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TECHNICAL NOTE 3418

TEE ZERO-LE!7!WAVE DRAG Cll?A PARTICULAR FAMILY (X

UNSWEPI, TAPERED WINGS WITH LINEKRLY

VARYING TEiICKNESS

By Arthur Henderson, Jr., and

SUMMARY

RATIO

Julia M. Goodwin

On the basis of Mnear theory, the zero-lift wave drag of a particu-
family of unswept, tapered wings with linearly varying thickness ratio
symmetrical parabolic-arc sections has been calculated. The case of
wing with a given root.thiclmess ratio is given primary consideration

in this-paper with the view toward its use for missiles with a13-movable
fins where the root thiclmess must be large enough to allow for a rigid
attachment to the trunnion and controlling mechanism. By comparing the
drag for these wings with that for a corresponding constant-thickess-
ratio wing with rhombic sections, it is found that the variable-thickness-
ratio wings can be used to advantage with no serious structural penalties
if the wings are assmed to have the same given root thickness ratio or
the sane internal volume.

INTRODUCTION

Zero-lift drag calculations have generally not been made for tapered
wings with curved surfaces because the thickness functions, from which
the source distributions are obtained, are usually of such a nature that
the drag equations are nonintegrable, although in some cases pressure
distributions may be found. References 1 and 2 present a nwnerical.method
for computing the pressure wave drag of delta and arrow plan-form wings;
reference 1 is for biconvex, constant-thiclmess-ratio sections, and ref-
erence 2 determines the minimum wave drag for constad -thickness-ratio
wdllgs.

By modifying the equation which describes the stiace of an unswept,
I tapered wing of biconvex section and constant thicbess ratio, for which

the drag has not yet been found analytically, an unswept, tqered wing of
biconvex section and linearly varying thickness ratio is obtained for
which the drag csn be found. This is not a completely general wing in
that the taper ratio is equal to the ratio of the tip thiclmess ratio to
root thichess ratio. Nevertheless, it is of imne~te Practical ~terest j
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particularly as ap-@ied to missiles with all-movable controls for which ●

the primary consideration often is that the root thickness be large
enough to allow for a rigid attachment of the wing to the trunnion and
controlling mechanism without incurring any large stress concentrations. w“

Since missile wings are often sub~ected to”large, instantaneous deflec-
tions, the juncture of the wing and trunnion must be well designed.

The unswept wing was chosenfor this investigation because, for the
higher Mach numbers at which missiles and future aircraft willbe oper-
ated, the unswept wing is generally superior to the swept wing as far as
drag is concerned. As an illustration, figure 1, which is taken fram
figure 10(b) of reference 3, is presented. Figure 1 presents the ratio
of the drag coefficient of a rectangular wing to the drag coefficient

—.

of an untapered, sweptback wing of’the same aspect ratio (A = 5), plan-
form area, thickness ratio, and parabolic-arc section as a function of
Mach number for various angles of sweepback. After the leading edge of
the sweptback wing becomes supersonic, the drag characteristics of the
rectangular wing are seen to be as good as or superior to those of the
sweptback wing. As the Mach number increases, the angle of sweepback

T-

necessary to reduce the drag below that of the rectangular wing becomes
structurally unfeasible; therefore, the rectangular wing is preferable
to the sweptback wing at the higher Madh numbers.

.

For a given thickness at the root, which is the primary concern in
this paper, an unswept, tapered wing willhave better drag character-
istics than a rectangular wing of the ssme aspect ratio and plan-fore

.

area because the tapered wing will have a larger root chord and, conse-
—

quently, a lower thiclmess ratio. A further decrease in the drag can be
obtained by retaining the tapered plan form and the given root thickness
ratio but reducing the local spanwise thickness ratio. Of course, this
spanwise reduction in thickness ratio increases the local bending stresses
so that, for any particular application, a satisfactory compromise between
allowable stresses and tiag reduction must he reached.

Since the higher Mach numbers are of interest and the wing of the
present paper is unswept, the drag calculations have been made only for
the case of supersonic leading edges. .-

aspect ratio, 4s2/s

wave-drag coefficient, D/qS

SYMBOLS
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% wave-drag

CDS wave-drag

coefficient of rect~ wing

coefficient of sweptback wing

c(y) local chord

Cr root chord

D wave drag

F frontal area

I=(Y) moment of inertia about local chord

K= 2(1 - x)

1+X

M Mach number

.
m(y) local bending moment

●

N
Cr(l - x)

sweepback parameter,
2s

, tangent of leading-edge

sweepback angle

Ap local pressure minus free-stream pressure

~ dynamic pressure, *V2

s plan-form area

s’ area of integration

s semispan

t(y) maximum local thichess of wing

tr maximum root thickness
.

ts skin thiclmess



k

v free-stream velocity

vi internal volume

w vertical perturbation velocity

X,y,z Cartesian coordinates

p=~m

A leading-edge sweepback angle

NACA TN 3418

wing taper ratio, Tip chord
Root chord

E9V coordinates of source

P free-stream density

a(y) maximum local bending

point

m(y)%

stress,

I=(Y)

t(y)
T(y) local thickness ratio,

Z3-

t
‘r root thickness ratio, ~

Cr

fl perturbation velocity potential

Unless otherwise denoted, primed symbols refer to the constant-
thickness-ratio wing.

