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SUMMARY

This paper treats the kernel function of the integral ‘equationthat
relates a lmown or prescribed downwash distribution to an unknown lift
distribution for harmonically oscillating wings in supersonic flow. The
treatment is essentially an extension to supersonic flow of the treatment
given in NACA TN 3131 for subsonic flow. For the supersonic case the
kernel function is derived by use of a suitable form of acoustic doublet
potential which employs a cutoff or Heaviside unit function. The kernel

n functions are reduced to forms that can be accurately evaluated by con-
sidering the functions in two parts: a part in which the singularities
are isolated and anslytica13y expressed, and a nonsingular part which.
can be tabulated.

The kernel is treated for the two-dimensional case, and it is shown
that the two-dimensional kernel leads to lmown I.ift distributions for
both steady and oscillating two-dimensional wings. The kernel function
for three-dimensional supersonic flow is reduced to the sonic case and
is shown to a~ee with results obtained for the sonic case in NACA
TN 3131, and the downwash functions associated with “horseshm” vortices
in supersonic flow are discussed and expressions are derived.

INTRODUCTION

h reference 1 the kernel function of an integral equation relating
a known or prescribed downwash distribution to an uriknownlift distri-
bution for a harmonically oscillating finite wing of srbitrary plan form
was treated for compressible subsonic flow. me purpose of the present
paper is to extend this treatment of the kernel function to supersonic
flow.

● The kernel functions under consideration arise when linesrized-
boundary-value problems for obtaining aerodynamic forces on oscillating

*
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wings are reduced to integral equations involving the distribution of
pressure or wing loading as the unlomwn. In such integral equations
the kernel functions play the important role of aerodynamic influence
functions in that they give the normal induced velocity or downwash at
any one point in the plane of the wing due to a unit pressure loading
at any other point in the plane of the wing.

As the kernel functions arise in the analysis, they are mathemati-
cally defined by rather intricate improper Integrals and possess shgu-
larities as high as second order. It is therefore desirable to isolate
the singularities and determine their explicit nature in order to make
the titegral equation more amenable to solution, in particular amenable
to solution by approximate or numerical procedures.

Approximate Efting-surface theories for finite wings, such as the
methods developed by Falkner and Multhopp (refs. 2 and 3) and others,
have afforded considerable success in the calculation of aer@cnamic
coefficients for steady subsonic aerodynamics. Similar approximate
methods have been successfully employed to obtain coefficients for
two-dimensional oscillating wings in subsonic (compressible) flow (for
exsmple, refs. 4 and 5) and are now being extended to the finite oscil-
lating wing in subsonic flow by Harry L. Runyan and Donald S. Woolston
of the Iangley Aeronautical Laboratory and by W. P. Jones (ref. 6). It
is reasonable to expect that these methcds can be further extended to
apply to finite wings in supersonic flow.

W supersonic flow, solutions of the boundary-value problem for
some particular plan forms and dowhwash conditions can be obtained in
the form of infinite series in terms of a parameter involving the fre-
quency of oscillation (see, for example, refs. 7 to 10) or in the form
of rather complicated definite integrals (refs. 11 and 12). The infinite-
series method furnishes a relatively simple means of obtaining the loading
on oscilhting wings for low values of the frequency parameter, but for
large values of this parameter the series expansions converge so slowly
that recourse must be had to other procedures for obtaining the wing
loading. One feasible methcd is to study and develop approximate pro-
cedures for solving the integral equations that involve the unknown
loading and its associated kernel function. The first step toward such
a development is to isolate and determine the ex@icit nature of the
singularities of the kernel functi~j this step is accomplished in the
present report.

The report contains the derivation of the kernel function in the
form of an improper integral and a reduction of this integral to propsr
form. The singularities of the kernel function are isolatxxland expressed
analytica~, and the nonsingular parts are reduced to a form readily
snenable to numerical evaluation, as was done in reference 1 for subsonic d

flow. Some expanded forms of the kernel function are derived, and one of
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s
these is used to obtain a reduction to two-dimensional flow. ~
appendix A, the limiting case for sonic flow is derived and shown to

. agree with the results in reference 1. Appendix B is devoted to certain
integrals of the kernel function. These integrals relate to “horseshoe’~
vortices in supersonic flow, as treated, for example, in the steady case
by Schlichting in reference 13, and may be of interest in certain modes
of application.
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SYMBOIS

velocity of sound

Bessel function of first kind, of first order with
imaginary argment

Bessel function of first kind, of order n

modified Bessel function of second kind, of first order

kernel function for ttiee-dimensional flow

reduced-frequency parameter, UD/v

kernel function for two-dimensional flow
.

