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SUMMARY

An analysis is presented of the load at which yielding first occurs
in actual columns, taking adequately into account all the factors which
have an important effect upon this load. These factors include initial
defects and the yielding limit of materials. Extensive tests were made
to verify the assumed relation between the magnitudes of the defects
and the known properties of columns. The results are expressed as a
formula or chart applicable to all cases.

INTRODUCTION

Investigation of the buckling of columns began in 1744 with Euler's
famous theory. Although a large amount of work has been done on this
problem since that time, the amount of progress from the designer's
standpoint seems surprisingly small. The classical stability studies
initiated by Euler and later extended to cover various types of end
conditions, variations in cross section, and so forth, consist in the
determination of the conditions for neutral equilibrium, under infin-
itesimal displacement, of a perfectly homogeneous elastic column loaded
along a perfectly straight elastic axis. Classical stability theories
have been found to be satisfactory for predicting the ultimate strengths
of "long," that is, very slender, columns. However, for medium or short
columns the defects always present in actual columns and the limitations
to the elastic behavior of actual materials, factors which are not con-
sidered in the idealized classical stability theories, become of great
importance. For such colummns, which include most practical applications,
designers still rely upon empirical results expressed in the form of
curves or formulas, each curve or formula being of limited applicability.
These empirical results also determine the range of applicability of
the classical stability theories and, hence, must be made use of even
when applying these theories.
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Buckling problems present certain difficulties by their very nature,
but the case of the column is the simplest of such problems; and there
seems to be no very good reason why a rational universal column theory
should not be developed which would apply equally to all columns and take
into account all the factors which actually have an important influence
upon the results. Such a "theory" would, of course, like all theories,
include a number of empirical factors or relations which would have to
be determined from new or existing experiments; even the classical sta-
bility theories depend upon the empirically determined stress-strain
relations of elastic materials. However, the amount of empirical infor-
mation required to give such a theory universal applicability would be
very small compared with what would be required by purely empirical
methods. Such a "universal theory" might be somewhat inconvenient to
use for design purposes in its complete form, but for the limited ranges
for which present empirical methods apply it would certainly reduce to
something of comparable simplicity. The theory could thus replace
present design methods in these reduced forms even if it were impractical
for direct use.

The advantages of such a development would go far beyond the mere
replacement of one satisfaetory design method by a no more satisfactory
but more "elegant" method. TFor example, there is now no way to compare
one set of empirical results with another set covering a different range.
Yet, in many fields of engineering such comparisons can be made and prove
of great value in bringing to light and making suitable allowance for
errors and the effects of variations in testing technique and in the
interpretations which different investigators put on test results, varia-
tions which always exist when tests are made and interpreted by different
people at different times and places.

The main advantage of such a development would, however, be the same
as appears in any field when empirical results are supplemented by adequate
general theory. Experimental results are necessarily of limited range.
Because of the number of variables involved, presently available data on
columns - in spite of the great number of tests which have been made -
cover only a small fraction of possible cases. Only an adequate theory
can permit safe extrapolation, and the existence of such a theory should
release designers from design limitations of which they may not even be
aware.

Two general criteria are in common use for defining the static
strength of the parts of machines and structures for design purposes.
One is based upon the loads at which ylelding of the material first
starts; the other, upon the maximum loads which can be withstood. The
first criterion seems logical to use as a basis for design of close
fitting machine parts which "fail" insofar as serving their purpose is
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concerned 1f an appreciable permanent change of shape occurs. The second
criterion seems the most logical to use in the design of structures for
which the exact shape is of relatively little importance compared with
the ultimate strength.

Since columns are important elements in both machines and structures
there should evidently be not one but two column theories, one for the
column load at which yielding starts (for which little information exists
at present) and the other for the ultimate column strength. The present
paper is intended to supply the first need, namely, a rational analysis,
supported by tests of a special type, of the load at which yielding first
occurs in actual columns of any type, taking adequately into account all
the factors which have an important effect upon this load.

Although ultimate strengths will not be covered, it is of interest
here to consider briefly the problem of developing an ultimate-strength
theory. Up to the load at which ylelding starts the action of a column
is everywhere elastic. Between this load and the ultimate load, part of
the column is in the elastic state and part in the plastic state (assuming
that the material has some ductility; if not, the two loads coincide).

It is not too difficult to analyze satisfactorily this elastic-plastic
action for particular cases, and many such analyses have been made; but
it is much more difficult to set up a general theory covering all columns,
especially considering the widely varying behavior of different materials
in the plastic range.

However, it seems to be general experience that the ultimate strength
of long columns is only a littie below the classical stability value,
while the ultimate strength in the medium range is probably only a little
above the load at which yielding starts. Only for very short columns,
approaching something which would usually be thought of as 'blocks" rather
than columns, should the ultimate strength differ very greatly from some
other known value. Hence, it may be possible to develop a sufficiently
inclusive ultimate-strength theory by studying in a relatively approxi-
mate manner the small differences between the ultimate load and other
known quantities. The difficulty, of course, is to choose the approxi-
mations so as to preserve reasonable fidelity over the great range of
variables required to make such a theory truly "universal."

This investigation was conducted at the Illinois Institute of
Technology under the sponsorship and with the financial assistance of
the National Advisory Committee for Aeronautics.
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SURVEY OF PREVIOUS WORK

Before detailing the present work some discussion should be made
of previous efforts along these lines (refs. 1 to 9). While such work
has shown promise, it has, in the authors' opinion, suffered from
certain deficiencies which have largely vitiated its usefulness. The
distinction between the load at which yielding starts and the ultimate
load seems to have been given inadequate consideration. Theories have
been derived for load at which yielding starts and the results of these
theories have been compared with ultimate load data to determine the
empirical factors defining the magnitude of expected defects. Where
direct measurements of defects have been made, they have been confined
to geometric crookedness; and other kinds of defects, which the present
tests show to have as great an effect as crookedness, have been neglected.

The relations which have been assumed between the magnitudes of
defects and the known properties of the columns also seem both unreason-
able and founded upon inadequate data; it has usually been assumed that
defect magnitude is a function of length only or of a cross-sectional
dimension only or that it is & sum of independent functions of these
dimensions, whereas certainly the effects of these dimensions are
actually interdependent and other important factors influence the
defects. Iittle thought has been given to putting results in convenient
general form or to studying such matters as the effects of end conditions
and variation in cross sections or of the less important components of
the defects, all of which must be given adequate consideration before the
generality of any theory can be considered to be established.

