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Linearized equations of moti.ohare derived for both conventional
aircraft having mirror symnetry and spinning projectiles or missiles
having rotational and mirror syrmnetry. The aerodynamic coefficients are
introduced as a formal series expasion in the customary variables, Wth
additional terms being included to account for the aerod~amic effects
of spin. The requirements of symmetry are used to reduce the system of
aerodynamic coefficients and, in the projectile or missile ca6e, to clarify
markedly the geometry. A common mathematical approach and staadard NACA
nomenclature are used throughout.

The equations for aircraft are compared with those for missiles and
shortcomings in the currently accepted theories are pointed out. The
dynamic-stability requirements for spin-stabilized projectiles are dis-
cussed briefly.

The remits are applied to the analysis of flight-test data from the
aerodynamics range. Relations are derived between the aerodynamic coeffi-
cients and the const=ts of the equations of motion. A comparison is made
with ballistic theory in current use and iE found to be satisfactory.

INTRODUCTION

The dynamic stability of aircraft is
at great length. The theory of the motion
also been studied extensively. No further

a subject that has been explored
of spinning projectiles has
development of either sub~ect

is needed per Be, at least in .sofar as first-order effects are concerned.
On the other hand, mcdern trends in aeronautics and ballistics have brought
the flight performance and even the physical appearance of aircraft and
projectiles closer and closer together. Hence, a need now exists for a
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theory of motion that covers both cases simultaneouslywith a 6ingle nomen- ‘
clature and a common mathematical development. ~

In the present analysis, aircraft are distinguished from projectiles
and symmetrical missiles as follows:

1. Aircraft are asmmed (a) to have a plane of mirror symmetry
through the longitudinal axis and (b) to fly only slightly disturbed from
a steady-state equilibrium attitude so that all components of the angular
velocity of the aircraft are small.

Q Projectiles and symmetrical missiles are assumed (a) to have not
only a’~lane of mirror symnetry but also 90° rotational symmetry (or its
equivalent) and (b) to fly similarly to airvaft except that the axial
component of the angular velocity, the spin, may be large (with the
restriction that the change in the spin must be 6mall).

Despite these differences, the flight of both aircraft and projec-
tiles takes place under closely similar circumstances. The analysis of
the motion in each case is the classical analy8ie of a rigid body moving
under the action of external forces. The differential equations of motion
are derived in both cases from the vector equations relating the rates Of
change of the linear and angular momenta to the external force and moment. :
Furthermore, the conditions of flight prescribed are the “same,namely,
both must fly in nesrly a straight line at nearly constant velocity and
the inclination to the flight path must be 6ma11. The aerodynamic-force ?.
system postulated is the same: The aerodynamic forces and moments are
assumed to be linear functions of the velocity and the angular velocity.
In both theories the equations of motion are linearized by the neglect of
second-order terms. One might well suppose that the dynamic stability of
aircraft and projectiles had been treated by a common development. Such
is far from the case.

The dynamic stability of aircraft was first a.mlyzed by Manchester
around 1900; the corresponding analyais of the d~amic stability of spin-
stabilized projectiles was made by Fowler and his’aflsociateain 1920 (see
refs. 1 and2). Both men had very practical objectives in mind. Manchester
was interested in the flying qualities of airplanes. Fowler wi8hed to
find the design criteria for an artillery shell that would inmre a true
flight to the target and a strike head on. Both attacked the problem inde-
pendently and their divergence of interest is strongly reflected in the
two developments of the theory, a divergence which has continued for all
practical purposes to.the present time.

A casual observer reading the literature on dynamic stability would ‘k
be left with the impression that balli6tici&ns and aeronautical engineers
were concerned with entirely different problems. The nomenclature is
different; the geometry does not appear at first glance to be related; the 5’
mathematical treatments differ radically. The casual observert~ judgment
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would not be so superficial after all, for it is only fair to say that
the theory developed to.handle the dynamic stability of aircraft is not
adequate in its present form to predict the dynamic stability of spinning
projectiles, and vice versa. For example, the aircraft equations do not
describe the gyroEcopic nutation and precession of a spinning shell, and
the projectile equations do not describe the phugoid oscillation of air-
craft.

Recently, R. E. Bolz and J. D. Nicolaidea have derived the dynamic
stability of spinning projectiles and ~ymmetrical missiles in terms famil-
iar to the aerodynamicist (see refs. 3 and 4). Although their derivations
go a long ways toward joining the theories of Manchester and Fowler, both
omit the force of gravity and contain certain other restrictions with the
result that a gap as yet remains between the case of the aircraft, flying
with its weight balanced by lift, and the case of the gyroscopically
stabilized projectile, flying with varying velocity and gpin. It is the
purpose of this paper to bridge the gap, that is, to treat the two cases
with strictly similar mathematical developments and with a common nomen-
cIature. In addition, it is desired to apply the results of this theory
to the analysis of experimental data obtained from a relatively new flight-
iest facility, the aerodynamics range.

The development of the theory presented herein follows closely the
customary treatment of the dynamic stability of aircraft with the primary
difference being the simultaneous treatment of longitudinal and lateral
stability. The nomenclature conforms throughout to NACA standards. The
other departures of importance from conventional aircraft theory are a
rather’formal development of the aerodynamic force system and the thorough
use of the coriditionof symmetry assumed for the body, as is done in the
ballistic theory. In fact, it might be said that the present development
is a welding together of these aspects of the conventional aerodynamic and
ballistic theories which, in the author!s opinion, represent the most
effective means of attacking the problem.

SYMBOIS

ao, al,
a2, as }

constsmts in the x(t) equation

A any quantity
(This symbol is usedin the development of general transforma-
tions.)

Al, A2 constants in the ~(t+) equation

ho, bl
b2, b~ }

constants in the A(x+) equation
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.
co, cl,

C29 Cs }
constant6 in the ~(ti) equation

force
c aerodynamic coefficients:

(p/2)V=%‘

c~ coefficient of aerodynamic asymmetry

CM coefficient of aerodynamic asymmetry

moment

(p/2)v%l

force

moment

‘“r’

ID

f.

do, dl,
d2, da,

I

constants in the 5(x+) equation
d4

D U
operator?DA ==

operator, m=*

Cm + CFa

2

f

}

0, fl,
f f=2) constant6 in the 7(x+) equation

F force, external, acting on b~y

g acceleration of gravity

H angular momentum of body

i unit vector along X axis

i d=
I moment of inertia of body

3 unit vector along

Jxz product of inertia

k unit vector along

KX2

Y axia

of body

Z axis

“d

.
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Ky2

KZ2

K1

%

z

%

Zr

Zp

‘i

z~

m

%

mq

Iy

mZ2

Iz

m22

Jxz

T

characteristic length

cZr

masa Of body
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m.
a

%p

%P

‘6P

M

M

‘P

Cm.
a

4Ky2

mq + X. + iv(K - mrp)

Cmrp

8PKY2

%
8pKy2

linear momentum of body

moment; external acting on body

4K7

CnT

4KZ2
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Po

P(s)-.
.

!I
t

Q(S)

r

R(S)

0

s

s

s

. Sl> S2.

4Kz2

C%p

@K~

X ccmponent of =

variation in p over measured trajectory

constant component of angular velocity about which the angular
velocity in flight varies (p = PO + p~)

polynomial factor in constants dl, d~ of ~(x+) equation

Y component of U

polynomial factor in constants f2) f3 of 7(x+) equation

Z component of E

stability quartic

F v’
stability factor, —

%

arc length along trajectory

characteristic area

independent variable in stability quadratic

roots of stability quartic, s1=a2, &=q

. t time
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Tl, T=

u

v

v~

%

%

x.
a

Xq

‘oD

%3

NACA m 3350

variation in velocity along trajectory

velocity of center of gravity of body

constant component of velocity about which the flight velocity
varies (V = V. + u)

angular velocity of body with respect to XYZ axes

distance along ~ axis

mg sin 70

pSV02

Cxo

-r

%+

%.

T
c%

-E-

.

‘2

.

.
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‘PP
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x

x~

Y

Y+

Yp

‘i
..

Yp

i
Yr

‘$L

Yap

Y&p

Yqp

Y

. To

z

z+

Cx
PP

8P2

coordinate axis

space-fixed coordinate axis

distance along Y. axis

Cy
P

T

Cy.
O,p

@-

cYqy

8f

coordinate axis

space-ftied coordinate axis

distance along & axis
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Z.

‘G

Zq

%,

z.
a

‘7

‘6

z*
&

‘oL

‘cLL

‘m

‘BP

‘rp

z

%)

Czo

-’T

mg Cos 70

pSV02

c~

-#

1 - Zq + iVZrp

~+- iw$p

.

.

C%P
@2

coordinate axis

space-fixed coordinate axis

. .

w
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70

A

e

A
.
.

v

u

T

angle of attack, 90° -

angle of Bideslip, 90°

inclination of flight path of steady-state glide to
horizontal, ~~Zo

y+ + iZ+, nondimensional transverse displacement

variable of fitegration, replaces ~i- in integrand

lf-ie

angle of pitch, angle between intersection of ~Yo and XZO
planes and X

arbitrary angle of rotation about X

maircraft density factor, —
psl

Tp o

$+ia

density of the air

m
time factor, ~

Qsvo

angle of roll:
aircraft: angle between intersection of YZ and XOYO planes
and Y;

symmetrical missile: a~gle between Yand~

angle of yaw, angle between X. and intersection of XOYO
afidXZO planes
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u angular velocity of body with respect to space-fixed axes

a angular velocity of the XYZ axes with respect to the &Yo&
axes

i, 5, ~ body-fixed coordinate axes, fixed in bcdy for missiles and
projectiles

+ angle, ~ XY = angle between X and Y

(’) operator, A . ~
dt

(“”) operator, d2AA=z

(-) a vector quantity

Subscripts

The definitions of all subscripts apply to their usage with all symb-
ols except where the complete symbol with its subscripts is defined as
a unit.

A

D

G

I

L

L

m

n

P

q

aerodynamic components

component along trajectory (drag)

~avity force components

imaginary component

component along X axis

component normal to trajectory (lift)

component along Y axis

component along Z axis

operation, Ap=~
ap

operation, Aq = ~

h

?

?

ze,

Ii
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,.s

r

R

x

Y

z

a

&

B

o

0

1

2

3

aAoperation, Ar = —
&

real component

component along X

comyonent along Y

component along Z

operation, & = Q&

aAoperation, AP . —
ap

‘Peration’‘i ‘3
value of coefficient with u = p = a = ~ = & = p = q =r=O

value of quantity at z = O orx= O

component along 1 axis

component along 2 axis

component along 3 axis

EQUATIONS OF MOTION FOR
ONE PL4NE OF MIRROR

.

AIRCRAFT m
sm@m-mY

The essential features of Lsnchesterls work have formed the basis of
all subsequent treatments of this subject, although many details such as
nomenclature have been modified to meet better the changing demanda of air-
craft desi~. Dynamic stability is a standard subject in aeronautical
textbooks (e.g., see refs. 1 and 5) and, since the methods and ’resultsof
the theory are well known, the aircraft case will be sketched rapidly.
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Geometry

The geometry is shown in figures l(a), l(b), and l(c). Two sets of
Cartesian coordinate axes are used in developing the equations of motion.

. One Bet is fixed in the aircraft and is lmown as Instabilityaxes.” The
other set i~ fixed with respect to the earth and is known as “earth axes.ll
The orientation of the two sets is shown in figure l(a). Figure l(b)
shows the location of the gravity vector with respect to earth axes and
figure l(c) the location of the velocity vector with respect to stability
axes. In the figuresthe directions of the coordinate axes are indicated
by unit vectors and the angles by circular arc,s,which represent great
circles on a unit sphere centered at the center of gravity. Both sets
of axes are right-handed, as defined in reference 1; that is, the positive
sense of a component rotation or couple about any axis is “determined by
reference to a right-handed screw, when facing the positive direction of
the axis.” It will be noted that the various features of this geometry
conform throughout to N&2A standards.

The stability axes are designated by XYZ. They are fixed in the
aircraft and are oriented so that Y is perpendicular to the plane of
symmetry and Z is perpendicular to the relative wind in steady flight.
Their origin of coordinates is at the center of gravity. In other words,
they are body-fixed axes with the XZ plane being the aircraftts plane
of symmetry and with the X axis being coincident with the velocity vec-
tor in the steady-state glide on which the flight path is a perturbation.
The positive directions along the axes are as follows: X is positive
forward; Y is positive to starboard; Z is positive towards the bottom
of the aircraft. It should be noted that, whereas Y is always a prin-
cipal inertia axia, X and Z are not necessarily SC, and products of
inertia terms are introduced into the equations of motion in order to
account for the alinement of X with the steady-state relative wind
rather than with a principal inertial direction (body axes alined in this
particular way are known as stability axes).

The,earth axes gme designated by XoYo&. They are fixed with
respect to the earth, but, since the earth~s rotation is negligibly slow
compared to the angular velocity of the aircraft, they are considered to
be Galilean axes fixed in space. As with the stability axes, their ori-
entation is determined by the position of the aircraft in.its steady-
state glide, which is subject to the restriction that in the steady-state
glide the plane of symmetry is a vertical plane. Each member of the
XOYOZO axes is taken to be parallel to and to point in the same direc-
tion as its corresponding member of the XYZ axes. In other words, X.
points in the direction of the steady-state glide path, Y. is horizontal
and points to the right (of an observer facing forward), and ~ points
down (but pot necessarily vertically down). Two locations are desi~ated
for the origin of coordinates of the earth axes, depending on the coin-
ponent of the motion being considered. For angular measurements, the
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origin of coordinates is taken to be the center of gcavity of the air-
craft at some particular point along its flight path. For linear measure-

.W,l ments, the origin of coordinates is located as required by the over-all
scheme of measurement which would be set up to analyze the flight of the
aircraft.

The orientation of the aircraft in space is defined by three angular
coordinates Q, 6, and $ which give the alinement of the stability axes,
XYZ, with respect to the earth axes, XoYo~ (see fig. l(a)). If these
angles are all zero, the stability axes point in the directiom of the
earth axes. Any other orientation of the aircraft is reached by three
consecutive rotations, starting with XYZ pointing in the directions,of
XOYOZO ● In defining each of the rotations, the point of view is taken
that XYZ are either in their starting ~sition or in the position given
by the preceding rotation, and not necessarily in their final position.
The rotations are noncoummtative and must be taken in the order specified.

* Rotation 1. Start with XYZ pointing in the directions of
XOYOZO, rotate about Z through $.

e Rotation 2. Rotate about, Y through 6, thereby bringing
X to its final position.

9 Xotation 3. Rotate about X through ~, thereby bringing
Y and Z to final positions and the aircraft to its actual
Orientation in space.

The angles $, Q, and 9 may also be defined as the angles between
coordinate axes and the intersections of certain planes. For the purpose
of these definition& it is considered that the origin of coordinates of
the XOYOZO axes is momentarily coincident with that of the X_YZ axes.
The point of view taken here is that the XYZ axes are in their final
positions given by the orientation of the aircraft in space at the moment
in question. The sign of the angle is spectiied by giving the axis about
which the rotation is taken in going from the line named first to the
line named second in the definition. The axis of rotation is listed in
parentheses in each definition.

* angle between X. and intersection of XOYO and XZO planes
(rotation about Z.)

e angle between intersection of XOYO and XZO planes and X
(rotation about Ye’= Y. rotated about Z. though $)

-“
9 angle between intersection of YZ and XOYO planes and Y; also

angle between intersection of YZ and X% planes and Z
(rotation about X)
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inclination of the earth axes (XOYOZO) to the horizontal is
.

the angle 70 (see fig. l(b)). The angle Y. is positive when
X. points above the horizontal (as shown in fig. l(b~). It should be -+
noted that Y. is horizontal by definition and hence the XOZO plane is
a vertical plane and contains the gravity vector ~.

The orientation of the velocity vector ~ with respect to the sta-
bility axes XYZ is given by the angle of attack a and the angle of
sideslip ~ (see fig. l(c)). These angles are defined so that the product
of the velocity magnitude V and the sine of ~ or a gives the component
of ~ along Y or Z; that is, by definition

p=goo..+ti

a=90°-+VZ

and resolving ~ along the transverse stability axes YZ remits in the
desired relations, as follows

Vy=Vcos+–VY.Vsin~

VZ.Vcos$FZ=Vsin a
.

The above definitions of a and ~ were-chosen because it is believed
that the transverse components of the velocity are the quantities having
the most physical significance insofar as the aerodynamics of the air- ]

craft is concerned. However, it should be noted that these definitions
differ somewhat from common wind-tunnel practice. In a wind tunnel the
model is normally placed at an angle of sideslip by supporting it on a
bent sting. The angle of attack is eet at zero, and the sting is alined
to lie in the plane containing the axis of rotation of the angle-of-attack
sector and the tunnel axis (it is assumed that the wind vector ie along
the tunnel axis). The model is then placed on the sting with its plane of
symmetry perpendicular to this plane. The angle of attack is now varied
by rotating the angle-of-attack sector. Consequently, the Z axis of the
model rotates in a plane perpendicular to this sectorrs axis of rotation.
The angles of attack, a, and sideslip, P, are defined as follows: a is
the angle through which the angle-of-attack sector is rotated; .B is the
angle at which the sting i8 bent. Now, referring to figure l(c), it is
clear that m defined in this report is the same as a defined in wind-
tunnel practice, since the fi plane shown in this figure is the plane
in which Z rotates and a is measured in this plane in both cases. On
the other hand, ~ in this report i6 measured in the fi plane whereas
p in the wind tunnel is measurd in the XY plane, as shown. The dif-
ference iEIsecond-order for mall values of ~ and hence ia insignificant 4.

in so far as linearized theory is concerned. However, should the theory
be extended to the case of aircraft maneuvering at large angles, as is
done in reference 6, the precise definitions of m and P become important. ‘
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It will be convenient to write
cosines between various axes of the

down expressions for the direction
earth axes and stability axes systems.