lift distributions

modified Struve function of first order

unit length

kkch.number, V/c

perturbation pressure

region of xy-plsme occupied by wing

time

unit function

forward veloci@ of wing

.
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w(%Y>t)

fi(x,y)

X,y,z

X. =x- ‘5

Yo =Y”~

P= J==
5(X)

E,v

downwash velocity, efi%(x,y)

complex amplitude function of prescribed vertical
velocity

Cartesian coordinates attached to wing moving in
negative x-direction

Dirac delta function

Cartesian coordinates used to represent space location
of doublets

fluid densi~

velocity potential, eid?(x~yyz)

complex amplitude function of velocity potential

acceleration potential, ei~t~(x,y,z)

complex smplitude function of acceleration potential

circular frequency of oscillation

ANALYSIS

Jntegral Equation Relating Downwash and Lift Distribution

The linearized-boundary-valueproblem for the determination of the
aerodynamic forces on a wing can be Immediately reduced to a problem of
solving an integral equation that relates downwash and lift distribution.
The purpose of this section is to introduce and briefly discuss this
equation.

Since the integral equation has the same formal appearance for sub-
sonic and supersonic flow and is derived in various publications (for

.

.
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example, refs. 1 and 14), the equation win not be rederived here but
till be formally stated so as to serve as a starting point in the

. analysis. In keeping with 13near theory, the wing is considered as a
plane~ iuqenetrable surface S which lies nearly in the xy-plane as
indicated in the.followi@ sketch:

12

The x,y,z coordinate system and the surface S are assumed to move in
the negative x-direction at a unifarm velociw V.

h

In terms of these coordinates, the integral equation may be formally
written as

(1)

where G(x,y) is the complex amplitude function of prescribed vertical
veloci~ or downwash at points in S and is defined as follows:

w(x,y,t) = efi%(x, y)

where u is the frequency of pulsation or oscillation. The kernel
function K(~,yo) phystca~ represents the contribution to the down.

wash at a point (x,y) in S due to the presence of a pulsating pressure
doublet of unit strength located at some other point (~~q) in S= It is .._
a function not only of x, y, ~, and rj,but a~o of Mach number and
frequency. The function L(~,q) in equation (1) is tie unlmown 13ft
distribution or local dwblet strength. (Although it is usually conven-
ient to factor out the density term l/p as indicated in eq. (l))
this was not done in ref. 1.)

Equation (1) pertains formally to either subsonic or supersonic.
flowj however, separate treatments of the two cases are required because
of wide differences associated with flow characteristics. So far as the
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integral.equation is concerned,
mainly in the kernel functims:
the differences in character of
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the differences in the two cases lie
These differences are associated with
doublets for the two cases. Although

the main purpose of this analysis is to derive and treat the kernel-
function for the supersonic case, a necessary first step is to formuhte
a doublet suitable for such a treatment. b the following section, a
desired form, which was arrived at by a convenient use of a cutoff, or
Heaviside unit function, is presented in equation (5).

Pulsating Doublet Moving at Supersonic Speed

The governing differential equation for linearized uns~ady flow
at either subsonic or supersonic speeds, which the doublet potentials
must satisfy, is the well-known wave equation referred to a moving
coordinate system:

Under the assumption that disturbances vary harmonically with respect
to time, this equation becomes

-&&+iu2v=o
$+$+$ ( )

where ~ is a ccmplex amplitude function defined by

Iy(x,y,z,t)= e-$(x~y)z)

(2)

(3)

It may appear that, since the same differential equation (eq. (2)) is
involved, a logical way of obtaining the potential for a pulsating
doublet moving at supersonic speed is by simple snalogy or continuation
from the potential for the doublet moving at subsonic speed. This pro-
cedure is applicable only in a broad sense because, as discussed in
reference 15 with regard to sources in supersonic flow, the potential
of a doublet moving at supersonic speed consists of the sum of two
effects corresponding to a retarded-type potential and an advanced-~
potential which relate to the two mve fronts encountered by a point at
any timej whereas for subsonic s~ed only the retarded type of potential
is admissible. (The advanced-type potential for subsonic or sonic speed
does not satisfy the Sommerfeld radiation condition, which requires that
disturbances be propagated away from their point of origin.) Tn the
second place, the potential that may be obtained by analo~ with the
potential for subsonic speed must, as subsequently discussed, be rather
severely restricted before it mathematically describes the physical

.
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realities of a disturbance moving at supersonic speed. h the following
development, a desired form of the doublet potential is arrived at by
consideration of these restrictions applied to both a retarded and an
advanced type of potential that may be obtained by snalo~ with results
for subsonic flow.