TESTS

Specimens

Because of the large amount of scatter to be expected in the quan-
tities to be measured - the defects in columns - it was necessary to
test a large number of specimens. All specimens were tested as columns,
and measurements were taken of their deviation from straightness, ini-
tially and under load. These slender specimens of rectangular cross
section were made of cold-rolled mild-steel bar stock, cold-rolled
2024-T3 (245-T3) aluminum-alloy sheet, and cold-rolled TO75-T6 (75S-T6)
aluminum-alloy sheet; all were of standard manufacture and cut and were
handled carefully to avoid introducing any defects not already present.
Although these specimens were in the long-column range, measurements of
the second and third harmonics carried the data obtained into the medium-
column range.
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To eliminate questions regarding the artificial introduction or
suppression of eccentricity at the ends, which may arise when hinged-end
columns are tested - for instance, eccentricities can be introduced
which add to or partially counteract initial curvatures - all columns
were tested with built-in ends, as is the case in most practical
applications. To simplify the tests and eliminate systematic errors
due to friction in the measurement of end moments, the tests were made
with 100-percent end fixity. Such tests, however, are subject to
systematic errors due to deformations in the specimens or clamps at the
point of clamping. To eliminate these errors the specimens were held
in loading heads at some distance outside the points which were taken
as the ends of the specimens, and small mirrors attached at these points
detected any rotation, which was then brought to zero by rotation of the
loading heads. While this system, of course, permits errors, it
eliminates the systematic errors which might seriously affect the
statistical information desired.

Description of Apparatus

Figure 1 shows a diagrammatic sketch of the loading apparatus and
the optical system used for detecting rotations of the ends of the
effective length of the specimen. The telescope is focused upon the
image of the scale reflected through the back mirror and small mirror
on the specimen. With the back mirror placed about 10 feet from the
apparatus rotations of the small mirror of the order of 0.001° produce
detectable shifts of the scale point seen against the telescope hairline.

In the photographs of figure 2, the specimen is shown at (a), with
the small mirrors defining the effective length at (b), and with the end
clamps in the loading heads at (c). The load can be measured by the
dial gage (d) which measures the deflection of the flat springs (e); the
working sections of these springs are machined down from a thicker stock,
with fillets at the ends, which largely eliminates hysteresis. The
screw (f) advances the loading head to adjust the axial load, while the
screw crank (g) rotates the loading head about the axis (h) to bring
rotations of the small mirrors to zero.

Deviations from straightness are measured by the micrometer screw (i)
attached to the carriage (j) which moves upon a track formed of tightly
stretched piano wires (k). The micrometer carries a silver-plated tip
upon its end (z); when this tip touches the specimen an electrical circuit
is completed. By using a galvanometer in this circuit, measurements can
be made which are accurate to a fraction of a thousandth of an inch.

During measurement of the deviation from straightness in the initial
no-load condition, in order to insure freedom from accidental end forces
and moments, the specimens were held only at the center by a narrow clamp.
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Since some of the specimens were very flexible, the weights of the two
ends of the specimen were balanced by overhead floats at the quarter
points, as shown in figures 3(a) and 3(b). Measurements of deviation
were made at the center line of the specimens at eight points along the
length, as shown in figure 4.

RESULTS AND DISCUSSION

As mentioned previously, the inadequacy of classical stability
analysis lies in the neglection of the limit to elastic action of actual
materials and the defects always present in actual columns; the defects
cause bending stresses to develop before the stability limit is reached,
and these stresses combine with the direct stress (and with any initial
stress which may be present at the critical point) to precipitate early
yielding.

From the standpoint of column bending the important defects are
geometric crookedness, lack of elastic homogenelty, and accidental
eccentricity of loading. All of these have a similar effect in producing
an initial deviation of the elastic axis of the bar from the straight
line joining the points of application of the resultant axial loads,
which is called herein the "load line."

In a perfectly homogeneous column the elastic axis, which defines
the shape of the column for purposes of analysis by classical bending
theory, would pass through the centers of gravity of cross sections and
share the geametric crookedness of the outer surface. Because of elastic
inhomogeneity from slag inclusions, gas bubbles, and so forth, and
because of the variation in elastic properties in the axial direction
due to the random orientation of the highly anisotropic crystals of which
most engineering materials are composed, the true elastic axis will suffer
an additional deviation fraom these centers of gravity, passing in effect
through the centers of gravity of cross-sectional areas weighted according
to the local stiffness in the axial direction. Eccentricity of loading
shifts the load line and thus produces an additional deviation of the
elastic axis from this line, as illustrated in an exaggerated manner in

figure 5.

For purposes of this investigation all these causes of accidental
deviationl can be lumped together. This total initial deviation of the
elastic axis from the load line is designated by the symbol W (as

l1gteral loading and built-in eccentricities also have similar
effects, and it will be shown that they can be taken into consideration
along with the defects; however, the latter are the main concern herein,
since their evaluation is obviously the difficult problem.
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distinguished from the movement under load w) and called herein simply
the "deviation." The starting point of any general column theory must
be the establishment of laws relating the magnitudes of the important
constituents of the deviation to the characteristics of columns on which .
they depend.

Consider now the best way to measure the deviation and the charac-
teristics of columns which affect it.

The deviation W will be some function of the distance x along
the load line, a different function for each column. The most convenient
way to describe this function is by the amplitudes of its harmonic
components, and this proves also to be the most useful way to consider
its effect upon the buckling process. In the tests, details of which are
presented in appendix A, the amplitudes Wp of harmonic components of

the deviation of half wave length 1, were measured over lengths of bar

corresponding to one wave length of the component. This was done by
testing lengths of the bars as columns and using an extension of
Southwell's method (ref. 10) which had previously been developed in
reference 11. A large number of lengths and thicknesses of bars were
tested; the bars were made of three different standard materials pro-
cessed by standard methods. As expected, the deviation components were
found to depend very much upon the thickness and wave length, the com-
ponents with larger wave lengths compared with the thickness averaging
larger in amplitude than the shorter ones.

Experience has shown that, if a number of similar columns are tested
which are as nearly identical in every way as it is possible to make them,
their strengths will vary considerably, but quite definite average and
limiting (that is, maximum and minimum) strengths can be determined. If
the deviation components are measured, a corresponding variation (which
is the chief cause of the variation in strength) will be found, and again
quite definite average and limiting values can be determined for the
amplitudes of each harmonic component. This is what is meant by "average"
and "limiting" values of such quantities. The variations from the
average represent true irreducible scatter, which can never be predicted.
However, the average deviations can be allowed for, and the scatter in
strength can be allowed for in a more rational and economical way than
by blanket factors of safety by taking into consideration the maximum
deviations which produce the minimum strengths.

