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TECHNICAL NOTE 346lL

INFLUENCE OF SHEAR DEFORMATION OF THE CROSS SECTION ON
TORSIONAL FREQUENCIES OF BOX BEAMS

By Edwin T. Kruszewski and William W. Davenport
SUMMARY

An exsct analysis has been carried out on the torsional vibrations
of a four—flange box beam with cross sections which can change shape
because the stiffness of the bulkheads is finite., The effect of shear
deformation of the cross section on the torslonal frequencies is illus-
trated by numerieal calculations. An spproximste method for quickly
estimating the effects of bulkhead shear stiffness on the torsiomnal
frequencies of box beams has been devised.

U

INTRODUCTION

In an experimental investigation described in reference 1, analyses
based on the assumption that the changes in the shape of the cross sec-
tion are negligible were found to be completely insdequate in predicting
the experimental torsional frequencies of & thin-walled tube of rectan-
gular cross section. One form of cross-sectional distortion - due to
local deflections normal to the surface of the covers and webs - was inves-
tigated in reference 2. The magnitude of this effect on torsional

frequencies, however, was shown to be practicelly negligible for the

particular test beam and frequency range investigated in reference 1.
Another type of cross-sectional distortion - due to overall changes of
shape of & shearing nature - could be an important influence if the bulk-
heads were not rigid. Although the effect of bulkhead shear deformation
has been consldered in some analyses (see , for example, ref. 3), no
investigations of the importance of this effect on torsional freguencies
seem to exist.

The importance of the shear stiffness of bulkheads in torsional
vibrations is assessed in the present psper by means of an analysis of
a four-flange box beam containing bulkheads with finite shear stiffness.
Frequency equations are derived for torsional vibrations of a uniform
free-free beam, and numerical results obtained by use of these eguations
are shown. A set of curves based on an aspproximete solution, from which
the effects of cross-sectional shear deformation can be quickly estimated,
is also presented.
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SYMBOLS .

Ap area of flange ¢
A, B perameters defined in equations (22)
c inertial coupling constant, i: ; Iy
E Young 's modulus of elssticity
G shear modulus of elé.sticity
Gg effective shear modulus of bulkheads

mass moment of lnertie per unit length about y-axis .
I, mess moment of inertis per unit length about z-axis .
Ip mass polar moment of inertia per unit length, Iy + I,
J torsional-stiffness constant
K restraint-of -warping peremeter (see egs. (22))
L helf-length of beam
M parameter, I _202 ( - %—3—)
P frequency parameter for special case (see eq. (A9))
S bulkhead stiffness parameter (see egs. (22))
T meximum kinetic energy
U maximim strain energy
ao,ai,bi,ci Fouriler series coefficients
a half-depth of beam

b

helf-width of beam
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i, my n integers

E 2
1
kT frequency coefficient, Op [—=—

GJ

k"’o fregquency coefficient for uniform shear mode
tc thickness of cover sheet
tw thickness of web

U, Vv, W displacement of flange in x-direction, y-direction, and
z-direction

X, ¥, 2 coordingtes defined in figure 1

€ longitudinal strain in flange

7a shear strain in cover

Ty shear strain in web

28 shear strain in bulkhead

8 average angle of twist

Orp natural torsional frequency of four-flange box beam

wy, frequency of cross-sectional uniform shear mode
(¢}

p mass density of the actual beam

801 Kronecker delta (L if 1 = 0; 0 if 1 £ 0)

Subscripts:

i, n integers

m mode number

rig rigid bulkheads
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THEORETICAL ANALYSIS

Basic Equations

In order to investigate the influence of shear stiffness of bulk-
heads on the torsional frequencies of. uniform box beams, it is conven-
ient to make an idealization of the actual structure. In reference k4,
the ldeslization of the webs and covers of a beam into flanges and a
shegr-carrying sheet was successfully used in an anslysis of a beam with
rigid bulkheads. In the present analysis, the same ldealization is used
for a beam which contains nonrigid bulkheads. For simplicity of calcu-
lation, the cross section of the four-flange box beam 1s assumed to be
doubly symmetrical. ’

Assumptions.~ In the present anslysis the following assumptions are
made:

(1) The flenges of the beam carry only normal stresses.
(2) The sheets connecting the flanges carry only shear.

(3) The beam contains continucusly distributed, independently acting
bulkheads that have finlte shear stiffness in their planes but are
entirely free to warp out of their planes.

(4) The influence of longitudinal inertis is negligible.