By analogy with results for subsonic speed (for example, eq. (A9)
of ref. 1) or, more directly, frcnnthe discussion of source potentials
in supersonic flow (ref. 15), the sum *D of the retarded and advanced
types of potentials required to form the doublet potential for supersonic ‘-
speeds may be written with the doublet situated at the origin as

[J(ifJt-=-~x2-~y
24222

)(
tit.=+~ 1)

x2+2y2+32z2 ‘

J_e
@2 Cp

$’D= ~z +e
Cp Cp

x? - !3%? - pzzz X2 - $2y2 - $Z# “

i(u.Kt-M%x)co8 M?Jz~e p2z2

= az
(4)

$2Y2 - E@+ ,—

where M = V/c, ~ =~~ - 1, and 6= m/V~2. The restrictions that must
be placed on this expression are: (a) only real values of the radical

term pzyz - p2z2 ~e tobe c~sidered ~ (b) the values of t~
expression and its derivatives are to be considered zero when x is
negative. These restrictions follow frcu.uthe physical consideration “-
that small disturbances propagate at sonic speed, and in a supersonic
stresm do not progress forward of their point of origin.

A convenient way of writing the expression for WD with these
restrictions accounted for, as previously mentioned, is to employ a
cutoff or unit function as a factor. Thus, if *O represents the
restricted value of ~, the amplitude function of *O may be written
as —.

(6)
U(X++ZF) = o (4==)J



8 NACA TN 3h38

and only positive values of the radical m

—
are considered. A

methd whereby this f’ormof potential can be determined in a more direct
manner is discussed in detail in reference 16. The discussion in this
reference is in connection with the Green functions associated with the
dispersion of sound waves in an n-dimensional mediwn in which a pulsating
source exists. When appropriate changes are made in notation, the
expression for TO given in equation (5) agrees essentially with results
for the dispersion of waves in a three-dimensional space given in equa-
tion (55), chapter XVI of reference 16.

With regard to the unit function U(x), in many applications where
this function is employed it need not be defined as having any particular
value when its argument is zero. In other applications, especially where
the unit function is involved in a Fourier analysis, it must be defined
as having a value of 1/2 when its argument is zero.- b tie present case,
it is conveniently defined, as may be
zero value when its argument is zero.

Derivatives of the unit function
called the Dirac delta function. For

noted in equation (6), as having “

give rise-to an impulse function
example,

~ u(x) = 5(X) = o
ax

~ u(x) = 5(X) = m
ax

A useful integral property of this delta

J
b

f(x) 5(X) dx = f(o)
-a

The next step in the analysis is to
potential (eq. (5)) to derive the kernel

Derivatim and Reductim of

(x # o)

(x = o)

function is

(a > O)

make use of the doublet
function for supersonic

Kernel Function

speed.

is derived and presented. TheIn this section the kernel function
function is given in terms of an improper integral by eq&tion (13) and
in a reduced form with no improper integrals by equation (15). As it
is frequently desirable to present results in terms of nondimensional
length variables, the results given in equation (15) are presented in
this manner in equation (16). .



NACA TN *38 9

b

~ order to derive the kernel function, the function ~ of
equation (3) is considered as the ccanplexamplitude of the acceleration
potential. As such, * is directly proportional to a perturbation

pressure field p = eiust-p, through the simple relation

5 = -Pv

and to a velocity potential

through the equation

vg+i@=v

(7)

(8)

~ differentiation of equation (8) with respect to z and integration
of the result with respect to x, the vertical veloci~ associated with
the acceleration potential ~ is obtained. !lhs, when ~ is considered
as the potential of a pressuie doublet, eqution (8) affords a straight-
forward means for obtaining an equation for K(~,yo), nsmely:

.

K(~,yo) = $$(xoYYo@z=o (9)
.

