz number, which is defined by

The other dimensionless group

B=
.

w J.

(30)

appearing in equatian (29) is given by

(31)

h general, B depends separately upon 2randtl number and x*. By vir-
tue of the relaticm between Graetz number and x* given h equation
(30), B may also be considered a function of Prandtl number and of Graetz
number.

..._. .—-.. .———————— —— — —.- —— ———



———.—-

12

Inspection of equations (29) shows that in the most
the IRzsseltnumber will depend sepamtely upon two-other

For example,groups. .
\

= = f(Gz,W) I
or, alternatively,

‘( )]

Xpe
Ku = f(x*,l’r)= —ERed

For the case of si&ltaneous development of the velocity

N.ACATN 3331

.

general case,
dimensionless

.

(32)

md+
to
to

and tempaatwe
profiles, the IWzsseltnumber depends separately on two other groups, as
shown in equaticm (32). However, for the case of the parabolic velocity
throughout (and for the case of the unifozm veloclty profile as well),
reference to equaticms (20) and (21) shows that B is a function of
Graetz nuder alone. Hence, for these unchanghg profiles, the Ihsselt
number depends on only the Q’aetz number.

Althou@ t~boundary layer nature of the present analysis does “not
allow calculations to be made for very long ducts, it is interesting to
notice the behavior of the various Iiusseltnumbers at ~eat distances
from the
into the

For very
the bulk

entrance. To this end, expression (24) for h is introduced
deftitig equation (23) for the IVusseltnumber to give

(33)

long ducts, the duct surface area A becomes very large. Also,
te~–erature of the stream will approach the wall temperature.

Inspection of the de=tions (25) shows that as A approaches infinity,

At2+ (t#l)

(*W-Q
At3 + ~

}

(34)

Equation (33), then, indicates that as A approaches inftiity, ~~
and =3 approach zero. =1 appears to be an indete?xalnateform, the
limiting value of which has been determtied in reference 3 as 7.60.

TEMPERATURE PROBE3M FOR BEAT TRANSFER

The temperature problem, as before, must %e
for A>b and A<b. It should he noted that

,.

AT 01W3WAIL

formulated separately
this separate formulation ‘

.- —
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iS necessary only for 5 < a, where different formulas are required to
describe the velocity profiles in the boundary layer and in the core.
When b = a, the velocity profile is fully developed and the parabolic
formula gives the velocity over the entire cross section. Ih all cases,
the calculations are limited to A <2a.

Case of A >8. - A sketch of the development of
thermal boundary layers for this case is given here.

the velocity and

T
I

2a

bsulated ~~ali
////////////////l/////////

,.

Y //~/////\///////// ////////
x Lt

w

It is seen that the thermal boundary layer, growing into the duct from
the wall at temperature ~, eventually will meet the velocity boundary
layer developing along the opposite wall. The meeting will occur when
A =2a-6. Ih the region preceding this meeting, that is, for values
of ~CA$<(2a- 5), the analysiH already given for the temperature”
problem with heat transfer at both walls for A >5 is valid.

For (2a - 8)< A< 2a, it is neceesary to use three formulas to ex-
press the velocity profile.

1

u=ul[2@ -@y] ‘o<y<, . .

.-
., -.. .

(35)

.—. —.—— --- —-
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(lo)
Intrcxlucingthese relaticms together with
into the energy equation (6) leads to the

k-{d u: 1 5*2 l-@4+3
.*5*+ 5—-— — ~ eA* +

A* Uo A@

1

the temperature expression
following result:

&fA& +& @*3+

[ ~++(=*)3~-*fj+(2-6*)(1-e) - (2-5*)2 (l-e)

[ 1.

(2-5’)4 (1-e) L + ~ f - (2-5*)5‘--& - (2-5’)6---&. ‘
8A*3 })

.

where

44e= —-—. .
5* 5*2

(36)

.

The solution of equation (36) is discussed.h appendix B. “

Case of A < 5. - The formulation of this case is identical to the
analysis already made for the temyemture problem with heat transfer at
both walls for A .cb.

Heat-tranefer parameters. - The Nusselt number ~~, based on the
temperature difference, (At)2 = (~ - tl), is chosen for presentation of
the heat-transfer results, since it is the one most convenientlyused in
Calcmtions . E the equivalent diameter De is taken as 4a as before,
the expression for =

t

for the case of heat transfer at one wall lecomes
identical to equaticm 29b).

