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wALLBEAT moRI!RJ3sc!Kc3ED Nonuniform wKLLTEwmMmE

By E. M. @r’TOW

SUMMARY

An analysis is made for laminar free
with nonuniform thermal conditions at the
are considered for the wall heat flux and

convection on a vertical plate
surface. Prescribed variations
for the wall temperature.

For the situation where the wall-heat-flux variation is prescribed,
graphs are presented from which the resulting wall-temperature variation
may be obtained. Local heat-trsmfer coefficients may be readily deter-
mined using the information given on the graphs. Results for the impor-
tant special.case of uniform wall heat flux are also given.

For the situation where the wall-taperature variation is prescribed,
graphs are presented from which the over-all rate of heat transfer from
any lengbh of the plate may be obtained. Another set of graphs is pre-
sented for obtatiing local heat-transfer coefficients.

KU. the aforementioned results are given for fluids having prandtl
numbers h the range 0.01 to 1000.

The flow is taken to be of the boundary-layer type, and the problem
is formulated by the K&rm&n-Pohlhausenmethod. The solution of the result-
ing equatims is achieved by series expansion. The first term of the
series corresponds to the result for uniform thermal.conditions on the
wall. The succeeding terms give the Wluence of the nonuniform thermal
conditions. The first five terms of the series have been calculated.

INTRODU31TION

Lsminar free convection on a vertical plate has been a subject of
study since 1881. Most of the analytical work has been done for the sit-
uation where the wall tempem.ture is uniform over the entire surface.
An exact solution of the
convection on a vertical

boundary-layer differential equations for free
flat plate with untiorm wall tanpratuxe is

—...-._c. ._——— _ —— -—— .—. .——



2 II/WATN 3508

given in reference 1 for several Prandtl numbers h the range 0.01 to
1000. Reference 1 also lists other work on the uniform-wall-temperature
problm. The I&m6n-Pohlhausen method is applied to
temperature case in references 2 (pp. 671-673) and 3
results reported in these references a~ee well with
act solution of reference 1.

Considerably less smilytical work has been done
where the heat transfer is uniform over the surface.
of the boundszy-layer clifferential equations for the

the unHorm~waJl-
~. 158-163). The
those from the ex-

for the situation
An exact solution
uniform-heat-flux

case is given ‘h reference 4, which also contains results calculated by
the K&rn&-Pohlhausen method. The results of the exact solution and
those from the K&man“ -Pohlhausenmethod are h good agreement.

Accounts of experimental investigations of free convection on ver-
tical surfaces are given fi references 1 to 6.

In a large nuuiberof technical-applications the themal conditions
on the surface sre nonuniform. -These nonuniformities h thermal condi-
tions may be gxouped into two categories:

(1} The heat flux msy be prescribed to vary over the surface. It
is then of titerest to calculate the resulting variation of the surface
temperature.

(2) The”variation af the temperature on the surface may be pre-
scribed. It is then of interest to calculate either the local rate of
heat transfer at vsxious locations on the surface, or the over-alL rate
of heat transfer from the surface, or both.

This report presents a first attempt at solution of the free-
convection problem on a flat plate for these two categories of non-
untiorm thermal conditions at the surface.

This snQysis was made at the NACA Lewis laboratory.

GENERAL CONSIDERATIONS

The physical problem and the coordhate system are indicated in the
follow5ng sketches, which show a vertical surface that may represent a
flat plate or a vertical cyltider of large dismeter:

. .
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Sketch (a). - Heat transfer from
WW tO fluid
everywhere.

Sketch (a)
the wall to the
temperature tv

and tw>ta

depicts a situation
fluid at a13.potits
everywhere exceeds

Gravity
fi ld

1

Sketch (b). - Heat transfer fran
fluid to wall and tlr< ta
everywhere

ti which the heat transfer id from
on the surface and the local wall
the ambient temperature t=. On the

w’dl, either the heat flux w be designated to vsry with x, & the
waXl temperature may be prescribed to vary with x.- (No varhtions are
considered in the direction of the z-coordtite, normal to the page;
the problem is thus taken to be two dimensional.) The fluid in the
neighborhood of the wall has a higher t~erature and a lower densit#
than the fluid Yar from the wall. Thus, because of buoyancy, there wSU
be established an upward flow of fluid in the neighborhood of the wall.
The region of space h which the upward flow primsrily occurs is caKLed
the velocity boundary layer. A thermal boundary layer is deftied as that
region of space where the temperature t deviates markedly from the sm-
bient temperature ta. lQ general, the velocity and thermal boundary

layers have clifferent thicknesses, the relative _itudes dependtig upon
the fluid properties. Both boundary layers are assumed to have zero
thickness at the leading edge (x = 0). The velocity boundary layer is.
shown schematically in the sketch.

