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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3459

SIMPLIFIED PROCEDURES AND CHARTS FOR THE RAPID ESTIMATION
OF BENDING FREQUENCIES OF ROTATING BEAMST

By Robert T. Yntema
SUMMARY

A Rayleigh energy approach utilizing the bending mode of the nonro-
tating beam in the determination of the bending frequency of the rotating
beam is evaluated and is found to give good practical results for heli-
copter blades.

Charts are presented for the rapid estimation of the first three
bending frequencies for rotating and nonrotating cantilever and hinged
beams with variable mass and stiffness distributions, as well as with
root offsets from the axis of rotation. Some attention is also given to
the case of rotating beams with a tip mass.

A more exact mode-expansion method used in evaluating the Rayleigh
approach is also described. Numerous mode shapes and derivatives obtained
in conjunction with the frequency calculations are presented in tabular
form.

INTRODUCTION

Designers of helicopter rotor blades generally agree that accurate
means are needed for estimating the natural bending frequencies of the
rotating blades in order to obtain a blade design which is as free as
possible from resonant or near-resonant excitation by the periodic
loading on the rotor. Although numerous methods are available for deter-
mining the bending frequencies of rotating blades (see, for example,
refs. 1 to 14), designers have expressed the need for a simplified, yet
reasonably accurate, procedure for their determination, preferably in
the form of a set of charts. With this need in mind, an investigation
was undertaken which had a twofold purpose: (a) an evaluation to show
whether a Rayleigh energy approach utilizing the mode shape of the non-
rotating beam may be employed to obtain close approximations for the
natural bending frequencies of the rotating beam and (b) a set of charts

Lan amplified and extended version of NACA RM L54G02, 195kL.
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which would permit the rapid estimation of the first three bending fre-
quencies of both nonrotating and rotating hinged and cantilever Dblades.
The main purpose of this report is to present this evaluation and the
frequency charts.

The Rayleigh energy approach was evaluated with respect to such
items as various rotational speeds, higher modes, flapping-hinge or root
offset, variable blade mass and stiffness distributions, and a large con-
centrated tip mass. The evaluation was made by comparing frequency
results obtained by the Rayleigh method with results obtained by a more
accurate mode-expansion method. The details of the mode-expansion method
are given in appendix A.

The charts for frequency estimation were obtained by considering
various families of beams with selected mass and stiffness distributions
and were derived for both hinged and cantilever beams. The frequencies of
both nonrotating and rotating cases may be estimated for (a) beams with
and without offset which have mass and stiffness distributions which can
be approximated by linear relations and (b) beams with uniform mass and
stiffness distributions plus a concentrated mass at the tip.

If the bending frequencies of the nonrotating beams are known, a
third set of charts permits the estimation of the bending frequencies of
rotating beams with approximately linear stiffness distribution and arbi-
trary mass distribution.

As an adjunct to the Rayleigh approach utilizing the nonrotating-
beam mode shapes, a method is presented in appendix B which permits a
fairly accurate determination of the first bending mode and frequency of
a rotating or nonrotating hinged beam with a tip mass from a knowledge
of the first bending mode of the nonrotating beam without a tip mass.

The report also presents bending-mode results, obtained in conjunc-
tion with the frequency determinatioa, which show the effect of the param-
eters on mode shape. Many of these mode shapes are tabulated in normal-
ized form together with their first and second derivatives, or as mode
coefficients (coefficients of an expansion in terms of uniform-beam modes).
These results can be used in connection with the modified approach of
appendix B or in other analyses.

In order to facilitate the further application of the mode-expansion
method to the accurate determination of modes and frequencies of rotating
beams with linear mass and stiffness distributions, concentrated tip mass,
and offset different from those considered herein, certain integrals which
have been evaluated are also presented in tabular form.
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EI(x)

EI(x)

>3
SYMBOLS
mode coefficients for the nth rotating-beam mode
(see eq. (A3))

m Lu

nonrotating-beam bending frequency coefficient, aygr é%
o]

moL*

rotating-beam bending frequency coefficient, ag =
(0}

beam-stiffness-distribution constant (see eq. (Al2))

pendulum- or zeroeth-mode coefficient (see appendix B)

lengthwise bending stiffness distribution for beam

bending stiffness of beam at root

nondimensional bending stiffness distribution for
beam, EI(x)/EI,

Southwell coefficient (see egqs. (4) and (5))

zero-offset Southwell coefficient

offset-correction factor for Southwell coefficient

zero-offset rotating-beam frequency coefficient; found to
be essentially independent of beam mass distribution
(see eq. (11))

beam-mass-distribution constant (see eq. (Al2))

beam length, measured from point of root fixity to tip

lengthwise mass distribution for beam (mass per unit length)

mass per unit length of beam at root
nondimensional mass distribution for beam, m(X)/mg

part of beam mass distribution which is continuous (not
concentrated)

mass concentrated at tip of beam
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T nondimensional tip-mass ratio, Mt/hoL
A lengthwise distribution of tension force in beam, Tl(x)Q2
Tl lengthwise-distribution function for tension force
(see eq. (2))
X spanwise coordinate along beam measured from root
X nondimensional spanwise coordinate, x/L
¢ bending mode shape of nonrotating beam
y bending mode shape of rotating beam
&(x-L) Dirac delta function
5(%-1) Dirac delta function in nondimensional coordinates
e offset of hinge or point of fixity from axis of rotation
€ nondimensional offset, e/L
1,7 dummy variables for x and X
0 characteristic number for nonrotating uniform beam with

mass at tip; identical to square root of nonrotating-
beam bending frequency coefficient

¢ bending mode shape for nonrotating uniform beam normalized
at tip

Q rotational speed of beam

wp natural bending frequency of rotating beam

ONR natural bending frequency of nonrotating beam

Subscripts:

n integral number designating natural bending mode of beam

F beam cantilevered or fixed at root

t tip of beam

Primes mean differentiation with respect to x or X unless
indicated otherwise.
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THE RAYLEIGH APPROACH APPLTIED TO A ROTATING BEAM

Description

The problem being treated in this report is a rotating beam vibrating
freely in one of its natural bending modes. By equating the kinetic energy
at zero displacement to the potential energy of both the bending and cen-
trifugal forces at maximum displacement, the following frequency equation
for vibration perpendicular to the plane of rotation can easily be derived:

L L
- 0

— +

n L > L
f myy,“ax f my, 2ax
0 0

where n refers to the mode under consideration and

@2 (1)

L
T = f (n+ e)m an (2)
X

Equation (1) yields an exact value for the nth bending frequency of a
beam rotating at any rotational speed Q if the nth natural bending mode
shape of the rotating beam is known for this value of Q. Unfortunately,
the mode shape is usually just as much of an unknown as the frequency is.
An estimation of the frequency may be made, however, by making use of the
well-known Rayleigh principle; that is, a mode shape which is consistent
with the constraints of the system is assumed and is used to evaluate the
energy integrals which, in turn, give an approximate value for the fre-
quency. In this report the nonrotating-beam mode shape is chosen as the
approximation for the rotating-beam mode shape, and an evaluation is made
to show whether the use of such a shape yields close approximations to
the exact frequencies of the rotating beam.

If the nth mode shape of the nonrotating beam Y, 1is substituted

into equation (l), the first term becomes exactly the square of the
bending frequency of the nonrotating beam. By denoting the ratio in the
second term by Kn, a Southwell coefficient, the frequency equation takes

the following simplified form:

2 -

ap ° = o ©+ Kp0° (3)

n
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where

i L
J[ Yn'gdef (n + e)m dn
0 X

= (4)

v 2
mYn dx
0

This expression for K, can be subdivided into two independent parts

as follows:
Khn =Ko + Ky e
n - 1 (5)

where both KOn and Kln are independent of the offset e and are

defined as follows:

¢
L L
J[ Yh'zdeﬁ m dn
K il
0
n L
u[ mYngdx
0
, (6)
L L
JE Yn'2de[ m dn
X
Ky =
ln L
J[ mYnedX
9 J

In the remainder of this report KO is referred to as the zero-offset
n
Southwell coefficient and Kln is referred to as the offset-correction
factor for the Southwell coefficient.
It is convenient to write R 2 in terms of a nonrotating-beam
n

frequency coefficient a, and the mass and stiffness of the beam at the

root as
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2 2 N0
= a (7)
n
MR, b
By means of equations (5) and (7), equation (3) may be written as

ET
ane = ang—i + (Kon + Klne) a (8)

myL

Equation (8) with Kon, Kl , and e 1in nondimensional form serves
T
as the basis for the charts for rapid frequency estimation to be pre-
sented subsequently in this report. These charts provide values of ap,
Kon, and Kln which, in conjunction with the mass and stiffness of the
beam at the root, the length of the beam, the hinge offset, and the rota-

tional speed, permit rapid estimation of the first three bending fre-
quencies of rotating or nonrotating beams.

If the mass distribution of the blade is given by a simple analytic
function, the integral expression for T; (eq. (2)) can usually be

evaluated exactly; for arbitrary mass distribution, however, numerical-
integration methods such as are given in reference 15 must be employed.
Because of the nature of the numerical-integration procedure used in the
present paper, a slightly different form of the expression for K, was

found to be useful. This form can be obtained by performing sn integra-
tion by parts on the numerator of equation (4), and in nondimensional
form the result appears as

1 x
' f (% + &) dscf v, 247
K, =2 0 (9)

n
i

- 2-

(/‘mYn dx
0

whence the definitions for Kbn and Kln are evident.

An additional form of equation (3) is now presented for use in sub-
sequent sections of this report. Dividing equation (3) by QNR’2 yields
n



8 NACA TN 3459

2 2
3 =]_+KD_Q_.
R AR
n n
2 2
AR
=1+K, 1) (& _ (10)
aNRn aNRl

This form of equation (5) was found to be useful in the evaluation of the
Rayleigh approach. Hereinafter, in this report uRn/dNRn is referred to

as the frequency parameter and Q/wNRl is referred to as the rotational-

speed parameter. Also, for subsequent use in this report, a new zero-
offset rotating-beam frequency coefficient Kj ' is now defined as
n

Jag <‘*’NR1)F—QEKO i‘l_Fg

(11)
n n wNRnJ n| a_

where the subscript F indicates that a; is the nonrotating-beam

frequency coefficient for the beam cantilevered at the root. All other
terms are for the beam with its actual root condition, that is, either
cantilevered or hinged.

It is shown subsequently in this report that this new frequency
coefficient is insensitive to beam mass distribution and should there-
fore be useful in estimating bending frequencies for families of beams
with similar stiffness distributions. As is apparent from equation (11),
the fundamental frequency of the nonrotating beam treated as a cantilever
must be known in addition to the bending frequencies of the beam with
the actual root condition (cantilevered or hinged).

Evaluation of Rayleigh Approach

In order to determine the accuracy, usefulness, and possible limita-
tions of the Rayleigh approach based on nonrotating-beam bending modes,
the bending frequencies were calculated by this approach for a series of
rotating beams with systematically varied parameters; the frequencies
obtained in this manner are compared in this section with the results
obtained by the more exact mode-expansion method of appendix A. For the
cantilever beams, five uniform-cantilever-beam bending modes were used in
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the expansion; for the hinged beams, & pendulum mode was included in
addition to five hinged-beam bending modes.

The cases studied by both methods are shown in figure 1. Both
cantilever and hinged beams are considered for the following cases:

(a) Uniform beams with O- and 10-percent root offset

(b) Beams with mass and stiffness distributions varying linearly
from the root value to zero at the tip and with O- and 10-percent root
offset

(c) Uniform beams with a mass at the tip.

The results for all the cases treated were obtained in nondimen-
sional form and are presented in plots in which the variation of bending
frequencies with rotational speed as predicted by the exact method of
appendix A and by the Rayleigh approach may be compared. In each of the
figures introduced in this section the abscissa is the squared nondimen-
sional rotational-speed parameter (the squared ratio of rotational speed
to the first bending frequency of the nonrotating beam) and the ordinate
is the squared nondimensional frequency parameter (the squared ratio of
the nth bending frequency of the rotating beam to the nth bending fre-
quency of the nonrotating beam).

The range of the rotational-speed parameter in each case corresponds
roughly to that encountered in current helicopters with some latitude for
new design. Since the first bending frequency of a hinged beam is roughly
four times the first bending frequency of the same beam fixed at the root,
widely different scales result for the hinged and cantilever teams. The
abscissa range also varied with tip mass because the fundamental fre-
quency of a nonrotating beam decreases with increase in tip mass. For
the uniform cantilever beam with a tip mass, this variation is large and
thus results in a greatly expanded abscissa scale with each increase in
tip mass. For the uniform hinged beam with a tip mass, the effect of
tip mass on the nonrotating frequency is relatively small and thus the
abscissa range was not extended appreciably with each increase in tip
mass.

Hinged beams without tip mass.- The variation of bending frequency

with rotational speed for a uniform:hinged beam is shown in figure 2 for
offsets of O and 10 percent. For this case the Rayleigh approach may be
seen to be very accurate for all three modes throughout the entire

rotational-speed range covered. The maximum error is about 3 percent in

the frequency squared and thus only about l% percent in the frequency.

This maximum error occurs at the highest rotational speed and is roughly
the same for all three modes.
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Frequency results for the hinged beams with linear mass and stiff-
ness distributions are shown in figure 3 for offsets of O and 10 percent.
From this figure it is evident that the results obtained by the Rayleigh
method for this case are very accurate, even for the highest rotational
speeds shown.