PR&mTATI& OI?RESULTS

Heat-!Ihnsfer Results

Nusselt numbers for heat transfer at both walls. - The results for
%1 are plotted in figure 2 as a function of Graetz number for Prandtl

——
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numbers in the range 0.01 to 50. The curves obtained from the boundary
layer anal~sis (solid lines) ‘tezminateat the Q’aetz nuniberscorrespcm-
ding to A =l(A= a). The curve of reference 3 for a parabolic velo-
city profile throughout (dot-dash line) ie given for Graetz numbers be-
low 100. Curves have been faired (dotted lines) to connect the results
of the present analysis with those of reference 3. R@re 3 shows the

X/Deresults of fil replotted with ‘—
ROd

as abscissa and Prandtl number

as parameter.

The N~2

are replotted

results are plotted against

‘be
against ~ OR figure 5.

Graetz number m-figure 4 and

Prandtl number appears as a

parameter on the curves. For practical applications, fi2 willbe the
most convenient Nusselt number to use since it is based ‘m the simplest
temperature difference. The solid lines on figure 4, which represent
the results of the boundary layer analysis, can be fitted to tithin 3
percent by’the followbg equations:

1’,—
~

[-1
12

-me z.

r)T=*l’T” =
0.01< Pr< 2 (37a)

1

[1
1be %

0.664 GZ Prg
()~=+ 1+6”27 =

Pr = 10, 50 (37%)

The function ~ appearing in equation (37a) is equalto (Pr)‘~13 for

values of Pr >1 and is obtained from figure 11 for Pr < 1. The

faired curves for ~~ shown on figure 4 are consistent with the

faired curves drawn o: figure 2 for ~
relation

~ inaccordance with the

[1

ml
-—

xiii = f“l --e w (38)

The results for fi3 are plotted h fi~e 6 on separate ~ids as a
xbe

function of Graetz number and The heat-transfer results have
~“

also
this

been presented in the fozm of =3 because they are often given
way in the literature.

.

.—...————.—— — ———
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.

Nusselt numbers for heat transfer at one wall= - The =2 valuee
for heat transfer at one wall are given on figure 7 as a function of
C&aetz number for Trandtl numbers In the range 0.01 to 50.

..

Comparison of Nusselk numberstith those of other analyses. - TWO
comparisons are made.

(a) b reference 3, it is ~ested that entrance region Nusselt
numbers for ahultaneously developing velocity and temperature profiles
might be obtained using the ~esults fcm heat transfer from a flat plate
to a fluid having velocity U. The flat-plate results canbe put into

#

the follmnlng fozm to facilitate a comparism with the Nusselt numbers
of the present analysis:

(39)

-1/3, ‘~or W< 1, .
For Pr >1, many investigatorshave found that Q ==
Q does not appear in the literature; it is calculated in appendix C of
this report and is given ti figure 11. The flat-plate resulta_of equa-
tion (39) ae plotted ti figure 8 and are compared yith the Nu2 results
of the present anal~is for the representative values of I& - 0.1, 2,
and 50.

(b) The boundary layer analysis has been used hereti to calculate
the development of the temperature profile for an unchanging parabolic
velocity profile throughout the duct length. The 17usseltnumbers (for
heat transfer at both walls) obtained from this analysis are compared
in figure 9 with those of reference 3, in which a different method of
analysis is used. The’values of =1 and fi3 are almost coincident
in the range of @aetz numbers considered and appear as a stigle line on
figure 9. Comparison of the =2 values from ‘thetwo investi’&ttons is
also made in figure 9.

Velocity Results

Velocity values calculated from equation (12a) are plotted in figure

10 as a function of a = x* with the ’dimensionlessdistance ftromthe
a%

wall y~a as a parameter. ticluded for comparison on the same figure
are curves representing the retits of Schliqhting (ref. 7).

that

DISCUSSION

Nusselt numbers for heat transfer at both walls. - Figure 2 shuws
when Nusselt nunibersfor the case of si.mul~eously developing

— —— ——_ . —..——



NACA TN 3331 17

velocity and temperature profiles are plotted against Graetz number,
there is a separate curve correspondingto each Yrandtl number. In con-
trast, when the Nusselt numbers for the case of a parabolic velocity
profile throughout are plotted againti Graetz number, a shgle curve re-
sults which is applicable for all Prandtl numbers. For any given Fmandtl
number, the Nusselt number for a flow with a developing velocity profile
is greater than (or, at least, equal to) that for a flow where the velo-
city profile is parabolic throughout (at a fixed Red ~d x~e) beca~~se
the velocities near the wall are higher for the developing velocity pro-
file than for the parabolic profile.