In accordance wlth the foregoing assumptions and the double symmetry
of the cross section, the dilsplacement of any point on the cross section
can be defined in terms of u, v, and w, the displacements of one of
the fla?ges in the x-, y-, and z-directions, respectively. (See
fig. 1.

Strain relstions.- The longitudinal strain in the flanges € and

the shear streins in the covers, webs, and bulkheads (7c: Yy, and 7y,

respectively) are glven in terms of the displscements u, v, and w
as .

& = (1

(2)
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7W=‘g;;""& (3)
=z -% (%)

where & and b are the half-depth and the balf-width of the beam,
respectively.

If the bulkheads were assumed to be rigid in their own planes, Vv
and w would each be proportional to the twist of the cross section iIn
such & manner that 7p = O. The distortions of the structure could then
be defined as in reference & in terms of u and the twist of the cross
section. Since the bulkheads have a finite shear stiffness, the cross
section is allowed to distort and v and w are conslidered separately.
It is then convenient to define an average twist 6 as

6 = l(l + 1) (5)

2\a b

From equations (4) and (5), the displacements v and W can now be
written in terms of 8 and ¥, as

v=.3L(e+7?1°) (6)
w=b( --Z—b-) (n

Energy relstions.- For the four-flange beam vibrating in a natural
mode, the maximum strain energy U is

L L - L
U=2thc_/lL702dx+ 2Gety L7W26x+ ZEAFJ:L €p2ax +

Lo,
2GeabfL 7" dx (8)

wvhere L 1s the half-length of the beam, tc is the cover-sheet thick-
ness, tw is the web thickness, Ay 1s the area of a flange, and Gg

1s the effective shear modulus of the bulkheads.

The first two terms of equation (8) represent the energy due to
the shear strains in the covers and webs of the beam; these are the only
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kinds of energy considered in elementary theories. The third term
represents the contributlion of the restraint of warping. The last term
represents the contribution of the shear strein in the bulkheads.

The strain energy expressed by equaition (8) can now be expressed
in terms of wu, Tp? end © as

L 2 L 2
_ a0 . a%w, u f 38 _ b _u
U-2®tC£L(aE+2&—+E)&+2%% -L(bdx—aa;-—; ax +
L, \2 Lo,
ay
2FA f_L(dx)dJH 2GeainL 7, 2ax (9)

In the calculation of the maximum kinetic energy, the inertial
properties of the actual beam are used and the following assumption 1s
made: At any point in the cross section, the displacement v 1n the
y-direction is proportional to =z, and the displecement w in the
z-direction is proportional to y. (See fig. 1.) Thus the maximm
kinetic energy can be written as - :

T=%%£i£fp[§%y)2+(§z)2]dzdyu (10)

where W is a natural torsional frequency, p 1s the mass density of

any point in the actual beam, and R 1is the region in the plane of the
cross section containing all of the mass elements of the bean.

When equations (6) and (7) are substituted into equation (10), the
expression for the meximum kinetic energy can be written in terms of 14
and © as follows:

2 I i
T ‘.D.T; I, [L(ee + % 7b2 - Ceyb)d.x (11)
where
I, -
¢ = T;_I—;f (12)

The quantity Ip is the mess polar moment of inertis per unit length,
and Iy and I, are the mass moments of inertia per unit length about

the y- and z-axes; these quantities are, of course, based on the
agssumption of uniform spanwise mass distribution in the actual structure.
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The constant C can be looked upon as an inertial coupling coefficient
between the rotational and cross-sectionsl shear motions.

Method of Analysls

The following analysis is based on the principle that a natbural
mode of vibration must satisfy the variationsl equation

5(U-T) = 0 (13)

where the varistion is taken with respect to the distortions wu, 6,

and 7, and where these displacements satlsfy the geometric boumdary
conditions., Applicatlion of the technigues of the celculus of variatioms
to equation (13 , with u, 6, and 7, 8s the independent variables,
yields the differential equations and natursl boundary conditlions glven
in the sppendix. TI% is more convenient, however, to carry out the exact
solution of equation (13) by means of the Rayleigh-Ritz procedure.