Details of the procedure are as follows:

me result of the differentiation of equation (8) with respect to
z may be written as

(lo)

.—

When this equation is considered

with dependent variable @ ad
az

solution is

as an ordinary differential equation

independent variable x, a ccmplete

iux

@=&e--T I
iuA
~ d~ (XL)‘-iL$(A,y,z) e

az v - az

where the lower Mmit of integration is employed in place of a constant
of integration and may be considered as a condition that ~ vanish far

. ahead of the origin A = O. Thus, from equation (9) there is obtiined

.
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or, after substitution of the
tion (12), the results may be

expression for TO (eq. (5)) into equa.
written as

where r ‘r
2 + Z2 and, since the integrand is zero for A< ~r, the

lower limit of integration has been changed from -m to pr.

It is apparent upon examination of equation (13) that, if the indi-
cated differentiation under the integral sign is carried out, the
integrand has singular and perhaps troublesome terms. The Indicated
differentiation with respect to z, however, can be replaced by equiva-
lent operations and followed by integrations by parts that lead to a
reduced form of the kernel function containing no improper integrals.
These steps follow.

Reduced form of kernel function.- As
indicated differentiation with respect to
the Mnit z-O, identical with

may be directly verified, the
z in equation (13) is, in

=

.

.
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Since the coefficients of 5(X-B]YOI) in equation (14) vanish at

A = P Y. , it folJows frcm the integral properties of 5(X-P Y. ) that,*
when equation (14) is substituted into equation (13) the inte~als
involving the delta function vanish and equation (13\ becanes:

& e-i- U(xo-~lyol)
M

sin(~(-j +

–J$2Z ‘o e- 1( P==a (15)‘iXu(hplyol)sin ~xo

M PIYOI

Equation (15) provides an expression for the kernel function that
involves no improper integrals. Except for the integral, the terms of
the eqression can be qtite easily evaluated with the aid of trigono-

. metric tables, except at Y. = O, where the function is singular, and
at%= BIYol~ where the f~ction iS i~e~~nate” me in~gral iS

. well behaved and can be accurately evaluated by numerical or approximate
procedures. The singularities and indeterminate values are isolated and
discussed in a later section, but it is desirable first to e~ress the
function K(xo,yo) in terms of nondimensional length variables. As a
check on the correctness of equation (15), the expression for K(~,yo)
is alEo reduced to the limiting value for M = 1 and compared in
appendix A with the corresponding limiting value for the subsonic case.

The kernel function in terms of nondimensional length variables.-
Although the preceding results contain dimensional length variables, it
is us&Jy de=irable to have such results in terms of nondimensional
length variables. By employing the variables X. and y. in a new

sense to mesm that they have been referred to some chosen length Z and
by introducing the reduced&requency parameter k = Zu/V, the length
variables may be made nondimensional. (In flutter theory the reference
length normally is selected as a semlchord b.) The variables are used
in this sense throughout the rest of this paper. The kernel function
(eq. (15)) can be written in terms of these nondimensional variables as
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ikxo

.i~o xoe -T U(XO-PIYOI)
K(XOjYo) = -

*
2=

~
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co.(;~)+

ikxn

i- (B2 u(%-PIYol)sirl ~2

)

ml- +—e
M

An equivalent e~ression for K(xo,yo) which will be useful in subse-

quent considerations is

-+K(~,yo) =-

1

-*(’*+ @P,Yo,)si@-2]*e

J

ikA
_ e.ilsxo ‘0 ek

.—
[@@-)d,] (16b)P2 u(7@lYol)13iIl#

M
PIYOI

Isolation and Discussion of Singularities of Kernel Function

As previously mentioned and as may be noted in equations (15) and
(16a), the kernel function bemmes singular at y. = O and is of an
indeterminate nature when ~ = $IYOI. It is therefore desirable to
make special treatment of the function in the neighborhood of these
values of X. and y. in order to be able to express the function in
a form which is more amenable for calculations. The indeterminate
condition srises from the first term of eqwation (16a) because of the
manner in which the unit function has been defined for this analysis.
(The denominator of the first term vanishes at ~ = ~yo. The presence
of the unit function in the numerator, however, renders this singularity
indeterminate.)

ti the next few sections the forms of the singularities are ex-
tracted (see eq. (24)) and the aforementioned indeterminate forms of
the kernel function are explicitly determined (see eq. (20)). A form
of the kernel function more suitdble for calculation purposes, since
the troublesome pofnts are isolated, is presented in equation (26). A

.