Sketch (b) shows a situation h which the heat transfer
fluid to the wall at all points of the surface and the locsl
ature tw is eve~here less than ta. Again, on the wall,
heat flux or the temperature may be prescribed to vary with
the flow of fhid in the boundary layer is downward as shown.

is from the
wall temper-
either the

x. Here,

%’his refers to fluids show3ng the usual trend of density decreasing
with increasing temperatme.

. . ..-. — ..__ ._



4 NACA ‘IN3!508

If the coordinate systems are taken as shown in the sketches, the
method of analysis and the results for the heat-transfer parameters are
the ssme for these two situations; and there wiIl be no need to treat
them separately. So, the snalysis will be carried out for the case of
heat transfer from the walJ to the fluid (tw > ta), but it is to be remem-

bered that the results apply to both situations depicted in the sketches.

A definite class of variations of the wdd. heat flux will be pre-
scribed’. S~pose that the region of titerest on the vertical plate lies
between x = O and another location x = ~ (xL must lie in the region

The walIlheat fluxes to be consideredof landnar flow over the plate).
here have a ftiite nonzero value at x = O and either ticrease steadily
fromx=O to X=XL or else decrease steadily from x = O to
x= xL.

The form of the wall-temperature variations considered here is sti-
ilsx to that outltied for the wall-heat-flux variations. The wall tem-
perature rels.tiveto anibienthas a finite nonzero value at x = O and
either rises steadily fran x = O to x= xL or else decreases stead-

~fr~x=o to x=xL.

Although the analysis made here is for free convection in a gravity
field, it may easilybe generalized to ticlude other force fields. It
k3 only necessaxy to replace the gravitation~ force per unit mass g
by the body force per unit mass of the other force field under
consideration.

RASIC EQUATIONS

The equations expressing conservation of mass, mcmentum, and ener~
for steady laminsr flow ti a boundary layer on a vertical flat plate are
as follows:

2+$=0
auau

‘x+v&= f@(t - ta)+v=

b2
stat azt

‘&+”&=ap

(1)

(2)

(3)

(Ml synibolsare deftied h appendix A.) b accordsace with the usual
practice in free convection, the density is considered a variable in
formulattig the buoyancy term @(t - ta). Aside from this, the fluid

properties are tskn constant. ViscouE dissipation and work against
the gravity field are neglected.
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Follow5ng reference 3, it is asswned that a ccauoonboundsry-lsyer
thickness 5 can be used for both velocity and thermal boundary leyers.
This assumption has its justification h the fact that the results of
calculationsperformed with it are in good agreement with those from
exact solutions of the boundary-layer clifferentid. equations for the
cases of uniform wall temperature and uniform heat flux.

Thenj equations (1) to (3) are integrated across the boundary
layer to give

(2a)

(3a)

The tite~ated form of equation (1) has been absorbed tito equations (2a]
and (3a).

These equations have a definite physical meaning. They are, in fact,
expressions of the conservation laws for the element of boundary Uyer
shown in the following sketch:

--&-

L-

t

. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .

5:**”*i
Sketch (c)

Solutions for the veloci~ snd temperature h the boundary layer
wiJl be obtained which satis~ these conservation equations and the
boundary conditions. These solutions w3Jl h turn be used to calculate
the important heat-transfer parameters.

. . ... ____ —_—. ..—. ———- —— —-.—————- ————
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Prescribed I?onuniformWaJl Heat Flux

NACA TN 3508
.