The direction cosines are readily obtained from the equations derived in
section (5.0), “cinematics,” of reference 6 and are listed in the table
below; each entry in the table gives the direction cosine between the axis
heading the row and the axis heading the column belonging to the space in
which the entry is listed.

— —

x Y z

X. cos e cos v cos * sin q sin O - c0sqc08qstie+
sin v Cos q sin v sin q

Y. cos e sin * sin~sinql sine+ sin * cos (psin ,0-
Cos $ Cos p cos @ sin p

.

. % - sin @ sin (pCos e cos e cos ~

1
i:

Now, the conditions postulated for the flight, which are discussed in the
next section, require that corresponding axes of the two coordinate systems
lie close to one another during the flight covered by the analysis and
hence that the angles 9, 8, and V be small. Only first-order terms are
retained in the development of the equations of motion and, since q, e,
and ~ are first-orderj quadratic te~s in the expressions for the direc.
tion cosines will be second-order and may be neglected. The equations
giving the direction cosines correct to first order are summarized in the
table below; again each entry in the table gives the direction cosine
between the axis heading the row and the axis heading the column belonging
to the space in which the entry is listed.

x Y z

X. 1 -+ e

Y. !f 1 -P

Z. -e T 1

(1)
-“
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The following
motion in flight:

Conditions of Flight
.

?
conditions are postulated for the aircraft and for its

(1) The aircraftha8 a plane of mirror symmetry, the XZ plane.

(2) The magnitude of the velocityof the aircraft maybe large but
the change in the velocity must be small. Accordingly, the velocity may
be represented by a con8tant plus a small perturbation; that is, V=VO+U.

(3) The angles orienting the two sets of coordinate axes, q, e, and
~, and locating the velocity vector, P and a, are all small.

(4) All components of the angular velocity, p, q, and r, are small.

(5) me f~ght path of the aircraft is a perturbation on a steady-
state glide.

Conditions (2), (3), and (4) may be summarized by saying that the
following variables must be small (e.g., have a numerical magnitude of
0,1 or less) and hence are first-order q~tities:

*,

:Pa
o

}

small, for example,
0.1 or less

& qt rl (2)
—.

2V0 2V0 2V0 \

where 1 ia a characteristic length. .It should be noted that if ~j ~,
q2 r2 j2. and##- ~~1 ,g,lsobe first-~? and ~ are first-order, then —

order, where $=~and&=~e 2v0 0

The theory developed in this paper includeflonly first-order terms.
Froducts of firBt-order terms (except for the Magnus terms of ~pinning
projectiles and symmetrical missiles), for example, (pe,are considered to
be negligibly small and are left out of the equations of motion. h~ a
result, the equations of motion become linear in form and their solution
may be given by well-known, explicit functions. Experience has shown
that the solution of the linearized equations of motion ia, in fact, a
reasonable representation of the flight motLon of many aircraft. However,
there may be circumstances under which the linearized equations do not
describe the aircraftts flight, despite the fact that all.the quantities
listed In equation (2) are small. The aerodynamic characteristics of

?

“-

+-



NACA TN 335C 19

.
certain aircraft are such that Borneof the quadratic terms are as large
or larger than certain of the fir~t-order terms included in the linear

“4 theory. For aircraft of this type, the significsmt quadratic terms must
be retained in the equations of motion and the theory revised accordingly.
Consequently, the analysis of an actual flight should include a check of
the ma~itude of second-order terms to be sure that they are in fact
second-order, that is, negligible.. In other words, the a priori assump-
tions of the theory should be checked a posteriori by an analysis of the
measurements.

Kinematic Relations

The eqwtions of motion are derived from the basic vector equations

&iF—=
dt

ax=~
dt

(3)

(4)

.

The first step in their derivation is to obtain relations between
the physical quantities,~and~,

~
and the kinematic variables (of the

motion), D, a, ~, e, and y. The components of the linear mcmentum, a
along the XYZ axes in terms of the compo~ents of the velocity vector,
~, and the components of ~ in terms of p and u are listed in the
following table.

i II mVX VX = V 1 - stn~u - sin2p

j mVy Vy=Vsin@

k IIlvz’ VZ=Vsina

(5)

where the component along X, Y, or Z Is designated by i, j, or k, tkLe

unit vector along X,Y,Z, respectively.

Similarly, the components of the angular momentum, F, are given in
-- terms of the components of the angular velocity, G, and, in turn, the

components of Zj in terms of Q, e, and y are given in the table below
(see ref. 6).
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L
i
J

k

IXp - JXZr

~y~

IZr - JX~

3330

(6)

For convenience in computing the relative magnitudes of terms in the
equations of motion, the components of fi(P~ q) and r) may be ~ftten
as follows, expanding sines and cosines and retaining only first- and
second-order terms.

p=$-er
1

(7)

.

7

r=$-qqj

The expressions for ~ and ?3 given in equations,(5) and (7) include
second-order terms in order to clarify certai~ steps taken in linearizing
the equations of motion. The components of V and U appearing in the .

inertial terms in the equations of motion are multiplied by large numeri-
.

cal factors. Consequently, it is desirable to compare the second-order
inertial terms with the first-order aerodynamic terms in order to estab- ~

lish that the second-order inertial terms are truly negligible. The com-
parison is made in Appendix A, which covers the linearization procedure.

Physical quantitie8 are defined with respect to the body-fixed axes,
XYZ, as is customary in the treatment of the motion of a rigid body. On
the other hand, the rates of change involved in the basic vector equa-
tions (3) and (4) are taken with respect to space-fixed axes. Hence,
equations (3) and (4) must be transformed in order to account for the
movement of the XYZ axes. The well-known transformation for the rate
of change of any vector

where ~ is the rate of
axes. The components of

~ from fixed to moving axes is given by

g=~+zxr

dt
(8)..

change of ~ measured with res,pectto XYZ
the transformation are

~=~x+@z-rAy

dAy
x

=~y+rAx-pAZ

dllz‘
.&.phy-qAx

m 1

(9)

“.

h
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Aerodynamic and Gravitational Force Systems

The resultant external force, ~, of equation (3) is the sum of the
aerodynamic forces and

The resultant external
dynamic reactions.

the gravitational force; that i~,

F’=F*+FG (lo)

moment, ~, of equation (4) is due ~olely to aero-

Concerning the aerodynamic forces and moments, it is aswmed that the
components of the resultmt force and moment, ~A and n, are given by

‘AX,Y,Z
Q@s= CX,Y;Z 2

and

MX,Y,Z p V2S1= Cl,m,n ~

(11)

(12)

It is further assumed that the coefficients, th~ C~S, in e~atfons (11)
and (12) are functions of the variables ~, ~, P, ~, P, q, and r and~t
these functions may be expanded as a series in the variables named.
general formula for any coefficient, CaJ where a stands for x) y> z) t)
m, or n, is

Car ~ + (higher-order terms) (13)

The coefficients of this series are assumed to be independent of the
variables ~> ~j ~J ~> P, q, and r and to be functions only of the exter-
nal shape of the aircraft and of fundamental aerodynamic parameters, such
as the Reynolds and Mach numbers. They will be lmown herein as the
“aerodynamic coefficients’ and corres~nd to the conventional stability
derivatives.

Examples of the higher-order terms are Cama2 and CaaB@) two of tie

quadratic terms of the series. In the aircraft case all of the variables
~, a,,p, q, and r are small (first-order). Hence, their products will
be second-order and the quadratic and higher-order terms of the series may

-“ be neglected.

If the aircraft had no plane of symmetry, all 48 coefficients would
be required to account for the complete force and moment system. However,
the majority of aircraft have one plane of mirror symmetry as postulated
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here and, aa a result, certain of the coefficients must be zero. The
requirement imposed by the existence of a plane of mirror symmetry can be
Btated succinctly aa follows.

Let the aircraft execute two motions, the firet being the mirror
image of the second about the XZ plane, the plane of symmetry; the aero-
dynamic force due to the firet motion must be the mirror image of that
due to the second. The mirror image of a motion (or force) is defined as
the motion (or the force) that will look the same to a second observer
stationed on the op~osite side of the aircraft from the first; that is,
one observer being to port, the other to starboard.

To illustrate, consider the terms Cln(P1/~), the rolling moment due
to rolling velocity, and C~(PZ/2V)~ the ~itching moment due to rolling
velocity. The mirror image of the rolling velocity p is always -p.
The mirror image of the rolling moment Mx is -Mx; hence, the mirror
image of Clp(P1/2V) should be -C~p(pZ/2V). It can be seen that this term
reverses si~ as it should, since p mirrors to -P> and the coefficient
%D is therefore an allowable one. On the other hand, the mirror image

of-the pitching moment MY is @ly; hence, the mirror image of cw(pz/2v)
should be Jc%(P2/2v). It can be seen that the term reverses signras it

should not, since p mirrors to “p, and therefore the coefficient ~
is not an allowable one. Consequently the coefficient

%
2must vanis ;

that is, c% = O.

Applying the criterion of symmetry to equation (13), one”can see that
the following coefficients must vanish:

c~
P
= Cx

~’%p=cxr=o

Cyo=cy=cy.=cy=o
a a ~

Czp =Cz.=c SC%=o
P %

%o=%a=c~.=% =0
a ~

crap=Cm=c

6
~=cmr.o

(14)

Substituting equations (14) in equation (13)
a minus sign to the coefficients of Cx and Cz in conformity with standard

and arbitrarily assi~ing

—

‘-

0.
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practice (since the axial drag force usually acts in the -X direction “
and the normal force
coefficients for the

Cx =

*=

Cz =

c1 =

cm =

Cn =

in the -Z direction); give the force and moment
aircraft as follows:

-Cxo -G& -Cx; ~ Q~z-cxq *V

.

c%? + c% !% + C% 2V z;
EL+cyr —

.
-Czo -Czaa-cz. ~-cz CQ

a ~ 2V
1

(15)

Concerning the force of gravity, FG, ite components along the XYZ
axea are readily computed by first resolving FG along the XOYOZO axes
and then computing the XYZ components using the direction cosines give.1
in equations (l). The force of gravity FC lies in the XfiZn plane
Oince Y. ia

The XYZ
components of

horizontal by definition and; hence, is given”b~

FG = To(-mg sin 7.) + =O(mg Cos 7.) (16)

components of FG are now obtained by resolving the XOZO
equation (16) along the XYZ axes using e~ations (l):

F% = mg (- sin 70-6 cos 7.)

F% = mg (V Bin 70 + 9COS Yo)

1

(17)

F~z = mg (- e sin y. + COB yo)

Derivation of the Differential Equations of Motion

The differential ecpations of motion are derived from the basic vec-
tor equations (3) and (~) by resolving the vectors along coordinates axes
and using the kinematic relations and the equations for the external
forces and moments, thereby obtaining six scalar equations, three asso-
ciated with the force and three with the mument. Wth earth axes and
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stability axes are employed as coordinate axes in resolving the basic
.

vector equation~. Earth axes are used to compute the motion of the center
of gravity of the aircraft, since linear displacements are neasured along 6
these axes. Stability axes are used to compute the angular motions of
the aircraft and of the velocity vector, since the inertial properties and
aerodynamic coefficients of the aircraft are invariant with respect to
these axe~. The detailed steps taken in deriving the equations of motion
are outlined as follows.

Both equationB (3) and (4) are transformed from fixed to moving axea
by equation (9), except for the X component of equation (3), as dis-
cussed below. Equation (17) for the gravity force and equations (1..l)and
(15) for the aerodynamic forces are substituted into equation (10) for the
external force. The kinematic relations for linear momentum and velocity
are given by equations (5) and these are used to complete the development
of equation (3). Equations (12) and (15) for the aerodynamic moments and
equations (6) and (7) giving the kinematic relations for the angular momen-
tun and angular velocity are substituted into equation (4) to complete its
development.

The details of this particular step are given in Appendix A. It
should be noted that the equation associated with the axial drag force is
treated as a special case. This equation is derived by resolving the

,

vector linear momentum equation (3) along the space-fixed X.
.

axi8 rather
than the X axis, thereby avoiding the term (qAz - rAy) which comes from
the transformation-fromfixed to moving axes (eq. 9). The change in 3

approach is desirable because in the linearization of the equation of
motion the term (qAz - rAY) gives rise to second-order term@ whose magni-
tude compared to first-order terms is uncertain and whose neglect conse-
quently may be questionable. In so far as the validity of the derivation
ia concerned, either axis system, stability axes or earth axes, may be
used in deriving any of the equations of motion provided the vector quan-
tities are resolved correctly along the axes In question and the angular
velocity of the coordinate axes (if any) is accounted for.

The next step in the derivation is to separate each of the six equa-
tions into first- and second-order terms (and higher-order terms) and to
neglect the second-order (and higher-order) terms. This step is described
in detail in Appendix A. Hence, at thie point, the equations of motion
are linearized and the theory is restricted to a consideration of first-
order effects.

The third step in the derivation is to introduce a nondimensional
time as the independent variable and a concise notation for the factors
of the dependent variables. This nondimensional time, t+, is sometimes
referred to as the reduced time and is based on the aircraft time factor,
T. The concise notation stems directly from the subscripts of the aero-
dynamic coefficients and at the same time includes any other multiplica-
tive factors. For example,



c

.

x

-“

.

N&W TN 3350 25

In the same spirit, the derivative notation is shortened by defining

DA==
dt+

This step parallels a similar procedure followed in reference 7. The
advantage accrued thereby speak for themselves.

The final step goes back to (5) of the condition postulated for the
flight, namely, that the flight path is a perturbation on a steady-state
glide. Hence, th~ equilibrium condition of flight with all the dependent
variables (u,~,a.,~,&,p,q,r) equal to zero is one in which the lift, drag,
speed, glide angle, and weigh% are all in balance. It is assumed here
that the ~ axis and the X axis are both coincident with the trajec-
tory along the steady-state glide path. The equations of motion for the
steady-state glide are

mg sin 70
xo=-

= -x~
pSV02

mgcos 70
Zo = = ZG

psvoz
I

(18)

mo=O J
Eqmtions (18) are used to replace the gravity terms with corresponding
aerodynamic terms in the final differential equations of motion.

At the same time, the factors ~,~,zo,za are replaced by the
factors XoD,~,ZoL,ZGL which refer to the drag and lift of the aircraft
as measured in a wind tunnel. Now, it is customary in deriving the equa-
tions of motion to use drag and lift coefficients rather than the X and
Z coefficients. This is a perfectly reasonable choice since the static
stability characteristics of many aircraft are measured in wind-tunnel
tests. Wind-tunnel data are ordinarily presented as lift and drag polars
and it is desirable to formulate the theory in terms of lift and drag so
that these data can be used directly. A support system ccnmnonlyemployed
in wind tunnels has already been described. In so far aO the coordinate
axes of this report are concerned, lift and drag are measured along and’
perpendicular to the steady-state relative wind, that is, along the -Z.
and -X. axes, respectively. The aerodynamic lift and drag factors
correspondingto the lift and drag coefficients are de~ignated by the
subscripts L and D, and the relations between these and the aerodynamic
factors corresponding to the X and Z coefficients are given by
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X. = ‘oD

%L’%,D-ZOL

‘o = =o~

%L = ‘c& + ‘oD 1
)

The six differential equations of motion
ceding steps are given below in the following
equations, axial drag, aide force, and normal
moment equations, roll, pitch, and yaw.

‘(t) + 2XOD (t)+ ~M+ ‘~ -

(l- Y~)DD-YP@ +(l-yr)D$+

(19)

which result from the pre-
order: the three force
lift force, and the three

zoL)~ + xqD9 + ZoL6’= O (20)

‘OD~ - YpDq - ZoLq = o (21)

(1 + Z&) Da-t-(ZaL + XoD)u - (1 - Zq) Df3-
()

u
xol)e+ 2ZOL. ~ = o (22)

&G-mqDe-m&Ih-~a=O (24)

Discussion of the Differential Equations of Motion

An inspection of equations (20) through (25) ~hows that the six equa.
ti.onsmay be divided into two di~tinct groups of three equations each.
One group c~nsiating of equations (20), (22), and (24) involves only the
variables u/Vo, a, and 0 and describes the longitudinal motion of the
aircraft. The other group consisting of equations (21), (23), and (25)
involves only the variables ~, p, and ~ and describes the lateral motion
of the aircraft. Hence, it may be concluded that the linearized equations “-
of motion of aircraft may be divided into two separate parts and that the
parts do not interact. This result is, of course, well lmown and the
over-all stability of aircraft is customarily subdivided into longitudinal -
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stability involving u/Vo, a, and e and into lateral stability involving
P, T, and $. In this connection, it should be noted that different rep-

t resentative lengths, 2, may be used in the two groups of equations since
the groups are independe~t of one another. In practice, it is common to
use the mean aerodynamic chord of the wing (1 = c) in the longitudinal
stability equations and the wing span (1 = b) in the lateral stability
equations.