ANALYEXS

The surface of the variable-thickness-ratiowing of the present
investigation has parabolic-arc sections as described by the equation

[ ()x’
2

z
()]

&+N’&. ‘Trcr : - - Cr
~

.

“

(1) .

k
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The maxhum-thickness line is at x = cr/2. The projection of the

maximum-thichess line on the yz-plane is described by

and the thickness ratio is

By using the definition of

= T(y) = Tr k-ae)
N, equation (2) may be rewritten as

[
T(y) = Tr 1 - (1 - l): 1

- from which

T(S)
—=A
‘r

(2)

(3)

(4)

Thus, the wimg which is treat,edherein is not completely general in
that the ratio of the tip and root thickness ratios is directly related
to the taper ratio. Nevertheless, equation (1) does allow the drag to
be calculated for curved-surface airfoils of practical interest, as men-
tioned previously.

The linearized partial-differential equation for the perturbation
potential in skeady supersonic flow is

(5)

If the disturbances are assumed to be small, the boundary conditions
on the surface of a thin, symmetrical wing at zero engle of attack may be
satisfied to the first order in the plane of the wing. Eence

(6)

Reference k shows that-a solution of eqyation (~) which satisfies condi-
tion (6) is, for a source distribtiion,
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.

(7)

dz(~,q)
where w(~,q) = ~E V is proportional to the source strength per

unit area.

To thefirst order, the pressure in the plane of the ting is given
by

The drag is expressed as

(8)

—

two essentially equivalent approaches.
.

from reference 5 and is the more general

and can be found .byeither of

The first method follows
of the two procedures. Since, for the zero-l& case, the pote~ial in
the z = O plane off the wing is zero, the potential at any point on
the wing is the integrated effect on that point of all the sources within
the wing boundaries which can influence that point. Thus, the wing of
figure 2 has five regions of influence. The potentfal for each region
can be found by integrating equation (7) over the area bounded by the
wing plan form and the Mach lines which are drawn forward from the
arbitrsxy point of each region. In practice, however, it is necessary
to perform the integration only for the arbitrary point of region (5),
since the potential for each of the other four regions consists of the
appropriate real parts of the potential of region (~). The drag can
therefore be found from equation (9) by integrating the product of the
slope and the pressure for region (5) over the whole plan form and taking
the appropriate real parts of the result.

The second method consists of the superposition of source distribu-
tions,
method
geous,
Es was

a procedure which is described in reference 6. Although this
is not so straightforward as the first, its use is often advanta-
particularly if some previously calculated results are applicable,
the case with the present paper. As shown in figure 3, there are .

a
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three regions over which eqmtion (9) is

cases to the condition that B > K, that

leading edges). These regions are:

Region 1: B > 2

?

applicable, subject in all three

2ARegion III: O~B~- 1

Thus, if a ting has
fits region 11, the
are real, and those

A+AJ

a configuration with respect to the Wch lines that
functions of equation (9) relating to regions I and 11
for region III are imaginary.

The drag functions obtained from equation (9) have
the second method and are given in the appendix for the
regions. The dqag is plotted in figure 4 as a function

RESUE17SAND DISCUSSION

In additionto having good drag characteristics, a

been evaluated by
three different
of B = ~ and 1.

practical wing
must be structurally sound. In order to ascertain the relative drag and
structural properties of the present wing, the drag and maximum local
bending stresses of the variable-thickness-ratiowing are ccmpared with
the sane properties of a corresponding constant-thiclmess-ratiowing.
The results for the constant-thickness-ratiowing which has rhombic sec-
tions are obtained from reference 7.

Given Root Thiclmess Ratio

Since the main application of the present wing is to missiles with
all-movable fins where the thiclmess at the root must be sufficient for
a rigid attachment of the wing to the trunnion and controlXng mechanism,
the drag and structural characteristics of a variable- and a constant-
thickness-ratio w5ng of the ssme plan form should be made on the basis
that they both have the ssme root thickness ratio. If prbed synibols
denote values pertaining to the constant-thickness-ratiowing (obtained
from ref. 7) and unprimed symbols represent the variable-thiclmess-ratio
wing, the ratio of the drags of the two wings on the basis of a given
root thickness ratio is
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Equation (10) is presented h figure 5, from which CD/~’ is seen to

be a strong function of A, with drag reductions obtained for values of
X less than about 0.70.