The saal.ysisproceeds with the use of the K&&n-Poh13ausen method,
according to which the velocity and tentperaturedistributions in the
boundary layer are written as polynomials b y whose coefficients are
fUnctions of x. The coefficients are found from the lmundsry conditions
of the problem and by using the titegrated momentum and energy equations
(eqs. (2a) and (3a)).

The following polynomials are chosen:

()

2
t S@@-ta=%

()
Y1. g

2
u =m—

5

(4)

(5)

Equation (4) satisfies the conditions: ~wheny=O; t=ta
%=-k

‘d %=
O (smooth-fit condition) when y = 5. The wall heat flux q

is to ~e regarded as a specified

fied by eqwtion (5) are: u = O

(smooth-fit condition) when y =
remain to be deterdned.

function of x . The conditions satis-

when y=o; u=o and
%=0

5. The functions u(x) and 5(x) still

The polynomials representing the velocity snd temperature distribu-
ticms are introduced tito eqya.tions(2a) and (3a), and after the inte-
~at ion is carried out, there results a pair of ftist order, ordinary
tif erential equations for m and 5. In dimensionless form, these
equations are

(6)

{7)

X, s2,and A sre the dimensionless counterparts of x, m, and 5 snd
are deftied in the Syaibollist (appendixA). The synibol qo, which
represents the heat flux at the leading edge (x = O), is used as a
reference heat flux in the rest of the analysis.

_.. ..— —
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Next, the variation of q/~ is to be prescribed. Suppose that

the region of interest on the vertical plate lies between x = O and
another location x = xL. The surface heat fluxes to be conside~d here

have ftiite nonzero values at x = O and either ticrease steadtl.yfrom
= O to x = ~ or else decrease steadily from x = O to x = xL.

~licitly, the class of surface-heat-fluxvariations to be considered
is written as

(8)

The exponent r, which gives the shape of the ,vsziation,is re tied to
be a positive number, integral or notitegrsl. TFrcm equation 8), it
my be seen that s represents the maxm (percentage) deviation of
q frcxn ~ in the region x = () to x-xL.

For the q/~ given by equation (8], the pair of Uff erentisl
equations (6} and (7) can be solved by expsmding Q and A h Maclaurti
series in terms of e as follows:

a

Q(X, c,Pr,r) =
2

e%n(X,Fr,r) = Qo(X,fi,r) + c~~(x,w,r) + ● ”” (9)

n=o

p %(A(X,c,Pr,r) = en X,Pr,r) = ~(X,Pr, r) + c~(X,Pr, r) + “● “(10)

n=o

The expressions for Q) A * q/~ are titroduced

(6) sad (7). Terms are grouped accord3ng to the power of
tiplies them, that is,

[ ][1@jQo

&wo)-P% +s1 +... =

[ 1[16°+j&+y%)-+Gl +... =O

tito equations

u that mlil-

0 (u}

(12]

h order that equations (U.) and (12] be satisfied for any value of e,
each of the brackets must”be identicaDy zero. Equating to zero the
brackets multiplying &0 yields a pair of simultaneous equations for

Qo a %“
W a similsr faahion, the brackets @t iplying en give

a pair of equations for Qn and ~. It may be noted that the equations

for Qn ~d ~ fl include all the Q. through Qn-l and the ~

through ~-1 .

.--. ——_— . ..-. —— .— ___ ——————— .——. .—...—
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for
B.

The solution for S20 and

7

, which coincides

uniform wall heat flux (& = O , is treated more
The succeeding $2n and ~ evidently give the

IJACATN 3508
.

with the results

~ in appendix
effects of the non-

untiormity of the heat flux.

The first five functions h the Maclaur3.nseries (S20 through Q4

and ~ through A4) have been computed. The results are listed in

concise form as follows:

(14)

The factors Xn and yn were calculated from ltiear algebraic equations.

The results thus found are applied h a later section h which the
heat-transfer parameters are obtatied.

Prescribed I?onunHorm Wall Teqerature

The snalysis for the prescribed-nonuniform-will-teqerature case
proceeds in a s5m3.larfashion to that
me temperature and velocity proffles
mated by the following polynomials:

t (- ta = (tlT - ta) 1

for the prescribed heat-flux case.
h the boundary layer are approxi-

(16)

Equation (15) satisfies the conditions: t = tw when y = O; t = ta

and
$

=0 when y=8. The wall temperature tw is to be regarded

as a specified function of x. Stice the smbient temperature ta is

taken to be constant, then e is regarded as a prescribed function of
x. The conditions satisfied by equation (16) are: u = O when y = O;

u =0 sad
%

=Owheny=b.