If a series of related columns, identical except for a dimension or
some other characteristic which can be varied continuously, is tested and
the amplitudes Wp of deviation components are plotted against this
characteristic, average and limiting curves can be determined, which
describe the function by which the average and limiting values of 5

are related to this characteristic. If the relation between the average




8 NACA TN 3415

and limiting values of Wp and all the column characteristics which >

influence them can be determined, proper allowances can be made and
uncertainty in design can be reduced to true scatter. TInsofar as these
factors are not determined and proper allowances are not made, the
uncertainty regarding the effect of any characteristic is added to the
true scatter.

The characteristics of columns upon which the deviation depends
might be classified as follows: length and end conditions, size and
shape of the cross section, the material, and the process by which the
columm is fabricated (which, of course, includes methods of straightening,
if any, standards of inspection, etc.). The first two, length and end
conditions, determine the wave lengths which are important in the
buckling process and, hence, have a very important indirect influence
upon the deviation; however, these characteristics are fully taken care
of if the effect of the wave lengths of the deviation components upon
their amplitudes is considered.

The shape of the cross section will usually be assoclated with the
fabrication process, and this in turn is likely to depend upon the
material; these three characteristics are thus closely associated. In *
general, it is impractical to vary these characteristics continuously
or describe them by numbers. Hence, their effect upon Wy, while it
may be real and important, camnot well be expressed analytically but
can best be described and taken into account by a numerical coefficient,
which is herein designated by C or K and whose value can be tabulated
for important distinct combinations of these characteristics.

Finally, the size of the cross section can, like the wave length,
be described by a number, and its effect upon Wy can theoretically
be expressed analytically. For columns of a given shape of cross
section (that is, for geometrically similar cross sections) the size of
the cross section can be described equally well by any characteristic
cross-sectional dimension, such as thickness +t, distance from the
neutral axis to the farthest fiber ¢, or radius of gyration p (all
taken for the direction of buckling being investigated).

The desired functional relation thus should involve a numerical
coefficient and three distances Wp, 1y, and, say, t. Since it must

be dimensionally consistent there is no loss in generality if it involves
only any two independent ratios between these distances, say Wm/t and

zm/t. Tt seems logical to try first a power-function relation between
these two ratios, which can be expressed as

W _ <lm)n (1) -
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where C and n are to be determined. It seems likely that the
exponent n depends upon broad probability factors and may be substan-
tially constant for all columns.

Figures 6(a) to 6(c) show measured values of Wp/t and Ip/t

plotted against each other on a logarithmic scale. Points labeled 1, 2,
and 3 were obtained, respectively, from the magnitudes of the fundamental
component and first two harmonics of the total deviation in the test bars.
The plots show, as is to be expected, a great amount of scatter, but
they also indicate a definite tendency for Wﬁ/t to increase rapidly

as 1Ip/t 1increases. The lines marked "max." describe the trend for the
higher points. The lines marked "av." should have a somewhat steeper
slope, corresponding to a larger value of n in equation (1), to fit

the points best. However, these tests cover the range of wave lengths
important for medium and long columns but not for short columns. The
lines shown, when extrapolated into the short-column range, glve results
which are in line with the empirical curves and columm formulas in

common use, while steeper curves would be less conservative; in the
absence of data on short columns it seems reasonable to use the relations
given by the lines shown. These lines correspond to a value of 2 for the
exponent n in equation (1) and values of C of about 0.00003 for the
maximum lines and 0.000007 for the average lines. Even this value of n
is larger than the values of O and 1 which were assumed (on the basis

of practically no evidence) in the references previously cited, except
for a recent paper (ref. 12) in which the value of 2 was proposed.

In the appendix B the following general formula is derived for the
load upon a column at which yielding starts:

P=N - ‘/NQ - PyPqy (2)
2N = Py + Pcz[l + (cwlﬁa)]

In this formula Py = AS:y is the cross-sectional area A times the
yield stress Sy (which may be defined in any way desired and reduced

to allow for initial stresses when this seems justified, as discussed
in appendix B), Pe; 1s the buckling load given by classical stability

theory (defined as in appendix B in case of a distributed load), P is
the correspondingly defined load at which the stress Sy is reached

at the most highly stressed point, and W; 1s the amplitude of that
harmonic component of the deviation which has the same half wave
length 17 as the fundamental (longest) harmonic component of the
buckling deflection predicted by classical stability theory. The

where
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length 17 1is what has been called the "reduced" or "equivalent hinged
column" length, so that

Py, = x2EAPR/112 (3)

To simplify the final results it is convenient to substitute for
equation (1) the following equivalent relation:

- 5

K 2
-5 (n = 2) (1)

Using this with equations (2) and (3), the expression for load at which
yielding starts becomes

P =N - N - PyPqy (5)

Py + Pcl[% % (%f%)n/%]

Py + Po; + KEA (n = 2)

where

2N

For some purposes it is more convenient to write this equation in terms
of stresses. Dividing through by the cross-sectional area A gilves

s 0 \F ©
s+ st + ()7

Sy + Seq + KE (n=2)

where

2Q

S = P/A 1s the average stress at which ylelding starts, and S;; = PcZ/A =
anp%/312 is the average stress given by classical stability theory

(that is, the stress at which instability would occur if the column were
perfect) . .
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h Equation (5) or (6) can readily be put into a form involving only
‘ three nondimensional ratios, say, S/Sy = P/Pys Sc1/Sy = Pey/Py, and
KE/Sy, as follows:

(7)

S
Sy

where

n
2(1 =1 + S_cl_ + (@)n/2<._cl) lw— -2-

5 &) &

1+ gﬁl + %f (n = 2)

These equations, or other equivalent forms, represent a true
"universal theory" for column load at which yielding starts. Equa-~
tion (7) can easily be put in chart form; figure 7 shows such a chart
for the case n = 2, while figure 8 shows how such a chart would be
affected by different values of n. These charts can be considered to
be generalizations of the familiar chart of average stress versus
- slenderness ratio and cover the full range from zero to infinite

slenderness ratio.

An interesting point brought out by these charts is that only with
values of n 1less than 2 would the loads at which very long columns
first yleld approach the classical stability values. If n = 2 they
approach values which are equal to Pcl/[? - (KE/SYX]. For values of n
greater than 2 they would approach zero. It is common experience that
ultimate loads of very long columns do approach the classical stability
values, but 1t seems probable from the above that yielding starts at
considerably lower values.