It should be noted that the constant-thickness-ratiowing used for
comparison has rhombic sections, which makes ~/~’ less favorable .-

than if it had parabolic-arc sections (that is, for a given thickness
—

ratio, a rhombic section has less wave drag than a parabolic-arc section).
According to reference 8, if a constant-thickness-mtio wing has .-

parabolic-arc sections, all values of cD/%D’ should be multiplied by

0.75.

As indicated by lAnear theory, two identical plan forms at the same
angle of attack will have the ssme lift distribution and, consequently,
the sane local bending moment. Since the maximum local bending stresses
are

.

1 m(y)t(y)
a(y) = -

2 I=(Y)

the ratio of the maximum local bending stresses of the solid variable-
thickness-ratio wing to the constant-thickness-ratiowing is

Now,

and

a(y) = t(Y)I&(Y)

~t(Y) %&)t’(y}

t(y) = T(Y)C(Y)

(IL) .

(12)

(13)

(14]

Therefore,
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a(y) 35Tr’2
=

~’(Y)
[

2
64Tr2 1- (1 - h):]

9

(15)

which, on the basis of given root

[1u(y)

=3- so~~ =

Implicit in eqyation (15) is

thickness ratios, becomes

35

[ 1
z

641-(1+

the assumption of solid wings. For
large wings where, in order to reduce the weight, a hollow wing construc-
tion is used, calculation of In$ based on the assumption that the skin

carries all the load, will probably more nearly represent the true state
of sffairs than does eqyation (15). For a wing with constant skin thick-
ness ts, where xl is the point on the x-axis where hollowness begins,

. I==4L2:;:,Lz(x’y)’2d’~+4L:)L;:;:t:2”~‘“)
from which, by using equation (12),

-Cf(y) 1 sqrrr’2

.m =
hollow 8.r2~ - (I - x)g]3

1-

-

where r =
ts/Cr <12

= —.
. ‘r 2

x

1
2

‘1-

L

r2

l-(;+ ‘&(mg2

1- 2r J~-(1 - @2

(18)
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If the term to
approach zero, then
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the 7/2 power is expanded and r is allowed to .

cl(y) = 35+r
,2

~’(Y)

[ 156Tr2 1- (1 - 1)$

which, for given root thiclmess ratios, is-

[1u(y) =
or(Y)

hollow

(19)

(20)

Equations (16) and (20) are plotted ti.figure 6, where the solid lines
are for the so13d wing and the dashed lines are for the hollow wing which
has a skin thickness that approaches zero. The hatched portion between
each set of solid and dashed lines represetis varying degrees of skin
thickness. Fran this figure it maybe seen that a hollow variable-
thickness-ratio wing generally compares more favorably with a hollow
constant-thickness-ratiowing than the solid wings do. a

A comparison of figures 5 and 6reveals that, as the taper ratio is
decreased below about 0.70, increasingly large drag reductions are .

obtained but with correspondingly large increases in the ratios of local
bending stresses, especially in the vicinity of the tip. Within limits,
however, this indrease in outboard bending stresses is not serious. In
fi~e 7 the ratio of local bending stresses to root bending stresses of
a solid wing with a constant thickness ratio is plotted against the span-
wise position, as an illustration. ‘I’hecurves are based on the conserva-
tive assumption of constant pressure distribution. It may be seen that,
for all bfi the case of A = 0, the outboard Eecixlons are highly under-
stressed. That is, from a structural standpoint, in all bti the case of
h= 0, a constant-thickness-ratiowing wastes material.

As a matter of interest, the drag and bending moment of the two
wings can also be campared on the basis of given frontal area and given
volume.

Given Frontal Area

The projected frontal area of a wing is

f

s
F=2 t(y) dy

o
(21) -

.
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from which

For F = F‘ with ti plan-form dimensions the same,

3Tr’(1 + ~)
‘r =

2(1 + A + AZ)

(22)

(23)

(24)

Substituting equation (24) into equations (10), (15), and (19), on
the basis of a given frental area, yields

% 9(1 -f-A)2—= &!?!i&
CDt 4(1+ ?WQ2)2 cDfp &

/

[1a(y) 35(1 + x + A2)2
m Soud =

144(1 + A)2 ~ - (1 - X)*]2

(25)

(26)

[1u(y) 35(1 + A + A2)2= (27)
fJ’(Y)

hollow
[ 1126(1+A)21-(1-A):

Equations (5), (26), and (27) are plotted in figures 8 and 9 and show
that, for all taper ratios, *he drag of the variable-thickness-ratio wing
is higher than the drag of the constant-thickness-ratiowing, whereas the
stresses in the wing are lowered.