The curve of reference 3, based on a parabolic velocity profile
throughout, is shown h figure 2 for the smaller Graetz numbers, where
the boundary layer analysis can no longer be used. The previously men-
tioned limiting value of fil of 7.6 is attained in the solution of

Re#r ‘
‘efermce3at‘z=m=4” E fully developed heat transfer is de-

fined by the criterion that the limiting value of ‘=1 is achieved, then
it is seen that for a given Reynolds number, fluids of lowl?randtl number
attain fully developed heat transfer h shorter lengths of run (i.e.,
lower X/De) than do fluids of higher Prandtl number.

It is expected that at a sufficiently large distance from the be-
t@R@3 of the duct, the velocity conditions in the entrance region
will cease to play an important role in determining the average Nusselt
number. It is realized that only at infinity will the Russelt numbers
based on a developing velocity profile coincide precisely tith those for
a parabolic profile throughout the duct length. For practical purposes,
however, the differences should become negligible at scme finite location;
so, curves have been faired in figure 2 connecttig the Nusselt nubers
from the boundary layer analysis with those of reference 3. Althou@ in-
herently ine=ct, this extrapolation at least provides aq estimate of the
location at which the effect of velocity development is negligible.
Figure 2 indicates that the influence of velocity development ceases at
lower Graetz numbers for the fluids of lower Frandtl number.

The use of the Graetz numberas an independent variable allows the
convenient comparison on one graph of results for the case of simultane-
ous development of the thermal and velocity profiles for different
Prandtl numbers with a single curve representing the results for a para-
bolic velocity throughout. Further, the extrapolation of the curves for
simultaneous development of the boundary layers to join with the curve
for the parabolic velocity ‘canbe made conveniently for all I?randtlnum-
bers on a stigle graph with Graetz number as abscissa.

x/D
Figure 3 is a replot of figure 2 in which - is used as abscissa

Red

and Prandtl number appears as parameter. The curves shown represent

. -- -- —-——..———--- - .—— ~ . .. . . —.——- —.—v—- . -.——-
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the results for the case of simultaneous development of velocity and
temperature profiles. The results for the case of a parabolic velocity
profile throughout, which can be plotted ae a single curve as a function
of Graetz number, would appe~ as a series of curves with l%andtl number

X/beas parameter if they were plotted against
~“ These curves do not

appear on figure 3.

The influence of Prandtl number on Nusselt number is clearly shown

‘bein figlme 3. At a given value of — the fluids of higher Prandtl
Red‘

number have higher Nusselt numbers. This result is in qualitative agree-
ment with the usual heat-transfer correlations,which show I?usseltnumber
increasing with Prandtl number for a fixed Reynolds number. The depend-
ence of Nusselt number upon ‘be for a fixed Reynolds nwnber (and a
fixed Prandtl number) is also clearly shown h figure 3. As has already
been noted, the value of x/’De correspondtig to fully developed heat
transfer decreases with decreasing Prandtl number.

out
ent

for
the

lR1.gures4 and 5 show trends si.mllarto those which have been pointed
for figures 2 and 3. The faired curves shown on figure 4 are consist-
with those drawn on ftgure 2.

Nusselt numbers for heat transfer at one wall. - Nusselt numbers
a channel in which one wall is held at a uniform temperature while
other wall is insulated are shown in figure 7. The results ue given—

h the form of NU2, based on the temperature difference (At)2 = ~ - tl,
because it is the most convenient one to use in calculations. There
are at present no solutions of this case for very long ducts. It is
suggested that engineering estimates of the heat transfer for ducts
with Graetz numbers of 3 or less be obtained from the relation

fi2 =0.5 Gz

Comparison with other calculations. - Nusselt numbers of the present
analysis for simultaneous development of velocity and temperature pro-
files are compared h figure 8 with those ~or a single flat plate im-
mersed in a fluid moving with a velocity U parallel to the plate. It
is su~ested In reference 3-that the flat-plate results might be used
in the entrance region of a duct. For given Reynolds numbers, the agree-
ment between the flat-plate results and those for the duct becomes
poorer as x~e ticreases. This is to be expected, since the velocity

.——.—_ -. —-——
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U1 of the fluid_in the core departs more and more from the free-stream
velocity U~ (= U) of the plate as ‘be increases. The agreement
appears to be poorer for the fluids of higher Prandtl number because at
a given Graetz number, higher values of ‘be are aesocated with the
higher Prandtl numberp at a given Reynolds number.