A comparison of the exact frequency results for the uniform and
"linear" hinged beams is presented in figure 4 for the case of zero off-
set. The difference between the results for the two beams is very marked,
particularly for the first mode. One of the most important things to be
noted in this comparison is the large difference in slope between the two
curves for the first mode. The average slope of each of these lines is
directly proportional to the Southwell coefficient for the first mode
(see eq. (10)), and the large difference in slope indicates that a single
value of this coefficient could not adequately predict the first-mode-
frequency variations for both beams. This result contradicts the often
made assumption that the Southwell coefficient is largely independent of
beam mass and stiffness distribution.

For the higher modes the slope of each of the lines (fig. 4) 1is also
proportional to the Southwell coefficient, but unfortunately each beam
has a different constant of proportionality. Thus, it cannot be observed
directly from this figure that the Southwell coefficient for the higher
modes also varies appreciably with beam characteristics; this fact, how-
ever, is evident from the charts for frequency determination to be pre-
sented subsequently.

Cantilever beams without tip mass.- The frequency of rotating canti-

lever beams as well as of hinged beams is of interest in the analysis of

a teetering rotor because both symmetrical (cantilever) modes and anti-
symmetrical (hinged) modes may be excited. Consequently, in the following
paragraphs the Rayleigh approach employed in the present report is eval-
uated for cantilever beams.

Frequency results for uniform cantilever beams are presented in
figure 5. The Rayleigh results are in good agreement with the more exact
results for the second and third modes. For the first mode, however, the
maximum error is somewhat larger, about 5 percent in the frequency.
Nevertheless, the effect of offset on the frequency variation is pre-
dicted fairly accurately for all three modes.

For comparison, the results of approximating the first cantilever
mode by the pendulum mode of a hinged beam are also given in figure 5.
Frequency results based on this shape are seen to be always less than the
exact values. As the rotational-speed parameter increases, these results
become more and more accurate; for the lower rotational speeds, however,
the use of the nonrotating-beam first mode shape yields the most accurate
results. The effects of root offset on frequency are predicted by the
use of either the pendulum mode or the first cantilever bending mode.
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The variation of bending frequency with rotational speed is shown
in figure 6 for a cantilever beam with linear mass and stiffness distri-
bution and with offsets of O and 10 percent. As is the case for the uni-
form cantilever, the Rayleigh frequency results, based on the nonrotating-
beam cantilever mode, are very accurate for the second and third modes,
but are not so accurate for the first mode at the higher values of the
rotational-speed parameter; however, the effect of the offset is again
predicted fairly accurately.

The Rayleigh results based on a pendulum mode, which are also shown
in figure 6, are again seen to be always less than the exact values and
to increase in accuracy as the rotational-speed parameter increases. At
the lower rotational speeds, however, these results are again appreciably
less accurate than those based on the first cantilever bending mode shape.
As was the case for the uniform beam, both the pendulum mode and the first
cantilever mode predict the effects of the offset equally well.

A comparison of the frequency results for the uniform and "linear"
cantilever beams with zero offset is given in figure 7. From the figure
it is evident that there is only a small difference in the slope of the
exact first-mode frequency curves and thus in the Southwell coefficient
for the two beams. This small difference, however, is predicted, although
not too accurately, by the Rayleigh approach based on the nonrotating-beam
mode shape; whereas, if a pendulum-mode approximation had been used, no
difference could have been predicted.

For the higher modes, the effects of mass and stiffness distribution
on frequency are more pronounced and lead again to the conclusion that,
in general, a single value of the Southwell coefficient cannot accurately
predict the frequency variations for beams with appreciably different mass
and stiffness distributions.

The error in the first-mode-frequency results obtained by the Ray-
leigh approach (fig. 7) is almost the same for both beams. Thus, this
error apparently is independent of beam mass and stiffness distribution;
this observation suggests the possibility of applying a correction,
based on the known errors for these particular beams, to the Rayleigh
results obtained for cantilever beams with other mass and stiffness
distributions.

Cantilever beams with tip mass.- For beams with a mass at the tip,

the results for the cantilever case suggest certain simplifications which
may be carried over to the hinged beams; thus the cantilever results are
discussed first.

The variation of bending frequency with rotational speed for a uni-
form cantilever beam with a concentrated mass at the tip and zero offset

.
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is given in figure 8. Results are presented for two cases: tip mass
equal to the beam mass and tip mass equal to one-half the beam mass.
Figure 8 shows that the Rayleigh results are of the same order of accu-
racy as for the beam without tip mass - very accurate for the second and
third modes but relatively less accurate for the first mode.

It is of interest to note that for each mode the variation of the
frequency parameter with the rotational-speed parameter is almost identi-
cal for the two values of tip mass considered. In fact, if these results
are compared with those for the beam with zero tip mass inEiiouRe RS PEthe
variation for all three cases is seen to be practically identical.

The foregoing observations create the impression that the zero-
offset Southwell coefficient for each mode is independent of the value
of the tip mass. This assumption is true for the first mode but is mis-
leading for the higher modes as is evident from equation (10) where it

can be seen that a constant of proportionality (wNR /hNR )2, which varies
1L n

with tip mass, is involved. Nonetheless, inasmuch as this constant of
proportionality is defined by a ratio of nonrotating-beam frequencies, a
new rotating-beam frequency coefficient, or modified Southwell coeffi-
cient KOn' can be defined (see eq. (11)) which is essentially indepen-

dent of tip mass and, as will be shown subsequently, of beam mass distri-
bution as well.

Hinged beams with tip mass.- The variation of bending frequency with
rotational speed for a uniform hinged beam with a concentrated mass at
its tip and zero offset is given in figure 9. Results are given for two
cases: tip mass equal to beam mass and tip mass equal to one-half the
beam mass. The Rayleigh results are very accurate for all three modes
over the entire range of variables investigated, and it may be inferred,
particularly for the first mode, that the Rayleigh procedure will yield
reasonably accurate results for appreciably larger values of the
rotational -speed parameter and tip mass.

From figure 9 the frequency variation can readily be seen to be con-
siderably different for the two values of tip mass, unlike the cantilever
results of figure 8, for which the frequency variation is essentially
independent of tip mass. In an attempt to explain this difference between
the two cases, the results of figure 9 were replotted in figure 10 as a
function of the rotational-speed parameter used for the cantilever cases,
that is, the squared ratio of rotational speed to the bending frequency
of the beam in the first cantilever mode. From figure 10 the freguency
variation with this rotational-speed parameter may be seen to be essen-
tially independent of tip mass, as was noted for the cantilever. Conse-
quently, a new constant which is insensitive to the mass distribution of
the beam is suggested. For hinged beams this constant is also defined by
equation (11). The invariance of this constant with beam mass distribu-
tion is discussed subsequently in this report.
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Estimation of fundamental frequency of beam with tip mass.- A method
which permits the accurate approximation of the first bending mode shape
of a hinged beam with a tip mass from & knowledge of the first mode shape
of the beam without a tip mass is presented in appendix B. Once such a
shape has been determined, the computation of the nonrotating-beam first-
mode frequency and the associated Southwell coefficient is a relatively
simple matter. In order to illustrate the accuracy of this procedure,
nonrotating-beam bending frequencies and Southwell coefficients were com-
puted for the uniform beam with two values of tip mass and were compared
with the values obtained by using the exact nonrotating-beam bending mode
shapes.

For the case of a uniform beam with tip mass equal to one-half the
beam mass, the nonrotating-beam frequency squared obtained by using the
approximate shape was found to be too high by about 2 percent, and the
associated Southwell coefficient was found to be too low by about 2 per-
cent. If these errors had both been in the same direction, the first
bending frequency of the rotating beam would have differed by only about
1 percent or less from the Rayleigh result based on the exact nonrotating-
beam mode shape. However, because the two errors tend to cancel, the
difference would be much less.

The results for the case of a tip mass equal to beam mass showed
very similar characteristics, although the error in nonrotating-beam
frequency was slightly higher.

Although the method of appendix B has been evaluated only for the
case of uniform beams, it is believed that the method will be equally
accurate for beams with other mass or stiffness distributions.

CHARTS FOR BENDING-FREQUENCY DETERMINATION

In the preceding section, the Rayleigh approach was evaluated and
the conclusion was reached that Southwell coefficients obtained by using
nonrotating-beam mode shapes lead to reasonably accurate bending fre-
quencies of rotating beams, at least for the range of the rotational-
speed parameter encountered in helicopter blades. The evaluation also
showed that the Southwell coefficients can vary appreciably with beam
characteristics. This section describes a group of charts based on the
Rayleigh approach which permit the rapid estimation of bending frequencies
of rotating and nonrotating beams.
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Rotating and Nonrotating Beams Without Tip Mass \

In order to provide a means for the rapid, yet reasonably accurate, " ‘

estimation of rotor-blade bending frequencies, nonrotating-beam frequency
coefficients, zero-offset Southwell coefficients, and offset-correction
factors for the Southwell coefficients have been computed for a series of
beams with linear mass and stiffness distributions and have been compiled
in chart form. The range of mass and stiffness distributions was selected
to encompass variations found in currently manufactured blades with some
latitude for new design. All the constants are based on the mode shapes of
the nonrotating beam, which were obtained by standard numerical-iteration
procedures. (See section entitled "Results for Sending Modes" for more
details regarding these procedures.)

The form of the Rayleigh energy equation which is used in conjunction
with the charts to obtain bending frequencies is equation (8) with Koy’

Kln, and e in nondimensional form:

o 2 =) o2
Up Al & ¢n N i (?On i Klne>Q (12)

where K =K and K = K, L. The charts for frequency determination
Opn 0 1, e

n
are presented in figures 11 to 16. 1In each chart, the abscissa is the
ratio of the beam mass per unit length at the tip of the beam to the mass
per unit length at the root; 1.0 represents a constant-mass beam and O a
beam in which the mass varies linearly to zero at the tip. Curves are
presented for three different stiffness variations: the solid curves for
beams with constant stiffness, the long-dash curves for beams where the
stiffness drops linearly to half the root value at the tip, and the long-
dash, short-dash curves for beams which have zero stiffness at the tip. -

FEach of these curves is faired through only three points, one at

each end and one at the middle; for the Southwell coefficients and offset- ~
correction factors, this procedure should involve little error because, in
most cases, the variation is nearly linear, but for the frequency coeffi-
cients the fairing may appear to be questionable. However, the fairing of
these curves was not entirely arbitrary. The fundamental bending frequency
of cantilever beams with linear mass and stiffness distributions is given
in reference 16 for cases in which the mass and stiffness variations are
proportional, that is, where
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Two of the cases considered in this reference, namely, the ones where
both ratios equal O and 1, are identical to cases treated in this report
and the results for these are in good agreement. The other cases treated
in reference 16, namely, those for which this ratio is 0.2, 0.4, and 0.6,
were used in fairing the curves of - a1 for the cantilever case. The

other curves for the frequency coefficient for cantilever and hinged beams
were then faired by using this first set of curves as a guide.

Charts which permit the rapid estimation of nonrotating-beam fre-
quency coefficients, zero-offset Southwell coefficients, and offset-
correction factors for the Southwell coefficients are presented in fig-
ures 11 to 13 for beams hinged at the root and in figures 14 to 16 for
beams fixed at the root.

Since the zero-offset Southwell coefficient for the pendulum mode is
always unity regardless of the mass and stiffness distribution of the beam,
it is not included in figure 12. However, the offset-correction factor
for this mode is not independent of mass distribution but is independent
of stiffness distribution, as indicated in figure 13. The pendulum-mode
results in figure 13 are also given in reference k4.

As was mentioned in the section of this report entitled "Evaluation
of Rayleigh Approach," the zero-offset Southwell coefficients for the
first cantilever mode (given in fig. 15) will yield accurate rotational
frequencies only at relatively low values of the rotational-speed parameter
and must be corrected in accordance with the results of figure 5 or 6 at
higher values of this parameter. A fixed-percentage correction cannot be
given because the error is a function of the rotational-speed parameter.

The effect of root fixity on the Southwell coefficients can be noted
by comparing the curves of figure 12 with those of figure 15. The first-
mode results for the cantilever beams should be compared with the pendulum-
mode Southwell coefficient for the hinged beam which is always unity for
the case of zero offset. Likewise, the second-mode curves of figure 15
should be compared with the first-mode curves of figure 12, and so forth
for the higher modes. From this comparison it is seen that the effects
of root fixity on the Southwell coefficients are fairly small and can
probably be neglected for rough approximations in all cases, except for
the first cantilever mode. With this assumption, the results of figure 12
for the third bending mode can be used as reasonable approximations for the
fourth cantilever mode.

The variation of the Southwell coefficient may be seen from figures 12,
55 15, and. 16 to be relatively insensitive to beam stiffness distribution,
particularly for cantilever beams but also for the hinged beams. This
observation, coupled with the facts that frequency is proportional to the
square root of the Southwell coefficient and that the influence of the
Southwell coefficient decreases for higher modes (for constant rotational
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speed), leads to the conclusion that fairly good approximations to the
Southwell coefficients for beams with other than linear stiffness distri-
butions may also be obtainable from this set of charts. The examples
presented in the following section appear to bear out this conclusion.

Application of charts to several actual helicopter blades.- To illus-
trate the use and the type of accuracy which can be expected from the
frequency charts of figures 11 to 16 and to demonstrate that the charts
work well even when the mass and stiffness distributions of the beams are
not exactly linear, bending frequencies have been estimated for the first
three modes of four existing helicopter blades, all of which are hinged.
The following procedure, which may be made clearer by reference to the
sketches in table I, was used in the estimation:

(a) Straight lines were faired through the mass and stiffness dis-
tributions for the blade; large values near the root were ignored.