.
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I.
msnner of integrating the &rnel function across its singularities is
given in equation (27). The singularities of the supersonic and subsonic
cases are then compared.

indeterminate form.- Consideration is first given to the indeter-
minate form, and it is convenient for this purpose to consider the value
of K(XO>YO) at points on the positive branch of a hyperbola. (See
sketch.) The equation of the hyperbola.may be written as

Y~
A

Xo = G cosh 0

+0
1 ___

(17)
PIYOI = G sinh e

* ——.

Xo

b these equations E = O corresponds to X. . pYoj since e~tim

of e gives %2 - p2y02 =-c2.

After substitution of these expressions for ~ a Blyol into
equation (16a), the results J

K(G,Q) = -
2~2e-ik~ cosh e

VZ%2 Sinh%

ay be written as -
“11

ike cosh e

U(ee-e)e- P2 cosh e Cos y +

L

- ike cosh e

*U(ee-e)e $2 sin ~ +
p2

1

To obtain a limiting value of this equation for small

(18)

values of s, the
trigonometric and &ponential terms &n be replaced by terms up to-the
second power of e in a series expansion. If the result of performing
this e~ansion is denoted by Kt, the equation
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K’(e,9) = -
2~2e-ik~ cosh e

(

U(ee-e) cosh e
~2 &3inh%

l&’coshe @ log cosh 0 + 1
2p4 2p2 einh e )

ik.— -
p%

(19)

is obtained, which, in terms of the original coordinates ~ and yo,
is

K’(XOYYO) = -* q%+pol) [w:Pyo4R%-
(20)

Although these equations were obtained in order
the indeterminate value of the kernel function,
sangularities at y. = O. Prior to any further
it is desirable to consider the Mmiting form of K(~,yo) as y.
approaches zero to determine all the singularities at y. = O. .

to reveal the form of
they are found to contain .
discussim of this result

,Singularltiesat y. = O.- For the purpose of obtaining a M.mtting
value of the kernel function for vanishingly small values of yo, the
integral appearing in equation (16a) may be written as the sum of two
integrals, namely:

(21)

.
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b

The first of these integrals may be evaluated from the table of Iaplace
transforms of reference 17 and has the following value:

.
ikh

J

m
e

( ( )
in M{- d~ = MIYOIKI(klyOl) (22)-Fu Wqq) s @2

PIYO[

where K1 is the mcxiifiedBessel function of the second kind, of first
order. Ih the second integral, the integrand may be replaced by terms
up to the second power of y. in a series expnsion. Thus,

dX. \

[( )Mfy?cs
Ml-l

+ ci(s%)+ =(*) - ‘<%)1}
(23)

where Ci and Si denote the cosine integral function and sine integral
function, respectively, which are defined as follows:

J

m

J

w
Ci(x) = - ~ dt ‘i(x) = :- 8in t dt

x x ‘t

Substituting equations (22) and (23) into equation (16a) gives, as a
limiting value of K(~,yo) ,
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lim K(~,yo) = I-ire

[
[( )

k2y02 ~i-= k Yol%(klyol) - ~ ~ +
ye-o Yo -+ o VZ2Y0

C,(5) +Sl(%)- S,(*]}U(XO-PIYOI)

~-ikxo
= lim

( I l){
-— u Xo-p y.

yo+o ~z2 ++ ’2(’-5+Yo

2 -T[ (m)+ ci(a)+
g~og ml $ ~, ‘o

“(%3 - 4SI]

where the following series expression for Kl(z) (see ref. 18) is
employed:

( )( 3 =5
Kl(z)= y+log~~+~+— . .

3.6 384-.+
.)+: -(f+2$+2&+ ...)

(25)

where y is Euler’s constant (7 = 0.5772157). Examination of equa-
tion (24) shows that the only singular terms are the same as those which—

appear in equation (20), namely -
pe-ikx~ ~d -k2e-ibo loglyOl-

Y02

.

(24)

Thus, for the purpose of isolating the singularities of the kernel
function, only Kr(~,yo), as defined in equation (20), need be con-
sidered. Nevertheless, the results given in equation (24) may be useful
in some app~cations since they provide a ready means for evaluating the

nonsingular part of lim K(~,yo).
yo+o

Form of kernel function suitable for calculations.- As in the sub-
sonic case, with knowledge of the critical values of the kernel function,
an e~ression can be written in which the kernel function i,sseparated
into two parts, one of which contains no singularities or indeterminate
values and the other of which contains all the singularities and critical
values of the kernel function. This expression is

K(xoYYo)
[ 1

s K(~,yo) - K’(xo,yo) + K’(xo,yo) (26)
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.
where K(~, yo) is defined in equations (15) or (16), and K’(~, Yo) is
defined in equation (20). The term K(xo,yo) - K’(xo,yo) in equa-
tion (26) has no singular or indeterminate values. The term K’(XO,YO) “- ‘-
is singular at y. = O and indeterminate when X. = 9%.