Calculations can readily be made from equation (5), (6), or (7) or
charts such as figure 7, using values of K from tables, of which table I
may be regarded as a first step; K may be regarded as a "roughness
factor," measuring the general roughness of construction. It is a pure
number, depending upon the associated factors of cross-sectional shape,
material, and fabrication process; average and limiting values of K
can eventually be determined for all the combinations of these factors
of practical importance. This is a large order which, however, it will
be quite practical to fi1ll in a fairly inclusive manner by using the
extensive colummn data in the literature, that is, by calculating the
value of K required to make the theory fit such data; these calcula-
tions, however, will have to wait upon the extension of the theory to
cover ultimate loads, since only ultimate-load data seem to be avallable.
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It is expected that K will not differ widely for variations within
broad categories such as might be described by the words "refined con-
struction," "average construction," and "rough construction'" and that a
broad survey of available data, involving the determination of a single
number to characterize each type of construction, could permit a consol-
idation of information, with the elimination of many discrepancies, and
a final relatively simple tabulation from which engineers could choose
values applying closely to any situation.

The values of K determined for the small range of column types
which the present tests cover represent a start in this direction, but
the main purpose of the tests was to check the general form of equa-
tion (1) and determine a reasonable value for the exponent n. As has
been mentioned, n 1likely depends upon broad probability laws and is
subject to little variation. The tests seem to bear out this view.
Failure to use the most suitable value of n 1increases the gap between
the limiting values of K; that is, the proper cholce of n 1is a means
of reducing unpredictable scatter to the minimum.

I1linois Institute of Technology,
Chicago, Ill., November 6, 1953.




NACA TN 3415 13
APPENDIX A
DEVELOPMENT OF HARMONIC ANALYSIS

From the principles of harmonic analysis, harmonic components
Dp cos mrx/l (where m=1, 2, 3, . . .) of a deviation D(x) of
the specimen will have amplitudes

21
Dp = (1/1)\]P D(x)cos mnx/1 dx
0]

=~

(alcos%+bl cosilg’r-+ cq cosEéﬂ+dl cos%‘-+

+ |-

do cos 2—?; + cp cos + bo cos BBmﬁ + ap cos 158m> (8)

In particular, the first three harmonic components will be

Dy = 0.251[}&1 +ap - dy - de) + O.hlh(bl + by -y - c2i]

3

Do =~ 0,177(al + 8 =-b) -=bg -cy -co+ 4 + d2) - (9)

D} ~ 0.231[33.14-1)4-(8.1 + s = d‘l - da) - (bl = b2 =HCLE= CQ)JJ

These formulas permit the determination of the harmonic components
of the deviation from straightness of the outer surface of the whole
specimen, initially and under load. In the tests only the symmetrical
components of the deviation such as those given by equation (9) were
studied, since the nonsymmetrical buckling modes of a fixed-end column
are less simple and easy to study by the present methods, and these
symmetrical components covered as great a range as could have been
covered by considering the nonsymmetrical modes. For components such
as those given in equation (9) it makes no difference whether the
distances aj, bj, cj, . . . are measured from the load line or from
any other parallel or nearly parallel straight line, since a linearly
varying deviation contains no such components.

The following definitions are helpful in discussing the method
used for determining the total deviation, including the part due to
inhaomogeneities:
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w! geometric deviation or crookedness, that is, the initial
deviation of the median line of the column from the
load line

W nongeometric deviation (due to inhomogeneities); that is,

the initial deviation of the elastic axis from the
median line

W=W'+W" total initial deviation of elastic axis from load line
w movement due to load

These are illustrated diagrammatically in figure 9 for the no-load
and loaded condition of a fixed-end strut such as that used in the tests.

General expressions for w and W (with similar expressions for W'
and W") can be taken as

W= Wy Vg X[1 +Zwm cos mux/1 + Z vp sin prx/1
m P

(10)
W=W,+ Vg x/1+> W, cos mx/1 + > Vp sin prx/1
m P
The moment equilibrium equation of elementary bending theory is
-ET @%w/dx® = M= My + So(x + 1) + P(W + w) (11)

and the boundary conditions are x = %1
w=dw/dx = O

Substituting expressions (10) into these equilibrium and boundary condi-
tions and using the relation Pgy = Lx2EI/(21)2 = 12EI/12 give

Z{Wm - [(mchl/P) - ﬂwm} cos mnx/1 +

Z[Vp 2 I:(PzPCZ/P)- ]:lvp} sin prx/1 +

My/P + Solx + 2)/P 2 (Wg + %) + (Vo b ¥miz/1 =0 (12)
Vo + Zwm cos mﬂinp sin pt = O

g m:rZwm sinm:t-l;pﬂva cos pt = O

Vo

I+

<
+
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These relations are satisfied if, and in general only if, m= 1, 2,
SR ool smlih3 w06, BIBT ao:let and

v - [(P%Per/?) - 1]Vp
Wm - [(mQPcZ/P) - 1j|wm

Measurements of aj, by, ¢y, - - . and use of equations (9) in the
no-load condition give Wp', while similar measurements and calculations
under a load P give Wp' + wp; subtraction of these gives Wpn- Knowing
P eand calculating P,; from the dimensions and modulus of elasticity
of the material, the amplitude of the total deviation components Wy, can

then be obtained from the last equation in equations (13). In practice,
however, it was found easier and more accurate to measure Wp' and two

values Wp' + wpg and Wp' + Wy, under two widely different loads Py
and Pyp. The term P can then be eliminated between the two relations

0]

(13)
0

1l

el

o = [(627e1/22) - 2o
o - ({22 - 2o
giving
Wy = Jme¥mb(Fa - Pv) (1k)

VmaPb - WmbPa

With this formula for Wp,, all measurements required are of the same
type and only relative values are needed for the loads Py and Py.

In figure 10 values of the ratio Wm/t obtained for the 2024-T3
specimens, are plotted against lm/t, where 1p = l/m is the half wave
length of each harmonic component. Points labeled 1, 2, and 3 give,
respectively, the magnitudes of the fundamental component and first two
harmonics of the total deviation, in bars of length 23. This infor-
mation is needed in setting up the theory for the buckling of bars of
length 21; the fundamental component is by far the most important
component, but the higher harmonic components have some effect upon the
bending stresses produced; and this effect must be evaluated (considered
in appendix B) before it can safely be disregarded.