(b) From these fairings, the effective root values m, and {H
and the necessary tip-root ratios were obtained.

(c) By using these ratios, values of an, KO, and ﬁl were

obtained from the appropriate charts (figs. 11 to 16).

(d) Substitution of these constants and e into the Rayleigh equa-
tion (eq. (12)) yielded the bending frequencies at zero and the rated rotor
speed.

The mass and stiffness distributions for the blades considered are
shown on the left side of table I. The actual distribution is given by
the solid lines, and the linear approximation, selected to represent this
variation, is given by the dashed lines. These linear approximations
used in estimating the frequencies were the initial ones selected, and
no attempt was made to improve them in order to obtain the best agreement
for all modes. The frequencies shown as "exact" in table I are values
furnished by the manufacturer.

A comparison of the exact and estimated results given in table I for
these blades indicates that the estimated results are very accurate when
the crudeness of the linear approximations used is considered.

Although no comparisons have been made for cantilever blades because
sufficient information regarding such blades was not available, even more
accurate results should be obtainable for this end condition since large
values of root stiffness can be taken into account more accurately by con-
sidering the blade to be cantilevered at the outboard edge of the stiff
region and then using the offset-correction factor for the Southwell
coefficients.
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Beams With a Mass at the Tip

Uniform cantilever beam.- Expressions defining the bending frequencies
and mode shapes of nonrotating uniform cantilever beams with a tip mass
equal to a fraction r of the beam mass are given in reference 17. These
expressions, in somewhat simpler form, are the following: the defining
relation for the frequencies is

1 + cos 6 cosh 6 - ro(sin 6 cosh 8 - cos 6 sinh 68) = O (13)
where
2 | EI
ONR, = On
= mL)+

and the mode shapes are

sinh Gn + sin On

(14)

¥y(x) = sinh x - sin x + (cos x - cosh x)
cosh 6, + cos 6,

In addition to the defining relation for the frequency, reference 17
also gives values of en for the first three modes of cantilevers and

for several values of r. ©Some of these results, which are pertinent to
helicopter blades, are plotted in figure 17. Values of 9n2 rather than

en are plotted, because en2 is directly proportional to frequency and
corresponds to the nonrotating frequency coefficients a, presented

previously.

For larger values of r fairly accurate values of 8n2 can be

obtained from the following approximate expression:

2 2 1
C] = (0O e T il
B ( n )r=0\,l + KT (15)

where Kn is a constant for each mode which can be determined from the

frequency results for the largest value of r - in this case, 2. Equa-
tion (15) can also be used for nonuniform beams and for hinged as well as
cantilever beams.
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The variation of the Southwell zero-offset coefficient with tip mass X
is given in figure 18 for the first three modes of a uniform cantilever
beam. These results were computed by using the mode shape of the nonro-
tating beam presented in equation (14); the integrations were performed
analytically. Although only three points were used to establish each
curve of figure 18, the fairing should be quite accurate since the vari-
ations shown are almost linear.

The Southwell coefficients of figure 18, in conjunction with the
nonrotating-beam frequency coefficients of figure 17, should permit very
accurate estimates for the bending frequencies of rotating uniform beams
with a tip mass except possibly for the first mode, for which a correction
may be made in accordance with results given in figure 8 for large values
of the rotational -speed parameter.

The effect of root offset has not been studied for this case, but
offset-correction factors can be obtained from the mode shapes defined by
equation (14).

Uniform hinged beam.- By using the method of reference 17, expressions
defining the bending frequencies and mode shapes of nonrotating uniform
hinged beams with a mass at the tip have been determined. The defining
relation for the frequency is

2r + coth 8 - cot 8 =0 (16)

and the mode shapes are given by

sinh en

yn(x) = sinh x +
sin en

sin x (a7

Values of 0, have been determined for several values of r; these

results are given in figure 19 as frequency coefficients ene, together

with the frequency coefficients for the case of zero tip mass.

By using the nonrotating-beam mode shape, given by equation (1570
values for the zero-offset Southwell coefficient have been determined
for hinged beams with a tip mass and are given in figure 20. For the
pendulum mode, Kg is always unity and therefore is not shown. The

results in figures 19 and 20 together permit the rapid estimation of the
bending frequencies of rotating uniform hinged beams with a mass at the
Gipk
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Pendulum-mode results for hinged beams with linear mass distribu-

tions.- The zero-offset Southwell coefficient for the pendulum mode of

a hinged beam is equal to unity, regardless of the mass or stiffness
distribution of the beam. For the case of hinge offset, however, the
Southwell coefficient is independent of stiffness distribution but varies
considerably with beam mass distribution and with the tip mass. A chart
(see fig. 21) has been prepared which permits the rapid estimation of the
offset-correction factor to the Southwell coefficient for hinged beams
with an approximately linear mass distribution plus a mass at the tip.

First bending mode frequency of nonuniform hinged beam.- A simple

method is indicated in appendix B for obtaining an approximate first
mode shape for any beam with a tip mass from a knowledge of the beam
mode shape without a tip mass. Once such a shape is determined, the
fundamental bending frequencies of the rotating and nonrotating beams
can be determined very easily by application of the Rayleigh frequency
equation (eq. (1)).

Rotating Beams With Nonlinear Mass Distribution and
Approximately Linear Stiffness Distribution

In the section of this report concerned with the evaluation of the
Rayleigh approach, a modified form of the zero-offset Southwell coeffi-
cient Kon' was shown to be insensitive to variations in beam tip mass.

This coefficient is defined for both cantilever and hinged beams by equa-
tion (11).

In order to determine whether this new coefficient is also insensi-
tive to other variations in beam mass distribution, all values of Kon

presented in the charts for rapid frequency estimation were converted to

KO '. For each stiffness distribution Kon' was found to be almost con-
n

stant for each mode, the differences being of the same order of magnitude
as the errors inherent in the Rayleigh approach used herein.

To facilitate the estimation of bending frequencies for rotating
beams with large tip masses or possibly other nonlinear mass distribu-
tions, values of Kon' for all the beams treated in the present report

are plotted in figure 22(a) for cantilever beams and in figure 22(b) for
hinged beams. Curves have been faired through the points to give average

values for Kon’ and thus for KO for beams with approximately linear
n

stiffness distributions and with any mass distribution. In analyzing
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these results, the facts that frequency is a function of the square root

of KO and that the influence of KO on frequency decreases with
n n

increase in mode number should be kept in mind.

From equation (11) it is apparent that the first bending frequency
of the nonrotating beam cantilevered at the root and the nth bending fre-
quency of the nonrotating beam with its actual end fixity are required
to determine Kon (and thus the bending frequency of the rotating beam)

from a knowledge of Kon'. In spite of this complication, however, the

charts presented should be useful in design studies involving rotating

beams with nonlinear mass distributions but with approximately linear

stiffness distributions. It should be emphasized at this point that the

constancy of KO ' has been demonstrated for only a limited variety of
n

mass distributions, and thus application to blades having mass distribu-
tions radically different from those considered in this report should be
made with caution.

Rotating Beams With Mass and Stiffness Distributions

Not Representable by Foregoing Approximations

The charts presented in this report permit the rapid estimation of
bending frequencies for rotating beams with a mass and stiffness distri-
bution each of which can be reasonably approximated by a straight line and
for uniform beams with a tip mass; also the charts facilitate the estima-
tion of bending frequencies for rotating beams with fairly arbitrary mass
distributions and approximately linear stiffness distributions. For
other cases, for example, beams in which the stiffness varies irregularly
all along the blade, the basic Rayleigh energy method utilizing the modes
of the nonrotating beam may be used. Although this method has been eval-
uated in this report only for linear distributions of mass and stiffness
and concentrated tip mass, there is no reason to believe that it will not
work equally well for other distributions. All that is required in this
approach is the frequency and mode of the nonrotating beam, which can be
determined by methods such as are described in references 2 and 15. (A
method which gives directly the required first derivative of the mode as
well as the mode shape itself is preferable.) With such results the
integrals of equation (1) can be evaluated readily by accurate numerical
methods such as those of reference 15, and values can be obtained for the
Southwell coefficient from which the bending frequencies at any rota-
tional speed can be determined with little effort.
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Mode -Expansion Method

A more accurate mode-expansion method for determining the bending
frequencies and modes of a rotating or nonrotating beam has been devel-
oped in appendix B and has been used as a yardstick in the evaluation of
the Rayleigh approach. In this approach the lowest three bending modes
and frequencies are obtained by the solution of a fifth-order determinantal
equation for cantilever beams and a sixth-order equation for hinged beams.
In order to facilitate the further application of this method to the
accurate determination of the modes and frequencies of rotating and non-
rotating beams, certain integrals which have been evaluated are presented
in table II. These results permit the setting up of frequency determi-
nants for beams with any combination of linear mass and stiffness distri-
bution, concentrated tip mass, offset, and rotational speed (including
many combinations not treated herein). With the evaluation of additional
integrals (some of which are given in ref. 18), these results can be used
to determine the bending frequencies and modes for rotating and nonrotating
beams with concentrated mass at other locations or with higher order mass
and stiffness distributions. If practice dictates the necessity of addi-
tional charts for other combinations of linear mass and stiffness distri-
bution and tip mass or for parabolic beam mass and stiffness distributions,
it might be advantageous to use this method to set up such charts if high-
speed computing machines suitable for solving the determinantal equations
are available.

Vibration in Planes Other Than Those Perpendicular

to Plane of Rotation

The frequency charts and procedures for frequency determination of
this report have all been directed toward the determination of frequencies
for uncoupled bending vibrations perpendicular to the plane of rotation.

In cases where the principal axis of the blade cross sections (axis about
which the stiffness is a minimum) is not parallel to the plane of rotation,
natural bending vibrations having the lowest frequency will take place
perpendicular to the chord. An extreme case of such vibrations would
occur if the blade chord were perpendicular to the plane of rotation, in
which case, blade vibrations would take place in the plane of rotation.

Frequencies of vibration, when the blade chord is inclined at any
angle | with the plane of rotation, can be determined from the fre-
quencies of vibration perpendicular to the plane of rotation by means of
a simple formula proposed in reference 19: namely,

QRWQ . wRLe . gty
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where wRL is the frequency of bending vibrations perpendicular to the
plane of rotation and wa is the frequency for bending vibrations in a
plane making an angle V¥ with the axis of rotation.

At large angles of attack, the indicated correction may be signifi-
cant for the lower modes. However, inasmuch as wRLZ is usually 5 to

10 times as large as Q2 for the lowest bending mode of helicopter blades
and even larger for the higher modes, in most cases the angle of attack
of the blade will have little effect on bending frequency and may be dis-
regarded. This fact is significant since it indicates that blade fre-
quency will not change appreciably during each revolution because of
cyclic-pitch changes and thus may be assumed to be constant.

RESULTS FOR BENDING MODES

In the process of obtaining the frequency results presented in the
preceding secctions of this paper, a large number of mode shapes of both
rotating and nonrotating beams with various mass and stiffness distribu-
tions were determined. These results are presented in tabular form in
order to make them more useful in analytical studies and are compared in
this section with each other in order to show the effect of the various
parameters on mode shape.

Nonrotating Beams

The first three mode shapes for nine nonrotating cantilever and nine
nonrotating hinged beams with different combinations of linear mass and
stiffness distributions are given in tables III and IV, together with their
first and second derivatives. These results were obtained by standard
numerical-iteration procedures. For the cantilever beams (table III), the
procedure of reference 15 was used with 10 stations; step-integration
procedures were used for the first mode, and equivalent-load methods were
used for the second and third modes. For the hinged beams (table IV), a
_ matrix-iteration procedure using weighted integration matrices similar to
those given in reference 21 was employed with 15 stations. More stations
were needed for the hinged beams than for the cantilever beams because the
third hinged mode has one more loop or node than the third cantilever mode.

In order to illustrate the accuracy of the nonrotating mode shapes
computed by this method, the exact results given for the uniform beam in
reference 20 are also included in tables III and IV. A comparison of the
results indicates that the error of the present results is less than
1 percent. Nonrotating mode shapes are shown for the hinged beams in
figure 23 and for the cantilever beams in figure 24,
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Rotating Beams

The mode and frequency results for rotating beams were obtained in
the present paper by the method of appendix A. This method yields mode
coefficients which, when multiplied by the mode shapes of nonrotating
uniform beams normalized to positive tip values and summed, give the mode
shapes of the rotating beam. These coefficients can also be used in con-
junction with the spanwise derivatives of the uniform-beam mode shapes to
obtain similar derivatives for the rotating beams. The required uniform-
beam modes and derivatives are given in reference 20, but they are not all
normalized to positive tip deflections and thus certain sign modifications
are necessary. These modes and the first two derivatives are also given
in tables III and IV with the proper signs and tip deflectioms.

All the mode coefficients for rotating beams obtained in the present
investigation are given in tables V and VI. These coefficients have been
normalized in such a manner that the modes obtained by using them will
have the same tip deflection as the uniform-beam modes used in the compu-
tation. Table V contains the results for the hinged beams, whereas
table VI contains those for the cantilever beams.

Comparison of Rotating and Nonrotating Beams

Hinged beams.- The mode shapes of a uniform hinged beam for zero
rotational speed and a rotational speed ( equal to the first bending
frequency QNRl are shown in figure 25. A comparison of these shapes

indicates that although some differences between the modes exist, they
are relatively small, particularly for the higher modes.