Integration of singularities of kernel function.- Since integration
of the kernel function is often necessary, a few remarks on how to cir-
cumvent its inherent singularities are in order. Each term of K’(~,yo)
in equation (20) possesses a simple indefinite integral with respect to
the variable TI= y - yo. b performing integrations with respect to q
that involve a passage across the Me i = y, a principal value is to
be taken. For exsnrple,

f

1 U(XO+IYOI)XO dq

[

1 U(xo-ply-11) X02 - $a(y - 1)2
=—

-1 (Y - V)%02 - B2(Y - T)2 % Y-1

1U(xo-$jy+q) X02 - pa(y+ 1)2
(27)

y+l
f=

where the synibol $ indicates that the singular integral is to be con-

sidered simply as \ function of its limits. A justification for this
consideration is that it leads to results that could, with considerable
labor, be rigorously established by maintaining the variable z in the
analysis until all operations are performed.

Comparisen with singularities of subsonic case.- It may be of
interest to compare the above results with corresponding results for —
the subsonic ca~e, that is, for X. > 0 and Y. = O. Results for the
subsonic case may be obtained from equation (31) of reference 1 as
follows:

lim “(xo~yo)M<l =
yo4 o [’Mm J-e-i% -

X02 + (1 - M2)Y02+ X0 +

yo+o V12 yoqxoa + (1 - @) yoz

ik k2 (i

1

k X02+ (1-@yo2-xo)
- ~ log

&+(l-M%02 2(1 - M)

[

-ikxo p
e +ik $

1

k(l + M)yo2
-— —-—log (28)

~z2 yop Xo 2 4X0
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The singular terms of this expression for X. >0 and M< 1 are

2=

(

-i% .4+ = lcX3Yo[
~z2 Y02 ~ 1)

Comparison of this result with equation (20) shuws that the singuls.rlties
for subsonic and supersonic flow are of identical form.

Some Infinite-Series Expansions pertinent to the Kernel Function

The kernel function can be expressed as a series by various expansion
procedures. Some particular e~snsions, which should be useful in appli-
cations, are discussed in succeeding paragraphs. These are the power-
series expansion in terms of the reduced-frequency parameter (see eq. (29))
and an expansion in terms of Bessel functions. The latter ewanslon is
used in a later section to obtain the kernel function for two-dimensional
flow fram that for three—dimensional flow.

Power-sertes expansion with respect to k.- As in the case of sub-
sonic flow, the kernel function can be expanded into a power series with
res

F
ct to k that, in the present case, is useful for small values of

k/p , a conibinationof reduced frequency and Mach number that Is inherent -
in such an expansion of the supersonic kernel. The terms of the expansion
may be simpzy obtained by expanding the terms of ecw=ticm (1~) -t me .
f~ctions ~f- k and cofiect~ng the results. The first few terms

K(x&yo) =-

[J

=U(XO-PIYOI) ~op- ~yo2-&Xo P%02

$2 ~~VZ?Y02

Although this power-series expansion converges to the appropriate

are

(29)

value
of K(~,yo) for all finite values of k/P2, a great number of terms sre

required unless k/~2 is small.. These first few terms of the expansian .
can be considered to represent the kernel function for values of k Ln
the range of magnitudes generally encountered in dynsmic-stability studies
and, therefore, they are pertinent for obtaining time-dependent stabili@ -
derivatives. A noteworthy feature of the e~ansion is that each term can

.
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.
be integrated, in the sense that it contains a simple indefinite integral,
with respect to the variable TI= y - yo. When such integrations involve

. a passage across the line q = y, a principal value is to be taken in the
sense described after equation (28).

Expansions in terms of Bessel functions.- The trigonometric terms
appearing in the expression for K(x&yo) in equations (15), (16a), and
(16b) can be expnded into infinite series involving Bessel functions of .
the first kind. Such expansions have good convergence properties, even
for large values of the parameter k/~2, and each term possesses a simple
indefinite integral with respect to q. Such Bessel function series are
theref~e useful for deriving an expsasion for the indefinite integral
of K(~, yo) with respect to q. The indefinite integral of K(~,Yo)
leads to the downwash associated with pulsating vortex lines (“horseshoe”
vortices) and, as previously indicated, to the kernel function for two-
dimensional flow. It might be useful to point out that the expansion of
the cosine term into a series involving Bessel functions is also usefti
for studying distributions of pulsating sources.