Symmetrical vibrations of a free-free beam.- Appropriate assumptions
for the distortions wu, 6, and 9, of a free-free beam in a symmetrical
mode of vibration are

u = agx + Z ansin-r%{- (%)
n=1,2,3%
0 = Z b, cos % (15)
n=0,1,2
W= ) o cos B (26)
n=0,1,2

The cholce of the particular trigonometric fumctions used in equa-

tions (1%), (15), and (16) was guided by consideration of the orthogonality
required for the sirmplification of the strain-energy expression. The
linear term is included in the expression for wu in order to allow
the deflection of the tlp of the beam to be unrestricted.
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Substitution of equations (14), (15), and (16) into equations (9)
and (11) yields, after subtraction,

L o)
_ Dot nx _ a nt ngx
U-T_ac;btcf [—an > 2bn(—L)sinT 4 > . cn(—L)sin X

N
T
M
7
5
\_h.‘/m
B

oo1] g
!
'Ero
Q‘“j
= =
M
o
B
& n
+

[+2] 00
Z b. cos _n:t_x) Z c. cos E:'r—x)d.x (17)
20,1,2 L (n n L

o]

!

Hel\)
L2
]

Differentiating U - T with respect to 8qs the ay's, the by's,
and the c;'s and setting the respective regults equal to zero yields

i [.1.‘ B ("l)nfll- + A(-l)nbn - % B(-l)ncn:] - g@ + K2)a0 =0 (18)

a nmt b
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2, 5lL 2L, A 1 R )
E€2(in:) +%|a.b +A(1:t)bi-2]3(i1t)ci-ab B = a.ol_o

(1 =1,2,3, . - .) (19)

J:-A(i:r) %— - ’:kTe(l + Bg) - B(:ht)zl'bi + E CkT2(1 + 501) -

%A(i:r)z:lci - %ﬁ A(l - 501)(_1)ia0 =0 (1 =0,1,2, . « .) (20)

1 L 5(1x = - E Ckg” (L + Bo1) - %A(iﬂ)ﬂbi + %E‘Tz(l + 8gy) -

B(1x)? - S(l + 501):lci - E_i B(-l)i(l - 501)5.0 =0

. (1 =0,L,2, . . ) (21)
where
Kp = _Pig I 168202 )
“r GJ & . Db
W ¢
c (a + 'b)LZ
K = -E—AF—(i 4 b) s = € %—W :E_C-
w2 &w  tc B Geb
2 2
ty c(b - L)
A T { (22)
Lhab
b\2
1"W’GC(&L + %—)
= %o/ l(l N LAQ)
heb
Bgy = O (for i #£0)
3] =1 y



10 NACA TR 346k

The unknown natural frequency is contained in the parameter

which 1s in common use 1n torsional vibration analyses. The quantity J,
which appears in the expression for kmq, is the well-known torsional
stiffness constant. The parsmeter K is associated with the effects

of restraint of warping, whereas the parasmeter S 1s associated with
the effects of bulkhead stiffness. The parameters A and B are
simply geometrical properties of the four-flange box beam.

Examination of equaticns (18) to (21) shows that the coefficients b

and cg appear only in equations (20) and (21), and then only for i = O.
When 1 = 0, equations (20) and (21) reduce to

BkyPby - Ckgc = O
§ (23)
2CkyPhy - (P - 8)eq = 0

Py

The condltion for a nontrivisl solution of b, and ¢ glves the

O

freguency equation .

0 (24)

kt['a[k‘rz (-3 - ]

From equations (15) and (16), it can be seen that a given value of
bp corresponds to a rigid-body rotation of the beam, whereas a given
value of c¢g corresponds to a bulkhead shear distortion which is uniform
along the length of the beam. Equation (2&), therefore, gives the fre—
quency coefficient for a wiform eross-sectional shear mode,

S
kp, = — (25)

in addition to the frequency coefficient kp = 0 for the rigid-body
torsional mode. The frequency coefficlent kbO for the uniform cross-

sectional shear mode 1s shown to be & pertinent parameter in the evalug-
tion of the influence of the shear stiffness of bulkhesds on torsional
frequencies.

Now consider the remaining equations (18) to (21). Substitution of
equation (19) into equation (18) gives

-
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0+E O (Wma=0 (@40 (26)

n=1,2,3

By solving equations (19), (20), and (21) simultaneously for a%
in terms of ay and then substituting the results into equation (26),
the following equation results if it is required that &y, is not equal
to zero:

- -2 2 )
1e2 > 1 - v =0
n=1,2,3 - 15202(“)6 + xa(kboz - kfx)(nx)“ N E5b°2 - ﬁ;ﬁ(kboa - kTE)J(“‘)Z - 1“22 (hboa - k‘ra)
(k2 £ 0) (=2n
where
=—2 (1 - AC
. 1-02( 'B) (28_)

Equation (27) is the frequency equation for the symmetrical torsional
vibration of a four-flange box beam when the influence of bulkhead shear
deformation is included.