It was also desired to use the information obtained regarding the
size of the higher harmonics in order to extend the data regarding the
size of the fundamental components into the range of shorter columns.
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This, however, cannot be done directly; that is, the average and limiting
magnitudes of the third harmonics of bars of length 21 are not neces-
sarily the same as those of the fundamental components of bars of one-
third this length. If a bar of length 21 1s divided into three sections
and the fundamental components are determined for each section, then the
algebraic averages of their three magnitudes should be the same as that
of the third harmonic found from the original bar. In many cases, how-
ever, the fundamental components of the short sections will be of opposite
sign and will cancel each other as far as the third harmonic of the
original bar is concerned. For the purpose of extending the data
regarding fundamental components into the range of shorter bars, the
absolute values of the fundamental components of fractions of the bars

are needed. These values could be obtained for the geometric devia-

tion W' merely by using known data to make separate harmonic analyses
for each fraction of the bar. By the same principles as those expressed
in equation (8) the average of the absolute values of the fundamental
component of each half or third of a bar is

N

Do! = 0.177<|al - bl - C + dll + |&2 - b2 () dzl)

D' =~ o.231[]o.h1h(al -c1) - (b1 - cl)l + - (15)
O.hlhlcl +cp -dy - d2| + |O.41A(a2 - c2) - (b2 - cg)[]

The inaccuracy of harmonic analyses based upon so few points is probably
made up for by the fact that each value of Dy' or D3' represents an
average for two or three bar lengths. Of course, this averaging process
also eliminates some scatter, but the scatter of values obtalned from
such a limited number of points would probably be misleading.

The second and third harmonics of the geometric deviations of all
the columns tested were calculated by equations (9) and (15). The
values for Wp' obtained from equation (15) averaged 1.2 times those
obtained from equation (9), while the values of W5' averaged 2.0 times

those obtained from equation (9). TFigures 11(a) to 11(c) are plotted
from the data obtained from equation (15); thus, although the numbers 1,
2, and 3 indicate the source of the data, all the points can be taken as
representing the magnitudes of the fundamental components of the geo-
metric deviation of bars. Formulas (15) could not be used in calculating
the total deviation, because the end conditions of sections of a bar
under load are obviously not those of fixed ends. However, there 1s no
reason to believe that the algebraic averages and the averages of
absolute values of fundamental components of sections of a bar would
have a different average ratio for bars under load (if the sections

had been tested as separate bars) than for bars under no load. Hence,
the values for total deviation components Wo were multiplied by 1.2
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and those for Ws by 2.0 in plotting the charts of figures 6(a) to
6(c) and it is considered that these charts therefore show, to good
approximation, the magnitudes of fundamental components of the total
deviation.

Comparison of the values of the total deviation given by figures 6(a)
to 6(c) with values of the geometric deviation given by figures 11(a) to
11(c) does not reveal very much difference in slope and in average values
and not very much difference in the scatter. From this, the important
conclusion may be drawn that the much easier measurement of geometric
deviations will hereafter be sufficient and should give results which
are representative of total deviations. However, this result is in no
sense due to the effects of inhomogeneities being small - as a matter
of fact, values of Wy" = Wy, - W' proved to be as large on the average
as Wp and Wpy', as is indicated by figure 12 for the column made of
T075-T6 aluminum alloy; similar results were obtained with the other two
materials. The reason why, in spite of this, there is so little differ-
ence between average and limiting values of W and of W' 1is that the
deviations caused by inhomogeneities W" are as often in the opposite
direction and subtract from those due to geometric curvature as they are
in the same direction; hence, these deviations have little effect upon
the average values and not very much upon limiting values. However,
it would have been impossible to predict this result in advance or to
have verified it without an experimental program similar to the present
one.
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APPENDIX B «

THEORETICAL DERTVATTION 3
Simple Case
Consider first the simplest case, namely, that of a uniform column

hinged at both ends and of such proportions that only buckling in one
plane, taken as that of the paper, need be considered. Figure 13 shows
the elastic axis of such a hinged-end column of length 1, loaded by an
axial force P, and with initial total deviation W and movement under
load w. Neglecting the weight or other lateral loading (which can be
considered by adding the corresponding deflection to W, as discussed
later), the equilibrium is given by

-EI d2w/dx® = P(W + w) (16)

and the end conditions are

X=O’Z
W o= dew/dxz =0

These relations can be satisfiled if
= E Wy sin mrx/1
m

(17)
W= ZE:‘Wm sin mnx/1
m

and this expression for W 1is sufficiently general to represent (that
is, converge to) any possible deviation shape. Substituting expressions
(17) into equation (16) and using P.; = 72EI/12 gives

E {ﬁn - [Km?Pc%/P) - %]wm} sin mnx/1 = O
which is satisfied, in general, only if

W = Wm/[(mQPcZ/P) - l] (18)
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It is general experience that ylelding will first occur in such a
case because of a cambination of the direct stress P/A and the bending
stress at an extreme fiber of the middle cross section. This will occur
when the yield-point stress in compression

=& 4 M
o A i I
= f. ="Re <i2_;.)
2 dx®/x=1/2

2
w<Eec 2.
+ 3 E m=wp sin mrc/2

Using relation (18) this becomes

|
> |'d

L Wy m2(W/W1) sin mx/2 (19)

Yk T 1 ) - /) - ]

Multiplying through by A gives

L x2E _ S/ef | VALY

i e | [(9PCZ/P) . ;]/1}PCZ/P) 4 %]

Now, from figure 10 the harmonic components of the deviation of a
column are on the average related about as

(20)

or ( (21)

so that, on the average,

i - a2

[ [ vaijfep
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Equation (19) then becomes

W /p2 P JEAN S 4
i prgupy § o iSilidene s g (EE) (22)

P £
(Pey/P) - 1 3 [(9Pc1/P) - 1]

¥

The bending stress will increase and approach infinity as P approaches
Po; so that yielding must always occur before P reaches this value.

For values of P between O and P,; the second term in the braces

of equation (22) never exceeds 1/27. For practical struts its maximum
value would be considerably less, and further terms of the series would
be much smaller. Hence, in this case the effect of the higher harmonics
upon the bending stress can be neglected; in any case they would only
affect the scatter, since they are as likely as not to cause bending of
opposite sign from the -fundamental component, as suggested by the + sign
in equation (22).

Neglecting all but the first term in the braces of equation (22)
and solving for P give equation (2), which has previously been discussed.
It might be pointed out here that in applying relation (4) to the case of
hinged struts the values of K found from figure 6 should probably be
multiplied by 1.2, since, as discussed previously, values higher by this
amount, on the average, would probably have been obtained had the funda-
mental component been measured over half the length (by testing hinged-
end columns) instead of over the lengths actually tested. This factor
has been included in making up table I, so that the values given in this
table are suitable for hinged-end columns.

Before finishing with this case some discussion might be made of
the effect of initial stresses and lateral loads or bulilt-in eccentric-
ities. Initial stresses distributed on a microscopic scale (due
presumably to yielding under previous small loads caused by stress
concentrations around crystals and inclusions) can probably be neglected,
like these stress concentrations themselves, since such effects are very
local and scattered and probably have no significant effect on over-all
shape. However, in cases where significant initial compressive
stress Si 1n the axial direction is known to be present on the outer
fibers of the column (as may sometimes be the case because of rolling
or other fabrication processes) the stress S; should evidently be
added to the right-hand side of equation (19). This is the same thing
as substituting a "reduced yield stress" Sy' =S, - 85 for Sy, and

this seems to be the simplest way to allow for such effects.