.

.
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The titernal volume of a wing is

s

11
T.E.(x)

vi =4 Z(x,y)dx dy
o L.E.(x)

from which,

“<=+(’ +’+’2)
For Vi = Vi’ tith all plan-form dimensions the same,

(29)

(30)

.

(3U

.

Substituting equation (31) into equations (10), (15), and (19), on
the basis of a given internal volume, yields

[1a(y) 35(1 + A + 72 + ?P)2=
a’ (Y)

hollow [
56(~ + ~ + h2)2 1- 1(1-x):

(32)

(33)

(34)

.

.

..
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@m.tiOns (32), (33), and (34) are plotted in figures 10 and 1-1.
These figures show that drag reductions are obtained for all taper ratios,
whereas the structural characteristics are scmewhat worsened by comparison
with the constant-thiclmess-ratiowing. Reference to figure 7, however,
shows that, within limlts, these poorer structwcal characteristics are
tolerable.

CONCLUDINGREMARKS

On the basis of linear theory, the zero-lift wave
tapered wing with linearly varying thickness ratio and

drag of an unswept,
parabolic-arc

sections has been calculated. Although this wing is not completely
general, in that the ratio of the tip thickness ratio to root thickness
ratio is equal to the taper ratio, it is nevertheless of immediate practi-
cal interest for such applications as missiles with all-movable fins where
the primary consideration is often that the thiclmess at the root be suf-
ficient to allow a rigid attachment of the wing to the trunnion and con-
trol mechanism.

The drag and bending-stress chara@eristics have been compared with
the corresponding characteristics of a constaat-thickness-ratiowing of
the sane plan form but with rhombic sections on the basis of the ssme
root thiclmess ratio, the same frontal area, and the ssme internal volune.

For the case of the same root .thickmessratio, the primary concern
of this paper, the ratio of the drag of the variable-thickness-ratio wing
to the drag of the constant-thickmess-ratiowing becomes less than 1.CX3
at a taper ratio of about 0.70. Decreasing the taper ratio decreases
the drag ratio but increases the ratio of local bending stresses of the
variable-thickness-ratio wing to the local bending stresses of the
constant-thickness-ratiowing. This bending-stress ratio is a maximum
at the tips. However, inasmuch as most constant-thickness-ratiowings,
when designed for a given root bending moment, will be understressed
outboard, an outboard increase in bending stress is not too serious,
within limits.

Although the w@@ with the same frontal.area were better structurally
than those in the preceding case, the drag was adversely affected for all
taper ratios.

For the wings with the same internal volume, the drag ratio is less
than 1.00 for all taper ratios and, although the outboard stresses are
increased slightly over those for the case of the same root thickness
ratio, a limited increase in outboard bending stresses is not
objectionable.



It appears, therefore, that for the cases of the sue root thickness -
ratio and the same internal volume, a satisfactory comprcxnisebetween drag
and stress considerations can be reached which will allow the present wing .
to be used to advantage.

LangleyAeronautical Laboratory,
National Advisory Conmittee for Aeronautics,

Iangleyl?ield,Vs., January 17, 1%5.
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APPENDIX

DRAG FUNCTIONS

The drag functions (eq.(9) ) have been evaluated for the three regions

indicated in figure 3 where PA >
2(1 - A) or B>K. These functions
1+X

are:

For B > 2,

()~D~ 128B

{[

B6 - &K2 + 1~2# - 4# +
TTr ~ = fi(l+ X)24’ 12KfB2 - K2)3

1A4(B2 - &) ~os-l ~ + 3B4 - 28B2# + 10&

- B 56(B2 - K2~i2 -

(1 - A)3!/”#”
(k’ l+kw-

(Al)

12X(2B2- K’) + A2(2B2- K’) & ~~-1 B2(1 -EX] + 4(1-~)~
3K(B2-#) ‘K(B2-K’) 3K 4B

[ 1]+*- ‘n2- ‘3‘1+’)4- ‘M) -
-14’4~ 67B2K’-23& ~ -2- d)

fi(B2- K?)5’2 36 Jir2 3.2JCF



—.

[ 11(1 - h)2- 2#(,2+ #) - B2(1 - A)2 k& 2X+ 4X2-B2(1i-X)2
E(1+ A)
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.

These equations are indeterminate for the case of A = 1.
Mnit as A +1, they reduce to

(M)

In the

(A4)

.

.

.

--

.

.
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