Antisymmetrical vibrations of a free-free beam.- For a free-free
beam vibrating in an antisymmetrical torsional mode, appropriate assump-
tions for the distortions are

u=8ag + i a.'ncos-n—“-x; (29)
n=1,3,5 2L
6= >  bysinlX (30)
n=1,3,5
7% = 9 ¢, sinBEX (31)
b n=1,3,5 2L

As in the case of the symmetrical modes of vibration, the choice of
the particular trigonometric functions was gulded by considerations of
the orthogonality required for the simplification of the strain-energy
expression. The constant term ay iIn equation (29) is necessary to allow
sufficient freedom for the beam to warp.

By substituting the expressions for u, 8, and 7, (egs. (29)
to (31)) into equations (9) and (11) end by following a procedure similar
to that described for the symmetricel modes of vibration, the following
frequency equation for the antisymmetrical mode of vibration is derived:



iz NACA TN 346k

=0

:2: éqbz__f?ﬁggegga__&fé%ge_kfﬁ
e R e e |

1 - g2\2

(x2 4 0) (32)

Discussion of Limiting Cases

Before proceeding wlth a numerical evaluation of the influence of
the shear stiffness of bulkheads on the torsional vibrations of box beams,
a discussion of some limiting cases of the frequency equations is desirable.

The influence of cross-sectional shear distortions on torsional fre-
guencies depends on the frequency coefficient kbo of the uniform cross-

sectional shear mode. The stiffer the cross sections of a beam, the
higher the frequency of this uniform shear mode. When the cross sectlons
become rigid (that is, when G, and, consequently, kbo are infinite),

the frequency equations can be put into closed forms identical to those
in reference 4 (where the influence of cross-sectional distortions is
considered negligible).

The parameter K 1s assoclated with the influence of restraint of
warping and, if this effect is to be neglected, 1t is sufficient to set
K equal to zero. The frequency equations (egs. (27) and (32)), however,
become indeterminate for K = O. A solution for this special case is
presented in the appendix and has a particular importance which will be
discussed later in the section entitled "Method for Estimating Effects.”

Another special limiting case which 1is of interest is the box beam
for which both C and A are equal to zero as, for example, a square
beam with equal wall and cover thickness. For this case, equstion (20),
for the condition Ty #_0, ylelds the elementary torsional frequency
equation, whereas solution of the remsining equations {eqs. (18), (19),
and (21)5, which no longer contain by, results in a frequency equation
for cross-sectionsl shear modes (that is, modes which contain only V&S
and u displacements). The frequency equations for these shear modes can
be cbtained from equatioms (27) and (32) by setting both A and C equal
to zero. '

NUMERICAL RESULTS

In order to evaluate the influence of shear stiffness of bulkheads
on torsional vibrations, the frequencies of the rectangular tube shown
in figure 2 were calculeted from equations (27) and (32) for various
values of k%O' The tube was assumed to have a width-depth ratio b/a
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of 3.6, a plan-form aspect ratio L/b of 13.3, and a thickness ratio
ty/tc of 1.0. A value for E/G of 2.65 was also assumed. (These pro-

portions correspond to those of the tube for which experimental results
were reported in ref. 1.) The cross-sectional area of the flanges of the
four-flenge box beam was teken as equal to one-sixth of the sectionsl
area of the walls adjacent to each corner. The cover and web thicknesses
of the four-flange box beam were set equal to the wall thickness of the
tube. The results of these calculations for the first five free-free
modes (three sntisymmetrical and two symmetrical) are shown in figures 2
and 3.

In figure 2, the frequency coefficient kg_:m of the four-flange box
beam 1s plotted as a function of the frequency coefficient kp, for the

uniform cross-sectional shear mode. Two sets of curves are shown; the
solid curves represent the frequency coefficients obtalned from equa-
tions (27) and (32) when the influence of cross-sectionsl distortions is
included, and the dashed curves represent the freguency coefficients
obtained from a solution of the four-flange box beam when the cross-
sectlonal distortlions are assumed to be negligible. The solid curves
representing the first five free-free modes are given for values of Ik,
from 2.73 to 25. 0

The differences between the solid and dashed curves in figure 2,
show that the reductions in torsional frequencies due to bulkhead shear
flexibilities can be of considerable importance, especielly for small
values of ky,. For a tube with Xy, = 3.08, for example, the reduction

in torsionasl frequencies due to cross-sectional flexibilities, as
obtained from figure 2 and verifled experimentally in reference 1, ranges
from 16 percent for the first mode to 63 percent for the f£ifth mode.