Equationa (20) through (25) aggee satisfactorily with corresponding
equations presented in standard aeronautical texts (see, e.g., eqs. (10-89a,
b, c) and (n-34a, b, c) ofref. ~). The equation~ here do contain certain
extra terms not ordinarily found elsewhere but it is believed that all of
the terms in these equations are required for a complete and consistent
first-order aerodynamic force system and to account accurately for gravity
forces. On the other hand, the additions are so small for representative
aircraft that they do not affect the comparison in so far as practical
application of the equations is concerned.

To summarize briefly, it may be stated that equations (20) through
(25) are the standard equations underlying the longitudinal and lateral
stability of aircraft. Hence, it has been demonstrated that the approach
used in the present development lead~ to the commonly accepted result..
The solution and application of the differential stability equations have
been treated at length and reference is made to the extensive aeronautical
literature for a discussion of this

$ refs. 1, 5, 6, 7, 8, and 9).

EQUATIONS OF MOTION FOR
WITH 90° ROTATIOWL

In this paper the equations of

aspect of the subject (e.g., see

PROJECTILES AND MISSILES
AND MIRROR SYMMETRY

motion describing the flights of spin-
ning projectiles and symmetrical missiles are treated simultaneously, and
the results may be applied to either case. lbth projectiles and missiles
are mentioned in the title because the means of stabilization customarily
employed in the two cases depends on different physical principles, the
majority of artillery shell being spin stabilized and missiles being fin
stabilized. Despite this difference, the motions of both stem from a
common set of equations and each represents an application of the ge~eral
equations to a particular condition of flight. The terms, projectiles
and missiles, will be used interchangeably for the sake of succinctness,
but, although only one may be named, the other will always be implied.

.
Projectiles and missiles are consider~ to differ from aircraft in

two respects:

A (1) They are postulated to have 90° roll symmetry or its equivalent
in addition to a plane of mirror symmetry.
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(2)
metry is

.

The component of their angular velocity along the axis of aym-
allowed to be large; that is, they may roll continuously (or .

spin) around the axis of symmetry.

It is immediately evident that the freedom of the missile to spin
Will lead to difficulties if axes fixed in the missile are specified in
this case as they were for aircraft. The angle of roll, (p,will become
large and the components of the gravity force will vary tith the sine and
cosine of p. Eoth of these consequences will violate the requirement
that the dependent .variablearemain small during the flight, an essential
feature of a linearized theory. It is clear that the geometry postulated
in the aircraft caae must be modified before it is suitable for the devel-
opment of linearized equations of motion for projectiles and missiles.

The 90° rotational symmetry, the addition to the requirement of mir-
ror symmetry, provides the key to the probleti. It will be shown that the
aerodynamic force system is modified for this case so that the resultant
force and moment vectors are independent of the roll orientation (to first
order). Consequently, only one coordinate axis need be fixed in the
missile, that is, along the axis of rotational symmetry, the longitudinal
axis of the missile. One of the transverse coordinate axes will be pre-
scribed to lie in a certain space-fixed plane oriented so that the angle
of roll of the coordinate axis system is always zero. As a result, the
change in orientation of the coordinate axes remains small during flight,
and the variation of all of the dependent variables except the roll angle
of the missile is correspondingly small so that the basic requirement of
a first-order theory can again be satisfied.

Consequences of 90° Rotational Symmetry

Ninety-degree rotational symmetry may be readily visualized by pic-
turing the missile (or projectile) in two positions, one rotated by 90°
about the axis of symnetry with respect to the other. If the missile has
90° rotational symmetry, the two pictures will look precisely the same.
In mathematical terms, rotation through 90° transforms the missile into
itself. It is assumed in this paper that the axis of rotational symmetry
coincides with the longitudinal axis of the missile.

First. the consequences of rotational symmetry to the aerodynamic
force syatkm will be investigated. Let the -
in the missile, but place the X axis along
metry. The X axis is now a principal axis
vani6hes, furthermore Iy = Iz. It is clear

cients must have values such that a rotation

tore.by 90° about X will produce a s~milar
vectors of 90° about X, since ~ and M are

XYZ axes remain axes fixed
the axis of rotational sym-
of inertia so that Jxz
that the aerodynamic coeffi-

of the Y, ~Tj and ~ vec-

rotatxl.onof th: ~ and ~
functions of V, VT, and U

.

*-



NACA TN 33% 29

-’

.

and the aerodynamic configuration will be precisely the same after the

90° rotation, as re~uired by s~etryo The components of ~T are given

to first order.by VT = ~~+ 6%. It will be noted that ?T transforms
as ~ does. ~tily ~ will be writte~ down explicitly in the subsequent
analysis but VT will be included implicitly in all derivations in which
V, VT, and~ are involved.

Now, if ~ is any vector and Z* is ~ rotated 90° around the axis
of symmetry, and if the direction of rotation is taken to be from Y to z,
the components of ~ are related to the components of xx as follows:

AX* = Ax

1

4
+* Pi

Ay* = -Az (26)

AZ* = AT

Applying equation (26) to the /
aerodynamic force and moment vec- l@ ‘ N

./”

/
tors gives the relations between \ AZ* /
the components of the force and \

\
moment before and after rotation N

of which are “~Az

It
be
T*

(27)

should be noted that the values of the components after rotation must
computed using the rotated values of velocity and angular velocity,
and ~X, as indicated by the functional notation of equations (2’i’).
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.
Equatione (27) must hold for all valuea of ~ and ~. Hence, com-

Puting the components of V* and GX from equations (27) and substituting
the values of the components of ~and ?5 fr~m equa~ions (5), (6), and 9

(7) (neglecting second-order terms) and of FAandM from equations (11),
(U), ~d (15), the following equalities must hold between the aerody-
namic coefficients:

Cy = -c%
P

Cy ●

= _cz.
P a

Cyr = Cz
q

c~ = -c
P%

(28)

cn. = -cm*
P a

cCnr = mq

Cxa=cx. =cx=cy=cz =Cz=cte=cz=c
a !I P o B p r mo’cn~=

o)

Consequently, the equations for the component~ of

Cx = -Cxo
.

Cy = -Czap- Cz. g +CZQ
a q 2V

Cz= ~-Ca- CZ&- czqg

c1 = +Cl pl
PR

become

(29)
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Second, since the aero-
dynamic coefficients for rota-
tionally symmetric bodies have
been established, the varia-
tion of the aerodynamic coef-
ficients with rotation of the
YZ axes around X will be
investigated. I& the YZ
axes be turned through an
arbitrary angle A to a new
position Y@?_, as shown in
the sketch.

Relations between the
components of a vector X
along YZ and along ~Z#
are given by

Sketch (b)

Ay = Ay+ COS A - AZ+ sin A

Az = Az+ cos A + Ay+ sin A
1

Ay+ . Ay COB A+ Az sin A

‘=AzcosA-AysinAAz
1

Y

(30a)

(3ob )

Since the rotation is about X, the X

NOW, vector quantities themselves
coordinate axes; only their components
and R are not affected by rotation of

component of ~ is unchanged.

do not change with rotation of
along the axes vary. Hence, ~A
Y and Z; that is,

FA . F*+

Ii=@ 1 (31a)

Resolving equation (31a) into components and using equations (11) and
(12) which define the aerodynamic coefficients give

CXY+ cy~+ Cz% = ~+T+ Cy+z+ + Cz+%+

1

(31b)
Czm. CJ-+ cnE = CZ+7+ ~+~++ cJ-P-
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If ~+ and ~+ are resolved along Y and Z (eq. (30b)) and the components
are equated (eqs. (31b)), the following equqtions are obtained for the CIS ‘-
in terms of the C+fs and A.

8

Cx = Cx+

Cy = Cy+ cos A - Cz+ sin A

Cz. Cy+cos A+ C+8inA

\

I
cm = ~+ cos A- Cn+ Bin A I
Cn = Cn+ cos A+ Cn+ sin A )

(32)

The components of the aerodynamic forc~and moment along @ and %
are given by equations similar to equations (29) with all coefficients
and all variables marked with the superscript +. Using this set of
equatio~ similar to equations (29) for the C+lS and substituting into

this set the values of p+, a+, ~+, d+, q+, and r+ given in terms of
p, U, ~, ~, q, r, and A by equations (30b), one obtains the following
relatiorm between the aer-odynamiccoefficients a~sociated with the XYZ
axes and with the X&Z+ axes from equations (32)

-c% . -Cxo+

. .

-c.-&p- cz&2v
rlE+ G’zqE= +@+c-cza+~ - Cz; 2V

+ rl
Zq w

61
.

-c&a -czG~- Czq$ = -Cza‘a - cz&+g - +!&
c’% 2V

J3J
Clp 2V

+-J&
= Clp 2V

.
Q=c

.
c~a+c~~+cmq~ ~+G+ C~&+a& + Cmq+ &

bl
●

-c~ap rl
-cmJ3 + 13z + rx

-Cm&~+Cmq~= - Cm& ~+emq~

!

(33)

“.

Since equations (33) must hold for all values of $, a, $, ~, p, q,
and r, it Is immediately evident that the aerodynamic coefficients asso-
ciated with the XY+Z+ axes, the C+ts, must be eqbal to the aerodynamic ‘ “
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coefficients associated with the XYZ axes, the CIS. It may be con-
cluded, therefore, that the aerodynamic coefficients are invariant with

% respect to rotation of coordinate axes about the axis of symmetry. con-
sequently, the Y and Z axes may be oriented at will around the X axis
without regard to the orientation of the missile about X, since the aero-
dynamic coefficients are solely functions of the missilets external shape
(and such nondimen~ional parameters as Reynolds and Mach numbers) and it
has been shown that the aerodynamic coefficients do not change with orien-
tation of the missile in roll. In fact, the missile may be allowed to
spin about the X axis with respect to the YZ axes and the aerodynamic
coefficients will be unaffected.*

Another consequence of the preceding analysis,_which ~s immediately
evident, is that the aer~dymamic force and moment, FA and M, are also
invariant with respect to the orientation of the body in roll. The values
of ~A and E change, of course, with spin through the rolling moment,

p-L
hp ~~ and through the Magnus forces and moments, which will be discussed

shortly. .

A more adequate treatment of the consequences of rotational symmetry
than has been presented here has been carried out in references 10, 11,.
12, and 13. The general case of rotational symmetry about any submultiple
of 36@ is studied in these references in a most elegant and rigorous
manner and it is shown that the full set of aerodynamic coefficients isx. reduced to the set given by equations (28)and (29) for rotational symmetry
about all submultiple of 360° less than 1800, that is for an angle of
360°/ntith n = 3, 4, 5 . . . (any integer greater than2). Ninety-
degree rotational symmetry, or cruciform symetry as it i8 commonly called,
tB only a special case and was chosen primarily to aid in visualizing the
physical aspects of the analysis. Hence the phrase “or its equivalent”
means rotational symmetry about any submultiple of 360° less than 1800.
The 1800 case lies in between the aircraft and missile cases but will not
be treated in this paper (for an analysis of the 1800 case, eee refer-
ence 14).

Geometry, Conditions of Flight, and fimematic Relations

The geometry is shown in figure 2. Three sets of Cartesian coordinate
axes are used in developing the equations of motion, instead of two sets
as fomerly in the aircraft case. One set is fixed with respect to the
earth and is known as before as “earth axes.ft The second set is fixed

-“

%’he author is indebted toMr. C. H. Murphy of the Ballistic Re$earch
Laboratories for pointing out to him the roll invariance of the aerody-
nuic coefficients of a roll synmetric projectile or missile.
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partly in the missile and partly in space and i6 know-nas ‘tp8eudo-
stability axea.” The third set isfully fixed in the missile and is known
as “body axes.” The relative orientation of..thethree sets of axes is $

shown in figure 2. Other features of the geometry such as the locations
of the gravity and velocity vectors and the designations of quantities in
the figures are the same as in the aircraft gase and reference is made to
the previous section “Geometry” and to fi~es l(b) and l(c).

The earth axes are designated as before by XOYOZO. They are fixed
with respect to the earth, but, since the earth~s rotation is negligibly
slow compared to the angular velocity of the missile, they are considered
to be Galilean axes fixed in space. Their orientation in space is deter-
mined by two factors: First, the X. axis is alined parallel to the X
axis in the neutral position of the mi~sile; that is, the position for
which the angles CL,B, V, 6, aridq we taken to be zero. In other
words, the & axis is located by the initial conditions of the flight.
Second, the Y. axis is horizontal and points to the right (of an

.

observer facing forward) and ~ points down (but not necessarily verti-
cally down). As formerly, two locations are designated for the origin
of coordinates of the earth axes, depending on the component of the motion
being considered. For angular measurements, the origin of coordinates is
taken to be the ceuter of gravity of the aircraft at some particular point
along its flight path. For linesr measurements, the origin of coordinates

.

is located as,required by the over-all sche~e of measurement which would
be set up to analyze the flight of the missile. K.

The pseudo-stability axes are designated by XYZ. This set of axes
exploits the freedom brought by the syrmnetryof the missile to orient the
axes at will about the axis of rotational symmetry. The X axis lies
along the axis of rotational symmetry. The Y axis lies in the space-
fixed XOYO plane. Their origin of coordinates is at the center of
gravity. In other words, the X axis is fixed in the missile and moves
with it while the Y axis slides about in the XOYO plane. The po~itive
directions along the axes are as follows: X is positive forward; z is
positive down; Y is positive in accordance-with the right-hand screw
rule. Should the X axis happe~ to be vertical in the neutral position
of the missile, the orientations of the Y and Z axes (and the Y. and
Z. axes) become arbitrary and would be determined by the conditions of
the particular flight under consideration. It should be noted that these
axes do not roll, since Y remains in the X Y plane, and consequently
the Q and the derivative of ~ (dp/dt, d2&~t2, etc.) of the XYZ
axes are zero and remain zero during the flight. It should also be noted
that all three axes, X, Y, and Z, are principal inertia axes, as a con-
sequence of the rotational symmetry of the missile.

.

The body axea are desi~ated by y, ?!,~. They are firm~y fixed in
the missile throughout the flight and are oriented so that 1 lies along
the axis of rotational synnnetryand~ and ~ are coincident with Y and Z

,.
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at that point on the flight path which determines the initial conditions
of the flight (y, of course, is coincident with X at all times). Their
origin of coordinates is at the center of gravity.

The orientation of the missile in space iB defined by three angular
coordinates, two of which, ~ and 6, give the alinement of the pseudo-
stability axes XYZ with respect to the earth axes XO%ZO; and one of
which, cp,gives the alinement of the body axes T ~ S with respect to the
pseudo-stability axes XYZ (see fig. 2). If these angles are all zero,
both the pseudo-stability axes and the body axea point in the direction
of the earth axes. Any other orientation of the missile is reached by
two consecutive rotations of the XYZ axes~ starting with XYZ coinci-
dent with XOYOZO,

——
and one rotation of the 1 2 3 axes, starting with

i~~ coincident with XYZ. In defining the rotations, the point of view
is taken that the axes in question start in the position specified and
proceed in ordered seqzence to their final position. In particular, the
two rotations of the XYZ axes are noncommutative and must be taken in
,theorder listed.

* first rotation of XYZ. Start with XYZ pointing in the
directions of XOYOZO. Rotate about 20 through ~ brindng
Y to its final position.

e second rotation of XYZ. Rotate about Y through e, bringing
X and Z to their final positions.

P
———

rotation of i 5 s. Start with 1 2 3 coincident with XYZ.
Rotate about X through g.

The angles, $, 6, V, may also be defined as the angles between coor-
dinate axes and the intersections of certain planes. For the purpose of
these definitions it is considered that the origin of coordinates of the
XOYOZO axes is momentarily coincident with that of the XYZ axe~. The
point of view taken here is that the

———
XYZ and 1 2 3 axes are in their

final positions given by the orientation of the missile in space at the
moment in question. The sign of the angle is specified by giving the
axis about which the rotation is taken in going from the line named first
to the line named second in the definition. The axis of rotation is
listed in parentheses in each definition.

* angle between X. and intersection of XOYO and XZO planes;
also angle between Y. and Y (rotition about 2.)

e angle between intersection of XOYO and XZO planes and X;
also angle between Z. and Z (rotation about Y)

9 angle between Y and ~; also angle between Z and S (rotation
about X)
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and
and

It should be noted
symmetrical-missile
not the rotation of
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.
that the roll angle 9 in the spinning-projectil~
cases measurea the rotation of the body axea I ~ 3
the pseudo-stability axes XYZ. AS pointed out *

previously the XYZ axes do not roll.

It may be of interest to note that the angles, ~, 8, 9, are the
Eulerian angles as defined in the classical treatment of the motion of a
gyroscope (e.g., see section 43, “Heavy Symmetrical Top or Gyroscope,’!
of ref. 15). The axis X correspo~ds to the ~taxisof spin” (axiB of
rotational symmetry) of the ~oacope, and the axis Y corresponds to
the “line of nodes.”

The following conditions are postulated for the missile and for its
motion in flight:

(1) The missile has not only mirror symmetry, but also 90° rota-
tional symmetry, or its equivalent, the axis of symmetry being the X
axis.

(2) The magnitude of the velocity of’the missile maybe large but
the change in the velocity must be small. Accordingly, the velocity may
be represented by a constant plus a small perturbation; that is,
V=vo+u. (See eq. (2).)