A check on the boundary layer aualysis was sought by calculating
Nusselt num%ers for the case of a parabolic velocity profile through-
out the duct length. This case had already been treated in reference 3
using h“vsque’s method for Graetz nuuibersabove 400 and a direct numeri-
cal titegration of the energy equation for Graetz numbers below this
value. The agreement of the curves in figure 9 is considered very good
in view of the approximations in the boundary layer analysis and those of
h%equ~’s method.

Longitudinal heat flow in fluid. - The boundary layer energy equa-
tion’(eq. (2)) is derived from the general energy equation for a conetant-
property, nondlssipatlve flow bynegl.ecting the longitudinal conduction

a2t
of heat k — a2t mecompared with the transverse conduction k —.

&2 ay2
condition Ajx<< 1 is usually assumed sufficient justificationfor
deleting this term. However, it is still possible that the longitudtial
conduction can be neglected even if A/x is not small ccmpared with 1.
Thus, the conditi~ A/xc< 1 is suI’ficient,but not necessary, for de-
leting the longitudhal conduction term. When tQis conditian is not sat-
isfied, the rigorous check as to whether the longitudinal conduction
tezm is negligible is to obtati a solution of a problem in which it has
not been deleted.

For the.lowest Prandtl numbers considered in this report, the con-
dition A/x << 1 is not satisfied h the length of duct for which
the boundary layer analysis is made. For example, inspection of figure

‘be
5 shows that the solid curve for Yr = 0.01 terminates at — = 0.7X10-4,

Red

at which point A = a. Since De = 4a, this would correspond to x/A = 0.6
for a Reynolds number of 2000.

Since no solution for the energy equti.on containing the term

~ a2t— has been obtained, there is no rigorous basis for deleting it
&2 in

those cases where the condition ~<< 1 has not been satisfied. Iieglect-

i.ngthe term k~
x

for a fluid of very low Prandtl number canbe justi-
axz

fied only on the basis of the resulting simplification of the ener~

.

. . — -- - —.-—-——.- .---— .—— —._.-.—— .--—— -——----- —.— -———— ————
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equation. For this reason, the results for the fluids of very low
Prandtl number may be leas acc~te than the other results of this
report.

Velocity profile. - The expression (8) chosen to describe the veloc-
ity profile in the boundary layer had the virtue of simplicity and gave
reasonably good results, as maybe seen by comparison in figure 10 with
the more exact values of Schlichting. It has already been noted that al-
though the velocity solution obtatied in this report coticldes wtth the
fully developed psrabolic profile when 5 = a, its approachto the fully m

developed parabola is not asymptotic. However, it is not expected that ?!
any other poQnomial expression for the velocity could be used throughout
the e?tire length of the channel and asymptotically approach a parabola.
(Basically,it would not be e~ected that any boundary layer analysis for
the velocity should lead to a solution whioh approached the fully devel-
oped parabola asymptotically.)

A solution for the velocity profile which approaches the parabola
asymptotically at inftnity can be obtained by using a boundary layer
analysis at the beginuhg of the duct and another method of analysis
at great distances from the entrance. This is the method used by
Schlichting. Such reftiements in the calculation of the velocity pro-
file would have destroyed the simplicity of the analysis for the tempera~
ture problem which has been used in this report.

The final check of the ~luence of the approx~te velocity profile
on the heat-transfer results can be made only when a more exact solution
to the energy equation is available. For the simpler problem of heat
transfer from a flat plate, the author has verified that good Nusselt
number results can be obtatied with the K&&n-Po~usen method even
though the velocity profiles are approxhat’e.