This value of kbo ia for the test beam used in reference 1. The beam

contained no discrete bulkheads of any kind and therefore depended on
the bent action of its own walls for cross-sectionsl stiffness. If,
however, weightless bulkheads of the same thickness and shear modulus
as the walls of the beam were spaced at a distance of twice the chord,
the average value of Iky,, would be spproximately 22.0, and the reduc-
tions in torsional frequencies would range from 1 percent for the first
mode to 8 percent for the f£ifth mode.

In figure.3, the results of figure 2 are replotted In terms of the

frequency ratios (uxrm)rig and Op,, /(mlm)rig where (me)rig is

the frequency of the mth mode of the four-flenge box beam with rigid
cross sections. It should be noted that the ratios of the frequencies

(DTm/(“’Tm) rig and @y, o /(U)Tm)rig are identical to the ratios of the
corresponding frequency coefficients and .
’ = kTm/(kTm rig kbo/ (kTm)rig
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The curves for each mode in figure 3 fall so close together that 1t
should be possible to draw one curve which would be representative of
all modes considered. It would seem probable, therefore, that, with

some simplification of the analysis, a relationship between wp /«?ﬂh) s
' m rig

and wa/«?ﬁthig could be obtained that does not depend on the mode.

Such a relstlionship would be useful for estimeting the effects of cross-
sectional shearing.

METHOD FOR ESTIMATING EFFECTS

It is shown In the appendix that, when the restraint of warping is
neglected (that 1s, when EAp and, consequently, K are set equal to

zero), the following frequency equation will result:

b 2 2 2
O’Ih wbo 1 w‘I‘m + wa =0 (53)

[ | (=3 W e | = W R | S

Equation (33) is similar to the equations obtained in reference 2 in
which the 1nfluence of coupling between overall torsion and certain
cross~sectional or panel vibrations was investigated. The particular
type of cross-sectional vibration considered in reference 2, however,
is one in which the corners of the cross sections do not move with
respect to each other; thus, no cross-sectional shear distortions are

allowed. o
Equation (33) is a quadratic equation in i and will
Zaqﬁnjrig

O
yield two real and positive values of ——=—, Only the smaller of

(“ty)r1g

the two roots, however, is of interest. Results of this approximate
solution are shown by the dashed curve in figure 3 for the particular
beam consldered in figures 2 and 3 and are in good sgreement with the

“bg

Qnmm)ris

results of the exact solution, even for the lower values of
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This frequency equation (eg. (33)), therefore, can be used to
estimate quickly the effects of cross-sectlonal shear stiffness on the
torsional frequencies of box beams. Solution of the equation for a range
of values of Iy/I.z (wh:!.ch determines the value of C) from 1.0 to 0.05

i8 shown in figure 4. A value for Iy'/Iz of 1.0 corresponds to a

uniform-walled tube with a width-depth ratio b/a of 1.0, whereas a
velue for Iy/I; of 0.05 corresponds to a tube with b/a approxi-

mately equal to 7.0, The curves in figure 4 show that the effect of
cross-sectional flexibility increases not only with a decrease in
uniform cross-sectional shear frequency but also with an increase in
width-depth ratio.

Before these curves can be used, the ratio Iy/Iz mist be known

d the fr i I t b
and the frequency ratios /(mrm)rig or g /(kTm)ri must be
evalusted. A value for the frequency coefficient (kgjrig may be

obtained from any torsional analysis in which the cross sections are
assumed to be rigid. A value for the frequency coefficient kbo mey

be obtained from equation (25) , provided an approprilate value of Ge
for a representative beam cross section is known. In determining Gg

for an schtual structure where the bulkheads contribute most of the cross-
sectional shear stiffness, the defining relation is

c N('("r"bb)
- "le (3)
G 2LG

where N is the nmumber of bulkheads and (E'bb)e is the effective shear

stiffness of a bulkhead. If the bulkheads are solid sheets, the shear
modulus of the bulkhead materisl should be used for G and the bulkhead
thickness should be used for ty. For other forms of bulkheads, estimates
of the effective shear stiffness must be made. For beams that contain no
bulkheads, special consideration, such as that given in appendix B of
reference 1, 1s necessary.