Deflections due to known lateral loads and known built-in eccen-
tricity add to or (Jjust as likely) subtract from those already considered.
Iet the amplitude of the harmonic component of the total deviation due
to these causes, having the same shape as the fundamental component of
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the buckling shape predicted by classical stability theory, be Uy,
which corresponds to the amplitude Wi in equations (4) and (5) due to
accidental causes. Then, if Kmax' 1s a modified value to be used
instead of Kpgx to allow for the effect of U;, there result

cW1 n <Kﬁax1/211>n

02 P
and
18 1P
c(Wi+ U3) <Kmax') 11
p° P

Eliminating W; and solving for Kmax' give

Ky = (Kma uje,, WL '2>2/ "
= : ot
X . 1ln
2
= Kpay + L (n = 2) (23)
31

Thus, Kgy should evidently not be changed unless U, > W;, in which
case Kg, should be figured from U, instead of Wj.

General Case

The foregoing results were derived for the special case of uniform
hinged-end columns. Tt is easy to show that figures 7 and 8 and the
equations from which they are derived apply to any column when KE/Sy =0
(that is, when there is no deviation of the elastic axis from the load
line) provided that Pcl or SCZ is defined as the classical stability
limit for the column in question. This i1s true because when Por > Py

yielding evidently will occur as soon as P = Py, while if Pgo; < P&

elastic buckling will occur first but will immediately result in infinite
deflections and, hence, infinite bending stresses and yielding, so that
PCl = P4

It is not the purpose of this paper to discuss classical stability
limits, solutions for which can be found in the literature for a great
variety of columns. The interest here is in the effects of defects and
of yielding of the material, and it remains to be demonstrated that these
effects, as exemplified by the lowering of the curves in figures 7 or 8
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as KE/Sy increases, are the same for all columns. Tt will be shown
that with certain simple modifications they probably are. Because
different questions arise in different cases regarding such matters as
the point in the column where yielding will first occur, it would be
difficult to set up a general solution covering all types of columns.
Part of the demonstration will therefore have to be restricted to
discussion of specific cases; in doing this an attempt will be made to
span as far as possible the range covered by actual columns.

That the foregoing results apply approximately to all types of
colums can be shown by the following reasoning. It is well known that,
whatever the complications - variations in sections, end conditions
(including negative fixity), elastic support, and so forth - the
equilibrium equation for any perfect strut can be satisfied by an
infinite number of deflection shapes or '"buckling modes," each asso-
ciated with a particular value of the load. ILet w = wlf(x) represent
such a buckling mode where f(x) defines the shape and wy, the magni-
tude of the movement, and let Py be the associated buckling load, that
is, the load at which equilibrium can exist when the column without
defects is deflected in this shape. Now compare the equilibrium
equations (representing the equilibrium of external moments and internal
resisting moments at every section) for this perfect strut and for the
same strut with an initial deviation W = Wlf(x) having the same shape

but a given fixed magnitude defined by Wy.

Then, the term in the equilibrium equation representing the moment
of the axial force will be Pyw = walf(x) for the perfect strut, where
w1 can have any value. For the strut with initial deviation the corre-
sponding term will be P(W + w) = P(Wy + w1)f(x), where Wy is given
but either the load P or w] 1is to be determined. All the other terms
will be identical in the two equations. Hence, f(x) will also be a
solution for the second equation (satisfying the same boundary conditions)
and the following relation must exist between the coefficients of the
above terms:

P(Wy + M) = By
Solving for wy

wy = Wl/[(Pb/P) - 1] (24)

One way to describe the above result is that, if any column has an
initial deviation in the shape of one of its buckling modes, then a
movement of this same shape with a magnitude given by equation (24) will
occur under an axial load P; this movement tends to infinity if P
approaches Py, the buckling load corresponding to this mode. If the
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column has an initial deviation consisting entirely of components of

such shapes, then corresponding movements given by equation (24) will
occur for each of these components and will superpose (assuming that

the total movements are small).

The next question is whether any possible deviation of a column
can be separated wholly into components having the shapes of the buckling
modes of the column. It would be easy to answer this question if
buckling modes were represented by normal functions, like the "normal
modes" of vibration of an elastic body. Buckling-mode functions are not
necessarily normal to each other (consider, for example, the symmetrical
modes of a uniform fixed-end column), but they nonetheless appear to
have the property that any possible deviation of & column can be decom-
posed into components having the shapes of the buckling modes.

Now, for any end-loaded column (and for any column with loads
applied between the ends, provided that P and Pp are defined as the
axial load on the critical cross section due to loads distributed in
the prescribed manner), yielding will occur when

2 W 2
a=f 12 gL ot
- Eccrwl<—__) = S e Eccr ) ( 25)
dx?/)op A (Pe1/P) - Llgx@ -

= |d

Sy =

where Acr, Cop, and (d2f/dx2)or are, respectively, the area, distance

to the farthest fiber, and curvature at the critical cross section (where
yielding first occurs), Peoy 1is the lowest of the values of Py, and
f(x) and W, are, respectively, the corresponding buckling shape and
the magnitude of the corresponding component of the initial deviation.
Only this component of the initial deviation is considered in equa-
tion (25). The effects of the other components were considered in the
case of a simple hinged-end column and found to be negligible, but this
must be reconsidered in other specific cases; in any case these effects
will be negligible when PCZ/P is close to unity, since the primary
term considered in equation (25) then "blows up" while other terms
remain small.

Now, it is general experience that f(x), the shape of a buckling
mode, is always either a harmonic function (say a sine function but with
nodes not necessarily at the ends) or close to such a function. If it
is such a function, equation (25) corresponds exactly to the previous
derivation and gives the same results. If f(x) 1is not such a function
(as in the case of variable cross sections or loads distributed along
the length) it can certainly be represented closely by
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£(x) = sin nx/1] + & sin 2xx/1; + b sin 3nx/17 (26)

where 17 has the same meaning as in its previous use and where the
values of a and b are limited by the fact that the curvature may

come to zero (because of large local bending stiffness) in some part of
the primary wave but cannot reverse in sign. Considering these limita-
tions, it is possible to calculate limiting values of (def/dxe)cr, where

the critical section is taken as that at which the curvature d2f/dx2,
and, hence, usually the bending stress, is a maximum. These Timiting
values are from -n2/112 to —2n2/112, while the value -n2/112 would
be required to conform to the previous derivation. It can then be con-
cluded that, if only that component of the initial deviation which has
the shape of the buckling mode is considered in calculating stresses,
the results obtained for simple hinged-end columns can be applied to all
columns provided that the values of K obtained for simple columns are
multiplied by factors ranging from 1 to 2. Changes of K of this
magnitude, of course, produce much smaller changes an P tor L Syragiean
be seen in figure 7 or 8.