For the purpose of expanding the trigonometric terms under dis-
cussion, consider the ewressions

U(h-a) Cosb-

and

(30)

(31)

where a, b, and A are positive.

~ making use of a known Fourier transform re~tion, ewression (30)
can be equated to an infinite integral involving a Bessel function of the
first ldnd (see, for example, p. 33 of ref. 17):

aT dT = cos(b=)

w

(A> a)

1

.

(32)

aTdT =() (A e a)

J
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~ use of the addition formula
p. 358 of ref. 18), the ~ssel
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for Bessel functions (see, for example,
function appearing in this equation can

be written as an i~inite sum of products of Bessel functions as follows:

JO(A~=”)= JO(TA)JO(bA) + 2= (-l)nJ~(TX)J~(bX)
n=l

Thus,

= r[Jo(Tl)JO(bA) +
o

(33)

1
2= (-l)nJ~(’rA)Jm(@ cos aT dT w)

n=l

In view of the relation (13eeref. 17> P. 37)

r (U(h-a)cos 2n sin-l ~
J~(TA)cos aT .T =

)

m

(35)
o

the indicated integration on the right-hand side of equation (~) can be
csrried out term by term so that

(36)

Substituting the expressicm on the right-hand side of equation (36) into
equation (31) gives

.

.,

.
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.
Butj since

.
U(A-a)

1* C“stin-’ :) ‘u(’-a)

the expression for (U(h-a)sin b~~ )
may be written as

(38)

BY direct comparison, equations (36) and (38) can be used to write
expnded forms of the trigonometric terms appearing in equations (15),
(16a), and (16b). Expansions thus obtained will naw be used to derive
the kernel function for two-dimensional supsrsonic flow.

h contrast to three-dimensional flow, a physical interpretation
of the kernel function for two-dimensional flow is that it represents
the downwash at a given field point due to a pulsating bound vortex

* line of infinite length. This kernel function may be obtained by inte-
grating the kernel function for three-dimensional flow from -~ to BJ,
or, in view of the role of the unit function, fran one Mach line to the
other, with respect to the vsxiable q = y - yo. Pulsating “horseshoe”
vortices may be obtained by integrating K(~, YO) over an arbitrarily
finite range with respect to q.

Derivation of Kernel Function for Two-Dimensional Flow

b this section the kernel function for three-dimensional flcnris
reduced to the function for two-dimensional flow, and the final results
of the reduction are given in equation (49). For the purpose of deriva-
tion, K(~,yo) will be considered as given in equation (16b). me
two-dimensional kernel function can then be expressed as
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(J@#!2
K(xo) = -$e Il+~e

)

‘i% 12

.

(40)

where

or

and

12 =

(41) for 11 and equation (42) for ‘~, infinite llmitsIn equaticm
with respect to &e inte&ation of rI are not nece;sary. Ih view of
the role of the unit function in the inte~ands, lindts of & incltie

.

all values of q for which the integrands are clifferent fran zero. The

symbol
$

indicates that the integrals are to be considered simply as

functions of their limits or that the singularity at TI= O is to be
ignored.

First-consider equations (41) for 11 dnd then perform an integra-

tion by parts. The expression for 11 may then be written as

11 =

(45)
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By direct comparison with
e~ded form as

m

23 “–

equation (36), equation (43) may be written in

(44)

h this equation, the terms involving J~ do not contribute to the
integral because

~x”* COs(al sin-=$ =
‘.-7’)

the expression for II

(a11 = -1713—a+ +

[
= -Jcpq%)

Nowconsider equation (42) for 12, namely

r

ikk

(~-).]dv~=~~~+ ,~e-~U(~-l~l)sinP2

can be written as

$)U(’”)JO(* xo)-

() (]
;%)Jo&o -& J(’o)Jl&o+— (45)

-

.
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The double integral in this expression can be considered as a surface
integral over a triangular region of the In-plane cut out by the
lines ?l= A, ~ = -A, and 1= ~, as shown in the following sketch:

Bya change in
singularity at
written as

12=~

the order of integration,
~ = O is to be ignored,

whichis admissible since the
the expression for 12 -

The inner integral in this equation is identically fo~ to the
in equation (41). Hence, by observation of and comparison with
results obtained for 11 in equations (43), (44), and (45), it
that

The expression for 12 can therefore be written

Substituting this result and the results given in equation (45)

may be

(46)

integral
the
is found

(1+7)

(48)

for 11

.

into equation (40) gives a desired form of the kernel function for two-
dimensional supersonic flow:

.