(3) The angles orienting the pseudo-stability axes with respect to
the earth axis, V, 6, and locating the velocity vector, ~, a, are all
small.

(4) The Yand Z components, qand r, of the angular velocityof
the missile are small.

(5) The X component, P, of the angular velocityof the missile
may be large but the change in p must be small. Accordingly, p may be
represented by a constant plus a small perturbation; that is,

P=po +-p’ (34)

(6) The flight path of the missile is a perturbation on a linear
trajectory.

Conditions (2), (3),(4),and (5) may be summarized by saying that
the following variables must be small (e.g., have a numerical magnitude
of 0.1 or less) and hence are first-order quantities:

.

“.

(35)

.
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where Z is a characteristic length. Again it should be not~d that if
p, a, ql/2vo, and rZ/2Vo are first-order, then bz/2v0 and ~7/2v0 will
also be first-order. Also, it should be noted that Vo, c?~PO> and YO
may all be large.

Again it should be emphasized that, although the linear theory gives
an adequate description of the motion in flight of many projectiles and
missiles, there may be cases in which the second-order terms neglected in
the derivation of this theory are as large or larger than the first-order
terms retained. Consequently, the analysis of an actual flight should
include a check of the relative magnitudes of first- and second-order
terms. The point here is that in both the aircraft and missile cases the
a priori assumptions of the theory should be checked a posterior by an
analysis of the measurements.

As in the aircraft case, the equations of motion are derived from the
basic vector equations

d~ ~—=
dt

The components of the linear momentum, ~,and the velocity, ~,
along-the XYZ axes are given as formerly by the tabular listing of
equations (5).

(3)

(4)

In deriving relations for the components of the angular mmentum,
~, there are three angular velocities involved:

(1) ti

(2) E

(3) ~

It can be

.’

angular velocity of the missile with respect to the earth
axes, XOYOZO

angular velocity of the XYZ axes with respect to the
XOYOZO axes

angular velocity of the missile with respect to the XYZ
axes

shown that

G .~+ti (36)

The components of ~ are given by equations (7b) with q = @ = O,
since the XYZ axes do not roll. For convenience in computing the
relative magnitudes of terms in the eqyations of motion, these components,
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Plq?r? WY be written= follows) expanding sines and cosines and retaining
.

only first- and second-order terms:

1

F
ax. @r

(37)

Since the T and X axes are coincident, the components of G are
given by

Wz=o )
(38)

Substituting equatio~s (37) and (38) in equation (36), with JXZ = O,
gives the components of H and fi along XYZ in terms of ~, e, and ~
by (correct to second order)

.

(39)

In equations (39) the transverse components of ~, Hj and Hk, are written
as IYq and Izr. Now, it can be shown that rotational symmetry requires
that Iy = 12. Consequently, a single value may be assigned for the
transverse moment of inertia. This fact is used in deriving and solving
the equations of motion for symmetrical missiles& In ~eriving equations
for P, a, q, .9,and ~ the rates of change of Mand H will be computed
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with respect to the XYZ axes and,
transformed in order to account for

39

hence, equations (3) and (4) must be
the movement of the XYZ axes. The

transformation for the mte of change of any vector I from fixed to
moving axes is given in the missile case by

~=g+~x~
dt

(40a)

where ~ is the rate of change of ~ measured with respect to XH axea

and E is the
(earth) axes.

angular velocity of the XYZ axes with respect to fixed
The components of the transformation are given by

Mix
—=
dt

& + qAz - rAy

dAy

dt
—=~y+rAx

I

(40b)

dAz
—= iz - @x
dt J

.

Aerodymarnicand Gravitational Force Systems

Y

Ae in the aircraft case, the resultant external force ~ of equa-
tion (4) is the mm of the aerodynamic -d gr~vititional force~, as given
by equation (10), while The external moment M of equation (5) is so~elY
an aerodynamic moment.

Concerning the aerodynamic forces and m~ents~ it is ass~ed> as_
form~rly, (a) that the components of the resultant force and moment~ FA
and M, are given by equations (U.) and (U); (b) that the coefficients>
thee CTS in equations (11) and (12), are functions of the variables ~,

~) BY ~> PY ~) md r; and (c) that these functions may be expanded in a
series in the variable named, where the general formula for any coeffi-
cient, Ca (a = X, Y, Z, z) mj n), is given by equation (13). Again, the
coefficients of the series) the aerodynamic coefficients> are ass~ed ‘0
be independent of the dependent variables named and to be functions only
of the bodyfs external contour and of such fundamental aerodynamic para-
meters as Reynolds and Mach numbers.

o

In the aircraft case, al-lof the variables) ~~ ~~ P) ~) P) q~ and ‘~
.“ are assumed to be Sma117 and consewentlyy all quadratic tem in the

series expansion of the aerodynamic coefficients (eq.(13)) are seco~d-order
and may be neglected. However, in the missile case one of these ~ariables~
p, may be large and the quadratic terms of the series which involve p
may be first-order and must be included in the equations for the aero-
dynamic forces and moments, equations (28)and (29). There are also
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higher-order terms in p which are first-order in the other variablee .

and therefore should be included from a strictly logical standpoint. Hclw-
ever, the available experimental data indicate that the forceB and moments
in question vary linearly with p to within the accuracy justified by a

*

first-order theory. Accordingly, only the quadratic terms involving p
will be included. The general formula for the quadratic terms of any
coefficient Ca) which involve p, is given as follows, where a stand8
for X, Y, Z, 1, m, or n:

.

c% 2V 2V
q2 pz +——ZE+%W2V2Vti~ + Capp 2V 2V

rl pl
carp 2V 2V

—— (41)

The quadratic term6 involving p are known in the ballistic nomenclature
as the Magnus forces and moments.

-—

The conditions of symmetry require that many of the Magnue coeffi- .

cients vanish. Furthermore, rotational symtnetryestablishes relations
between coefficients associated with motions in the pitch plane (XZ) and
in the yaw plane (XY). The Magnus terms remaining are listed below: *

*

Cx ()pl 2
- Cxpp ~

.
Cy Ckqla 2V

ql pl——QEL+cyQ2v2v~ + CY;P2V 2V

.

Cz ~PJ rl pz—— -
- Czpp 2V - %J% Czw 21J2V

——

c1 (There are no rolling-moment Magnus terms)

cm
blpl+% rl ~

cm~p~ ~+ cm~p pv 2v rp ~ 2V

c~
&z pl ql pl——+cnQ2v2v ——

CWP%+ CGP 2V 2V..

(42)

‘.

The equalities between coefficients are given by
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CYGP = Czpp

CY;P = Cz.
PP

(43)

JCn~ =- Cmrp

The aerodynamic forces and moments specified up to this point
(eqs. (28), (29), (42), and (43)) arise from the interaction of the air
with the missile’s principal aerodynamic surfaces, which surfaces are
assumed to conform to ths requirements of mirror and rotational symmetry.
However, in practice there may be small asymmetries in the missilets
contour or asymmetries due to control-surface deflections, and under
certain circumstances it may be desirable to include aerodynamic forces
and moments caused by the asyrmnetries. Forces and moments of this nature
will be omitted from the main development of the equations of motion
carried out in this section. However, they are described in Appendix B
and their effect on the motion is discussed briefly. For a more complete

. discussion of the consequences of aerodynamic asymmetry see reference 4.

In sumnarization of the aerodynamic contributions to the external
v force and moment, the conventional aerodynamic coefficients are given by

equations (28) and (29) and the Magnus coefficients by equations (42) ad
(43).

The remaining contribution to the external force, the force of
gravity, FG, may be resol~ed at once along the XYZ axes frcm equa-
tions (17), since q = O for the XYZ axes:

FGX=mg(- sin 70 - f3cos 7.)

1
FGy = mg(~ 8W 70)

FGZ = mg(- e sin 70 + cos 7.)
J

Derivation of the Differential Equations of Motion

(44)

.“

The differential equations of motion for the projectile and missile
cases are derived in a similar manner to the aircraft case. The kinematic
relations and the equation= for the external force and moment are
substituted into the basic vector equations (3) and (4),’resulting in
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six scalar equations, three associated with components of the force and
*

three with components of the moment. Specifically, the substitutions
involved are these: A

Equations (3) and (4) are first transformed from fixed to moving
axes by equations (40b). Equation (3) for the linear momentum is devel-
oped by equations (4) for the kinematic momentum relations and by equa-
tions (10), (U_), (28), (29), (42), (43), and (~) for the external force.
Equation (4) for the an~lar momentum is developed by equations (39) for
the kinematic momentum relations andby equations (12), (28), (29), (42),
and (43) for the external moment.

Again, the equation associated with the axial drag force (Fx) is
treated as a special case and derived by resolving the vector equation (3)
along the ~ axis rather than the X axis in order to avoid the
(qAz - rAy) term. The equations associated wit~ the side force (Fy) and
the normal lift force (Fz) contain a term in mV which is given precisely
by the axial drag equation. However, in the side-force and lift equa-
tions, thi~ term is approximated by -Cx pV2S\2, since it is believed that
the remaining terms in the drag equation”are negligibly small under most
circumstances. Full details of this step are given in Appendix A.

The next two steps in the derivation are the same as in the air- .

craft caee. The equations are linearized by separating into first- and
second-order (and higher in order) terme ad retaining only the fir~t-
order terms. The details of this step are given in Appendix A. Nondimen- ~.
sional time and concise notation are introduced next.

The final step in the derivation differs from that taken in the
aircraft case in one respect and is similar in another respect. The neu-
tral attitude of the missile is not the steady-state glide of the air-
craft but is one in which the longitudinal axis of the missile points in
the direction of motion (a = ~ = O). Since symmetry requires the cZo
coefficient to be zero, the main lift force due to the effective angle of
attack of the aerodynamic surfaces is lost in the neutral attitude, and
the lift, drag, speed, weight, and flight-path elevation will not be in
balance with the missile in this position. Consequently, the gravity
terms cannot be replaced with correspondingaerodynamic terms as in the
case of aircraft. On the other hand, it is appropriate to replace the
factor, Za, by the lift &nd drag factors, zaL, XOD, utilizing thereby the
static characteristics of the missile measured in a wind tunnel. Symmetry
suggests that it would also be appropriate to replace the factor yP by
the corresponding side-force and drag factors, yPL, XOD, which would be
measured in a tunnel. The reasons for making these substitutions are the
same as in the aircraft case and reference is made to the discussion -

“.

leading up to equations (19). The corresponding equations for the missile
axe

.
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1

Substituting equation (28) into equation (45a) gives the relation between
the side-force and lift factors of a symmetrical.missile from wind-tunnel
tests, namely

ypL = -Zd (45b)

The six differential equations are listed below in the same order
as in the aircraft case: the three force equations, axial drag, side
force, and.normal lift force, and the three moment equations, roll, pitch,
and yaw.

1

Wcip - vy@L - vy@D% = o (47)

(1 + z&)h + ZdCL - (1 - zq)D6’+ X& +

.“

D2cp
()

u
- lp~ ‘ Vlp ~ ‘0 (49)
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Discussion of the Differential Equations of Motion
.

.

If equations (46) through (51) for the projectile and missile cases
are compared with the corresponding equations (20) through (25) for the
aircraft case, it is evident that they can no longer be divided into two
separate and distinct groups in the same way that was possible in the
aircraft case. Equations that formerly involved only the set of variables
U/Vo, a, and @ or the set ~, P, andl’ now contain members from both
sets. Closer in~pection discloses that the new member~ in the aircraft
equations are all multiplied by the mean spin, V, and hence the spin is
shown to be responsible for the interaction between that phase of the
motion associated with u/Vo, a, and @ and the phase associated with q,
~, and ~. In a word, the spin couples the longitudinal and lateral
motions.

Although the six equations can no longer be separated into two psrts,
one defining the longitudinal stability and the other the lateral sta-
bility it is possible to divide them into two distinct ~oup~. Equa-
tions (46) and(k9) involve onlythe variables u/Voandp andconstitute
One goup. Equations (47), (48), (50), and (51) involve only the vari-
ables ,0,a, 6, and @ and constitute the other group. Furthermore, it
will be shown that the later group can.be reduced from four equations to .

two equations by introducing complex variables. Consequently, the differ-
ential equations of motion for projectiles and missiles can be reduced to
two distinct pairs of equations with each pair involving two dependent -v

vuiables. The differential equations will be reformulated in this manner
and will be solved in the following section.

It may be instructive to return at this point to a statement made in
the introduction that “the aircraft equations do not describe the gyro-
scopic nutation and precession of a spinning shell, and the projectile
equations do not describe the phugoid oscillation of aircraft” and to
diBcuss briefly the reasons for this statement. The phugoid o~cillation
of aircraft will be considered first. Equations (20), (22), and (24) may
be simplified to give the es~ential features of the phugoid as follows
(see eqs. (10-100) of ref. 5):

()u‘~
+Zoe=o

()2Z0 + -De=O
o

(52)

(53)

Comparison of equation (52) with equation (46) and of equation (53) with
equation (48) shows that the ZOG and 2Zo(U/Vo) terms are missing from
equations (46) and (48) for the missile and projectile case. Now, the
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Z. factor is

45

the constant Iift coefficient that arises from the balance
o: weight by lift required by the equilibrium condition,of a steady-state
glide. Since the equilibrium condition of projectiles and ruissileeis
with their lift zero (or what corresponds to an equilibrium conditfon,
since they ~e never in a truly steady state in flight with all dependent
variablee zero, except in a terminal velocfty vertical dive), the Z.
terms vanish from the projectile and missile equations and they do not
predict the phugoid oscillation.
rather thsm flown though the air.

In other words, projectiles are hurled

The ~oscopic nutation ad precession of spin-stabilizedprojectiles
will be considered aext. The essentials of the ~oscopic motion are
shown if the
moment given
“overturning

i

only external force or moment acting-is ts&en to be the
by ~, referred to in the ballistic nomenclature as the
moment.fi In this case, the equations of motion reduce to

D2i3+vKO~-m@=0 (54)

D=Y- vKD.e- n~p = O (55)

Compsrimg equation [54) with equation (24) and equation (55) with
equatio~ (25), shows that the vKDvand vICIM terms sre missing from the
aircraft equations. Since these paticular terms =e essential to the
~oscopic motion (as will be shown shortly), it is clear that the air-
craft equations cannot predict the motions of rapidly spinning projectiles.

Dynamic stability requirements for spin-stabilized projectiles are
not as widely known among aeronautical engineers as thoflefor aircraft
and it may be informative to discuss this aspect of the subject briefly.
The essential features of the ~oscopic precession smd nutation can be
developed from equations (54) and (55). In this simplified case, the
traj~ctory is a straight line, since there are no external forces; X, ~,
and V are all coincident; and the singlesof pitch and yaw are related
to the angles of attack and sideslip as follows:

P=-*

I

(56)
a.e

Using equations (56) and the equality ~ = -u fr~ equations (28),
equations (54) and (55) become

DQa-v~~-~a=O (57)

D213+v~ -@=0 (58)
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Equations (57) and (58) can be reduced to a single equation in the
cmnplex variable,

E.= f3+icL

namely,

D2~ - iV~6 - @ = O (59)

where i(=) has the significance of an accounting parameter permitting
the simultaneous solution of the pitch and yaw equations.

The solution of equation (59) is

Sit+
~=Ale +

where Al and AZ are constants which

given by

S=t+
A2e (60)

are functions of the initial con-
ditions &d of ‘Sl and S2, and S1 and S= are given by

K%2+ 4m
S1 = s~ =

ivK -~-K2v2 +
2 2

It should be noted that m. is positive for ~pin-stabilized

.

projectiles
(i.e., the center of press&e is ahead of the center of gravity; if ~
were negative, the projectile would be arrow stable and spin would not

-’

be needed for stability) and the radical will be either real or imaginary
depending on whether K%2 is smaller or greater than ~. The other
factor in eqyation (61), ivK, is always imaginary and hence the motion is
always an oscillation.

Now, if the radical in equation (61) is real, the S~s will be
complex and one of them will have a positive real part. Hence,the
oscillatory motion will.diverge. On the other hand, if the radical is
imaginary,-the S~s will be p~ely imaginary, and the motion will be
an oscillation at constant amplitude, which
in this simplified case since damping terms
sequently, the criterion for stability is

IF’Y2>hna

is the stable
have not been

type of motion
included. Con-

In ballistic nomenclature, K%2/km~ ia called the “stability factor.”
In other words, the analysis of the simplified equations of motion has
led to the well-known requirement for stable spinning ehell, namely, that
the stability factor must be gxeater than unity.

“.

.
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The complete differential equations of motion are solved in the
following section of this report. In the solution, the equations are
transformed fron time to distance aa the independent variable. However,
it can be shown that the nondimensional equations in t+ are the same
as those in X+ except for minor differences in -fficientsj which will
be accounted for in the development that follows.

The integrated equation for the g(t+) history will have precisely
the same form as equation (93) for the ~(x+) history. It can be seen
that the complete ~ equation has the ssme form as the simplified equa-
tion (@) exce~t for an additional term, the constant, dm. For the
5(x+)‘equation-(93)
and the aerodynamic
the ~(t+) equation

where

the relations betwe& the exponen~s ~n the equation
factors are givenby equations (162) ad (163). For
(@) the corresponding relations are given by

S=R = TI + T2, S==TI-T2

vK(l+u) vK(l - u)
sl~ = ~, s= .