Extreme Cases

Now consider some extreme cases more closely. Considering first
the effect of end conditions, at one extreme there is the case of a
column free at one end and fixed at the other; this can be considered
to be half of an equivalent hinged-end column consisting of the column
and its reflection in the plane normal to the load line at the fixed end.
If 1 1is taken as the length of the equivalent hinged-end column the
entire derivation given previously applies to this case.

At the other extreme, the case of a fixed-end column has been
studied previously for a different purpose. The critical section in
this case will be at one end, where the maximum bending due to the
deviation components having the shape of the primary (symmetrical)
buckling mode and the first antisymmetrical mode will add to each other;
there will always be one side of one end where these and the direct
stress are all of the same sign, but the stress due to the next symmet-
rical mode will be as likely to subtract from this, as to add to it.
Then, using equations (10) and (13), yielding will occur when

A s
ELE iy (dx2>x=o,2z
_ P, xEc b1 L@/ (Pey/P) - 1]
L™ g2 (Bey®) -1 | [LusRE8) - 1]

aakeey® -1 | (27)
[22(Pcy/F) - 1] J
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The maximum value of the quantity in the braces occurs when PcZ/P——aw

and is 1.34 + 0.13. From this it may be concluded that, to be on the
safe side, the values of Ky, obtained for simple columns should be

increased by a factor of 1.34 and those of Kpax» Py a factor of 1.47.
However, for Poy/P—1 the factor would be unity; for PcZ/P = 2
these factors would be 1.23 and 1.30, respectively, and so on.

Consider next the effects of nonuniformity of cross section. Using
figure 13 let the moment of inertia of cross sections be

sin nx/1 +':E:ap sin pn(x/1) e B didl e o 1] o8
sin nx/1 +Zp2&p sin pr(x/1)

I(x) = Ly

which, with suitable values of ap, can readily describe any practical
variation of stiffness; with one even term a,, this expression can

describe a wide variety of unsymmetrical variations, or with one odd
term 8z, of symmetrical variations of stiffness. Then, the equilibrium

equation
-EI(x) d2w/dx = P(W + w) (29)

and boundary conditions

for hinged ends are exactly satisfied if

w = w1 |sin nx/1 +§ ap sin pnx/z]
(30)
W = Wp|sin nx/1 + E ap sin p:rx/z]
Using expressions (30), equation (29) is satisfied if
(x2/12)EIgw = P(W + w) (31)
For Wy = 0 (perfect column) this would become

so from equation (31)

vy = Wy [(Pey/P) - l]
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Yielding will then first occur when

P a2y
= = = Ee .5
Sy A Cr(dxg)CT

W1
12 (PcZ/P) -1

= 2=
Py =P+ Poy Serfit/To l}in /- + zigkpgap sin pnx/lJcr
(Pey/F) -1 : :

g e .
[fln nx/1 + :Z_,p ap sin prx/1 b : (33)

Since, from equation (32), I, evidently corresponds to I = Ap2 of a
uniform column, it seems very reasonable to assume that ¢, WjA/I, will
have about the same average and limiting values as are found for ch/p2

in a uniform column. The equations and charts obtained for uniform
columns should then apply to nonuniform columns if the values of K
found for uniform columns are multiplied by the value of the quantity
in brackets in equation (33).

Choosing x +to maximize the expression in the brackets, 1t is
found that this quantity may have values as high as 2 for the extreme
cases contemplated in the previous discussion of the general case. How-
ever, it is found that this quantity never differs greatly from unity
for variations which would be used in practical columns and, in fact,
may be a little less than unity. For columns symmetrical about the
middle, with a ratio of stiffness in the center to stiffness at the end
of 2:1, this quantity is about 0.9; for a stiffness ratio of 3 this
quantity is about unity. The effects of end conditions and of the
other components of the initial deviation (which are not considered in
the above discussion) should not be very different from those for uni-
form columns, and so it may be concluded that the results obtained for
uniform columns can be applied to practical nonuniform columns also.

Next, consider the effect of intermediate loading. For simplicity
the extreme case was studied of a hinged-end column with axial loads P
applied at the end x = 0, and at the middle x = 1/2 of figure 13.
Then, a good approximation to the buckling mode should be
w = wy[sin nx/1 + a sin 2nx/i] ‘ (3ka)

where w7 and a are to be determined by energy considerations. Let
the component of the deviation of the same shape be

W= Wp[sin nx/1 + & sin 2m0x/1] (34b)
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5 Then, the total energy change during a small change in w; is zero:
() 2 12 2
: an 2B [ o B [ 1(w+w+wsl_w_1)] :
dwy; 2 Yo \ax® 2Y, dx w1
d 2
—(W + w dx = O
&0+ )] ] (35)

with a similar equation for a small change in a. Using equations (34a)
and (34b), carrying out the integrations, and solving the equations
simultaneously give

= 0.066
(36)
1.9 L2t vy = P(W + w)
12
) from which P,; = 1.97°EI/12 1is obtained. Yielding occurs when
‘. Sy = & = Bl d2w
A B for

| 2 W
| =3+"g° L [fsin—+026 singﬂ] (37)
‘ A l (Pcl/P) -1 l ler

‘ The value of the quantity in brackets in equation (37) is about 1.12.
| Thus, 1t appears that the results obtained for end-loaded columns will
apply closely to columns axially loaded at intermediate points, although

a small increase in the value of K might be advisable. As mentioned
previously, P and P,; must be taken as the axial loads on the critical

section (where ylelding first occurs) due to the load system distributed
in the prescribed manner. This is necessary in order for the term P/A
in equation (37) to represent correctly the direct stress on the critical
section. In the case Jjust considered the critical section was at

-~ 0.47 (between the loads) so that this condition was easily satisfied.
In case of a distributed load the location of the critical section can
probably be estimated sufficiently closely and should be at about the
above location for any antisymmetrical distribution of load such as a
uniformly distributed load.