The variation of the wsllltemperature ~ is prescribed in a re-

gion of fiterest between x = O and some other location x = xL. me

walJ temperature relative to ambient conside~d here has a finite non-
.

zero value at x = O and will either increase stead3Jy from x .=O to

—.—.— ——-.——. .
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x= XL

form of

or

3508 9

or else decrease steadily from x = O to x = xL. The explicit

the temperature variation considered here is

~ 01rtw-ta=(tTT-t)
a x-

l+&~
‘L

L

Again, the exponent r is a po6itive number,
As maybe seen from equation (17a), e is the
viation of 6’ fram 130 in the region OS x

(17)

(17a)

titegral or nonintegral.
maximum (percentage)de-

< %“

Equatims (15) and (16) sre introduced into the titegrated momentum
and ener~ equations (eqs. (2a) and (3a)). The result@ siunil.taneous
equations for u and 8 are solved subject to the prescribed wall-
temperature variation (eq. (17)) ustig Maclaurin series. The ftist five
functions in the Maclaurin series have been calculated. The results
have a form similar to those given in equations (13) and (14). The
solution for the uniform-walJ-temperaturecase coincides with the lead-
tig term of the lkclaurin series expansion.

HEAT-TRAmFERFwsuLTs

Prescribed Nonuniform Wa12 Heat Flux

For the case where the wsll heat flux is prescribed, it is of in-
terest to determine the resulting wdl-tmperature vsriation sad local
heat-transfer coefficients.

Resulting waZ1-temperature vsriation. - The wall temperature is ob-
tatied by setting y equal to O in equation (4). Thus,

C@
tw-ta=a

or

(18)

(w)

For a uniform wall heat flux q = ~, it m tie@

A = ~; SO>

been noted that

(19)

—.. .— .. _._... .. . —._. _____ —..—— -—.
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where (~~ - ta)~ is the wall-temperature variation

udform heat fl~ q = ~. Ih

eqtitions (8), (10), and (13),

(19), givhg the result

tw - ta

~tw - ta
‘%

equation (18a), l!J~

NACA TN 3508

.

corresponding to a

is evaluated from

and qo5~2k is evaluted fran equation

rl=u ...

8
This equation gives the ratio of the wald.tanperaturez at some loca-

tion x (x S ~) having a spec~ied ratio q/~ to the wsll temperature

at the sam location on a plate having a unif?om heat flux q = q..
S3nce the X’s
ratio given by

The ratio

depend u on the J%rsmdtl

7)equation 20 depends on

(tv - ta)

(tw - ta)qo ‘s ‘lOtted

number and r, the t~e~ture
~~, Pr and r.

in figmes l(a) to (e). Each of

the plots applies for a specific value of r. The values of r = o, 1/2,
1, Z; and 3--kve been us~ for the five plots. Results for other v~~s”

of r may be obtained by replotting3 the information given in figures
l(a) to (e) using r as the abscissa variable. On each of the plots,
the tqerature ratio is plotted ag~t q/~ for the r~ge

0.5 < q/q. < 1.5 with Prandtl numbers between 0.01 and 1000 appesrlng

as parameters on the curves. In cases where curves for different Prandtl
numbers fall so close together as to make it impossible to plot them
separately, one curve was used for the several Prandtl numbers.

tw - ta
Once the ratio t - t has been determined from one of the

w a)%

figures (or by replott~ the data given thereb), the wall temperature
(tw - ta] can be found if an expression for (tv - t )a% is given. The

expression for (tw - ta]~, the wall temperature corresponcUng to the

case of untiorm heat flux q = qo, is

--Pohlhaus en methd, and appears

derived in appenti B by the

on figure 1.

“Relative to anibient”is to be understood every the the waJJ.tem-
perature is mentioned.