2 1

(ZA - mq - m&)
Tl=-

2

aPP
‘d

+mq+m&+K
T2 =

2(Y

The above solution
is valid for -M<s<O,
that 1s, for missiles
with arrow stability cor-
responding to mu being
negative, and for
l<s<+m, that is, for
spi~-stabilizedprojec-
tiles with a stability

.“ seater tham unity. The

(J. J1-*

@v2
S = ~ = stability factor

c

1.0

0.0 s

—— —

values of IS correspond-
ing to values of s are
shown in sketch (c). The
solution iS not valid, _

(62)

—.

0.0 1.0 +

Sketch (c)
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however, in the region O < s <1 (shown crosshatched in the sketch) for .

which a is imaginary.

Equations (62) are in the most suitable form for spin-stabilized
.

projectiles (s >1). However, they have a clearer physical significance
for missiles with arrow stability (ma< O) if they are rewritten as
follows:

S~=T1+Tz

S==*
(
vK+~

)
-hma+ v?K2

where

? &R = T1 - T2

s 1
) 21=5 (

VK -
)

{-4ma+ v?K2 1(63)

*
.

T2 =
VK

2J -kma+ V2K2

Equations (62) show that the
spin-stabilized projectiles, that
oscillation, are

criteria for the dynamic stability of
iB, the requirements for a convergent

s>l(ora>O)
)

(64)

.’

The term T1 is normally ~egative. Hence, it can be seen that dynamic
stability requires that T2 < T1 regardless”of the siw of T=. In
practice, the maguitude of T2 depends on a-balance between the lift,
Zd; the damping moment, mq + md; and the Mawus moment) mpp. That sPin- *.
stabilized artillery projectiles are in reality fully dynamically stable
is a fact that has been thoroughly verified by experiment.

Lift and Magnus moment are both vital e&ments and must be included
in the equations of motion in order to derive the correct criteria for
dynamic stability. If they are omitted, equations (62) take the form
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m&) is negative,
omitted would lead

Now O<cr<l for l<s<m; hence,

()
1++>0

()1 -L<o
G

Therefore, one S will be positive even though (mq +
and a simplified analysis with lift and Magma moment
to the erroneous conclusion that spin-8tabilized artillery projectile~
cannot have a convergent oscillatory motion (see section on ‘Application
of Results: Missiles” of”reference 14).

APPLICATION TO TEE FREE-FLIGHT TEST FACILITY:
THE AERODYNAMIC RANGE

During the past two decadea a new facility, the aerodynamics range,
has been developed for measuring the aerodynamic properties of bodies in
free flight. The range is properly classed as a flight-test facility,
since the aerodynamic meamrements are made during a completely free
flight of the model. Accu,raterecords are taken of the modelfs movements
along a certain length of its flight path and the aerodynamic characteris-
tics are determined from these records.

The experiment consi~ts of recording the positions, angular orienta-
tions, and times of the model at a 8eries of stations placed along its
flight path through the range. Photography is the primary medium used for
recording, since it is a precise technique and one which does not inter-
fere in anyway with the modelts flight. An electrical spark discharge
generates the light for the photography and its duration can be made BO
short that the picture is nearly instantaneous in relation to the movement
of.the model during the time of exposure. Hence the photographic record
gives the x, y, z, ~, 8, and ~ of the model at the particular instant
of time that the spark produces the exposure. The remaining flight datum,
t, the time at which the photograph is taken, is measured by a special
hi@-precision chronograph. To enumerate specifically, the experimental
data from the flight records are y, z, Q, e, and Y at a series of x
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and t along the trajectory. In addition, measurements are made of the
model’8 physical properties, that is, its dimensions, weight, center of
gravity, and moments of inertia, before flying it in the range.

To the author?s knowledge, there are seven aerodynamics ranges in
operation at the present time: The Aerodynamics and Transonic Ranges and
the Controlled Temperature-Presmre Chamber at the Ballistic Research
Laboratories (U. S. Army), the Pressurized and Aerodynamics Ranges at the
U. S. Naval Ordnance Laboratory (U. S. Navy), the Aeroballistics Field
kboratory at the U. S. Naval Ordnance Test Station (U. S. Navy), and the
Supersonic Free-Flight Wind Tunme12 at the Ames Aeronautical Laboratory
(NACA). The forerunner of all these facilities, the Aerodynamics Range
at the National Physical Laboratory, Teddington, England, is dismantled
at the moment of this writing, although it is understood that plans are
in effect for its reconstruction at Fort Halstead (!Sent,England).

The aerodynamics range is unique among flight-test facilities not
only in its measurement techniques but also in the conditions under which
its testing is carried out. The extent of the flight path is severely
limited. The region of space under observation vsxies from a length of
15 feet with a cross section l-foot square in the smallest range to a
length of 750 feet with a cross section 27-feet square in the largest
range. Testing is confined to flights for which the trajectory is nearly
a straight line and the changes in velocity and angular inclination of
the model over the length of the range are small. Most of the models
themselves are either simple bodies of revolution or bodies with cruciform

wlngO and fins having 90° rotational symmetry. Conse@ently, test condi-
tions in the range agree with the flight conditions assumed for projectiles
and missiles in the present analysis, and the equations derived herein
describe correctly the linear and angular motions of models flown through
the range.

Two steps are required to obtain the aerodynamic characteristics of
the model from the flight-test data. First, the constants in the equa-
tions of motion are evaluated to give the best possible “fit” to the
experimental measurements. Second, the aerod”jnmde coefficients are cou-
puted from certain of these constants. In this section of the report, the
differential equations of motion will be solved for the particular test
conditions prevailing in the aerodynamics range, the process of “fitting”
the equations to the test data will be discussed briefly, and relations
between the constants of the equations and the aerodynamic coefficients
of the model will be derived.

%
.

●
✎

‘At the Ames Laboratory, the test chamber of the range IS the work-
ing section of a supersonic wind tunnel. !I’husthe Ames facility combines

‘.

the wind stream of a supersonic wind tunnel with the measurement techniques
of the range. The purpose is to carry out free-flight testing at much
higher Mach numbers than would be possible instill air at normal room

4-

temperatures (see ref. 16).
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Equations of Motion

The conditions of flight are modified slightly to fit the particular
circumstances of testing in the range. The trajectory is so nearly hori-
zontal that Y. willbe considered equal to zero in the XG and ZG fac-
tors, thereby making

(66)

The variation of drag with spin is BO small according to the limited
experimental evidence available (see ref. 17) that the XPP terms may
be neglected in the drag-force equation, (46), compsred to the ~ term.
However, should the condition~ of any particular test be such that the
XG and xpp terms are not truly negligible, they may be readily included
in the general solution of the equations of motion since both are linear.

The independent variable in the equations of motion will be changed
from time to distance and the equations transformed accordi~gly. It haS
been claimed that distance is the natural var,iablerather than time (see
ref. 11). From the experimental standpoint, the distance is recorded in
every photograph while time is recorded only at a few, widely spaced sta-
tions along the range. From the theoretical standpoint, the inertial
forces vary with the square of the time and, in transformation to distance
as independent variable, with the square of the velocity. Now, the aero-
dynamic forces also vary with the square of the velocity, so it might be
expected that the velocity would disappear as a primary parameter from
the transformed equations.

These advantages are realized in the case of the rolling motion
(eq. (49) for 9), for which distance is the better variable on which to
base the analysis than time. The velocity no longer appears explicitly
in the Q(x) eq~tion and the speed range over which the equation correctly
describes the rolling motion is limited only by the variation of the aero-
dynamic coefficients with Mach and Reynolds numbers. Furthermore, the
basic differential equation for the rolling moment is linear in q and
contains no first-order term involving the other dependent variables. It
is not necesssry to limit the variation in the value of Q in order to
linearize the equation and its solution is valid for large changes in P
as well as for small changes. Also the rolling motion is independent of
the other motions and may be treated as a special case. Accordingly) a

*’ constant aerodynamic rolling moment, CZO, is introduced in order to
include the class of missiles having aerodynamic surfaces with aileron
deflection. Of course, aileron deflection violates the requirement of
mirror symmetry but is permissible in the rolling-moment equation since
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relaxing this requirement introduces no new terms in the rolling-moment
.

equation.. It is to be understood in the subsequent analysis that only
the p(x) equation is valid for large changes in spin and possibly also .

in velocity; all other equations are still subject to the limitation of
small changes in both spin and velocity.

Actually, the advantages of using distance rather than time are not
as great as might be supposed. The experimental data are reduced in such
a manner that time can be computed easily and accurately for all of the
photographic records. The transformed equations, with the exception of
the rolling-moment equation (49) for q, Btill contain terms involving
the velocity, and it is necessary to postulate that the change in velocity
be small in order to linearize the equations of motion. In fact, the
equations for the transverse displacement and for the pitching and yawing
motions are practically identical for either the nondimensional time or
the nondimensional distance as independent variable, and flight data from
the range could be analysed on either basis. However, in conformity with
accepted ballistic practice, distance will be selected as the variable
used in developing the equations of motion for the range.

In developing the transformation from time to distance it will be
recalled that the x distamce is measured along the space-fixed axis,
Xo. On the other hand, the velocity is strictly determined by the rate

.

of change of distance along the tra~ectory, that is, letting s be the
arc length along the trajectory

V=$

Hence, the relation between V and x is giyen

where

v=(-)(@
ds (q T-XO)2
—.
dx

see+-ilo=l+
2

t

by

+...

Now, the angle between ~ and X. is normally very small, being less than
2° (0.03 radians). Therefore the term (9~o)2/2 is of the order of
magnitude of 0.001 ‘orless and may be safely neglected compared to unity.
He~ce, the velocity

Using equation (67)
to distance for any

may be approximated by

(67)

for the velocity gives t~e transformation from time
“.

depeadent variable A
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(6-8)

d2A _ ~2 & dV dA——
dt2 d&’ + dt dx

~

Now dV/dt is given by equation (A18), (since the Xpp and XG terms
are neglected) a= follows

dV Dsx
.-*V2

%- (69)

After eqyation (@) i6 substituted in equation (68) the transformation
becomes

dA vdA—=
dt z

1

(70)
d2A @x.—= v2fi.—
dt2

~2 g
dp m

Distancea are nondimensionalized in a manner similar to times by

defining a base distance) V2J and denattig the nondimensional distance
by a plus; that is,

x+_x——
~1

+_YY -~
1

(71)

z+_z
p2 J

Differentiation with respect to x+ is denoted by ~; that is, for any

Hence, the nondimensional form
is given by

/\

~A=~
dx+

(72)

of the transformation from time to distance

(73)
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One poesible procedure at this point would be to sub~titute equa-
tion (73) into equations (46) through (51), thereby transforming directly
from t+ to x+. However, it can be seen that neither V V.\/) nor (V/Vo)2
is a common Factor In any of the equationa of motion, 46) through (51),
and that, if this procedure is followed, it will be necessary to make
further approximations in order to linearize the equationa. A better
procedure is to return to the exact vector equations, (3) and (4), the
kinematic relations, equations (39), and the moving-axea transformation,
equations (40), to tranaform these from t to x using equations (70),
and to derive the nondimensional linearized equations in x+ as formerly
in t+. The detailed steps are carried out in Appendix A.

.

Two new equations in addition to the set corresponding to equa-
tiona (46) through (51) are needed for the analysis of flight tests in the
aerodynamic range. The trajectory is recorded and serves to determine
the aerod~amic lift coefficient of the model. The position of the model
transverse to the X. axis i6 given by the y and z coordinates of its
center of gravity measured along the Y. and Z. axes. In the derivation
the force system is simplified by retaining only the lift, drag, and
Magnus aerodynamic forces together with the ~avity force, since experi-
ence in reducing experimental data from the range has shown that the

.

contributions to the transverse motions by the remaining components of the
aerodynamic force are less than the errors of measurement and, hence, may

*

be neglected. The detailed derivation of the y and z equations is given
.

in Appendix A. ..

The eight differential equations of motion are listed below with the
first three being the equations for the trajectory (x, y, and z) and the
remaining five for the transverse velocity (P and a) and for the angular
motion (v, e, and V), It will be recalled that rotational symmetry estab-
lished certain equalities between aerodynamic coefficients associated with
motions in the pitch and yaw planes ad, taking advantage of this fact,
the notation will be simplified by using only the aerodynamic coefficients
associated with the pitch plane. The selection is arbitrary, of course,
and the yaw plane coefficient~ could have been chosen just as well. ,

&x++xo (l+x#)-2=o (74)

Dfy+ + z&JJ -~z~pu “ o (75)

(76)Elzz+ + za~cl+ vzppP “ zfJ

(l +z&)lDj3+z~p+ (l- zq)n*-v~Du-vzpp~+vzm~e ‘o (77)

“.

.
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(1 + z&jDa+ Z@a - (1 - ‘q)De + ‘z~~~ + ‘z~p~+ ‘zr@$ = ‘G (78)

ID% - (2P + x~)Dq = 2.

Inspection of equations (75) and (76) shows that

1> ~L) and ‘ZPP of ~2@, P, and a, respectively, in equation (75)’
reappear as the coefficients of ~2z+, u, and ~ in eq~tion (76). The
same similarity of coefficients occurs between equations (77) and (78)
and between equations (8o) and (81) and suggests that the three pairs of
equations may be reduced to three single equations by a proper choice of
dependent variables. This, in fact, is the case; by defining three new
dependent variables

(79)

v(K - m~)lIDV = O

(80)

v(K - mv)HD3 = O

(81)

the coefficients,

A.y++iz+
\

~=$- Jie(fll=e+iv) .

and including equations (7i) and (79) in order to complete the set of
differential equations of motion} equations (74) through (81) reduce to

D2X+ + X. (1 + xot+)-2 = O (83)

EPA + ZEE = izG (84)

Zp-1 +Z.IID5 + z ‘!,= izG
5 E

(85)
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where
Z5 = zaL + ivz

BP

z*
& = 1 + ‘~ + ‘VZ6P

1
27=1 - zq + ivzrp

\ (08)

‘E = ma
+ ‘mPP

m. = m& + ivm.
E PP

mV . mq + ~ + iv(JS- mrp)
~

The physical si~ificance of the complex dependent variables, b, ~,
and q, ia evident if they are considered to be vector quantities. The
quantity A is the vector displacement of the trajectory transverse to —

~he X. axis. The quantity ~ is the component of the-vector velocity,
V, transverse to the model~s axis, X; in ballistic nomenclature ~ is
known as the “vector yaw.” The quantity iv is the component of a unit
vector along the modelts X axis transverse to the space-fixed X. axis,
thereby defining the orientation of X axis in space. Because of its
rotational symmetry, the modelts motion in flight can be de6cribed by
these three vector quantities together with the roll angle, q, and the

.

time-distance history, t+(x+).

,

The solution of the differential equations of motion is quite
straightforward. The coefficients in all equations are constants. Equa-
tion (83) contains only the dependent variable x+ and, although not

—

linear, may be integrated in closed form. Equation (84) is linear in the
dependent variables A and ~ and may be integrated once a solution has
been obtained for $. Equation (86) contains only ‘&e dependent variable,

v, is linear in q, and maybe integrated directly. Equations (85) and
(87) form a pair of simultaneous, linear differential equations for ~
and rj and may be solved by a variety of methods; for example, by the
use of the Laplace transform (see ref. 18).

The exact solution to the x+(t+) equation (83) is given by

x+ . x -~
o -Lrt(l+~t+) (89)

The logarithm in equation (89) is expanded in a series, since ~t+ is
ordinarily a small quantity, and X is expressed as a function of t
rather than x+ as a function of t+ sO that V. can be determined
directly from the time-distance records as ia required for the computation

~.

of T. Since X+=O,V=Vo, cP=90~@ =V,A=Ao)~A=(~~)oj
.

? = 3., q= 7., and ~TI= (~q)oat t+ = 0, the solutions to the differ-

ential equations of motion (eqs. 83 through 87) are given as follows:
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-“

x . a. + alt + aatz + a~ts (90)

A=

,S(-+d”fi’) ‘“)

b. + b=x+ + b2(x+)2 + b

+ + cze
C3X

~=e~+c~x (92)

~ = do + d=ed2x+
‘Qx+

+ dae

q = f. + fix+ + fze
dzx+

+ faeLx+

(93)

(94)

where

a. = constant required to adjust the zero of the distance scale to coin-
cide with the zero of the time scale,

x.

al =

a2 =

a3 .

b. =

b= =

bz s

b= =

co =

c1 =

(95)

(96)

(97)

X0 constant) (98)

(99)

+s ) (103)
‘4

[

V(2P +-) + z~
90 -

(2P + @)z 1

(101)

(102)

(103)

(104)
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V(lp +X0) + lo
C.2=

(lP + XO)2

C3 =Zp+xo

izGmq
do =-—

Z.d2d4
E

p(dz)
dl = da(dz - d4)

P(d~)
d= =

dq(d4 - d2)

[

iZG z~ [( )
1

~q ~ + mg~o

}

izGm7
P(s) = 5.s2 + ~-@o- S -—

20 z,
E 5

S = d2,d4

d2,dA = roots of. R(S) = O

R(S) = (S - d2)(S - d4) = O

(
‘k - ‘vz~

R(S) = S2 +
) -(

- ‘nm~ ~ ‘vz~ + =Vmg
z.
t

z-
E )

Q(d2) -
fo=~o -

Q(dq)

d22 (d2 - d~) d42 (d4 - da)

izGm~
f&.-—

z~d2d4

f2 =
Q(a~)

d22 (d2 - d4)

fs =
Q(d4)

d42 (dz - da)

(105)

(106)

(107

(108)

(109)

(110)

(ill)

(U-2)

(113)

(llh)

(115)

(116)

(117)

(118)

,
.