A similar comparison is given in figure 26 for hinged beams with
linear mass and stiffness distributions, both zero at the tip. For this
case the difference in mode shapes is very small for all three modes;
this undoubtedly accounts for the fact that the Rayleigh approach was
found to be very accurate for this case. (See fig. 3.)

By comparing the results of figures 25 and 26, a large disagreement
may be noted between the mode shapes of the two beams; this disparity
apparently accounts for the substantial differences in the Southwell
coefficients for the two beams.

The calculated mode shapes have not been plotted in a form which
shows the effect of offset on the mode shapes of rotating beams; but by
comparing the mode coefficients for O- and 10-percent offsets in
table V, the effect may be seen to be small.
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Cantilever beams.- The modes of rotating and nonrotating uniform
cantilever beams are shown in figure 27. From the figure the mode shapes,
particularly those for the first and second modes, may be seen to change
appreciably with rotational speed.

A similar comparison can be made for cantilever beams with linear
mass and stiffness distributions on the basis of the results shown in
figure 28. The mode shapes vary in about the same manner with rotational
speed for this type of beam as for the uniform beam.

If the mode coefficients for O- and 1O-percent offsets in table VI
are compared, the effect of offset on mode shape is again seen to be very
small for both beams.

Beams with a mass at tip.- Bending mode shapes for a rotating and a
nonrotating uniform hinged beam with a mass at the tip equal to the beam
mass are shown in figure 29. The differences in mode shape are very
small for all three modes. This similarity apparently accounts for the
excellent accuracy of the Rayleigh approach for this configuration.

Similar results for a uniform cantilever beam with a mass at the tip
equal to the beam mass are presented in figure 30. For this case, results
are given for three values of the rotational-speed parameter, namely,

Q

wNR]_

without tip mass. From this figure the rotating-beam mode shapes may be
seen to be only slightly different from each other but considerably dif-
ferent from the nonrotating shape, particularly for the first and second
modes, and vastly different from the mode shape of the beam without a
tip mass.

= 0, 10.43, and 14.76, and also for the nonrotating uniform beam

Mode coefficients for rotating uniform hinged and cantilever beams
with a mass at the tip are listed in tables V and VI. Mode shapes for
nonrotating uniform beams with a mass at the tip have not been tabulated
but can be calculated by means of equations (14) and (17) for any value
of tip mass.

CONCLUDING REMARKS

A Rayleigh energy approach, which utilizes the mode shape ofthe
nonrotating beam as an approximation for the mode shape of the rotating
beam in the determination of the bending frequencies of the rotating
beam, has been evaluated. The evaluation led to the conclusion that
this approach yields reasonably accurate bending frequencies for rotating
hinged and cantilever beams with arbitrary stiffness and mass distribu-
tions, including concentrated masses, at least within the limits of the
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rotational speeds currently encountered by helicopter blades. The evalu-
ation also showed that the Southwell coefficients vary appreciably with
beam mass distribution and, to a less extent, with beam stiffness distri-
tution. A modified form of the zero-offset Southwell coefficient, which
involves the nonrotating-beam frequencies, was found to be insensitive to
changes in beam mass distribution.

By using the Rayleigh approach as a basis, several groups of charts
and associated procedures have been presented, which permit the rapid
estimation of the first three bending frequencies for a variety of
rotating and nonrotating hinged and cantilever beams. Since the charts
are not applicable to all beams, practice may dictate the need for addi-
tional charts which may be set up by using the methods described. The
charts and associated procedures presented in this report are summarized
below, the most easily applied being listed first:

(a) Charts are presented which permit the rapid estimation of bending
frequencies of rotating and nonrotating beams with mass and stiffness dis-
tributions, each of which can be approximated by a linear relation. In
example applications, this procedure has been shown to give good results
for the bending frequencies of several actual helicopter blades with mass
and stiffness distributions appreciably different from linear.

(b) Charts are presented for rapidly estimating the effects of tip
mass on the rotating and nonrotating bending frequencies of uniform beams.

(c) A chart is presented which permits the rapid estimation of the
effects of offset on the pendulum frequency of hinged beams with any stiff-
ness distribution, an approximately linear mass distribution, and a con-
centrated tip mass.

(d) A simplified procedure is presented for estimating the first
bending mode and frequency of a rotating or nonrotating hinged beam with
a tip mass from a knowledge of the first mode shape of the nonrotating
beam without a tip mass.

(e) Charts for a modified Southwell coefficient, which appears to be
insensitive to changes in beam mass distribution, are presented; these
charts permit the rapid estimation of the first three bending frequencies
of rotating beams with approximately linear stiffness distributions from
a knowledge of the bending frequencies of the nonrotating beam.

(f) Bending frequencies for beams with unusual mass and stiffness
distributions which cannot be estimated by using the charts can be deter-
mined directly from the Rayleigh energy equation by first calculating the
bending frequencies and associated mode shapes of the nonrotating beams.
This approach can be expected to yield results which are in error by less
(usually much less) than 3 percent, except for the first cantilever fre-
quency which may be in error by as much as 5 percent but which can easily
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be corrected to give a much more accurate result. The method has the
advantage over other simplified approaches of improved accuracy and
wider applicability and over more exact approaches of simplicity and
fillexd bl tye

A more accurate mode-expansion method for determining the bending
frequencies and modes of a rotating or a nonrotating beam has been devel-
oped and has been used to evaluate the Rayleigh approach. In order to
facilitate the further application of this method to the accurate deter-
mination of modes and frequencies of rotating and nonrotating beams with
combinations of linear mass and stiffness distribution and concentrated
tip mass different from those considered herein, certain integrals which
have been evaluated are presented in tabular form.

In conjunction with obtaining the frequency results which comprise
the greater part of this report, bending mode shapes were determined for
a wide variety of hinged and cantilever beams. These results show the
effect of rotational speed, mass and stiffness distributions, offset,
root fixity, and other parameters on bending mode shape; they have been
tabulated in normalized form together with their first and second deriva-
tives or as mode coefficients which, in conjunction with tabulated modes
and derivatives of uniform beams, permit the rapid determination of the
mode shape and higher derivatives as well. The tabulated results should
prove useful in other anslyses, for example, in the simplified approach
presented in an appendix.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., February 24, 1955.




NACA TN 3459

APPENDIX A

SOLUTION OF DIFFERENTIAL EQUATION FOR ROTATING BEAM
BY EXPANSION IN TERMS OF NORMAL MODES OF
UNTFORM NONROTATING BEAM

Solution by Galerkin Method

27

The equation of motion which defines the bending vibrations perpen-
dicular to the plane of rotation of a rotating beam with a concentrated

mass at its tip can be written as

2 d2y :
%2'<EI Ti:;l‘> = maRnEYn o MtQRnEYn(L)S(X-L) O d—i(—< %)
where
8(x-L) = 0 (x £ L)
B(X—L) = l (X £ L)
L
and

L
T = 02 u/‘ (n + e)m dn + Mg(L + e)
X

or, in nondimensional form,

i (= d2yn
——|ET >
dxe a%

2

d /(= 4¥

= b 4 7 26 (1) ya (1)l ar e T
n Yn n=8( )Yn( ) ONRy 17 33 = /

(A1)
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where
8(%-1) =0 (x4 1)
5(%-1) = 1 (% = 1)
and

&)m(f)anq + r(1 + &)
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Fach normal mode of the rotating beam can be expanded in terms of
the modes of a uniform nonrotating beam with the same end restraints

as follows:
<2
Yn=2_ An $q (a3)
=0 ¢

where the quantities ¢q are the normalized bending mode shapes of a

stationary uniform beam, and the coefficients Anq are undetermined.

Substituting this expansion into equation (A2) gives

2 z [l = =
— d - -
9:5 ifi B ) Anq¢q - bn?m E_ Anq¢q = rbn25(x’1JZZ: Anq¢q(l) =
A% ax2\g=0 q=0 a=0

2 ©
Q 2 4l|= a i
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One way of determining the coefficients Anq from this equation

is the Galerkin procedure which consists in multiplying the equation
by ¢p and integrating over the length of the beam. Thus,

\ [ Al ®
d - 2 - -
f ¢p _2 —E Z Anq¢q dx - bp j;) m¢p ; Anq¢q dx -

az=\g=0

rbn2¢p(l)g§é Anq¢q(l) = quRl A =

S 4 A
>alf ¢p e >__An¢q dx = O

(A5)

Integrating the first term in equation (A5) by parts twice and the
last term by parts once and making use of the known boundary conditions
gives for either a cantilever or a hinged beam:

nl 00:. 1 ©
[T may” % w2 [ o> mnfy o -
0 p a=0 S 0 q=0 i

ey 2 it )
2 Q 2 'm S ] L
rbp ¢p(l)é§6 Anq¢q(l) i < l> G \/; ¢p Tl.ng Anq q &x=20 (26)

where the primes designate differentiations with respect to X. Inter-
changing the order of integration and summation yields:

00 1 5 0 51
bymnd " " - N - -
%} Ang j; EI¢,"dq" a% - by qL a0 fo g g, dx -

0 2 © ol b
rbn%p(l)qgo AngBq(1) + (aﬁf; > 8% > Anq/;) Tyfp'Py" aX = O (A7)
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Equation (A7) can be rewritten as

Ap |I -bn<qu+R>+ 81 8qp| = O (A8)
q:O = - ONR]_ e
in terms of a new set of constants: namely,
l —
" " -
Igp = ]; EIg,"¢ " ax
i’
Mqp = /; AP, OX
(A9)
Rgp = r@p(1)Pq(1)
|
l —
qu = L Tl¢p'¢q dx

These coefficients are symmetric; that is, Igp = Ipq, and so forth.

For practical purposes, the expansion must be limited to a finite
number of nonrotating uniform-beam modes. In this case the sunmmation
goes from q =0 to m and equation (A8) yields m + 1 equations of

the form
D
AngBap = O
q=0 &
where
2 a \°
Bqp = Igp - Pn <qu+qu>+< >a128qp (A10)
ONR3

so that the coefficients Bgp are also symmetric.
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oL

The modes and frequencies of the system represented by this group
of equations can be obtained for any value of the rotational-speed param-

eter Q/ayg; Dby equating

of the mode coefficients

Bmo

the following determinant of the multipliers
Anq To ZEero:

Bo1 Bo2 . . . Bom

Bq Bilo S Bam
Bel B22 oiliel 5 BE[II
! L =0 (A11)

Bm1 Bpp ¢« + - Bmm

This determinantal equation can be solved by trial and error, with

any method of evaluating d
frequency coefficients bp

ficients A_nq for a rotat

2p, or np resonant condi

eterminants, such as Crout's, to obtain the
and subsequently the associated mode coef-

ing beam. The resonant frequencies for 1lp,

tions can also be obtained directly from the

Bgp

determinant. For small values of @ less than about 0.8, solutions
ANR1 ’

can also be obtained by the matrix-iteration procedure; for larger values,
however, convergence is poor, and undesired negative values of the fre-
quency squared (imaginary frequencies) may be encountered before the
desired positive values are obtained. In the present investigation

the frequency determinants

(eq. (A11)) were solved by trial-and-error

methods with automatic computing machines of the punchcard type.

For the case of a beam without a tip mass, r = 0, and thus qu

is not needed and qu is
beam is uniform, Iqp and

simplified slightly. If, in addition, the
qu are zero by orthogonality for gq % P;

thus for this case the unknown frequency coefficients b, occur only

on the principal diagonal.

If the determinantal equation is divided

by (Q/QNRI)E, then for this case the rotational-speed parameter also

appears only in the terms on the principal diagonal.
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Evaluation of the Integrals qu, qu, qu, and Sap

The integrals qu, qu, qu, and qu may be evaluated numerically

by a method such as that given in reference 15, or, if the mass and stiff-
ness distributions of the beams are defined by analytical expressions,
they can sometimes be evaluated in closed form. (See ref. 1, pp. 333-336,
for instance.) 1In some cases integrals already evaluated and tabulated

in reference 18 can be employed; these results, converted to the coor-
dinate system and tip deflection of the present paper, were employed where-
ever possible in the present study. 1In this report all integrals for

the uniform rotating beams with and without a tip mass were evaluated by
exact methods. Some were also evaluated by numerical methods in order

to determine how many stations were required to obtain good accuracy. By
this procedure about 25 stations were found to be required for some of

the integrals involving the fourth and fifth modes.

For the nonuniform rotating beams, Igp, Mgp, and Rgp were evalu-
ated both exactly and numerically, but qu was evaluated only numeri-

cally because of the effort involved in evaluating this integral exactly.
All the integrations performed in this report are based on mode shapes
normalized to unity at the tip. Where numerical integrations were made,
the mode shapes and derivatives were obtained from reference 20, but the
results were modified to correspond to shapes with a unit positive tip
deflection.

The remainder of this appendix is devoted to the presentation of
results (in both numerical and analytical form) for Taps qu, qu,
and Sgp which were obtained in connection with the present study but
which are also applicable to cases not treated in this report.