CONCLUDING REMARKS

. The influence of cross-sectional or bulkhead shear deformations on
the torsional frequencies of box beams has been obtained by meens of an
analysis of a four-flange box beam. For conventlonal constructlons where
bulkheads are spaced approximately 1 chord apart, the influence of cross-
sectional shear deformations generally is negligible. For beams that
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depend on the bent action of their own walls for most of their cross-
sectional stiffness, the effect of cross-sectionsl shear deformstions 1is
considerable. Since the trend in wing design is toward structures with
fewer bulkheads and higher width-depth ratios, the iInfluence of cross-
sectional flexibilities on torsional frequencies could become important.
Curves based on an gpproximeste solution aré presented to allow quick
approximation of the reduction in torsional frequencies of box beams
having flexible rather than rigid bulkheads.

Langley Aeronautical Laborstory,
National Advisory Committee for Aeromautics,
Lengley Field, Va., April 27, 1955.
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APPENDIX
APPROXTIMATE SOLUTTON

Although a solution for K = O can be cbtained directly from equa-
tions (18) to (21), a solution based on the differential equations might
be of more interest.

From equations (9), (11), snd (13), where the variation is taken
independently with respect to u, 6, and 9%,, the following differen-

tial equations and the natural boundsry conditions associated with the
vibration problem msy be obtained:

2
a% 1. A au  br° 1 kpC
pL8 _ a2 2882 gz 0 (A1)
=2 2 ag2  ®bax 12 2 12
d291d27b B du kroC 1/, 2 1
-A + 2B+ 280 L7 g 4 2(kp” - 8)5 9% =0 (a2)
ax2 27 gx2 epd&x g2 2( )Lz
a
22 a0 1,7, B
=K -5 A—+5B — r=us 0 (a3)
L
K2 du 3u =0 (Ak)
dx -L
a I
a8 1, A _
(de 5 Ao abzase_L—o (a5)
L
d 1. B
aw _Llg 2 L = A6
(Adx 2P & abu)STb_L ° (a8)

The perameters used in these equations are defined in equations (22).



18 NACA TN 346k

In order to neglect the influence of restraint duve to warping in
equations (Al) to (A6), it is sufficlent to set X2 equal to 0. These
equations may then be reduced to the following differential equation and
boundary conditions:

gg-+r>29=o_ (AT)
@5l -0 (8)
dx |,
where
2 2
2 - ky
po k2 T o (49)
12 ky? 5
L. o

For a free-free beam, equation (A8) will yield

=0 (a10)

The genersl solution for equation (A7) is given by
® = Dy sin Px + Dp cos Px (A11)

where D; and Do are constants of integration.
Now, by use of equations (AlO) and (All) and the condition for a

nontrivial solution for Dy and Do, the following frequency equation
for a free-free besm may be obtained:

gin PI. cos PL = O (a12)
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Equation (Al2) is satisfied by the relation:
2
P22 - (ﬂgr.) (m=0,1,2, ...) (8a13)
By substitution of the definition of P2 from equation (A9), equa-
tion (Al3) may be written as
2 2 .
kp™ - X 2
iy ——g °c . (lgl) (m=0,1,2, ...) (A1k)
kp - 2
1-¢ 9

For m = 0, equation (Allk) yields the frequencies of the rigid-body
torsion mode and the uniform cross-sectional shear mode (see eq. (25)).

If the case in which m = O 1is neglected, equations (Al%) may be
written as

2 — 2
o a!IIm _1 ‘DO 0 .
Ty

-(‘DTm) rig| Kmfm) ri 1 _ (%) 2

(kTM) iis (

me) rig

2
1 | om _ 1. %o
1-C L(“)Tm) rig me)rig
(m=l, 2, 35, . .) (Al5)

At this point, it should be noted that (kTm)r 1g reduces to the
mth elementary frequency coefficient for the case in which K2 = 0 H

2 2
that 18, (log,)oy, = (m.gﬂ_f) where m=1, 2, 3, « . .

Thus, equation (Al5) may be writien as

__%;_1‘- l—%o _‘2_,_ 1 erm —‘2_,_[_%0' 2==0 (A16)
G K"’I‘m)rig“ 1-0® K‘“Tm)rigj K"’Tm)rig
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Figure (.- Four-flange box beam and the distortions of o cross section.
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Figure 2.- Influence of bulkhead shear stiffness on the torsional frequencies
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of a box beam where J§-=l3.3,%=3.6, and —*g-=l.0.
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Figure 3.- Comparison of exact and approximate solutions which include the influence of bulkhead
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shear flexibility for a beam with J[-;- 133, B-=36 and =10
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Figure 4.~ Influence of bulkhead shear flexibility given by an approximate solution for various
values of 11 .
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