.
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.

Equations (90) through (94) with the constants defined by equa-
tion~ (95) through (119) describe completely the motion of a projectile
or missile flying through the range under the conditions postulated. They
form the basis for determining the aerodynamic properties of the model
from an analysis of the flight records.

Reduction of Flight Data

The first step in the reduction of data is the computation of the
constants appearing in the equations of motion. It is assumed that the
equations represent correctly the actual motion of the model and that my
differences between the theoretical and experimental values are due to
errors of measurement. The problem is to determine the values of the con-

* s.tants,the ale, b’s, c’s, d’s, and f’s, that give the best fit of theory.
and experiment. Specifically, the best fit normally means that the sum
of the sqyares of the

. is a minimum.

In principle the
the constants by some
initial set through a

residuals between the computed and measured values

procedure is to compute an initial set of values of
approximate analysis of the data and to correct this
series of iterations. The sum of the s~ares of

the residuals is ~omputed at each step of the iteration, and the varia-
tion of the residuals with time or distance is studied in order to detect
any systematic trends. If the process is convergent, it is carried out
until the residuals are random in their distribution and until the sum of
their squares approaches a steady, minimum value. Then, if the average
value of the residuals after the final iteration is of the same order of
magnitude as the estimated experimental error, the fit is considered to
be satisfactory.

It should not be supposed that any one set of procedures has been
drawn up to reduce the data from aerodynamic ranges. The computations are
detailed and lengthy, and each range has its own unique methods adapted
to the peculiarities of the apparatus and to the uses for which the data
are obtained. Reference is best made to the facility of interest for a

.* description of the tiethodsin use there.

.
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The final step
modelta aerodynamic

NACA TN 3350

in the reduction of data is the computation of the
coefficients from the constants of ita motions. The

relations between the two are contained in equations (95) through (119).
However, the equations named are formulated from the standpoint of com-
puting the motions after the aerodynamic properties and the initial con-
ditions have been given. It is desirable to transfomn these eqyations
and to simplify certain of them in order to facilitate the computation~
involved in this step.

With regard to the constemts in the x(t) equation (90), the a’s,
the velocity and time factor are given by:

V. = al

and the drag coefficient factor by:

2Ta2 2Pla2
~. -—= .—

a= a 12

(120)

(121)

(122)

t

With regard to the constants in the A(x+) equation (91), the bfs,
.

the lift coefficient factor, and Magnus force coefficient.factor are giveri
by the real and imaginary parts of b~ aa follows: ._

‘CL = - baR

“PP= ‘bsI

(123)

(124)

although it should be noted that tliedetermination of ZPP from b31
may be marginal under certain circumstances.

With regard to the constanta in the 9(x+) equation (92), the c~s,
the static and damping rolling-moment coefficient factors are given by

ZP+XO=C3 (q, (16))

10 = - C1C3

and the initial value of the nondimensional

v= c= + C=ce

spin by

(125)

(126)

(127)
.
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.
With regard to the constamtm in the E(x+)

the relations between these and the aerodynamic
. derived by equating the sum of the roots of the

61

equation (93), the d’s,
coefficient factors are
quadratic in S, equa-

tion (113), to minus the coefficieritof the linear term, equation (114),
and the product of the roots to the constant term; that is,

Substituting equations (88) into equations (128) and (1~), regroup-
ing into real and imaginary parts, and replacing the aerodynamic factors
by their definitions in terms of the aerodymimic coefficients gives for
equations (128)and (129)

[[

~La Cxo % ()cz& Cxo %1c% _ Czq ‘%&&—-— -— -
2 2 —+———

4KY2 + 4W 4KY2
+

4KY2 4/J 2 4Ky2

%P

()

%lQ

1[

Cz%-r-p ~iP , ~v
&w K-— +v2— — ,6P-K+—-

8PKY2 8LL2 8VKy2 4p

CZ6

()

c-mm Cmrp

()

CzFP Cxo ~ Cmq
c% Cm&

--TK &#~-g F ‘——-
-—

4Kf 8@ kKy2

*G!Nli+~l+iv~r

= - (d= + da) - i(d21 + U1) (130)

.-

.
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{[ (

Mcm cz cma ‘La %q CXO

)

cmPp
_Q—

q- 4 2KY2 + ~
- ~2 Czrp

~+~
—.

8P2 4Ky2

‘2%@s)1’’’ [K%+~%+%+

~zpp( Cmq c~ Cz Cmpp

--T G@ )~-#,_A_
% 31}{[’’21+4V 4K~ + 8U

Cz. -~

}(
f, Pp =

)(‘2R ‘.4R- ’21 + i d21 da + d= ’41
8w2 )

(131)

,
.

.

It can be Been that many of the terms in equations (130) and (131)
contain the projectile density factor, p. Now, v is a large number in
all practical cases. It varies from 100 to 1,000 for full-Bcale projec-
tiles and missiles and from 1,000 to 10,OOO for models tested in the
range. Consequently, certain terms will be much smaller than other terms
and may be properly neglected consistent with the other approximations of
the linearized equations.

Separating equation
and neglecting all terms

(z& -

(130) into real and imaginary
of magnitude l/p or smaller

X. -~q- ma) = - (d2R i-d4R)

VK = (d=I + d41)

Separating equation (131) into real and imaginary

component equations
givee.

(132)

(133)

“.

component equa-
tions, retaining only the terms of magnitude u in the real part,-neg-
lecting all terms of magnitude l/u or smaller in the imaginary paxt,
and neglecting d~ ~R compared to d21 d41 gives
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‘a = d21 d41 (134)

-V(KZd + mPp) = (d=I dAR +d=R %r) (135)

The sum of the damping-moment factorg, mg + ma, can be computed from
equation (132) using equations (122) and (L23j for ~ and Zti. The mesn
nondimensional spin v can be computed from equation (133) and checked
against the value from equation (127). The static-moment factor, ma, is
given by equation (134.). The Magnus moment factor, mpp, can be computed
from equation (137).

From equations (74) through (81), it can be seen that all of the
aerodynamic coefficient factors have been accounted for thus far in the
reduction of data except z~> zq} z* > ‘rp} m“

BP PP‘
mrpj ~d possibly, ZPP

Also, only the sum, mq + md, can be computed, but not mq and ma indi-

vidually. These exceptions represent the limits of the analysis of test
data presented up to this point.

One further possibility may be exploited in flight testing in the
aerodynamics rangej Instead of only one model of a given configuration

.. being tested, two models are tested, both having identical external con-
tours but one having a center-of-gravity position different from the
other. In thi~ way the sum of the damping-force factors, Z& + Zq, may be

.
determined from measurements of the sum of the corresponding damping-
moment factors, md + mq, at the two center-of-gravitY Positions; similar~Y~
the Magnus force factor, ZPP, may be determined from measurements of the

Magnus moment factors, mPp, at the two center-of-gravity positions. Also,

the normal-force factor, Za, may be determined in this way from the ~’s,

should measurements of the trajectory be unsuitable for some reason.

On the other hand, it does not appear possible to separate (z& + Zq)
or (ma+ mq) or to determine z

BP‘
zrp~ m~ ~ and ~P from range tests.

However, tt can be seen from the developm~~t leading from equation (128)
through to equation (135) that onlY the sum (z&+ Zg) or the Sti (m& + mq)

is retained in the final equations as a quantity having a significant
magnitude and that all of the factors, z

6P’ ‘rp’ ‘BP’ and%p arenegli-
gible. Consequently, it may be concluded that all of the aerodynamic
coefficients of practical significance may be determined from free-flight
testing in the aerodynamics range on projectiles and missiles with rota-

-’ tional and mirroz symmetry flying under the conditions of small angles of
sideslip, attack, pitch, and yaw, and small changes in velocity and spin,
as specified.
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Comparison With Ballistic Theory
.

Differences in nomenclature and derivation complicate a comparison
.

of the projectile equations developed in this paper with those of ballis-
tic theory. The differential equations giving the x(t), q(x+), and A(x+)
histories can be compared directly with the corresponding ballistic

—

differential equations, as in the aircraft case. On the other hand, the
equation giving the g(x+)history is best compared in its integrated
form. It is first necessary to derive the relations between the nomen-
clature of this report and that used in ballistics. The comparison will
be made by transforming the equations of this report into the ballistic
terminology. The.ballistic nomenclature will be taken from reference 10,
except for that used in the 9(x+) equation, which will be taken from
reference 19. The ballistic equations will be taken from the following
sources: the x(t) equation from reference 20; the 9(x+) equation from
reference 19; the A(x+) and 5(x+) equations from reference 21. These
references were selected because it iG understood that they constitute
the basis for the analysis of data from the Aerodynamics and Transonic
Ranges at the Ballistic Research Laboratories and hence present a section
of ballistic theory which is in use at the present time.

In ballistics the aerodynamic coefficients are denoted by the capi- *

tal letter K and the aerodynamic factors by the capital letter J, the
.

two being related in all cases by

pd3KJ= ~ (136) -

where d is the diameter of the projectile. A study of the geometry and
nomenclature of reference 10 shows that the”following relations hold for
the transformation of quantities defined in this report Into ballistic
terminology: Y

FM = FI FAY = F2 FAZ = F~
I

~=G= My = Gz Mz = G~

V=u p = u2/u a = ~/u

p=u~ q=fJ12 r=ua

1

(137)

IX=A Iy=B Ky = k(d/t)

“.

s = (Sballistic)t=o 0= (aballi.stic)t=o
J

%f a ballistic symbol is not ~pecifically defined in this section,
it has the same definition in both systems of nomenclature and is given
in the list of symbols at the beginning of this report. ..
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. The transformation of the aerodynamic factors can be deri~ed from the
definitions of the balliatic factors, the J;s, given ja reference 10,
namely

.. . \
F= = -~J~

F=+iF3=~ (- JN+ ivJF)(u2+ ius) +mu(vJ~ + iJs)(u2+ iu~)

G= -mdu UlJA
1

G= + i.G3=~(-vJT - iJM)(U= + ills)+
kd

+ (- JH + ivJm)(w2 + ire,)
kd

>(138)

If e~ations (I-38)for Fl,z,s ‘d ‘1,2,s and equations (11), (12), (28),
. (29), and (42) for FM,AY,M and ~,y,Z are substituted into the rela-

tions between the force and moment component~ given by equations (137) and L
the coefficients of the dependent variables are equated, since ekua-.
tions (137) must hold for all values of the dependent variables, the fol-
lowing relations are obtained:

‘PP = - ‘F

-.
It will be noted that the factor Za has been added to Zq in the equa-

tion for Js and similarly the factor m. has been added to mq in the
equation for JT. In the strictest senseathe added terms should have
been omitted since the ballistic nomenclature does not include the &
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components of force and moment. However, the relation between the aero-
dynamic factors and the constants of the ~(x+) equation given by equa-
tion (132) shows clearly that m~ should be added to mq in the inte-
grated equationa of motion as they apply to flight in the aerodynamics
range. Furthermore, since (z& + zq) is the force corresponding to the
moment (ma + mq) just as Js is the force corresponding to the moment

JH~ z~ should be added to zq in order to have the equation for Js
consistent with the equation for JH.

The lift and drag factors are introduced in the same manner in the
ballistic development as in this report (eee eq. (19)), that is

JL = J; - JDA

hence

(140)

Since they may be of interest in
the equations between the aerodynamic
listed below:

KD=&CD 5A

%

KH

%T

‘XT

and

reading the ballistic literature,
and ballistic coefficients are

KL = Q cLa
2d2

(142)

.

..

Y

The x+(t+) history is given by equation (74); however, a more suit-
able form for the purposes of comparison is given during the development .-

of equation (74) in Appendix A, as follows:

dV .- CXO;SV2
‘3T-

.

(143)
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*
Equation (143) becomes, after transforming from time to distance by equa-
tion (68),

. dV
‘z=

- Cxo

The comparable equation from reference
reference as follows:

where

If equation
using CD =

, order since

.

: Ew (144)

20 is given on page 8 of the

KD (145)

V = velocity or projectile (= V)

z = distance along range (= X)

Fl=~ pdz

(144) is transformed into ballistic notation, it becomes,

Cxo as specified by equation (19), which is correct to first

Cxa –- 0 for projectiles and missiles,

(146)

Comparison of equation (1~) with eqyation (145) shows that the results
of this paper agree precisely with those of reference 20.

The 9(x+) history is given by equation (86). The comparable equa-
tion from reference 19 is equation (14) of that report:

q)”+ Clqt - C2 = o (147)

where (in the notation of ref. 19)

,-

(148)

A study of the nomenclature of reference 19 discloses the following rela-
tions between its nomenclature and that of the present report:.
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(149)

,

After it is transformed into the nomenclature of reference 19 by the use
of equations (148) and (149), eq.zation(86) becomes —

q“ i-C=qt - c= = o (150) “

Comparison of equation (150) with equation (147) shows that the results
of thiO paper agree precisely with those of reference 19.

The differential equation for the A(x+) history is equation (93),
whose constants are given by equations (99) through (102). The comparable
equations from reference 21 are equatiOns (40) and (5) of

S“ = (JL - iVJF) ~+ i(vJ~ -I-iJs)~’ - #

where kl, Q, C?l,and qz are given by equations (6) and
ence 21:

that report: .

(151)

(152)

(7) of refer-

“,

z
kl = klo exp ~

J{[

JE (JD - md2JA/A) +
-JL+JD-E-

0
~2 1

1

[
JL - ~- (2JT-

z- 1}
JA) ~ dz
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1
1

kz
J[[

‘H (JD ‘%)
= k20 ‘Xp — -JL+JD -—-

2d * k2 ~2
1

*

1

[
JL - ~ - (2JT -

z 1}
JA) ~ dz

Experience indicates that the term.
is negligible compared to the remaining

69

(153b)

(154)

i(vJ~ + i’s)~l in equation (151)
terms, and consecpently the bal-

listic equation for the transverse

S’r= (JL -

A study of reference 21 shows

displacement reduces to

iVJF) $-~ (155)

that its nomenclature is transformed
into the nomenclature of this report by equations (137), (139), and (140)
together with the following:

s = - pa

C=5

1

(156)

2.X

If equation (84) is transformed into the ballistic notation, it
becomes

S“ = (JL - ‘VJF) ~-u~ -21g(~- %)

where U. =u at t = O.

(157)

Comparison of equation (157) with equation (155) shows that the
transformed A(x+) equation agrees exactly with the ballistic equation
except for the term 2ig(u - ~)/u3. For representative tests in the
aerodynamics range, this term is negligible compared to the remaining
terms in equation (157). Hence, it may be concluded that the agreement
between equations (157) and (155) is satisfactory.
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From the
corresponding
have the same

NACA TN 3330

comparison of equation (93) for the 3(x+) history with the
,

ballistic equation (152), it can be seen that both equations
form. Hence, the question of agreement between the two is A

concerned with a comparison of the constants of the equations. The aero-
dynamic factors are determined solely from the constants ~ and Q (see
eqs. (93) and (132) through (135)) and it is believed sufficient for the
purposes of this report to confine the comparison to these two constants.

Comparison of equation (93) with equation (152) shows that the real
and imaginary parts of the exponents in equation (93) are related to the
exponents in equatiou (152) as follows:

z

d X+=&
J {[

JQ

(

md2JA

.z!R -JL+JD-k2-~ JD-~
)]

+
2d o .

z

J’{[ J~ md23A
d4RX+ = &

( )1
-JL+JD-_._& JD-T -

0 ka

[

fJ-
lJL-~

1}
~2 - (2JT - JA) ~ dz

;

d41x+ = T20 + &
1

‘-d=
B

I (159)

Differentiating equations (158) and (159)
7equations (156 that x = z, and limiting

with respect to z, riotingfrom
the comparison to t = O gives

.

(158b)

[

JE

(
&d2R=- JL-JD+~+~ ‘D-

)1
m+ + ..

. 1

[

JH

(

md2JA
JL+JD-T2-2 ~JT- JD-~

)1
(160a) -

z
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[

JH ( md2JA
&d&=- JL- ‘D+~+~2 JD-—

)1A“

1

[

JH

(

md2JA
JL+JD -—-2

)1
~JT- JD-r (16011)

z ~2

(161)

‘A (1 - u)&41. T J
Up to this point explicit expressions have not been derived for the

real and imaginsry parts of dz and d4, since such expressions are not
required for the analysis of data from the range. However, they may be

. readily obtained from equations (132) tarough (135). The solution ,#ven
below is valid for all values of s or u except the region for which
O ~ s ~+1 for which a is imaginary. If ma is negative, correspond-
ing to s < 0 or u > 1, the model will have arrow stability. If ma is.. positive but s > 1, corresponding to O < a
topically stable. Hence it is believed that
cover all cases of practical importmce

.“

(zd - mq - IR~- Xo)
+

2
L-‘CLL+

< 1, the model will.be
the following solution

‘an@

‘q M+m&+xo+~

2(J I

.gycos-
Will

I
(162)

%.+mq+ma+~+
+)

20

vK(l+a)
d21 = *

vK(l-u)
~1=— 2 I

J

(163)

J

Transforming e~ationa (162) and (163) into ballistic notation and
multiplying by 2d/vz, as reqyired for comparison with e~ations (160)
and (161), gives
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;d~=- (JL - JD+k ‘2JE) + ~
(
JL+JD-

~d2

)
k-2JH - 2 ~ JT (164a)

: d~, = - (JL - JD + k-2JH) - ~
(
JL+JD - k-zJH - 2

)
~ JT (164b)

Comparison of equations (164) with equation~ (160)
with equations (161) 6hows that corresponding equations

and equations (165)
agree except for

( md2JA

)

—

the term J~-~ which i6 missing entirely from equations (164).
,

Differences in the derivation of the equations of motion make it difficult - - –
to ascertain the reason for the discrepancy.‘A careful examination of
the terms neglected in this paper in linearizing the equations of motion
suggests that the term in question is actually a second-order quantity.