Numerical results for beams with linear mass and stiffness distri-

butions with or without tip mass and offset.- If only linear variations
in beam mass and stiffness are considered and if they are expressed as

m = my(l - kX) \
‘ (A12)

ET = EIo(1 - c%) [

then the various integrals can be evaluated expeditiously by splitting
them up as indicated in the following equations:
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Spq = Spqo - kSqu T é(que - kSque) o I‘(l 3 é)qut

il
Spq, = /; (1 - %)gp'dq" ax

Spake = Spao

i
Spay, _/; @q'dp' X
"4
I ~ f " " d_i
w, = J, Pafp
it
- n 1" —
Lape = /(; XPp'dq" ax
1k
| datp 52
0

1
Mo, (= /; oy ax

o
1]

o

(A13)

(A1k)
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All these integrals are obviously symmetric in p and q. Numerical -
values for them are given in table II for values of p and q from

0 to 5 for hinged beams and 1 to 5 for cantilever beams. As may be seen

from equations (A13), these results permit the rapid calculation of the 5
terms of a frequency determinant for a rotating beam with any combina-

tion of the following parameters: (a) linear mass distribution,

(b) linear stiffness distribution, (c) any offset (including large
values), and (d) any tip mass. In addition, the results can be used
in conjunction with values of additional integrals to set up similar
determinants for beams with higher order mass and stiffness distribu-
tions and beams with concentrated masses at other locations.

Integrals for uniform beams with tip mass.- In order. to facilitate
the extension of the results for the uniform rotating beams to higher
modes, the exact expressions for integrals pertinent to such cases are
included herein.

The integrals for the cases where p = g can also be used to
determine values for Southwell coefficients for modes higher than the
third. The integrals were evaluated by the method of reference 1l or
taken from reference 18 and transformed into the notation of this report.
The expressions are given in terms of the parameters as, Bs, and 753

values of the first two can be obtained from reference 20 for values
of s fromlto5. For s>5, ag =1 for all practical purposes

and Bg can be obtained from the appropriate frequency equation for the

nonrotating uniform beam. The square of Bg 1s the frequency coeffi-
cient for the nonrotating beam ag for the sth bending mode of a uniform

beam. Values of 7g are not required for the cantilever beams; Hor
hinged beams, 7yg = 1 for s > 3; the values for s € 3 are given in
the following table:

S 7s
il 1.02827
2 L (clont2al

5 1.00005
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15

Tension integrals qu for cantilever beams:

If p4 aq,

BBy
Sqp = i
Bq - Bp

e e [%(‘1)p+q(°"pﬁp = “qu) i

48 2g 2
BaPo |l
L L

Bq" - Bp

2@$+B&ﬂ 482pp?

§1(-1)P"appp - agfq + =

L L
Bq"ﬁpJ Bq—Bp

I‘(l + é) {%Bp{squ I (_l)P"‘qﬁszqg] o a,qu[Bph' + (—l)wqﬁpeﬁqﬂ}

3 - Byt

~

L P = q;
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Tension integrals BSqp for hinged beams:

If pfa#0,

b 48q *Bp* g 4pq*pp " (-1)P*e oy o hgp"
T2 = D BT = R T
L L hi, b 27. Y _ ok
(R AR A P\ Bg' - Bp
o) 4p b .
(Layee Bl L EO R R ek Ll
If P?‘Cl; but p = 0,
8q0 = 8(-1)¢ T4, 21+ 7)
Bq\2
If p=aqa 3( o,
24 o 5. =g > eyl - B TR
Sqq__lzgq Gq2+E+§<Bq20q2+3 +r(l+e)<£ Bqg~aq +I+-Bqdq>

If p=a=0,
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Stiffness integrals qu for cantilever or hinged beams:

ALK Q¥PJ
Igp = O
i ip = q # 0, ;
Bq
Tgg =0
o - q = 0,
Tog =l

Mass integrals qu for cantilever or hinged beams:

1804 a,

Mgp = O
If p=a#0,

qu:%
It 'p=q=0,

Moo=%

Tip-mass integrals for cantilever or hinged beams:

If p=g,or p#a,

37
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APPENDIX B

AN APPROXIMATE METHOD OF OBTAINING FIRST BENDING MODE OF
HINGED BEAM WITH TIP MASS FROM FIRST BENDING MODE OF

BEAM WITHOUT TIP MASS

The vibration modes of a rotating hinged beam must satisfy the
following equation, which expresses the condition of zero moment at the
root:

L L
ngJ[\ mxy dx - Qzu/\ (x + e)my dx = O (B1)
0 0

or, in dimensionless form,

2 L it
<%> fo ﬁp?ydi-j; (X + &)fiy dX = 0 (B2)

For any given beam the mode shapes of the nonrotating beam can
readily be shown to satisfy this criterion exactly if e is zero and
very closely if e is small; therefore, the nonrotating-beam mode shapes
are good approximations to the rotating-beam mode shapes, regardless of
the mass distribution of the beam. However, the nonrotating-beam mode
shape must be that of the beam with the same mass distribution; the pur-
pose of the present derivation is to go a step further and to obtain an
approximate first mode shape for a nonrotating beam with tip mass in
terms of the first mode of the same beam without tip mass. In view of
the preceding argument, the mode shape obtained in this manner should
serve as a good approximation to the first mode of the rotating or
nonrotating beam with the same tip mass and when used in conjunction
with the Rayliegh approach (eq. (1)) should yield a good approximation
for the first bending frequency of a rotating or nonrotating hinged beam.

In deriving such a relation the assumption is made that the second
derivative or curvature of the beam remains unchanged in the two configu-~
rations. Thus, the mode shape for the beam with tip mass is assumed to

be of the form
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where the first mode of the rotating beam without tip mass Yy, is

assumed to be approximately equal to the nonrotating-beam first mode
shape Yp. With this mode shape, the criterion of equation (B2) becomes

2 31 1
(%) fo fi%(Yy + DoX)dX - fo B(% + &) (Y] + DgR)ax = 0 (B4)

If, now, the mass distribution is considered to be made up of the con-
tinuous distributed mass of the beam mg plus a concentrated tip mass,

equation (B4) can be written as

<“°R>2j;l mgx(¥7 + Dox)dx + <%>2r[1{1(1) + DOJ -

o

=

i
w fo fig(X + &)(¥1 + DpX)ax - r(l + &) [Yl(l) + DOJ =0 (B5)

Inasmuch as Y; and % (the pendulum mode shape) are mode shapes of
the hinged beam with mass distribution mg, they must satisfy the
orthogonality condition for normal modes for such a beam, namely,

il
f I-ﬁd}?Yl dx = 0
0

. and, hence, equation (B5) becomes
2 1 2 .|
/ R DOK/F ﬁdiedi + R r|Y,(1) + Dy | - Db\jp ﬁdizdi -
g 0 ? 0

‘ \ é'folﬁdyldi-é%/(;lﬁdiai-r(1+é)[yl(1)+DOJ=0 (B6)
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When this equation is solved for Dy, the result is

il 2
e f mgYy dX + éI‘Yl(l) - <-(%{) - l}I‘Yl(l)
Dy = ° . (B7)

2 1 2 i
(Q_R.)-lJf 4 %2d% + (95) -lr-éf 4% d% - &r
Q 0 Q 0

If the offset & is zero, equation (B7) takes the much simpler form

Dy = (B8)

or, with Y; normalized to unity at the tip,

Dyy = L (89)

- 2
JF msX dx
0

r

1bc

By comparing the relative values of the terms of equation (B7) and by
considering the overall influence of terms containing &, small offsets
can be shown to have a negligible influence on the value of Dy for
values of the rotational-speed parameter encountered in helicopters.

Mso, for nonrotating beams, €& does not enter the problem and, hence,

can be set equal to zero; thus, as mentioned before, the mode shape,

based on the result of equation (B9), obtained in the following paragraphs,
should serve as a good approximation for both rotating and nonrotating
beams with and without offset.

Upon substituting the value of Dg in equation (B9) into equa-

tion (B3), the desired first mode shape of the beam with a mass at the
tip is obtained as

(B10)

i
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and the slove <y1*>' and curvature (yl*>" of this mode shape are then
\
given by

(g = : (B11)

(yl*>ll = Yl" (BlE)

(Eq. (B12), of course, expresses nothing more than the assumed equality
of the second derivatives.) If the mode shape of a beam with a particular
mass and stiffness distribution (but without tip mass) is known, expres-
sions (B10) to (B12) thus permit the determination of an approximate mode
shape for the same beam with any concentrated mass at the tip and can be
used to evaluate the integrals of the basic Rayleigh equation (eg. (1))

by numerical methods; reasonably accurate values can easily be obtained
in this manner for mNRl and for Kbl and Kll, from which the bending

frequency at any rotational speed can be determined directly.

Beams With Linear Mass Distribution Plus Tip Mass

For the particular case of beams with a linear mass distribution plus
a tip mass, fij = 1 ~ kX and

al X L 3
. f ﬁ@%ﬁ:f i2di-kf et
0 0 0
=2tk
3 4
( Thus
-1
i B13
- L - 3k =
1+ ——
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This result can be used in conjunction with the first mode shape given
for hinged beams with linear mass and stiffness distributions in table IV

to obtain mode and frequency results for such beams.

Beams With Uniform Mass Distribution Plus Tip Mass

For the case of beams with a uniform mass distribution plus a tip
mass, mg = 1 and thus

Do = (B1L)

Uniform Beam With Tip Mass

For the case of a uniform beam with an arbitrary tip mass,

mg = 1
and
EI =1
Thus, D, 1is the same as for the preceding case. In this special case

0]
the integrals of the Rayleigh equation (eq. (1)), which permit the deter-
mination of W\R and K and thus of wg, can be evaluated exactly by

the methods of reference 1 or 18. The results are

[ = "
e Kﬁ*) } = (B15D)
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1L 2
2. o By - 1
. f Tl{@’l)}dx_ 12+1 1+<Bl+5>+rl+_l_+
or
2
S T <L+:£.> (BlSc)
R
59
flT y*_2d§=§ l+I‘B (B +3>-2 L l},r_@.’-
0 le<l> i - i 1+L) Bl
3r
2
- <l+r> (B154)
tal=at U5
T

where By = 3. 9266, from the results given in reference 20. 1In the
preceding integrations o, (ref. 20) has been taken equal to unity;
this assumption introduces a small error of less than 0.1 percent.
Equations (Bl5) are based on Y; rather than yl* normalized to
unity at the tip. To obtain equivalent formulas for y;* normalized to
unity at the tip, these results must be divided by the factor (g;J%—Ejz.

Nonrotating- and rotating-beam frequencies obtained by this method
for the uniform beam are compared with more accurate results in the sec-
tion of this paper entitled "Charts for Bending-Frequency Determination.'
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TABLE 1
EXACT AND ESTIMATED FREQUENCIES FOR SEVERAL
MANUFACTURED BLADES

WNR> RADIANS/SEC | Wg, RADIANS/SEC

m EI phbas EXACT |ESTIMATED| EXACT |[ESTIMATED
TRUE NS | st 17.3 | 7.4 49.2 a7.7
FAIRED 2nd 48.5 50.0 86.8 88.7
3rd 955 101.0 I 370 | 378
B | st 216 21.1 50.6 49.2
oy S 2nd 58.9 60.5 924 92.2
3rd 1121 .22.0 148.0 154.0
I.1 74.0 78.5
2 ) S0 | 34.4
5.5 2000 | 2075

| st 219 21.
2nd 63.7 59
= 3rd 126.0 1 25.
| st 13.4 146 D 37.8
2nd 43.7 4|6 70 70.3
3rd 949 94 .5 290 124.0