Validity of thermal boundary layer calculations as A ap-
proaches a. - Whether or not good heat-transfer results can be obtained
frcm a boundary layer calculation for A values near a depends upon
the extent of the interactionwhich is actually taking place in the
duct as a result of heat transfer from tfieopposite walls. It is felt
that the boundary layer model till give good results only if this inter-
action is small. The values of A are in a sense arbitrary, since
they depend to some extent upon the degree of the poQnomial which Is
taken to approximate the temperature profile. For one choioe of poly-
nomial, the condition A = a may be achieved at a positim In the
duct where the actual interaction of the heat transfer from the oppo-
site walls is negligible. On the other hand, for another polynomial,
A a may occur at a location at which there is considerable inter-
ac~lon actually taking place in the duct.

— — -. —
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For a parabolic velocity profile throughout the duct length, the
Nusselt numlers calculated from the boundary layer analysis up to A = a
agree quite well tith the resultq of reference 3. In fact, when the
boundary layer calculationwas extended to A = 1.3a, the Nusselt numbers
still agreed to tithin 3 percent. This good agreement seems to imply
that the boundary layer model is still valid for A approaching a, at
least when the velocity profile throughout is parabolic.

For simullxmeouslydeveloptig temperature and velocity profiles,
no other solution presently exists with which the results of the present
analysis can be compared. So, no completely conclusive statement as to
whethep it is valid to carry the calculation of the temperature profile
to A =a canbe made.

Practical departures from conditions of analysis. - Various condi-
tions of the preeent analysis which may not be completely satisfied in
practical application will be discussed.

(a) Variable fluid properties: U some fluids, the variability of
properties has a marked effect on the heat-transfer results. The proper-
ty variations tend to alter the shape of the velocity profile as well.as
to create free-convection currents. Corrections for the Nusselt number
to take into account property changes are discussed in references 3
and 11.

(b) Entrance conditions: Ih any real apparatus, the entrance veloc-
ity and temperature profiles will be de~e?.minedby the shape of the
transition section between the header and the duct and by the heat trans-
fer to the fluid in the header. There may be nonzero values for the
velocity and thermal boundery layer thicknesses at the entrance section
associated with nonuniform profiles.

(c) Unlfomity of wall temperature: b almost any real apparatus,
it is not expected that a uniform wall temperature canbe maintatied in
the neighborhood of the entrance section; stice, in addition to the pos-
sibility of heat conduction from the duct walls to the header, the ex-
tremely high heat-transfer coefficientsnear the entrance section tend
to make the temperature nonuniform.

(d) Heat transfer at one wall: In’practice, for sufficiently long
ducts, there may be deviations from the condition of zero heat transfer
from one wall to the fluid even though that wall maybe insulated from
the external surroundings. This may occur when the thermal boun~
layer growing from the heated wall contacts the opposite wall, thereby
causing a temperature rise of the opposite wall in the region where the
contact takes place. There will then be a conduction of heat from the
wazmer parts of the wall to the cooler parts which are located nearer
the entrance, and some of this conducted heat will be transfened to the



22 NACA TN 3331

fluid. lkcept for cases of thick walls made of high conductivitymaterial,
this secondary heat transfer to the fluid is expected to have very little
Wluence on the results of the analysis. Of course, for those ducts
which end before A = 2aj the condition of no heat transfer to the fluid
at me wall is achieved by insulating the wall &cm its external
surroundings. ~

C~CLCIDING REMARES

The simultaneous develo~ent of temperature and velocity profiles
in the entrmce region of a flat rectangular duct has been studied
using a boundary layer analysis. The K&m&-Pohllausen method was used
to calculate the thickness of the velocity and thermal boundary layers.
Wcompressible, constant-propertyfluids having Prandtl numbers In the
range 0.01 to 50 were considered. Both duct walls were assumed to have
the same uniform temperature.

Nusselt numbers were calculated for the length of duct for which
the loundsry layer analysis was made. It was found that when Nusselt
numbe~ were plotted against @aetz number, a separate curve for each
Prandtl number resulted. In contrast, when the Nusselt numbers for the
case of a paralolic velocity profile throughout were plotted against
Graetz number, a shgle curve resulted which is applicable for all
Prandtl numbers. I?orany given Prandtl number, the Nusselt number for
a flow with a developing velocity profile is greater than (or, at 10af3t,
equal to) that for a flow where the velocity profile is parabolic through-
out the duct length. Beyond the position where the boundary layer treat-
ment can no longer be used, curves have been faired to connect the Nusselt
number results of the present analysis with those of reference 3, In
which a parabolic velocity profile was assumed throughout the length of
the duct.