.<

In practice, the extra term i~ so small for the majority of teats carried
out in the range that equations (1.64)can be said to agree satisfactorily
with equations (16o).

TO summarize, the results of this paper are in good agreement with
the results of ballistic theory. The equations of motion are the mme
except for an additional term in the equations giving the transverse dis-
placement and for two additional terms containing a common factor in the
relations between the aerodynamic coefficients and the damping rates of
the oscillatory components of the angulsx motion. It is bel-levedthat
these additional terms are negligibly small under the majority of repre-
sentative test conditions in the aerodynamics range.

CONCLUSIONS

Equations crfmotion have been developed for conventional aircraft on
the one hand, and for rotationally symmetric missiles and projectiles on

“*

the other. Similar mathematical derivations and standard NACA nomencla-
ture were used for both developments. The essential difference between
the two cases lies in allowing the axial component of the angulsz velocity

.
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to be large in the projectile and missile case. Otherwise, the conditions.
of flight are limited to small changes in velocity and orientation as is
customary in treating the first-order dynamic stability of aircraft.

&

Two novel features appesr in the derivation of the equations of
motion. First, the aerodynamic coefficients are introduced as a formal
series expamion in the components of the linear and angular velocities.
This approach allows the introduction of coefficients of quadratic terms
tivolving the axial component of mgukr velocity, which are second-order
for the aircraft case but first-order for the missile and projectile case.
Second, it is shown that the aerodynamic forces wd moments are independ-
ent of the orientation in roll for rotationally symmetric missiles and
projectile. Advantage is taken of the independence to place the cog-
dinate system used in the missile case with one axis slong the missile~s
axis of rotational syrmaetryand another sxis in a plane fixed in space.
Hence, the position of the coordinate system is independent of the roll
orientation of the missile.

Criteria are derived for the dynamic stability of missiles with arrow
stability and projectiles with gycoscopic stability. It is shown that
spin-stabilized projectiles may be completely dynamically stable) a result
in agreement with experiment. On the other hand, it is clear that the
dynamic stability of spin-stabilized projectiles is a delicate balsnce.
between lift, damping, and Magnus forces and that all three elements are
required to predict adequately the character of the motion.

.. The equation~ of motion are applied to the flight testing of rota-
tionally symmetric missiles and projectiles in an aerodynamics range. It
is shown that the flight records obtained in this facility can be analyzed
to give all the aerodynamic coefficients required to predict the first-
order dynamic stability of the missile or projectile.

The results of this paper are compared with the accepted aeronautical
theory for aircraft and the corresponding ballistic theory for missiles
and projectiles. The agreement is considered to be satisfactory throughout.

Ames Aeronautical Laboratory
National Advisory Comnittee for Aeronautics

Moffett Field, Calif., Oct. 1, 1974

.-

.
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APPENDIX A

LINFARI~TION OF T~ EQIJATI~NSOF MOTION

In the authorls opinion, the proper procedure to be followed in
linearizing each of the equations of notion is to separate the exact equa-
tion into first- and second-order terms and to place all of the first-
order terms that are to be retained on the left-hand Bide and all of the
second-order terms that are to be neglected on the right-hand side. This
procedure allows a term-by-term comparison of the second-order terms
neglected with the first-order terms retained at one step in the deriva-
tion. AB a result, it places the neglect of second-order terms on a firm
basis that can be re-examined readily at any time should there be some
d’oUbtas to the relative magnitude of any particular term.

The procedure just recommended is carried through only in part. All
of the second-order and some of the third-order inertia terms are included.
However, only part of the second-order aerodynamic force and moment terms
are written down. Although it would be desirable for the sake of rigor
to include them, their omission is ju6tified in order to make the deriva-
tion more concise since there is rarely any doubt as to their magnitude .

relative to the first-order aerodynamic terms. It is the comparison of
the inertia terms with the aerodynamic terms that iE ordinarily subject
to scrutiny. ..

NO explicit limit has been set so far on the values of the aerody-
namic coefficients themselves; yet, there is the implicit assumption that
their magnitude ranges in value from unity to ten. This restriction can
usually be met by the appropriate selection of representative length and
area. Also, there is the implicit assumption in the missile and projec-
tile case that the axial component of the angular velocity (the spin) be
bounded. Again, this restriction is normally satisfiedby the values of
the angular velocity which actually occur in practice.

It will be noted that an anomaly exists in setting limits on both
g~e~~ and p~q~r for a given aircraft. Once the physical and aerodynamic
properties of the aircraft are specified together with the inftial condi-
tion of flight, the values of p, q, and r are determined. Phy~icaIly,
the consequence of assigning limits to both cp,g,~and p,q,r is to assign
a certain range of values to the physical properties of the aircraft, that
is, to its moments of inertia, weight, and center of gravity. As a result,
it is desirable to examine the values of p, q, and r occurring during the
flight of any particular missile or projectile in order to make certain ..

that their magnitudes fall within the limits of the theory.

In the following eectionB, the equations of motion will be developed
.

up to the point of listing the fjrst-order terms retained on the left-hand
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side and the second-order terms neglected on the right-hand side, but a
numerical comparison of their relative magnitudes will be omitted. In

* the aircraft case, the terms neglected are those customarily neglected.
In the missile and projectile case, numerical examples were worked out
for representative missiles and projectiles and it is believed that the
terms neglected are truly second-order for the majority of conditions
that will occur in actual practice.

Aircraft EquationB With Time as Independent Variable

X component of force.- This equation is derived by resolving the
vector force e~uation (3) along the space-fixed X. axis.

Since

(Al)

the component of equation (3) along X. becomes

d(V COs~~O)m
at

FAz Cos%(zxo) - w Sh Y. (A2)

Substituting eqyatiorw (11) and (15) for F~,y,z and equations (1) for
cos ~(~), cos ~(YXo), and coB ~(~) in equation (A2), and at the same
time neglecting all second-order terms on the right-hand side of equa-
tion (A2), gives

()(PV02S v 2 .
-cxo-c~a-cx*~- ~ - Czoe‘— ~2 Cxq 2V )

-rng sin 70 (A3)
a

cos~~o being approximated by

>.
COS*RO = 1 - sinz~—~o

2

smd the velocity, V, is given by
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V=vo+u
1

I (A4)
v
~=~+~

lf equations (A4) are expanded in a series, eq~tion (A3) may be separated
into first- and second-order terms with the firOt-order listed on the
left-hand side and the second-order on the right-hand side, as follows:

Cil qz u
Cx p. ——

‘+%1 2V0 V. )++ czoe ~ - ‘2s Cxqql~
& Lvo V. (A5)

If the right-hand side is neglected, the lef~-hand side is divided by
(pSVo2), and the equilibrium conditions (eq. (18)) and lift and drag
coefficients (eq. (19)) are introduced, equation (A5) becomes equa-
tion (20).

A slight variation of equation (A5), which will be useful in deriving
other equations of motion, comes from equation (A3) by introducing the
equilibrium condition of equation (18)

X. = - XG

namely,

(dV_S@-CXa
-c&- ~ - Czoe‘E- 2 Cxq 2Vu )

(A6)

Y component of force.- This equation is derived by resolving the
vector force equation (3) along the Y axis.

_The components of ~ and ~ are given by equation (6}, the components
of FA are given by egya’cions(11) and (15), the components of ~G are
given by equation (17), and the transformation of moving axes is given by
equation (9). Equation (3), modified by the foregoing, may be resolved
along the Y axis as follows:

,

..
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. .

m~sinj3+V~ cos ~ + rV 1 - sinzu - sin2~ - pV stn a

_ p?s

(

;2 rlPA + Cyr ~cP+c!Yi~+c!Yp2v
2 % )

+ mg(~ Sin 70 + Q cos 7.) (A7)

The following quantities are approximated by

COB $

Bin @

D212=- —

=$

J1- sin2a - 8iD2p =1-
(a2 +B2)

2

The values of r and p are given by equation (7)

d~
r =—-

dt ‘q

p.~-or

After division by V and the use of equations (A4) and (A6)for V and
dV/dt, equation ~A7) may be separated &o first- and
with the first-order listed on the left-hand side and
on the right-hand side, as follows:

second-order terms
the second-order

-=($ sinYo+V.

(qf20s70)=m~2S+qq+
2 ‘W)+WC%U+C”.*+r(~2+B2)

c“q~+ c&’)- ~(cype g + CYr,g)+ ~ [q Cyp, -

~ ($ sin 70 +q cos 7.)
1

(A8)
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If the right-head side is neglected, the left-hsmd side is divided by
.

(pV#), and the lift and drag coefficient (eq. 19) are introduced, equa-
tio~ (A8) becomes equation (21).

Z component of force.- This equation is
vector force equation (3) along the Z axis.

a

derived by resolving the

The components of ~, T, ~A, and ~G
(15), and (17), respectively.

are given by equations (6), (11),
After transformation to moving axes by

equation (9) and division by V, equation (3) resolved along the z axis
becomes

(da dV sin a
——+p Slnp-q 1 -sfn%-sinz~m mcosa+d’t v )

(
.

psJJ -Czo - Czaa - cz&* -
‘2 Czqg$) +? (- 0 sin 70 + cos 70

)
(A9)

The following quantities are approximated by

Sinu=a

1-
a2 + P2sin2a - sin2p = 1 - — 2

coscL=l- $
The value of q is given by equation (~), namely

q=~+@.

.

BY the use of equations (A4) and (A6) for V and dV/dt, e~ation (A9) maY
be separated into’first- and second-order terms u follows:

. .

..
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.

~

[ -e’inyo+G-+)c0s701

[

h
=m ~+qlr-pp -

*l+%(cx.”+C%*+c% ~+cz.e)+

(

cz@Vo
11- ) - q(czq,g)a+~esin7.
~ 2 0

(Ale)

If the right-hand side is neglected, the left-hand side divided by (PVOS),
and the equilibrium conditions (eq. (18)) -d Iifi ad drag coefficients

(eq. (19)) are introduced, equation (AIO) becomes equation (22).

X component of rnoment.-This equation is derived by resolving the
vector moment equation (4) along the X axis.

The components of %,=, and~ are givenby equations (6), (7)>

(12), and (15}. After transformation to moving axes by equation (9),
equation (4) resolved along the X axis becomes

.

Ix ~ -J=~+qr(Iz-Iy) -qPJ~

The values, of p and r are given by equation (7), namely,
>.

P=g.$ - Or
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The value of V is given by equation (A4), nsmely,

Equation (All) may be separated into firet- and second-order terms ae
follows>

PSV02Z ~
=IX(rd+@~) -JXz(q@+q~) -qr(IZ-ly)+qp JxZ+r ~

(
2c@ +

o

jz
ci~ 2V0

—+CJ -Gczr% rl

)
-q

(
Cle=

ql
p 2V0 P 2V

+ czre ~
) (A12)

If the terms on the right-hand side are neglected and the left-hand side
la multiplied by F/KX2 pSlVo2, equation (A12) becomes equation (23).

Y component of mOment.- This equation i~ derived by resolving the
vector moment equation (4) along the Y axis.

The components of ~, U, and E are given by equations (6), (7),
(12), and (15). The value of q is given by equation (7) to obtain ~,
namely

. fi ~ d(qr)
q = dtz dt

.
After transformation to moving axes by equatiou (9), equation (4) resolved
along the Y axis becomes

Iy

[

d( r)a++
1

+ rp(IX -
de

Iz) +JXZ (# - r2)

The value of V is give~ by equation (A4), namely,

s

-.

.



.C

.

●

.

.

NACA TN 3330 81

Equation (A13) may be separated into first- and Becond-order terms as
follows:

(A14)

If‘the right-hand side is neglected, the left-hand side multiplied by
V/PSlVo2Ky2~ and c% set equal to zero in accordance with equilibrium
conditions specified by equation (18), eqmtion (A14) becomes equation (24).

Z component of moment.- This equation is derived by resolving the
vector moment equation (5) along the z axis.

The components of ~, U, and ~ are given by equations (6), (7)j
(3.2), an: (15). The value~ of p and r are given by equation (7) to
obtain p and ~, namely,

After
along

Iz

● dz~ d(qq)
r. —-_

dta dt

transformation to moving axes by equation (9), equation (5) resolved
the Z axis becomes

[

d2q d(tk)
Jxz ~-—

dt 1
+ p@y - q(PIx - rJXZ)

pszv* ( ;l p2

2 )
‘Z (A15)CnP~+% ~+cnp~+cnr~

P

The value of V is given by e~ation (A4), namely,



82 NACA TN 3350

equation (A15) may be separated into first- and second-order terms as
follow6,

d~ ~xza Psl~02
(

‘1 d.p Zd
?

1 &*
Iz— - dtz - ~ CnPP+Cnfi~~+cnp~ t + Cnr —.

dt2 2V0 dt)

.lz@-Jn ~+pq(I*-Iy)-J~qr +
dt dt

pszvo= ~
(

.

T~ 2CWF + C“j g ‘ Cnp R +

rl

)

ps1V02

(

rl ql
cnr~ ‘— 2 — + G@ ~Cnpe 2v~ )

(A16)

If the right-hand side is neglected and the left-hand side is multiplied
by p/pS2V02KZ2, equation (A16) becomes equation (25).

Symmetrical Missile and Projectile Equations With
Time as Independent Variable

.

●

The missile and projectile equations are derived by resolving the
vector force and moment equations (3) and (!) along the Xyz axes> excePt
for the X component of the vector force equation, which will be resolved
along the space-fixed axis ~ instead of the body axis X. The deriva-
tion will proceed as follows: First, the component of the exact vector
equation will be written down transformed to the moving XYZ axes, except,
of course, for the & component equation; second, the kinematic rela-
tions will be substituted for certain of the dependent variables, various
functions will be expanded in series, and the resulting equation will be
written down separated into fir’st-and seco~d-order terms with the first-
order terms on the left-hand side and the second-order terms on the right-
hand side.

The following relations will be used: The transformation from space-
fixed to moving axes is given by equation (40b); the direction cosines of
the angles_between ~ and X,Y,Z are given by ~quation (l); the components
of Rand V are given by equation (6) and of H and U by equation (39);
~he components of ~A are given by equations (11), (29), and (42), of
FG by eqyation (~), and of ~ by equations (12), (29), and (42); the
magnitude of the velocity, V, is given by condition (2) preced~ equa-
tion (2) and the sxial component of the angular velocity) P> W eWation
(34)*

.,

.



. .

NACA TN 3350

The following series expansions will be utilized:

J1 - sin2 IX- sin2B

()

Vn
~ =1+

92
co6P= l-—

2

83

(A17)

In deriving the Y and Z components of the force equation, the
following approximation will be used

(A18)

As will be shown in the derivation of the X component of the force equa-
tion, the above equation neglects the terms Cx pSV/2m and g sin 70/V.

From the limited experimental evidence availabl~~ it is believed that the
Cx term is truly negligible under all practical circumstances. On the

PP
other hand, the gravity term is strictly negligible only for horizontal
trajectories or in those cases for which the drag force greatly exceeds
the weight. In other cases, for example, a bomb falling along a steeP
trajectory, the ~avity term should be included. The gravity term will
be omitted from the present treatment since the application covered in
thia”paper is to the aerodynamics range in which the trajectories are
nearly horizontal and the drag force is many times the weight in the ~eat
majority of tests.

X component of force.-

(2VX0
F=cos~XoX + FA@os~XoY + F~cos~XoZ - mg sin ?’. (Alg)

‘T’

~ is the ccmqxment of ~ along X. and is given bywhere V

[ ()m (cos*tio) ~ - (V sin WxO)--
t%d~)]

.q

[ 01

2
- Cxo - Cxpp ~ - rng sin y. (A20)
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gQ + @Jo2
[ (Q)G5)-CxPP(%Yl+m’’’o’o :
C,. + 2CX0 * + ‘2Cxpp 2v~

m dt 2

Dividing equation (A21) by (PSV02) and neglecting the right-hand aide
gives equation (46).

A variation of equation (A21), which will be needed in the deriva-
tion of the Y and Z force component equations, derives from equa-
tion (A20). In this variation the C,pp and g terms are neglected;

hence equation (A20) may be written

~v + C,.
m dt

~=~[~in’~fiO)(~~ +(V.in~~)(*)] (.22) :

If the right-hand side is neglected, equation (A22) becomes equation (A18). 1

after the terms are rearranged and the equation is divided by mV.