ROOT TIP ROOT TIP

6GHhe NI VOVN
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TABLE IT

VALUES FOR INTEGRALS IN THE MODE-EXPANSION METHOD OF APPENDIX A

]
a| Spq Spqe Spqr | Spag Ipq, Toae  [Mpag| Mpay |Rpay
Hinged beams with linear mass and stiffness distributions
ol 1/3 1/2 /4 1 0 0 1/3| 1/% r
1|0 -0.18517|-0.05578| 1 0 0 0 [0.055T7| r
20 .09992| -.00165| 1 0 0 o | .00165| r
510 -.06926| -.00320] 1 0 0 o | .e0520] =
4{o .05296| -.00024| 1 0 0 0 | .00025| r
5| 0 -.04287| -.00075| 1 0 0 o | .0007T7| T
1| 1.59938| 2.30532| 1.26052| 6.80791 59.43015| 25.63938| 1/4| .1k21k| r
2| -.46528| -1.22263| -.18122| 3.59935 0 30.97991| O | .05286| r
3| -.09145 .20921| -.09117| 3.78925 0 4.62284 0O | .00288| r
| -.03037| -.21872| -.02260| 3.85869 0 T.13092| O | .00531| r
5( -.01293 .12567( -.01258( 3.88921 0 -3.32571( O | .00082| r
2| b.47610| 6.62225| 3.43%015|17.79273| 624.12075| 299.60439| 1/4| .12999| r
3|-1.54866| -3.43733| -.80926| 6.13170 0 239.3184 0 | .05202|] ©
4| -.37008 28431 | -.37093| 6.53295 0 -15.99519| O | .00182| r
5| -.14453 -.52531| -.12984| 6.73955 0 48.63946) 0 | .00582| r
3| 8.99985|-13.40607| 6.82541(33.71970| 2716.90000|1332.5410 | 1/4| .12741| r
I |-3.15890 | -6.6T345|-1.7609% | 8.5T761 0 892.5356 0O | .05144| r
5| -.80708 .31838| -.81443| 9.12863 0 -30.36181| 0 | .00130| T
14 (15.168%6 | 22.65800 |11.44593 [54.58150| T945.0300 |3931.674 1/4| .12652| r
5|-5.27717 |-10.91717 [ -2.97035 | 10. 98707 0 2319.820 0 | .05001| r
5|22.98186 | 34.37920|17.25665|80.37810(18500.2025 |9629.3965 0 | ~12T0l8 ir
Cantilever beams with linear mass and stiffness distributions
1( 0.29833| 0.39272| 0.23958| 1.1619% 3.09056 0.59789| 1/4/0.20163| r
2 .171k46 .10558| .18630| 1.84496 0 2.97335| O | .03838| r
3| ~..19809| -.26802| -.13341| .98538 0 -1.10249| O | .00508| r
4| .13660 .21828| .09267| 1.6L483k 0 .93662| 0 | .00220| r
5| -.11352| -.19058| -.07526| 1.14799 0 -.67480| 0 | .00094 | r
2| 1.61955| 2.16178| 1.31905| 8.10433| 121.37958| 149.26172 /4| .14854| T
3| -.04235| -.47251| .12583| 5.58811 0 64.85TT4| O | .O4TTL| r
b{ -.72797| -.91085( -.53287| 3.39561 0 -13.73693( 0 ( .00514| r
51 47229 LT6571|  .3069T7| 5.70988 0 18.98574| O | .00430| r
3| 4.46488| 6.23803| 3.50050 [19.3247h| 951.63772| 44k.99392 1/4| .13308| r
4| -.81857| -2.08457| -.29328| 8.91208 0 367.5131 | O | .04928| r
5(-1.53861( -1.78527(-1.28157 5.04050 0 -4o. 74667 O | .00317| T
4| 9.01387| 12.86480| 6.9497h [35.72554 | 3654.3173 |1765.9083 1/4| .12905| T
5(-2.14253 | -L.75477{-1.05264 |12.17992 0 1209.091 0 [ 05007 T
515.20032| 21.94810[11.63995|57.03349| 9985.9627 |4870.7227 1/k| .12687 rJ
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TABLE III
MODE RESULTS FOR NONROTATING CANTILEVER BEAMS WITH LINEAR
MASS AND STIFFNESS DISTRIBUTIONS
e Imelnt a2l m | o= | 3= I3 = Y50
Station 41 4y gy ¢2 ¢2, ¢2u ¢5 ¢5| ¢3.,
m = my; EI = EIo (exact solution, ref. 20)
0 0 0 3.5160(0 0 -22.0345(0 0 61.6972
1 .0168| .3274 3.0332|-.0926| -1.6776|-11.5406| .2281 3.7655( 14.0984
2 .0639| .6065|2.5508|-.3011| -2.3240| -1.5432 L6045| 3.1181| 24.3627
3 .1365| .8378|2.0775|-.5261| -2.0351 6.9860| .7562| -.3551|-40.5613
L .229911.0226| 1.6214 | -.6835| -1.0114| 12.9888] .5259 -4.05991 29.2300
5 .33%95(1.1631(1.1938|-.T137| -U531| 15.7253| .0197|-5.5520 1.2145
6 4611 [1.2627| .8083|-.5895 2.0194| 15.0599| -.4738|-3.7912 32.4481
7 .5959 (1.3266| .4799|-.3171| 3.3709| 11.5931 -.65T4| .3568| 46.6579
8 .7255|1.3612| .2246| .0700| L4.2876 6.6336| -.3949| L.T354| 37.2963
|
9 .8624[1.3745| .0590| .5238| 4.7095| 2.0k11| .2285| T7.3385| 14.0713
10 1.0000{1.3765|0 1.0000| 4.7808| © 1.0000| 7.8487| O
m = Mg, EI = EIp
|
0 0 3.5104 [0 -22.0247(0 61.7316
0.1695 -0.9051 2.2608
i .0169 3.0282-.0925 -11.5367| .2261 14.2680
4723 -2.0829 3.7628
2 .0642 2.5482 |-.3008 ~1.5440 | L6024 -24.173%5
Birizral -2.2495 1.5296
3 .1369 2.0760 |-.5257 6.9810| .7553 -40.5000
L9347 -1.5725 ~2.2914
4 .23%0k 1.6207 |-.68%0 12.9814| .5262 -29.331k4
1.0968 —s 3015 -5.064T7
5 .3400 1.1937 |~--T131 15.7169| .0197 1.0704
1.2162 1.2418 -4.9503
6 4617 8087 |-.58%0 15.0516 | -. 4753 32.4148
1.2970 2.7236 18512
f L5914 1806 |-. 3166 11.5857| -. 6604 46.7572
1.3451 3.8698 2.6262
8 .7259 2253 .O704 6.6278{-.3978 37.3956
1.3676 4.5356 6.2482
9 . 8626 0595| .5239 2.0377| .2270 14.0565
1.3736 k. 7607 7.7299
10 1.0000 0 1.0000 0 1.0000 0
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TABLE III.~- Continued
MODE RESULTS FOR NONROTATING CANTILEVER BEAMS WITH LINEAR
MASS AND STIFFNESS DISTRIBUTIONS
Station| Yy Ve ot N Yo' Yo" Y3 5 Y4
— . = X
m = mo; EI = E10<1 -5)
0 0 3.0852]0 -17.9825(0 49.0088
0.1508 -0.77T9 1.8715
5] L0151 2.804%|-.07T78 -10.5955| .1871 14.8158
4312 -1.8336 3.3746
2 .0582 2.4942|-.2612 -2.7533| .5246 -16.8271
.6807 oM 1.8048
3 .1263 2.1551(-. 4723 4.8322| .7053 -3k.966k4
. 8962 -1.638 -1.5083
4 .2159 1.7910 |-.6361 11.1252| .5543 -31.1090
1.0753 -.5456 =L 4h56
5 L3234 1.4102|-.6907 15.0784| .1097 -6.4431
1.2163 .9362 -5.0240
6 L1450 1.0259 [-.5971 15.9132(-.3927 26.1221
1.3189 2.5002 -2.5050
7 .5769 .6580 | -.3470 13.4617|-.6432 47.5240
1.3847 3.8252 2.0377
8 .T154 .3350| .0355 8.47h1 | -. h39k 43,8272
1.4182 4.6675 6.2401
9 8572 .0967| .5022 2.8758| .1846 18.6063
1.4278 4.9778 8.1542
10 1.0000 0 1.0000 0 1.0000 0
m = my; EI = EIo(1l - ®)
0 0 2.5176 |0 -11.4951 |0 26.4729
0.1247 -0.5178 1.0789
1 .0125 2.4201|-.0518 -7.8970( .1079 11.4265 |
L3667 -1.3001 2.2098
2 .0491 2.2996 |-.1818 -3.5TT4| .3289 -5.0368
.5966 -1.6530 1.7288
3 .1088 2.1512 |-. 3471 1.3316| .5018 -18.7863
L8117 -1.5179 -.0799
it .1900 1.9705 [-.14989 6.4680 | .4938 -24.1585
1.0088 -.8741 -2.3871
5 .2908 1.7531(-.5863 11.2476] .2551 -16.5097
1.1841 .2h12 -3.9249
6 .4093 1.4955 |-.5622 14.8933 [-. 1374 }4.6998
15997 1) -3.39%0
T .5426 1.1943-.3908 16.4929 |-. 4768 33.2025
1.4531 3.3378 -.1303
8 .6879 . 8469 |-.05T0 15.0877 |-. 4899 54,9056
1.5378 4.8142 5.1385
9 .87 U513 b2kl 9.7945| .0240 49.9675
1.5829 5. 7561 9.7602
10 1.0000 0 1.0000 0 1.0000 0
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TABLE III.-~ Continued

NACA TN 3459

MODE RESULTS FOR NONROTATING CANTILEVER BEAMS WITH LINEAR

MASS AND STIFFNESS DISTRIBUTIONS

Station| Y, b lU E (IR 7 Yo' Y," Y5 T Vs
m = mo(l - 22i>, EI = EI,
0 0 3.5961(0 -20.5149 (0 56.8179
| 0.1733 -0.8526 2.0307
il .0173 3.0782|-.0853 -10.2793| .2031 JOLTR
4812 -1.8857 3.1960
‘ 2 .0654 2.5638|-.2738 -.6581| .5227 -24. 7575
-T315 -1.9658 9179
3 L1392 2.0614 | -. 7ok 7.2497| 6145 -36.5657
\ .9U3T -1.2637 -2.5205
| i .2336 1.583%5| -.5968 12.4090 | .3624 -22.1859
| 1.1020 -.0501 -L.617h
5 .3438 1.1442(-.6018 14.2921 |-.0993 6.8125
\ 1.2164 1.3533 -3.9663
6 465k L7580 | - . 4665 13.0765 |-. 4960 32.2249
1.2922 2.6423 -.888
\ 7 5946 4391 | -.2022 9.6161 |-.5848 40.3627
1.53562 3.5963 2.9901
8 L7283 .1999| 1574 5.2513 |-.2857 29.5511
1.3562 4.1269 5.8749
9 .8639 .0509| .5701 1.5398| .3018 10. 3404
‘ 1.3613 4.2990 6.9825
| 10 1.0000 0 1.0000 0 1.0000 0
m = - = = - Z
“ mg ( ), EI = Elo (1 2>
0 0 3.1688(0 -16.8561 |0 45,1241
0.1546 -0.7222 1.6861
\ 1 .0155 2.8585|-.0722 -9.5343 | .1686 1. 75T
. 4hol -1.6728 2.8950
2 .0595 2.5168(-.2395 -1.8680 | .4581 -17.8557
.6921 -1.8638 1.2361
‘ 3 .1287 2.1467|-.4259 5.2897 | .5817 -32.3125
| .9068 -1.3480 -1.8134
L .2194 1.7557 | -.5607 10.8679 | .L4oOk -24.9765
1.0823 -.2821 -4.1661
5 .3276 1.3563|-.5889 13.9%63 |-.0162 -.2658
1.2180 1.0866 -L.1669
6 .1h93 9647 |-. 4802 14.0175 |-.4330 27.5563
1.314Y4 2.4651 =150l
T .5808 603k | -.2337 11.3083 [-.5851 42.1923
15T4E 3.5808 2.5189
8 L7183 2979| .1244 6.7857 |-.3333 35.4166
1.4ok6 4.2586 5.9375
9 .8587 0836| .5502 2.1918-.2605 13.9636
1.4129 4.4978 T.3951
‘ 10 1.0000 0 1.0000 0 1.0000 1.0000




NACA TN 3459 51
TABLE III.- Continued

MODE RESULTS FOR NONROTATING CANTILEVER BEAMS WITH LINEAR

MASS AND STIFFNESS DISTRIBUITONS

Station| Y i " Yei Y, 1" l Y3 5! 5"
m = mo<l - 32‘-), EI = EI (1 - X)
0 0 2.5984|0 -11.0011|0 25.2707
0.1284 -0.4911 1.0099
il .0128 2.4797| -.0491 -7.2927| .1010 9.796k4
L3764 -1.2146 1.9826
2 .0505 2.3338| -.1706 -2.8931| .2992 -6.5750
.6098 -1.5002 1.3592
3 .1115 2.1566| -.3206 1.9575| .u4352 -18.9042
- 8255 -1.3046 -1.4506
4 .194%0 1.9455(-. 4511 6.7820| .3901 -21.5881
1.0200 -.6320 -2.5029
5 2960 1.6994| -.5143 10.9396| .1398 -11.5213
1.1899 4505 -3.5647
6 .4150 1.4185|-.4692 13.7170| =.2167 9.3586
1.3318 1.8050 -2.6041
7 5482 1.1048|-.2887 . 4325|4771 33.1815
1.4423 3.2265 .6360
8 L6924 .T609| .0339 12.5408| -.4135 47.5995
1.5184 L. 4562 5.2112
9 .83 .3911| 4796 7.7223| 1077 39.7T70
1.5575 5.2043 8.923h
10 1.0000 0 1.0000 0 1.0000 0
m=my(1 ~ %); EI = El,
0 0 4.0558|0 -15.2162(0 35.5410
0.1939 -0.6069 1.17%0
it L0194 3.3450 |-.0607 -6.2023| .117h4 2.2191
.5284 -1.2348 1.4916
2 .0722 2.6451 |-.1842 1.8823| .2666 -19.6272
.7929 -1.0659 -.2901
3 1515 1.9813|-.2908 T.6453| .2375 -19.7496
.9911 -.3292 -2.1229
4 .2506 1.3838(-.3237 10.2183| .0253 -2.7888
1.1294 6672 -2.3870
5 .3636 .8803|-.2570 9.7358|-.2135 15.9480
1.2175 1.6238 -. 8834
6 4853 490k | -.0946 7.2110(-.3018 23. 7445
1.2665 2.3397 1.3851
7 .6120 .2218| .1394 L.o543(-.1633 18.8323
1.2887 2.7503 3.2238
8 .T408 L0680 .hakk 1.5122| .1591 8.5833
1.2955 2.9121 4.1081
9 . 870k .0068| .7056 .2282| .5699 1457k
1.2962 2.9437 4.3010
10 1.0000 0 1.0000 0 1.0000 0




TABLE III.- Concluded

NACA TN 3459

MODE RESULTS FOR NONROTATING CANTILEVER BEAMS WITH LINEAR

MASS AND STIFFNESS DISTRIBUTIONS

"

"