3r = O is a limittig case, which is ticluded here to facilitate
.

the replott~ whm results for r near zero are req@red.
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Local heat-tramsfer coefficient. - The deftiition of the local
heat-trsmfer coefficient is

hx=~
w a

For the case of a uniform heat flux q = qo,

%,Q =*;

The ratio of equation (21) to equation (21a) is

(21)

equation (21) is

%
(tw - ta)%

%,%=~ (tw-ta)

(21a)

(22)

This equation gives the ratio of the local coefficient at some position
x having a specified ratio q/~ to the local coefficient at the ssme

position on a plate having a uniform wall heat flux q = qo. - !@

Pr and r me known the temperature ratio appearing in equation (22)
iS hOWII (from fig. l~; hence) ~/~,qo cam be calculated. The expres-

sion ~ is given in appendix B.
>qo .

“PrescribedNonuniform WaJJ Temperature

For the case where the wall taperature is spectiied, it is of in-
terest to calculate the over-all heat-transfer rate and local heat-
transfer coefficients.

Over-all heat-transfer rate. - The over-all rate of heat transfer
in a section of plate of width b fran x = O to another location
x(x < XL) is

x
Q=b

f
qdx=-kb

f( )() %Wd-x
(23)

o

The derivative (~/h)@ is evaluated frmn equation (15). Substitution

tito equation (23) gives

(24)

.. ——-— ——-— —.— ._ ..—. .—.
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For the case of uniform wall

NACA TN 3508

temperature 19= 130,equation (24) becomes

Qeo= aibeoLrdx

o
~

The ratio of equation (24) to equation (25) is

f

edx.—

&=oeo6
Q@
0 J’‘dx

0 $

(25)

(26)

Equation (26) is the ratio of the over-all heat transfer from
x= O to x (x <XL) on a plate with variable surface temperature to

the heat transferred in the ssme region on a plate with a uniform wall.
temperature 19= .eo. Stice 5 corresponding to the prescribed wall-
t~erature v=iation (eq. (17)) has been calculated h the Analysls
sectim, it is possible to evaluate the tite~al.s appearing h equation
(26).

The results for Q/~ , w’nichare shorn in fiWes 2(a) to (e)~
o

depend upon the value of 9/90 at the location x, uyon Prandtl num-

ber, and upon r. Each plot is for a specific value of r. The values
of 0, 1/2, 1, 2, and 3 have been used for the five plots. Results for
other values of r may be obtained by repotting the information given
in figures 2(a) to (e) with r as the abscissa variable. On each plot,
the ratio Q/Qoo is plotted against el?o for the range o.7<e/eo<~.3,

tith Prandtl numbers between 0.01 and 1003 appearing as a parsmeter on
the curves.

It is to be emphasized that the value of e~eo at x is to be

used for determiniruzvslues from the fiwe when the over-al-lheat tr=-
fer from x = O to- x is requtied. tie quantity

over-sll heat-trsmfer rate frcm x = O to x on
form stiace temperature e = eo, is calculated in

*-Pohlhausen method. The expression for ~.
figure 2.

%.) ~ch ~ the

a plate having uni-
reference 3 by the

is given h

Local heat-transfer coefficient. - From the deftiing equation (eq.
(Zl)), the local coefficimt is found to be

(27)
..

— . —. —...
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The derivative
ature O = f30,

13

is obtained from equation {15). For uniform wall temper.
5 = bo; therefore

g =X,eo (28)

where ~,eo is the local coefficient for the case of a uniform wall

temperature f3= O.. Combining equations (27) and (28) gives

% 50

%,eo = ~
(29)

This ratio U plotted h figures 3(a) to (e) h the manner already out- “
ltied for the precedimg result~ of the analysis. The expression for
~e (fmnref. 3) is given on the figure.

)0

DISCUSSION

The following generalizations can be made
results:

(1) At a location x with a fixed q/~,
tw - ta

(tw - t
&ran 1 increases with decreasing

a%

—

from inspection of the

the deviation of

r for a fixed Prsndtl

nuniber. Also, the -deyiaticm from 1 is larger for larger Prandtl numbers
at a

e/e.

with
1 is

at a

from

at a

from
ejeo .

fixed r and q,/~.