Calculations were also made
temperature while the other wall
ported over the range of prandtl

for a duct having one wall at uniform
IFS insulated. Nusselt numbers are re-
numbers from 0.01 to 50.

Nusselt numbers from the present analysis were compared with those
for a single flat p&te tiersed in a fluid moving with velocity U=
which is equal to U, the average velocity in the duct. The Nusselt
numbers for the duct exceeded those of the plate. This difference
ticreased with distance from the tnlet. So that this comparison could
be made, the Iiusseltnumbers for a flat plate for Prandtl numbers sub-
stantially less than 1 were calculated.

The boundary layer analysis was used to calculate Nusselt numbers
for a parabolic velocity throughout the duct length. These results were *
in good agreement with those of reference 3.
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It is expected that the Nusselt numbers obtained for a flat rec-
tangular duct will apply for an annulus for which the diameter ratio

, is near 1.

Lewis Flight Propulsion Laboratory
National Advisory Conrnitteefor

Cleveland, Ohio, September

g

Aeronautics
30, 1954
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AH?ENDIX A

SYMBOLS

The follo~g symbols are used in this report:

surface area of channel walls through which heat is being trans-
ferred, sq ft

half-spacing between parallel walls in a duct or annulus, ft

dimensionless

specific heat

group defined byeq. (31)

at constant pressure, Btu/(lb)(OF)

equivalent diameter

dtiensionless group

dtiensionless g$oup

for a duct or annulus, 4a, ft

defined byeq. (36)

defined byeq. (36)

.
Red Pr

‘etz ‘mber’ m

dtiensionless group defined by eq. (36)

average heat-transfer coefficient, Q
hi

Btu/(sec)(sq ft)(°F)

thermal conductivityof the fluid, Btu/(sec)(ft)(°F)

mass rate of flow through cross section, lb/see

tie
average Nusselt number, ~

Prandtl number, ~ = ~ ‘
a

static pressure, lb/sq ft

heat-transfer rate, Btu/sec

tie ~.&
diameter Reynolds number, ~ = —

v

static temperature, %

bulk temperature of fluid at position x, ‘F

— —..——.— .
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wall temperature of channel-or aunulus, ‘1’

temperature of fluid at entrance section of channel or annulus, %l?

temperature of fluid f= frmn surface of a flat plate, %’

average velocity of fluid, ft~Bec

velocity in core, ftjaec

u~
dimensionless velocity in core, —

E

free-stream velocity for flat plate, ftlBec

velocity component in x-direction, ft/sec

VSIOCity component h y-d~ecti~, ft/aec

coordinate measuring distance fram entrance of channel, ft

mdimensionless coordinate, ~ &
a au

transverse coordinatemeasuring distance from channel wall, f%

thermal diffusivity of fluid, k/cpp, fi2/sec

thermal boundary layer thidmessj ft

dimensimless thermal boundary layer thickness, A/a

velocity boundary layer thickness, ft

dimensionless velocity boundary l&er

kinematic viscosity of fluid, ft2/sec

density, lb/cu ft ~,

thickness, 5/a

.-,

dimensionless group defined by equation (C4) ‘

,,. . ,~,.,

.

— —.—— ..—. . . —— .——--— — —— . .—— —
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CALCULATION PROCEDURE
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It was desired to use a rapid and accurate calcuktion procedure for
equations (17) and (18)which also provided a continuoti check. Equation
(18) will be considered in detail. An identical procedure was used for
equation (17).

%
m

If the differentiation tidicated in equation (18) and the m

substitution

(Bl)

are made, the foll.owingfirst-order differential equation is obtained:
..

*2

dU: 8 5*2
—= (B2)
dA* 3

‘(

- 1A
d

1A*23AG+1A*3——- —— -.—
2A* Pr U:’ 5 5*

)

——
24 5*2 5 @*2 4 U*5*3

Since 5* and u~’ are stiple functions of U: from equations (12a)
and (13a), the numerical integration of equation (B2) to find ~ as a
function of A* cem be carried out without recourse to x*. This inte-
gration was perfomed using the Runge-Khtta methcil. h order to provide
a conttiuom check at each step of the calculation,-thevalue of ~
obtained for a A* was immediatelyused to compute an x* from equation
(13a)by the Ruage-Khtta method. Alternatively, a check value of x*
was calculated from the followtig integrated fozm of equation (18):

(B3)

using Simpson’s rule ml the values of U: and 5* obtained from the
tite&ati-& of equation (B2).