10

Station| Y, Y,' Y; Y, Yo Y, b2 Y5 Y5
et m=mo(1-i);EI=EIO(1-2‘2->
0 0 3.6228(0 -12.6640(0 28.6145
00752 -0.5212 0.9900
1 .0175 3.1505/| -.0521 -5.9369| .0990 3.6038
.4903 -1.1148 1.3986
2 .0666 2.6356|-.1636 .8058| .2389 -15.6241
-T1539 -1.0442 -.0314
3 .1419 2.0961(-.2680 6.3475| .2357 -18.9598
.9635 -.4288 =1.7917
n .2383 1.5602 | -.3109 9.5678| .0566 -6.0124
1.1195 .5049 -2.3466
5 .3502 1.0620 | -. 2604 10.0140|-.1781 12.4980
1.2257 1.4867 -1.1598
6 4728 .6358(-.1118 8.1088|-.2941 23.4526
1.2893 2.2874 1.0759
7 L6017 .3106| .1170 4.984k | -.1865 21.2750
1.3203 2.7856 3.1346
8 .T7338 1034| .3955 2.0367| .1270 10.8683
1.3307 2.9997 L.2345
9 . 8668 .0113| .6955 .3379| .550k4 2.0489
1.3318 3.0448 4.4958
10 1.0000 0 1.0000 0 1.0000 0
m=mo(l - X); EI = EIo(1 - X)
0 (0] 3.0750 |0 -8.9963|0 18.1439
0.1507 -0.3854 0.6710
il 0151 2.8299(-.0385 -4.9931| .0671 4.1930
4337 -.8801 1.098
2 L0584 _|2.5%21|-.1266 -.4387) .1769 -8.8006
.6869 ~.9247 .2793
3 .1271 2.1832(-.2190 4.0280| .2049 -14.5066
.9052 -.5297 -1.0798
L .2176 1.7937|-.2720 7.5634| .0969 -9.243h
1.0846 -.2128 -1.9343
5 .3261 1.3813|-.2507 9.433L | -.0965 4.3850
12227, 1.1393 -1.4924
6 k8l .9705 |-.1368 9.283%5|-.2458 18.4222
1.3198 2.0523 .2825
7 .5803 .5903| .0684 T.3013|-.2175 24.3923
1.3788 2.7735 2.6264
8 L7182 .2735| .3458 4k.2407| .0451 18.9564
1.4061 3.1987 4.1%100
9 .8589 L0547 | .6657 1.3128| .4861 6.85T1
1.4116 3.3434 5.1389
1.0000 1.0000 |1.0000 0 1.0000 0




NACA TN 3459

TABLE IV

MODE RESULTS FOR NONROTATING HINGED BEAMS WITH LINEAR MASS AND STIFFNESS DISTRIBUTIONS

53

Station | Yo =¢1 | ' =¢' |Y1" =¢d"| Ya=¢ Fye' = ¢2q " = g" l Y3 =¢5 lyj' =¢s' | v5" = ¢g5"
m = my; EI = EI; (exact solution, ref. 20)
0 0 -2.7002 0 0 5.0043 0 (0] -7.2193 0
1
2
3 -.48%0 -1.8617 7.9756 . 7001 . 7950 -34.8133 -.6299 3.2792 65.6943
L
)
6 -.6620 L1938 | 11.6061 . 2257 -4, 7026 -10.5596 .5732 L, 2548 -59.5223
{f
8
9 -.3973 2.3756 9.3030 -.6005 | -2.0600 32.9576 21190 | -7.0448 | -10.6536
10
30,
]2 2274 3.6749 3.5134 -.2940 4.9033 26. 843k -.6076 2.89%5 76.8702
215
14
15 1.0000 3.9297 0 1.0000 T7.0686 0 1.0000 10.2102 0
m = mo; EI = EI,
0 0 0 [0} 0 0 0
-2.6675 4.8253 -6.5137
a L1778 2.9017 2 J2LT -16.1228 -4342 43,4748
-2.4751 3.7708 -3.7078
2 -.3428 5.6183 B o -28.5821 | -.681% 69.7829
-2.1026 1.9000 STTHT
3 -.48% T.9748 .6997 -34. 8100 -.6298 64. 4864
=1.5137 =.3784 k.9212
L -.5879 9. 8240 6745 -33.4256 -.3017 30.1462
-.9222 -2.5660 6.8673
5 -.6494 11.0559 L5034 -24. 7037 L1561 -17.7598
-.1890 -4.1825 5.T417
6 -.6620 11.6059 L2246 -10.5043 -5389 =5T. 7175
.5809 -k, 8692 2.0541
7 -.6233 11.4610 -.1000 6.1398 .6758 -T1.7578
13413 -4.4659 -2.5328
8 -.5339 10.6619 | -.3977 21.7025 5070 -53.4956
2.0490 ~3.0431 -5.946)
9 -.3973 9.30%0 -.6006 32.943%0 .1106 -10.8931
2.6669 -.8832 A -6.6245
10 -.2195 7.52719 -.6595 37.6597 -.3311 37.3827
3.1679 1.5878 -4.2021
11 -.0083 5.5239 | -.566T 35.2256 | -.6112 TO. 4947
3.535T 3.9028 3507
12 2274 3.5133 | =-.2935 26.7997 -.5878 75.1702
3eTTAS 5.6720 5.2169
13 4788 1. 7h4% 08T 15.2316 -.2h00 52. 3442
3. 8904 6.6930 8.64TT
het 7382 4821 5309 4.6639 3365 18.2343
3.9269 7.0367 9.9528
15 1.0000 0 1.0000 0 1.0000 0




NACA TN 3459

TABLE IV.- Contimued

MODE RESULTS FOR NONROTATING HINGED BEAMS WITH LINEAR MASS AND STIFFNESS DISTRIBUTIONS

Station Yy Yy Yy Yo b b o) 23 ot Y3
m = mg; EI=EIO<1-22&§
0 0 0 0 0 0 0
-2.4011 L. 2349 -5.7084
il -.1601 2.1968 .2823 -12:1633 | -.3806 32,848
-2.2545 3.4337 -3.5718
2 -.3104 4.4128 .5112 -22.5509 -.6187 57.1675
-1.9610 1.9512 .0330
3 -1 6.5121 L6413 -29.0968 -.6118 59.0998
-1.5283 .01k 3.8918
L -.5430 8.3585 L6441 -30.1375 | =.3523 36. 3014
-.9732 -1.9342 6.2024
5 -.6079 9.8221 L5151 -2k.9921 .0612 -3.3443%
-.3211 -3.5700 5.9598
6 -.6293 10.7894 2T -14.2022 458 -43.9333
. 3949 - 46k 3.1149
T -.6030 11.1731 | -.0227 g 6662 -67.5091
1.1363 -4.4618 -1.2129
8 -.5272 10.9231 -.3201 16.1636 5843 -61.8610
1.8610 -3.3977 1 -5.1621
9 -.ko31 10.0375 | =-.5466 29.6539 .238 -26.7887
2.5269 -1.4512 -6. 8767
10 - 2347 8.5728 | -.6433 37.8479 -.2199 24,2333
3.0959 1.0303 -5.2857
13} -.0283 6.654T - 5T4T 38.687h -.5723 68.7554
3.5382 3.5665 - 8435
12 .2076 14,4883 -.3369 31.8978 | -.6286 85.5398
3. 8577 5.6618 4.6710
13 1635 2.3%693 .0406 19.5720 | -.3172 66. 474k
3.9981 6.9620 8.9872
14 .T300 .6982 5047 6.4608 .2820 25.3995
4.0501 T.4296 10.7702
15 1.0000 0 1.0000 0 1.0000 0
m = mo; EI = EIo(1 - )
0 0 0 0 0 0 0
-1.8612 2.8391 -3.4482
1 -.124 1.2599 .1893 -6.0403 -.2299 13.9649
-1.7765 2.4377 -2.5277
2 -.2425 2.6412 .3518 -11.8108 -.398% 27.3446
-1.6000 1.6557 -.7583
3 -.3492 4.0919 U622 -16.5435 - 189 33.6311
-1.3272 .5632 1.4065
i - 4377 5.5538 k997 -19.280k4 | -.3552 29.5841
-.9572 -.T071 3.2949
5 -.5015 6.9600 J526 -19.1626 -.1335 14.6758
-.49%0 -1.9666 4. 2065
6 ~.5344 8.2356 3215 -15.6121 .1hkg ~7.9710
0539 -2.9887 3.6496
7 -.5308 9.2994 .1222 -8.458 .3882 -31.5748
6722 -3.5362 1.5T19
8 -. 4860 10.0650 -.1135 1.9007 R A -46.9233
1.3411 -3.3992 =1.4555
9 -.3966 10.4435 -.3402 14.3995 3964 -4k, 9846
2.0346 -2.4389 =t 3171
10 -.2609 10.3457 | -.5027 27.2556 1086 -20.5659
2.7212 ~s6351 -5.5508
1], -.0795 9.6854 5451 38.0134 -. 2615 23.7570
3.3634 1.8695 -3.8912
12 L1447 8.3825 -0k 43,7041 -.5209 Th. 7164
3.9182 L. 7359 1.0372
13 4059 6.3673 -. 1047 41.1267 =517 108.0221
4.3385 7.4140 8.0094
14 .6951 3.5845 .3896 27.2670 .0822 92.3208
4.573%0 9.1568 13. 7667
15 1.0000 0 1.0000 s} 1.0000 0




NACA TN 3459

MODE RESULTS FOR NONROTATING HINGED BEAMS WITH LINEAR MASS AND STIFFNESS DISTRIBUTTIONS

TABLE IV.- Continued

7)

Station hey Yy Y, Y, Y, Y, Y3 Y5 Y5
R
0 0 0 0 0 0 0
-2.3363 k.0912 -5.5947
1 -.1558 2.8306 2127 -15.447 | ~.3730 43.3868
-2.1488 3.0857 -2.8156
2 -.2990 5.4383 L4785 -26.8339 ~.5607 65.7475
-1.7886 1.3335 1.3899
3 -.4182 7-6302 5674 -31.5958 | ~.468 55.0307
-1.2830 -.7308 L.o171
s -.5038 9.2606 .5186 -28.7323 | ~.1k02 17.6072
~-.6693 -2.6093 6.0537
5 -.548l 10.2394 37 -19.1453 L2634 -27.5T45
.0096 -3.8621 4. 2957
6 -.5478 10.5356 .0872 -5.2516 .5497 -58.9163
.7083 -4.2068 .5225
T -.5005 10.1773 -.19%2 9.6994 L5846 -62.394%
1.383%6 -3.5721 -3.4830
8 -.4083 9.2456 | -.4314 22,4495 352k -37.4169
1.9975 -2.1027 -5.8934
9 -.2751 7.8663 -.5716 30.4780 ~.0405 3.9909
2.5203 ~.10k4h -5.6463
10 -.1071 6.1992 =577 32.5262 ~.4169 43.5972
2.9330 2.0318 -2. 8473
11 .088% L4250 -3 28.8072 ~.6068 65.5174
3.2285 3.9288 1.3765
12 V3037 2.7358 -.1812 20.8910 ~.5150 62,9664
3.412L 5.3124% 54594
1153 5312 1.3192 1730 11,3644 ~.1510 40.7963
3.5029 6.078% 8.1471
14 STEUT .3538 .5782 3.3416 .3921 13.4256
3.5298 6.3271 9.118
15 1.0000 0 1.0000 0 1.0000 0
X
m=mo( -5\; EI = EIO(1-§>
0 0 0 0 0 0 0
-2.1075 3.5959 -}. 8668
il -.1405 2.1650 .2937 -11.7139 ~.3245 32.6840
-1.9632 2.8262 -2.7515
2 .27k 4.3162 4281 -21.3762 -.5079 53.5102
-1.6764 1.h2h7 6587
3 -.3831 6.2980 5231 -26.7516 -. 4640 50.6902
~1.2583 - 3274 3.9138
4 -.4670 T.9670 .5013 -26.4102 -.2030 24.6040
-.7296 -2.0558 5.4909
5 -.5157 9.201h4 3642 -20.1587 .1630 -13.7307
-.1191 -3.3735 4.6057
6 -.5236 9.9102 .1393 -9.1019 4700 -47.2762
.5384 -3.9664 1.5683
T -.487T7 10.0412 -.1251 4.56T70 5746 -60.4825
1.2046 -3.6638 -2.3134
8 -.hoTh 9.5875 | -.369% 18.0105 420k -46.3612
1.8407 -2.4809 -5.2843
9 -.2847 8.5912 | -.5347 28,3717 .0681 -9.9582
2.4110 -.619k4 -5.9149
10 -.1240 T.1455 -.5760 33,4411 -.3262 33.4867
2.88%6 1.5746 -3.7545
Tlal L0684 5.3954 -4 32.2076 -.5765 65.2075
3,247 3.6896 I
12 L2847 3.5%62 | -.2251 25.2411 | -.5468 T1.5806
3.4812 5.3528 5.0645
13 .5168 1.8125 .1318 14.7929 -.2092 51.3484
3.6044 6.3407 8. 41k
1k .T571 .5182 5545 4.6798 3517 18.4557
3.6433 6.6828 9.7239
15 1.0000 0 1.0000 0 1.0000 0
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MODE RESULTS FOR NONROTATING HINGED BEAMS WITH LINEAR MASS AND STIFFNESS DISTRIBUTIONS