(2) b a length of @ate between x = O and x, haxing a fixed
at x, it is seen that the deviation of ~Qe from 1 ticreases

decreasing r at a fixed Prandtl number. fll.s~,the deviation from
smaller for the larger Prsdtl numibersat a fixed r and e/e..

(3) The deviation of

fixed Prandtl number

1 is smaller for the

(4) The deviation of

ftied Prandtl numiber

1 iE smaller for the

~/~, ~ fram 1 ficreases with increasing r

and a fixed q/~ at x. Also, the deviation

larger Prandtl numbers at a fixed r and q/~ .

~~,e from 1 increases with increasing r
o

and a ftied e/60 at x. Also, the deviation

larger Prandtl numbers at a fixed r and

_.. _ .._________ —.
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It has already been noted

NACA TN 3508

~-ta
that the temperature ratio {. . \

.

was plotted in figure 1 for 0.5 & q/qo<l.5. This range was decided

upon by studying the extent of the errors due to truncation of the
infinite series in equation (20) after n = 4. The range
0.7< 6/9.< 1.3 used fi figures 2 and 3 was decided upon by studying

the truncation errors of series associated with equations (26) and (29).

COI?CLUDW REMARKS $
When the

equation (8),
nonuniform wall heat flux can be written h the form of
the resulting wall temperatures maybe found directly from

figure 1, and the local heat-transfer coefficient can be calculated from

J

e uation (22). AU that is needed to use the graphs is the value of
~ at the point of interest, the ~onent r which gives the shape

of the qf~ variation, and the Prandtl number. It is to be noted that

E is not needed.

When the wdl temperature is specified by a relation of the form of
.

equaticm (17), the over-alJ-heat-transfer rate and local coefficients =e
found fran figures 2 and 3, respectively. The over-all heat-trsasfer .

rate for a section of plate from x = O to x (x~xL) maybe found from

the graphs when the following are known: 8/00 at x, the exponent r

which gives the shape of the e/e. vaxiation, and the Prandtl nuniber.

The same quantities are needed to find the local heat-transfer coefficient
at x.

It is recogdzed that whenever a new application of the M-
PohJlausen method is made, it is desirable to confti the results by
checking with those of expertient or of a less approximate analysis.

The author is not acquainted with w experimental data that maybe
used to check the results derived here for nonuniform thermal.conditions
at the surface. Nor is there now available any other analysis with which
the present results may be cqared.

For the special.cases of uniform walJ temperate and uniform heat
flux, there sre exact solutions of the lsminar-boundary-layerequations
as well as experimental data For these cases, the heat-transfer re-
sults derived frcm the =-Pohlhausen method agree well with those
frcxnthe exact solutions and those of ~eriment.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, ~ 4, 1955

—
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CP

g

Gr~

Grx

hx

k

n

Pr

Q

q

q.

r

t

u

v

x

‘L

x

The following symbols are

width of plate,

specific heat at

acceleration due

modtiied Grashof

APmn A

SYM801S

used in this report:

&

constant pressure, Btu/(lb)(%’)

to gravity, ft/sec2

@w4
number based on x, — ~vz Y dhnensionless

x
gfleox”

Grashof nuniberbased on x, —, dimensionless
~z

local heat-transfer coefficient,Btu/(see)(sq f%)(%)

thermal conductivity,Btu/(see)(ft)(%)

tidex for naming terms of a series, dimensionless

CPP
Frandtl number, ~ = ~, Mm.ensionless

over-all heat-transfer rate on a plate of width b be-
tween x = O and x (XSXL), Btu/sec

local heat-transfer rate per unit area, Btu/(sec)(sqft)

heat-transfer rate per unit area at x = O, Btu/(sec)(sqft)

exponent defined by eqs. (8) and (17), dimensionless

static temperature, %

velocity component in x-ctirection,ft/sec

veloci~ component in y:direction, ft/sec

coord@ate measurhg dtitance along plate frmn leading
edge, ft

coordinate defining regiOn Of htereSt x = O tO x = xLj
-F+
.LU

Imqo ’14
dhmmionless coordinate,

()
%X

.—. —----- -————— -——-——— ——--— —— .——. ..— —
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Y

a

P

Yo)TIJ “““Yn

A

e

e.