L

The starting value of dU~/dA* was obtained

c
lm*results U* - 1 = ~

1 end A* = C &, which

by ustig the two .

satisfy equations (13a) .

————..—
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and (18), respectively, as X*+ 0. Itshould be noted that equation
(B2) can be used only until 5* = 1 (~ = 1.5), at which point the
velocity Is assumed to be fully developed and N’ becomes equal to
zero. iRer the velocity profile lms become fully developed and ~
and ?$ become constants,-equation (18) canbe integrated directly.

Other integration procedures were attempted for eq,mtions (17) and
(18) involving iteration and interpolation of ~ against x*, but these
were found to be less accurate and no faster than the method desmibed,
and they did not provide a simple continuous Check.

It wasnecess~yto calculate only afewpotits with equation (36).
Performing the indicated differentiationwould have produced a large
number of tezms requiring extensive setup the. It was decided to iterate
equation (36), since fairly good guesses could be made for the ~
values, and titerpolation of ~ ~@tist x* was fairly accurate in
the region considered.

--- —-—..———. —c —-—--- _ — —..-——— —. —._—.—— —-
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APPENDIX c

IAMIKAR 3?ORCEDCONWNX!IONONA lYL!4TPL!Yl!13FOR Pr<l

A flat plate ti an Mtiite dcmati is assumed to be alined parallel
to a flowing stream having uniform velocity and tempemture upstream of
the plate. The pkte temperature ~ is held at a value different tiom
that of the approaching stream. Distfict thermal and velocity %oundary m

+
layers, A and
The case of A
physical model

5, rea-&ti~~, are assumed to grow along the plate. mNI
>8 ie-considered
is given.

here. A diagr&mat ic s~etch ~f the

The integratedmomentum and energy eqhations for a constant-property,
nondissipative laminex flow in a boundexy layer are

J’
5

d U(Um - u)dy = V
ZZO ,1%y=() (5a)

(6b)

The velocity in the boundary laym is expressed as a polynomial in
y with coefficients that are functions of x.

This expression satisfies the folluwing

o<y<~ (cl)

boundary conditions:

.

—— —.—— —. ———
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The solutian of equation (5a) oan be obtained immediatelywithout re-
course to the temperature by using the velocity expression (Cl) and
is as followf3 (itmayalso be found in ref. 12, pp. 69-70):

5 4.64 4.64“- =—= —
x

F
.x.x +
T

(C2)

The temperature distribution in the boundary layer is also emres- .
sible as a polynomial In y hamlng coefficients that are funotions .
of x.” .

t-% 3Y 1Z3—= ——-—
()~-~ 2A 2A O&y~A (C3)

This expression satisfies the following conditions:

)

t tw=

a2t o ‘0

‘~=

}

t=t&

Y=A
$=0 ~

h obtaining the soluticm to equation (6b), it is necessary to notioe
that h the range O< Y<A, the velocity must be expressed bytwc
sepqrate functions. b the range Os YS5, expression (Cl) applies;
while 64ydA, the velooity is given by u =U_. l?@ation (6b) may
be rewritten as

d J
&EO (t=-t)udy-t Um -& J~A(t=’-t)dy=a~ I (C6)

@

Ihserting expressions (Cl) and (C3) in equation (6c) yields a first-
order differential equation for A with a solution conveniently given
as

A=qb=w-. .(C4)

K

U=x .. .
—’
v

.—
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where @ . is the following function of Prandtl number:
..

(C5)

Values of q are plotted a@nst I?randtlnumber in figure 11. Also

\plotted in figure I-1is the.line (0.5 + .% , which is a good approx-

where

imation of p for Tr s

‘l?lwaverage 19ust3elt

F= Q
-’

Performing the tidicated

\
#J ‘)

0.1. ““”

number is calculated tiom the definition

Gm=~ (23a)

..

integration and
equation (23a) give the final-result for
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