Y component of force.-

dMy
— + rMx = FAY +.!GY
dt

(A23)

‘m[~(~+r)+=l+~%[fy~+~;’-
Cy ___LLwq PZ Qzp2 .—

1 (
* ~ ~ Cyu,pa+

&p 2V0 2V0 dt q? 2V0 2V0

Cy J_ Q!2+cy
W%)-(WB79%

(A24j
&p 2V0 dt

-.

.-
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After division by (pSVo) and
becomes equation (47).

Z component of force.-

dMz

dt

85

neglect of the right-hand side, equation (A24)

- qMx= FAz + ‘GZ (A25)

‘(~-$)’~[(c~:’~)a+’z.&2’czq&%+
P. L pox 1 m SQL*

1
% (COS y. - e sin 2’.)cz~p~p + cz~p ~~z+ c~p 2V0 2V0 dt - V.

.m[g(g- .)-q] +p$[(-cz+cxo)a+

pl ld~ic pl r~——
1

psvo p’z
zrp 2V0 2V0

_— —
cz~p 2V0 2V0 dt ‘— 2 2V0 (

Czppp + ‘z ——
fip;o~+

rl
CGP ~ )

+~~ (63sin y. - .0. To) (A26)

If it is divided by (pSVo) and the right-hand side is neglected,
tion (A26) becomes equation (48).

equa-

X component of moment.-

dHV

dt

Since rotational syrmnetry
becomes

d% pslvo2

(

Z d~Ix—-— ——
CZp 2V0 dt

+
dt2 2

t-qHZ - rHy = & (A27)

requires that Iz = Iy, equation (A27)

pol u
CIP 2V0 V.

—.
)

.

If it is multiplied by
equation (A28) becomes

pslvo2 ( u pfl
czp~~-

rl
2 ‘lp@ ~

)
-!-Ix - (A28)

JPS2VO?KX2 and the right-hand side is neglected,
equation (49).
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Y component of moment.-

dEy
—+rHX=My
dt

d20 pszvo2d$
(

1 &L+cm ldQ+
Iy —+ IxPo~-2 CmaUJ+ Cm. ‘— —.

dt= a 2V0 dt q 2V0 dt

poi pol 1 db &ld$

Cmpp ~
_ — — + Cmrp 2V0 2Vo ‘t

P + cm~p2Vo 2V0 dt )
——

pstvoz ~

(

. ql+
@- + cmq gJo~ -IXTP~ + ~ ~ 2Cm& + cm~ 2V0

(A29)
●

pl

)

pswo= pft

(

t dp rz
—p +~—

cmPP
~+Cm ——+c~

)
(A30)

Cmpp 2v~ 2’VO !jP2V0 dt rp ~

Through multiplication by V/PSLVo2KY2 and neglect

side, equation (A30) becomes equation (50).

Z component of moment.-

dHZ
—-qHx=MZ
dt

Iz$. de pszvo2

(

-lW
IXPO ~ - ~ CnP9 + CnP 2V0 dt + Cnr——

poz poz 1 & pol 1 d8
Cnap ~

a + Cn ——~p 2V0 2V0 dt—+c%p~~fi )

of the right-hand

(A31)

z dv—.
2V0 dt + #

(
.

2CnP13+ Cn
rz-lL+Cm% + Cn

)
p2a+

fi2V0 ap ~

(A32)

●

✎

✎

�

-.

.
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. Through multiplication by w/pS2V 2Kz2 and neglect of the right-hand
side, equation (A32) becomes equa%ion (51).

●

Symmetrical Missile and Projectile Eqgations With
Distance as Independent Variable

The missile an~ projectile equationa with distance as independent
variable are derived in a similar manner to those with time as independent
variable. The procedure followed closely parallels the preceding section.
First, the component of the exact vector equation will be written do~m
and for those components which are resolved along the XYZ axes it will
be written transformed to moving axes. Second, the kinematic relations
will be substituted for certain of the dependent variables, various func-
tions will be expanded in series, differential quantities will be trans-
formed from time to distance as independent variable, and the resulting
equation will be mitten down eeparated into first- and second-order terms
with the first-order terms on the left-hand side and the second-order
terms on the right-hand side.

The same relations will be u~ed as in the previous section. In addi-
tion, the transformation from time to distance i6 given by equation (70)..
Also, since the principal application of the equations with distance as
independent variable is to the aerodynamics range, the earth axes will be

.. oriented as they hormally are in the range with 20 vertical and X.
horizontal; consequently, 70 = O.

It is evident from the relation, v = dx/dt (e~. (67)) and the develop-
ment of equation (A22) that the X-component force equation gives the
relationship between time and distance. Consequently, it is proper that
time should remain the independent variable in this equation. However,
the form of the x+(t+) equation (74) my not be familiar and the steps
leading from eqmtion (A22) to equation (74) will be presented in this
section. It ~hould be noted that in this development the Cx term is
neglected. PP

*“

Application of this theory to the aerodynamics range requires equa-
tions for the transverse displacement of the trajectory, y and z. The
equations for y and z are derived by resolving the vector force equa-
tion (3) along the space-fixed Y. and Z. axes. Their development will
be presented in this section. It should be noted that the only forces
retained in deriving the y,z equations are lift, drag, and Magnus
forces (CLa,CDo,CZ~p)=

.
Time-distance equation.- If equatiO~ (A22) is multiplied by dt/mV2

and the right-hand side is neglected, it becomes

dV cx# dt-..-=- ~ (A33)
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.
Since V = To at t = O, the integral of equation (A33) may be written

( Cxopsvot.-1
V=vo 1+

)
(A34)

a

●

If equation (A34) is substituted into equation (A33) and the relation
V = dx/dt ia used, the remlting equation may be written

d=x psvo=
( )

-2psvo—+cxo~ l+cxo~t =0dtz (A35) .

After multiplicationby m/pSVo2, equation (A35) becomes equation (74).

Transverse displacement,of tra~ectory (Y> z equations .-

~2
m ~ . FXCOS ~Y& -t-I?ycos @oY + FZCOS @o!Z

at=

1

(A36)
m dzz
— =~cos &_X +Fycos @oY +FZCOB +&Z
dt=

.

J

.

~~ . PSV2

(
- Cxo$ -

pl

)
%aP + czpp~ a

dt2 2

1

(A37)

m d2z _ pSV2

(
Cxoe - Czaa - Cz

)
Q’p +W

dtz ~ pp 2V

Transforming equations (A37) from time to distance, dividing by V2,
and separating into first- and second-order terms gives

Cxops Q + psm* -—
--5-(Czaf!- Cz )%ia+Cxoly

dx2 2dx FP 2V0

(@:PP p g _pl U)-233=-
0 2V0 Vo / V02 Vo J

-.
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.
For small angles

●

if lift and drag coefficients are introduced and the right-hand sides are
neglected, eqyations (A38) become

d2y
m— +$

(
CL#

po2 ~

dx2 - C=PPE )
=0

1

(A39)
2 @

m~+~
( )

tip=%CLaa+ cz~p2V0
o

After multiplication by (pS)-L, equations (A39) become equations (75) and
(76),

.

.
Y component of force.-

.. ~ + rMx ‘FAy + l?Gy
dt (A23)

pol

Cyap ~
Pozzbc

a + Cy.
~2de

—-—+ Yqp2v05~Q 2V0 2 dx 1

Cy. &L%+cy ) (pzQ +$ggicy a+
up 2V0 2V dt qp~2v o up

(A40)

Dividing equation ~f!m) by (pS) and neglecting the right-hand side gives
. equation (77).
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Z component of force.-

dMZ

z-
q~x = FAZ + FGZ

NACA TN 3350

.

PO1p + Cz.
P.1 z dlJPOT19+C —-

1

%
Cz —-

pp ~ Zrp 2V0 2 dx9P 2V0 2 dx -q

(A25)

.

.

Dividing equation (A41) by (@) and neglecting the right-hand aide gives
:

equation (78).

X component of moment.-

dHx

x
+qHz-rHy=% (A27)

With the introduction of a constant rolli~g moment, Gto, equation (A27)

becomes

(A42)

Multipl@ng equation (A42) by p/pSZKX2 and neglecting the right-hand
side give~ equation (79). *.

Y component of moment.-

dHy
—+rHX=My
dt

(A29) ●
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.

If equation (A43) is multiplied by p/pSZKY2 and the right-hand side is
neglected, it bacomes equation (8o).

Z component of moment.-

dHZ
—-qHx=Mz
dt

(A31)

p.z POz z da POZ z de
cnr; g+cnq2vo —CG+cn

)
—. —

-—+%P2v02dx&p~2dX

If equation (AM) is multiplied by p/pSZ~2 and the right-hand side iB

-. neglected, it becomes equatio~ (81).
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APPENDIX B

MODIFICATION OF THE SYMMETRICAL MISSILE AND PROJECTILE EQUATIONS TO

INCLUDE THE EFFECTS OF SMALL AERODYNAMIC ASYMMETRIES

Forces and momentB due to aerod~mic asymmetries are not independent
of the roll angle as are the principal aerodynamic forces and moments.
Hence, they will be defined as companenta along the T, ~, ~ body-fixed
axes as follows:

F
pv%

1,2,3 = CF1,2,3 p

pv%l }
. .

M 1,2,s = CM1,2,3 a

The components of CF and CM along the

Cxo (due to asymmetries) = CF=

Cyo = cF2CoS

%
= CF3C08

c~o = c~l

c%=CM2COS

Cno = c&coB

(Bl)

.

●

.

.

(B2)
.

It is aasumed that the coefficients, CFl,2,3 and CM1,2,3 are first-
order quantities, in contrast to all other aerodynamic coefficients. This .

is evidently the case if the asymmetries are small. Also, if CF or CM
are due to control-surface deflections, 5, they will have the form CF86
and, hence, the requirement that they be small is equivalent to assuming
that the control surface deflections be small. Consequently the variable
veloclty, Vz, may be replaced by the constant> V02, since the term
2C u/V. will be second-order and hence negligible insofar as the ltie-
arized theory is concerned.

Certain of the model-etested in the aerodynamics range have small
asymmetries of the type just described. It is desirable, therefore, to
derive the modifications to the equations or motion which are required to
account for the effects of the asyurmetrieo. Two of the components have
already been accounted for. The X force component, Fl, is a constant

*.

and its coefficient, CFI, may be considered to be included in the axial
drag coefficient, CXO. The X moment component, M=, has been included in -

the 9(x+) eqmtion by the to term. It should be noted that in this
particular equation the CM1 coefficient is not required to be small
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. (first-order). The remaining components affect the A(x+) and E(x+)

motionsl and the changes to the equations involved will be taken up in
this order.

●

A(x+) Equation

The modification to the eqyations involved in the development of the
A(x+) equation are listed as follows: Add to the right-hand side of the
equation listed the term following.

(A37), first equation

(A37), second equation

(A39), first equation

(A39), second equation

(84) foeiq)

where f. =

If Vx+ is small, the added term in

Fyo

F%

g CYO

~ Czo

equation (91) is approximated by

(91)
foeiq0(x+)2

(

~+ivx+++e
2 3

●

)

Hence, if the missile does not roll (v = O), the force due to asymmetry
will cause the transverse dispkcement, ~y to increase tith the square of
the distance, x+.

~(x+) Equation

.. The modifications to the eqyations involved in the development of
the &(x+) equation are listed as follows: Add to the right-hand side
of the equation listed the term following.

lThe q(x+) motion is affected also but the changes required to the
q(x+) equations will be omitted from this treatment since the 5(x+)
motion is the one ordinarily reduced in the analysis of flight data,
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(A40)

(A41)

(A43)

(A44)

(77)

(78)

(8o)

(81)

(85)

(87)

Pscyo

2

.

.

foeiT

CF2 + iCF~
where f. =

2

v(c~ “ q&.)
where m. =

2Kz2

The aerodynamic asymmetries will change the valueB of the coefficients
dl and da of the integrated ~(x+) equation (93); the following term
should be added to P(S), defined by equation (110):

where ~ is the variable of integration replacing x+ in functions of
x+ appearing in the integrand and q is considered to be a function of
~. The added term maybe readily derived in the integration of the

=.
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“ simultaneous differential equations (85) and (87) if the integration is
carried out by the Laplace transform and use is made of the convolution

C of the “natural” frequency and the ~’aaymmetri.calforcing flmction.” A
clear explanation of the operational mathematics involved is given in
chapters I and 11 of reference (16) (particularly section 14 on the
convolution; Churchill states that the convolution is also Imown as the
Faltung integral).

It may be of interest to note that if the roll rate with respect to

distance is constant, that is, if

fP= Vx+ + (pO

then the term added to P(S) becomes

[ 1’90 e(iv-s)x+ - J-S(sfo - m~fo - z~~ )e

Zg (iv - s)

Hence if ~ = Sfl or SZI then (iv - S) = S~ or S2R, ordinarily a small
value. Consequently, the value of the corresponding term will become

.

. very large. In other words, the oscillation experiences a divergent
resonance as the roll rate approaches the pitch or yaw mte.2

.

. .

%is result ha6 been noted elsewhere in the literature; for example,

see reference 4.



96 NACA TN 3350

REFERENCES
.

1. Jones, B. Melville: Dynamics of the Aeroplane. Vol. V of Aerodynamic
Theory, div. N, W. F. Durand, cd., Julius Springer (Berlin), 1934.

2. Fowler, R. H., Gallop, E. G., kck, C. N. H., and Richnond, H. W.:
The Aerodynamics of a Spinning Shell. Phil. mans. Roy. Sot.
(London) A, VO1. 221, 1920,pp. 295-387.

3. Bolz, Ray E.: Dynamic Stability of a Mis~ile in Rolling Flight. Jour.
Aero. Sci., vol. 19, no. 6, June 1952, pp. 395-403.

4. Nicolaides, John D.: On the Free Flight Motion of Missiles Having
Slight ConfigurationalAsymmetrie~. Ballistics Research Laboratories
Rep. No. 858, June 1933.

59 Perkins, Courtland D., and Hage, Robert E_.: Aeroplane Performance
Stability and Control. John Wiley and 6ons, Inc., 1949.

6. Abzug, M. J.: Kinematics and Dynamics of Fully-ManeuveringAirplanes.
Douglas Aircraft Co., Inc., Eng. Dept=-Rep. No. ~-I.6144, June 19~2.

7. Campbell, John P., and MeKinney, Marion O.: Summary of Methods for
Calculating Dynamic Lateral Stability and Response and for Estimating
Lateral Stability Derivatives. NACA TN 2409, 1951.

8. Zimmerman, Charles H.: An Analysis of Longitudinal Stability in
Power-Off Flight with Charts for Use in Design. NACA Rep. 521, 1935.

9* Zimmerman, Charles H.: An Analysis of Lateral Stability in Power-Off
Flight with Charts fm Use in Design. NACA Rep. 589, 1937.

10. Kelley, J. L., and McShane, E. J.: On the Motion of a Projectile with
Small or Slowly Changing Yaw. Ballistics Research Laboratories
Rep. No. 446, Dec. 1944.

11. McShane, Edward J., Kelley, John L., and Reno, Franklin V.: Exterior
Ballistics. Univ. of Denver Press, 1953.

12. Nielsen, K. L., and Synge, J. L.: On the Motion of a Spinning Shell.
Quai-t.Appl. Math., vol. IV, no. 3, Oct. 1946, pp. 201-226.

13. Maple, C. G., and Synge, J. L.: Aerodynamic Symmetry of Projectiles.
Quart. Appl, Math., vol. VI, no. 4, Jan. 1949, pp. 345-366.

14. Phillip8j William H.: Effect of Steady Rolling on Longitudinal and
Directional Stability. NACA TN 1627, 1948.

‘.

<,

.



NACA TN 3350 97

.
15. Page, Leigh: Introduction to Theoretical Physics. Second cd.,

I).Van Nostrand Co., Inc., New York, 1935.
s

16. Seiff, Alvin, James, Carlton S., Canning, Thomas N., and Boissevain,
Alfred G.: The Ames Supersonic Free-Flight Wind Tunnel. NACA RM
A32A24, 1952.

17. Schmidt, L. E., and Murphy, C. H.: Effect of Spin on Aerodynamic
Properties of Bodies of Revolution. Ballistics Research
kboratories Memo. Rep. No. 715, Aug. 1953.

18. Churchill, Ruel V.: Modern Operational Mathematics in Engineering.
McGraw-Hill I!aokCO., Inc.j 1944.

19. Bolz, Ray E., and Nicolaides, John D.: A Method of Determining Some
Aerodynamic Coefficients from Supersonic Free Flight Tests of a
Rolling Missile. Ballistics Research Laboratories Rep. No. 711,
Dec. 1949.

20. I@rpov, Boris G.: The Accuracy of Drag Measurements as a Function
of Number and Distribution of Timing Stations. I?allisticsResearch
Laboratories Rep. No. 658. Feb. 1948.

.

21 ● Turetskyj Raymond: Reduction of Spark Range Data. Ballistics

Research Laboratories Rep. No. 684, Oct. 1948.,



NACA TN 3350



NACA TN 3350

.
*

.

-

20

(a) Orientation of stability axes with respect to earth axes.

Figure l.- Space geometry for aircraft.

99
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(b) Orie~tationof ~avityvector tithrespect to earth axes.

Figure l,- Continued.
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I

(c) Orientaticm of velocity vector tith respect to stability axes.

Figure 1.- Continued.
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x

X.

Y

Figure 2.- Space geometry for projectiles and missiles with 90°
rotational and mirror symmetry. Orientation of body axes and
pseudo-stability axes with respect to earth axes.
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