lo,~, ““ “x,,

o

c1)

Q

QO,Q1, ● o‘Qn

coordinate measuxlng

thermal dtifusivity,

NACA TN 3508

.

normal distance from plate, ft

k
~

sq ft/sec

coefficient of thermal expansion, (OF)‘1

factors in solutions for Q O,Q1,“.42= deftied by eq.
(14), dimensionless

dimensionlessboundary-l~er
1/4

()

@qQ
heat-flux case, — 5

kV2

thiclmess for prescribed-

coefficients h Maclaurin series expansion of A h
terms of e, ~ionless

boundary-byer thickness, ft

boundary-layer thichess for untiorm heat flux or uniform ‘
wall temperature, ft

number giving percentage deviation of q at x = xL from

q., or nuuibergiving percentage deviation of 6’ at

x = ~ from eo, dimensionless

wsll- to ambient-temperaturedifference, tw - ta, OF

wall-to smibient-temperaturedifference at x = O, ‘F

factors h solutions for
%’%? “““An

defined by eq.
(13), dimensionless

absolute viscosity, lb/(see)(ft)

kinematic viscosity, sq ft/sec

density, lb/cu ft

velocity function deftied by eqs. (5) and (16), ft/sec

() 2 -1/4
g%v

dhensionless veloci~ function, ~ o

coefficients m kluti series expansion of Q in
terms of 6, dhensionless

—. . —
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Subscripts:

a ambient

q. on a plate having uniform heat flux ~

w

00 on a plate having uniform wall- to smbient-temperature
difference e.

— ~—. . .— ——-. .—.
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.

APPENDIXB

REWUI!S FOR IJNZKRMk?AILHEATFLUX

men q’= ~ for .aJJvalues of x, equations (6) and (7) bec~

d
ax (Q&)

1 ‘(Q&).:
3oax (B2)

The solutions for Q. and ~ are

(E+ Pr)-z/’ X315
QO= (6000#5Pr -1/54 (B3) ,

(B4) “’
Equation (B4) cam be rewritten as

[u 1

% 50
$+Pr

~ = (360}1/5—=—
x Pr2 Gr~

* is a modified Grashof number based on x andwhere Gr.. deftied by

(B6)

equation (B5)

A

The surface-temperature
into equation (18} is

distribution found by introducing

%x 0.8 + Pr

()

l/5

ta)% = 1.622 ~
prz Gr~

(tw - (B7)

The local heat-transfer coefficient is obtained by the foll.o~tig
rearrangement of equation (B7):

()

1/5
% O 62 k Prz Gr~

!x,qo = (tw - ta}% = + 0.8 -tM (B8) ~

.

——
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FIWe 1. - Continued. Fatio of wall ‘m~ratuce at mm location x on plate with variable heat

flux to wal tmperatum at ama looatim on plati with uniform heat flux q . Q . Abaoi~e-a 18

value of j% et paint 0, titm-est; J? in an ex$mant in equation (.9)(mlatim by Mhloh Mat-

flux variation in pmacribed); Pmm3tl ntier lE peremtir on ourveo.
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I
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I

100, I
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L
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Figure 1. - continued, Ratio or wall temperature at mm location x on plats with variable heat

flux ‘w wall tmpa.ature at mm lc-mtion on plate with UJIifOm heat flUX q . q. . AbOOiBBa 16

valua of q/~ at point of Interont} r 16 an exponent In equntim (8) (relation by whioh kat-

flux Varlatim 10 prescribed)s Prandtl nmb~r 10 parameter on aci.ven.
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Figure2. - Rat10 of over-all heat tranafer from x . 0 to x on plate

with variable wall temperatureto over-allheattransferin 6am region
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1.:

1.2

1.1

Q_

’80 ‘“c

.9

.8

.7

Pr
10,100,1000
m,.1 I
7, Lo

[1

2 T
Pr Gr

’60
= .677 kOo b ~52+Rx

3
9m~ x . cpP

Grx =—
~2

s pr =—
k

.8 .9 Lo 1.1 1.2 I

(b) r = 1/2.