‘ As a final example, consider the case of a column on an elastic

‘ 2 foundation. If the hinged-end column of figure 13 has an elastic
support of B (force per unit length per unit deflection) the equilib-
rium and boundary conditions can be satisfied by the same expressions
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(egs. (17)) for w and W as were used for the simple column. In a
previous paper (ref. 11) it is shown that in such a case

< - + mzﬁa)wm P(Wp + Wp) (38)

where the expression in the parentheses on the left side represents the
buckling stress P, corresponding to the buckling-mode shape sin mxx/z,

as can be seen by letting W, = O in equation (38). Buckling will occur

with the number of half waves m = m' corresponding to the smallest
value of Pp; that is,

w2x2ET | 1°B m2y 2 /-E—I = JE)
e " - (mexE [EL _ 37 JBET
b ( 12 m2ﬁ2>min < 12 | B mPx? VEI/min i (39)

The smallest value which the expression in the parentheses on the right
side can have is 2, which occurs when

g%n_?‘/?_lh(ﬁff/ﬁ: (%0)
12 VB 18 B

for which

Assuming for simplicity that the length is such that m' given by
equation (40) is an integer, and considering only three components of
the initial deviation W, corresponding to m', m' + 1, and m' - 1,
equations (17), (38), (40), and (21) lead to the following condition
for yielding:

P d2w
Sy = =— « Rcl=—=
A dx® Jor

_B, 1f8 Wm ain WAL &
A (1/m)2 (Pey/P) - 1 1

<m'—'19:|-._—l->(i%l - l) [sin(m' + l)xrx/l] .
== P} i

el e 0] i
l[(m' - 1)2¢2E1 __ 12p ]/P} s ~
22 (m - 1)ore
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For Pcl/P——el the value of the largest term in parentheses in equa-

tion (41) is unity and the results derived for simple struts then apply
exactly to the present case. The expression has its largest value if
Ppy/P—>» when it becomes

1 1 1 0L
: p I - sin (m' + 1)nx p I - sin (m 1) ex
m'nx . m' + v & m' - 7 (14-2)

7 (ml + 1)2 m' il (ml i )2 m' 2
o i s

This is a function of m' and can be evaluated without great difficulty.
It is found that points can always be found where stresses due to the
first and second, or the first and third, terms have the same sign as
the direct stress‘(whichever cambination gives the largest value is
chosen to determine Kgy), but the stress corresponding to the remaining
term will then be as likely to subtract from as to add to this amount
(and so may be used to determine Kpgx)-

sin

Using these findings it is determined that for Pg;/P—> the
value of Kgy for simple columns should be multiplied by approximately

2 - [}/(m')?] and the value of Xy,v, by 3 - [?/(m')?], where m' 1is
the number of half waves in which the column will buckle according to
classical stability theory. Thus, a column with a mild elastic support,
such that the buckling shape is still one half wave, would require no
correction for K. However, a column which is so long that it buckles
in many waves but is at the same time so strongly supported that P is
small compared with the classical stability 1imit (that is, the column
is in the short-column range) may require corrections by a factor as
high as 2 for Ky, and 3 for Kpy,y, because there is only a slight
difference between the classical stability load and the loads corre-
sponding to neighboring buckling modes; and, hence, the corresponding
components of the deviation contribute a good deal to the total
bending stress.




30

lo.

1015,

12%

NACA TN 3415
REFERENCES

Jasinski, Felix S.: La Flexion des piéces comprimées. Memoirs
et doc., Ann. ponts et chaussées, sér. 7, t. VIII, no. 39, 189k,
pp. 233-36k.

Marston, A.: Theory of the Ideal Column. Trans. Am. Soc. Civil
Eng., vol. 39, June 1898, pp. 108-113.

Jensen, C.: The Quebec Bridge Disaster. Engineering, vol. LXXXV,
no. 2205, Apr. 3, 1908, pp. 435-L43k.

Lilly, W. E.: The Strength of Columns. Trans. Am. Soc. Civil Eng.,
vol. 76, Dec. 1913, pp. 258-2Tk.

Kayser, H.: Buckling Tests of Double-Frame Trusses. Bautechnik,
vol. 8, no. 12, Mar. 18, 1930, pp. 200-210.

Salmon, E. H.: Steel Column Research. Trans. Am. Soc. Civil Eng.,
vol. 95, 1931, pp. 1258-1267.

Timoshenko, S.: Working Stresses for Columns in Thin-Walled
Structures. Jour. Appl. Mech., vol. 1, no. h, Oct.-Dec. 1953,
Jo1e LTSI T (Calculations by D. H. Young, pp. 17he175.)

Van den Broek, J. A.: Rational Column Analysis. Eng. Jour., vol. 2k,
no. 12, Dec. 1941, pp. 570-583.

Van den Broek, J. A.: Column Formula for Materials of Variable
Modulus. Eng. Jour., vol. 28, no. 12, Dec. 1945, pp. 7T72-77T, 783.

Southwell, R. V.: On the Analysis of Experimental Observations in
Problems of Elastic Stability. Proc. Roy. Soc. (London), ser. A,
vol. 135, no. 828, Apr. 1, 1932, pp. 601-616.

Donnell, L. H.: On the Application of Southwell's Method for the
Analysis of Buckling Data. Timoshenko Sixtieth Anniversary Vol.,
The Macmillan Co., 1938, pp. 27-38.

Donnell, L. H., and Wan, C. C.: Effect of Imperfections on Buckling
of Thin Cylinders and Columns Under Axial Compression. dJour. Appl.
Mech., vol. 17, no. 1, Mar. 1950, pp. 73-83.




NACA TN 3415

TABLE T

VALUES OF ROUGHNESS FACTOR K

[Values are for simple columns but may be used for othe%}

cases as discussed in appendix B

(tentative values)

Kmax Kav
Standard cold-rolled steel bar stock 0.00015 | 0.00003%
Strips cut from standard flat sheets of .00019 . 00004
2024 -T3 and T7075-T6 aluminum alloy
Columns of "refined" construction .00015 . 00003
(tentative values)
Columms of "average" construction .00040 .00010

5k




Loading
head

Large
back
mirror

Small mirror Small

Specimen

Scale

Telescope

Effective  length
of specimen

Figure 1.- Sketch of loading apparatus and optical system.
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(b) Deflection-measuring unit.

Figure 2.~ Photographs of test apparatus.
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Figure 4.- Sketch showing points at which initial geometric deviations were measured.

CTHS NI VOVN

G¢



36 NACA TN 3415

Load ; Elastic
line / axis

Figure 5.- Shift in load line produced by eccentricity of loading.
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(a) Cold-rolled mild-steel bar stock.

Figure 6.- Total initial deviations of columns.
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(b) 2024-T3 aluminum alloy.

Figure 6.- Continued.
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Figure 9.- Diagram illustrating factors involved in total deviation

and movement for a fixed-end strut.
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Figure 10.- Harmonic components of deviation.
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(a) Cold-rolled mild-steel bar stock.

Figure 11l.- Geometric deviations of columns.
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(b) 2024-T3 aluminum alloy.

Figure 11l.- Continued.
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Figure 13.- Uniform column hinged at both ends.
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