TABLE IV.- Contimued

NACA TN 3459

Station ol ' " T, boy " Y5 X5 he
= oL - ); B = E1,(1 - %)
0 0 0 0 0 0 0
-1.6543 3.4651 -3.0051
T =.1103 1.2820 L1643 -6.0465 -.2003 14.3350
-1.5682 2.0642 -2.0645
2 -.2148 2.6679 .3020 ~11.6724 -.3380 26.9253
-1.3902 1.2932 -.3264
3 =.3075 4.0886 .3882 -15.9371 -.3597 31.1310
-1.1178 2431 1.6735
4 =+3500 5.4721 Lokl -17.8592 -.2482 24,3216
~.T536 -.9314 3.2227
5 -.4323 6.7435 .3423 -16.7340 | -.0333 7.4502
-.3051 -2.0293 3.67T44
6 -.4526 7.8273 .2070 -12.2504 .2116 =1k 64TH
.2153 -2.8297 2.6991
7 -.4383 8.6503 .0184 -4.6272 .3916 -34.2032
.7902 -3,1264 4730
8 -.3856 9.1450 -.1901 5.3591 4231 42,7143
1.3977 -2.7646 =2.2779
9 -.292h 9.2516 =37l 16.3886 .2712 -33.8828
2.0120 =1.6775 =l 4252
10 -.1583 8.9210 -.4862 26.6827 -.0238 -6.5T79
2.6041 L0846 4. TTT6
44 .0153 8.1173 -.4806 34.1999 = 3423 33.1451
3.1425 : 2.3363 -2.5501
12 .2248 6.8194 -.3248 36.8503 -.5123 T1. 8610
3.5944 4. 7546 2.15T4
13 RTINS 5.0225 | =.0078 32,7806 -.3684 90.9456
3.9265 6.8945 8.0186
14 .T262 2.7389 1518 20,6465 L1667 T1.1259
4.1066 8.2232 12.4991
15 1.0000 0 1.0000 0 1.0000 0
m = my(1l - X); EI = Elp
0 0 0 0 0 0 0
-1.5091 2.1411 -2.5582
1 -.1006 2.6T72 t-gd -11.3779 -.1705 27.6738
-1.3324 1.4053 -.8148
2 -.1894 5.0299 . 2364 -18.6533 -.2249 36.4609
-1.0003 .1972 1.4862
3 =< 2561 6.8123 .2496 -19.5232 -.1258 20. 8593
~.5501 -1.0696 2.8127
s -.2928 T7.8813 .1783 ~14.1242 0617 -T.4162
-.0288 -1.9884 2.3549
5 -. 2947 8.2013 L0457 -%.5930 .2187 -30.0183
L5141 -2.2893 L4591
6 ~. 2604 T7.8349 -.1069 5.9348 2493 -34.1493
1.0334 -1.9048 -1.7115
T -.1916 6.9215 -.2339 14.4825 1352 -19.1967
1.4928 -.9611 -2.9417
8 .0920 5.6493 -.2980 19.1285 -.0409 5.1045
1.868 .2897 2,624
9 0325 42248 | -.2787 19.3997 -.2358 25.9492
2.1505 1.5634 -.9652
10 .1759 2.8430 1Ty 16.1429 -.3002 34,8202
2.3411 2.6292 1.2810
11 .3320 1.6634 .0008 11.0251 -.2148 30. 8241
2.4537 3.3640 3.2917
12 4956 . T904 .2251 5.8786 ookT 19.3206
2.5083 3.7635 L.5778
135 .6628 . 2606 L4760 2.1146 3098 T.7297
2.5274 3.9154 5.1208
1k .8313 .0359 .T370 .3109 .6512 1.2214
2.5%08 3,940 5.2315
15 1.0000 0 0 0 1.0000 0




NACA TN 3459

TABLE IV,- Concluded

MODE RESULTS FOR NONROTATING HINGED BEAMS WITH LINEAR MASS AND STIFFNESS DISTRIBUTTONS

Station Yy Y Y, Yo Yo' 1" Y3 5 Tt
m=my(l - §); EI = i
mo ( ); EI = EI, (1 2 )
0 0 0 0 0 0 0
-1.3685 1.8817 -2.2572
1 -.0912 2.1268 L1254 -8.8479 =.1505 21. 7677
-1.2273 1.3053 -.8715
2 -.1751 L.an81 .2125 -15.2839 -.2086 30. 8281
-.9526 3843 1.0885
3 -.2366 5. 8470 2332 -17.1710 | -.1360 21.1573
-.5655 -. 8044 2.4377
b -. 2743 7.0565 .1796 -13.8954 0265 -1.3903
-.0984 -1.7075 2.3568
5 -.2808 T.6765 .0658 ~6.4412 .183%6 -23.398
4100 -2.1257 .8750
6 -.2535 7.6819 | -.0759 3.0165 .2419 -32.2246
.9190 -1.928 -1.1742
T ~.1922 7.1221 | -.2045 11.8656 L1637 -23.1981
1.3913 -1.1527 -2.6558
8 -.0995 6.1118 | -.2813 17.8750 ~.0134 -1.5876
1..7972 .0165 -2.7629
9 .0203 4.8141 -.2802 19. 8367 -.1976 21.2899
22996 1.3170 -1.4052
10 .1615 3.4186 -.192k4 17.8332 | -.2913 34, 8049
2.3460 2.4906 .8298
11 L3179 2.1148 | -.0264 13.0866 | -.2359 34,5490
2.4884 3.3583% 3.06TT
12 .4838 1.0648 .1975 T.4790 -.0314 23. 7284
2.5613 3.8625 4.6312
13 6545 -3729 4550 2.8817 -2T73 10.2935
2.5883 4.0667 5.3430
1 .8271 L0547 .T261 RICULE .6335 1.7510
2,593k 4.1079 5.4972
15 1.0000 0 1.0000 0 1.0000 0
m=my (1 - X); EI = EL;(1 - X)
0 0 0 0 0 0 0
-1.1222 1.3728 -1.5560
g -.0Tk8 1.4218 .0915 =5.2011 -.1037 11.8732
-1.0267 1.0305 - T8TT
2 -.1433 2.8943 .1602 -9.6016 -.1562 18,9034
-1.2587 .4o20 28
3 -.1989 4.2872 .1878 ~11.9049 -.2277 16.7673
-.5499 =.3755 1.5050
4 -.2356 5.4778 .1620 -11.2941 -.0274 5.7258
-.1864 =1,9116 1.8722
5 -.2480 6.3621 .0879 ~7.6441 .0975 -9.3345
.2356 -1.6078 1.2737
6 -.2323 6.8635 -.0193 -1.5725 .1824 -21.0490
.6908 ~1.T061 -.0748
T -.1862 6.9403 -.1331 5.6793 AT -23.0546
1.1511 -1.3297 -1.5500
8 -.1095 6.5903 | -.2216 12.5389 LOThL -13.1568
1.5883 -.5045 -2.3886
9 -.00%6 5.8531 | =.2553 17.478 | -.082 5.3345
1.9768 .6438 -2.0398
10 .1282 4.8088 ~.212h4 19.3913 -.2212 24. 8731
2.2964 1.9177 -.4364
1 .2813 3.5T4T -.0846 17.9102 -.2503 37.0753
2.5345 3.0957 1.9527
1D 4502 2.2986 .1218 13.5472 -.1201 36.7275
2.6884 3.990k L4.3263
13 .6275 1.1517 .3878 7.6745 .1683 24,6765
2.7669 4.5050 5.9419
1 .8139 3206 .6882 2.3373 5645 8.3232
2.7912 4.6775 6.5395
15 1.0000 0 1.0000 0 1.0000 0




TABLE V

MODE COEFFICIENTS FOR ROTATING BEAMS HINGED AT THE ROOT

5
\:Yn = Z Anq¢q:l
a=0

Linear mass and
Uniform mass and stiffness distributions stiffness distributions
‘ - a (n»c = EI = 0)
Qjangy = 1 n/aml = 1.02 ﬂ/mNRl =81'-36 n/aml = L.k Q/aml =1
‘ &= 0% & = 10% & =049 &= 0% & = 10%
r="0.1 r =105 =l =10

\ 0 0 -0.00676 -2.99989 -1.50000 -3.00000 0.38847 0.38042
1 .90279 . 88995 3.59557 2.19920 3.57296 57936 57921

1 2 .08290 .09482 . 30674 . 22694 .32128 .02942 .03739

‘ 3 .01170 .01223 06637 .05056 .07153 .00226 .00234
| 4 .00209 .00150 .02200 .01656 .02408 .00053 .00071
5 .00052 .00827 .00920 .00673 .01011 -.00003 -.00007

0 0 .00111 -3.00008 -1.50000 -3.00000 .21916 .21681

al -.08920 -.10460 -5.12037 -2.72581 -5.17981 .31280 .30752

5 2 .95499 .95733 7.59936 4.20150 7.51089 43608 43748

: 3 L11340 L13274 1.08%67 .73215 1.18259 .02899 .03480
| i .01745 .02015 .31287 .21113 . 34805 .00216 .00241
5 .00332 -.00672 .12455 .0809%% .13835 .00082 .00098

‘ 0 0 -.00028 -3.00002 ~1.50000 -3.00000 .15969 15854
1 -.00209 .00029 -4.11650 -2.04984 -4.10909 .21031 .20886

2 -.12027 -.14548 -6.70530 -3.73548 -6.98322 .23822 L2347k

3 . 99297 1.02956 12.14772 6.54922 12.06709 . 36653 . 36824

3 I .11228 .13716 2.01%61 1.31803 2.27887 .02448 .0287k4

5 .01711 -.02126 .660T1 4180k g .0007T .00089

o]
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TABLE VI

MODE COEFFICIENTS FOR ROTATING CANTILEVER BEAMS

5
=2_ M
In = ng¥q

A
g

Uniform maess and stiffness distributions

Linear mass and

stiffness distributions

(mt, = EI} = O)

q

0fag. = 2 Qfyp =3 Qfayg, = 4 Qfayg, = 6 9/“1‘131=Q/“M1=9/“N31=9/%1=n/wNRsl.g'( /oy, = 5.91

/ 1 / 3 / = / . Tl 10.43 10.42 14,76 & / =
& = 0g|€ = 10g| & = 0%|& = 10| & = 0%|& = 10¢ € =0g & = 10g g =09 € = 0%|& = 10%| € = 0%|& = 10%
r=20 r = 0.5 r =20 r=05r=1 r=20

1/1.04097|1.04089 1.06395 [1.06197 [1.07930|1.07532| 1.09529 -08853| 1.10074| 1.10782| 1.10942| 1.11411(1.03214|1.03585|1.08425|1.06814
2(-.04833|-.0489Y4 | -.0TTHO | -.07629 [-.09825 | -.09511 | -.12241 | -. 11612| -.12739 =.13759 | -.14118| -.14791|-.04119(-.04395| -. 11831 |-. 10205
3| -00871| .00955| .01624| .01732| .02318| .02k15| .03332| .03361| .03361| .0380% .04038| .04345| .01013| .00911| .03656| .03537
Lt|-.0020k4 -.00230 | -.00ULS5 | -. 00486 |-.00713 | -.00756 | -.0117T| -.01195 -.01235| -.01501| -.01645| .01863(-.00217|-.00190|~.01081 |-.01003
5| .00069| .00080| .00165| .00187| .00290| .00320| .00557| .00593 .00538| .00676| .00783| .00899| .00109| .00088| .00832| .00858
1] 043941 .OMM33| .06651| .06533| .08100| .07815| .09573| .09055|-1.52892 -3.09047 |-1.48611 |-3.03164 | .45247| .45453| h7752| L6764 |
2| .94669| .94331| .91470( .910k1| .89001| .88517| .85678| .85126| 2.L46260 4.10283 | 2.44348| 4.08961| .52469( .52591| .48967| .L48853 |
3| -00269| .00501| .00581| .01007| .00935| .01538| .01593| .02443| -.04590| -.20169 -.08323| -.26294| .01908( .01627| .01733| .02711
4| .0086k4| .00957| .01669| .01827| .02505| .02708| .0%951| .ok180| .13h21 24787 .16179| .28779| .00461| .00390| .02109 .02216 |
5|=+00197|-.00222-.00372 | -.00409 | -. 00541 -.00578| -.00796 | -.00805| -.02198| -.05853| .0359%3| -.08283|-.00085 |-.00062 -.00561 |-.00544 |
1|-.00837 -.00927 | -.01519 | ~.01646 | -.02116 | -.02251 | -.02918| -.0302k | -2. 20034 =4 37577 [-2.22531 |-4. 40523 | 2676k | .26961| .25087| .24559
2[-.00253| .00497 |-.00554 |-.01020 |-.00925 | -.01605 |-.01695 | -. 02690 | -2. 10654 -3.87354 [-2.02987 |-3.7166k4 | .29081| .29247| .28773| .28096
3| -98895| .98801| .97h92| .9725h4 [ .95671| .9525k| .91636| .90939| L4.63597| 8.28092 4.54906 | 8.1687T7| .41432| .41k20| .38838( .38889
L1 .01395| .01729( .02882| .03526 | .04586| .05527| .07897| .092kk 32641 .31370| .28756| .19255| .02430 .02151| .0k932 | .05888
5| .00802| .0089%4| .01699| .01887| .02783| .03075| .05079| .05531| .34450 65469 [ 41856 | .T76055| .00292| .00222| .02369 | .02569
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Figure l.- Beams treated by both the "exact" and Rayleigh methods. NG
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Figure 2.- Effect of rotational speed on the bending frequencies of a
uniform hinged beam.
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Figure 3.- Effect of rotational speed on the bending frequencies of a
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Figure 23.- Bending modes of nonrotating hinged beams with linear mass
and stiffness distributions.
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Figure 28.- Comparison of bending modes of a rotating and nonrotating
cantilever beam with linear mass and stiffness distribution.
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