I

.3

Figure 2. - Continued. Ratio of over-all heat transfer from
x = O to x on plate with variable wall temperature to over-
all heat transfer In same region on plate with uniform t~all
temperature 9 = @o . Abscls a is value of

?
9/00 at x; r iO

an exponent Is equation (17) relation by Which wall-tempera-
ture variation is prescribed);Prandtl number Is parameter on
curves.
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L
‘/30

1.3’

Pr —

1.2

1.1

Lo

J I 1

.7
I I I

.8 .9 1.0 1.1 1.2

8 (tw -to)

~ = (~~- ta)x=o

(c) r = 1.

Figure 2. - Continued. Ratio of over-all heat transfer from
x = O to x on plate with variable wall temperatureto over-
all heat transfer In same region on plate with uniform wall
temperature .9=9.. Abscissa is value of 9/60 at x; r Is
an exponent in equation (17) (relationby which wall-tempera-
ture v@ation Is prescribed); Prandtl number IS parameter on
curves.
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‘O.
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~
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4

.7
= .677 k 80 b .952+&

.90 // ‘39m& x cpP
Grx =

~2
; pr. ~

1, 1
●

Lo 1.1 1.2 1.3

8
(tw -to)

~= (t~- to)X=o

(d) r = 2.

Figure 2. - Continued. Ratio of over-all heat trans-
~ fer from x = 0 to x on plate with variable wall

temperature to over-all heat transfer in same re-
gion on plate with uniform wall temperature 9 = 190.
Abscissa is value of 9/90 at x; r is an exponent
in equation (17)(relationby which wall-temperature
variation is prescribed); Prandtl number Is param-
eter on curves.
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’90

1.20 ‘

Pr

1.15‘

1.10
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Loo p~
100, I
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.95 y

.90

.8? I I I I

. . . ● . L2

Figure 2. -
fer from

o (tw - ta)
‘= (tw-ta )%=0
130

Concluded.

(e) r = 3.

Ratio of over-all heat trans-
x = O to x on plate with variable wall’

temperature to over-all heat transfer in same re-
gion on plate with unifo LOwall tempera~e (EJ= o ).

fAbscissa iS val ~ of’ 9 60 at x; p IS ~ ewone~t

t--
in equation (17 relation by which wall-temperature
variation IS prescribed); Prandtl number is param-
eter on curves.
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Figure 3. - Ratio of local heat-transfercoefficientat x for
plate with variablewall temperatureto local coefficientat
same locationon plate with uniformwall temperature e-e
Abscissais value of e/e. at X; r is an exponent in equ$!-.
tlon (17)(relatlon by which wall-temperature variation Is pre-
scribed); Frandtl number is parameter on curves.
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Figure 3. - Continued. Ratio of local heat-transfercoefflclen%
at x for plate with variablewall temperate to local coeffi-
cient at same locationon plate with uniformwall temperature
e=eo. Abscissais value of e/90 at x; r is an exponent
In equation (17)(relatlon by which wall-temperatie variation
Is prescribed); Prandtl number Is parameter on curves.
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Figure 3. - Continued. Ratio of local heat-transfercoefficient
at x for plate with variablewall temperatureto local coeffi-
cient at same locationon plate with uniformwall temperature
Oneo. Abscissais value of 9/00 at X; r is ~ eq~~ent

In equation(17)(relat+onby which wall-temperaturevariation
Is prescribed);Frandtlnumber Is parameteron curves.
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(d) r -2.

Figure3. - Continued. Ratio of local heat-transfercoefflolent
at x for plate with variablewall temperatureto local coeffi-
c:e:teatsame looation,on plate with uniform wall temperature

. Abaolssa is value of e/30 at x; r Is an exponent
In equ~tlon (17)(relatlonby which wall-temperaturevarlatlon
is prescribed);Prandtlnumber is parameteron ourves.
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Fi@re 3. - Concluded. Ratioof localheat-transferooefficlent
at x forplatewithvariablewailtemperatureto localcoeffi-
cientat samelocatlcmon plate with uniform well temperature
999. . AWcisaa Is value of 9/90 at x; r Is en exponent
In equation (17)(relationby whlah wall-temperaturevariation
Is prescribed);Praudtlnumber is parameteron curves.
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