.
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Examination of equation (49) shows that the only singularity involved in
the kernel function for two-dimensional supersonic flow is the b-function.
At zero frequency, all the terms of K (Xo) except the b-function vanish.
The kernel function required to treat two-dimensional wings at steady
angle-of-attack conditions is ther~ore proportional to this b-function~
and, as shown in the following section, leads in a very simple manner to
the well-known Ackeret results.

The integral that remains to be evaluated in equation (49) is well
behaved and similar to integrak, treated by Schwarz (ref. 19) and others,
that arise in the velocity-po~ntial approach for treating two-dimensional
wings.

Application of Kernel Functim to

for Two-Dimensional

I&t Distributions

wings

!Fheresults obtained in the pretious section for the two-dimensional
kernel function are now empl~ed to obtain the lift distribution on
oscil&ting and steady two-dimensional wings moving at supersonic speed.
(See eqs. (56) and (61).) Since the Mft distributions so obtained agree
with the Ackeret results for a steady wing and also with known results
for the osc~ting wing (ref. 15), they serve as a check on the correct-
ness of the ~ressions for both the two-dimensional and three-dimensional
kernel functions.

The integral equation that must be solved to obtain the lift distri-
bution for two-t&nensional wings in supersonic flow is particularly
simple since it involves a single integral of the convolution me:

(50)

Zntegral equations of this m can be readily solved by Iaplace
transform procedures since the I@.ace transform of a convolution integral.
is the product of the transforms of the functions that cmpose the

.
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integrand. In the present case, if s represents the Lqil.acetransfwm
operator defined by

—

‘F’x!l ‘f ‘s’ ‘(x)&

the transform of equation (50) may be written

G(s) =

Solving thi13equation for L(s)
distribution:

L(s)

~ L(s)K (S)
4xp

= f(s) (51)

&s

(52)

gives the Laplace transform of the lift

=
#

~vs
lUS

(53)

llwersion of the transform on the right-hand side of this equation gives
the lift distribution.

For the case of a steady two-dimensional wing,

f?(x) = VCL ti(s) = J$

= 5(X)K(x) =Vz K(s) =&

Then

2pv2a
L(s) =— (54)

ps

The inverse transform of equation (54) gives for the lift distribution:

* U(‘)L(X)= ~

From this result, the total lift per unit of span is

J’
Qp

2 ‘(x)dx =
2pv%zx Chord.

o P

(55)

(5Q

.

.

This result agrees with the well-known Ackeret result.
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Now consider the unsteady case for oscillatory tr=slation,

G(x) = idfi = ivkii (57)

where E is the .m@U.tude of displacement referred to Z, and the
Laplace transform of V(x) is

i?(s) = q (58)

The Iapl.acetraimforms of the different terms of K(x) (eq. (49)) can
be simply derived or they may be obtained frc?nIaplace transform tables
(for exsmple, ref. 16). After co~ining the transforms of the different
terms, the results can be written as

.(8) .2., I-
Vz

(59)
s+ik

Substituting equations (58) and (59) into equation (53) gives for the
transform of the lift distribution

L(s) = - s+ik
(60)

‘ .J’y.

The inverse of this trsmsform gives for the lift distribution

(61)

This result can easily be shown to check with the results of refer-
ence 15. M&eover, if il& is set equal to u, and then k is allowed
to approach zero, equation (61) reduces to the result fur the steady
case.

CONCLUDING REMARKS

The main purpose of this paper was to derive snd present in a form.
that could be numerically evaluated the kernel function of the integral
equation relating downwash and lift distributions for oscillating wings

.9



28 NACA TN 3438

in supersonic flow. This purpose has been achieved for three-dhensional
flow, and the results have been converted to a form more suitable for
calculation by isolating the singular or critical points. me kernel
function for two-dimensional superscmic flow has been presented and the
results show that the only singulari@ is a Dirac delta function, which
appeared in such a manner that further reduction with regard to slngu-
I.aritiesis not required.

The results presented in this paper for supersonic flow together
with those previously obtained for subsonic flow provide a kernel function
that is capable of being evaluated at any Mach nuniber. As experience
develops it is expected that use can be made of the kernel function to
develop approximate procedures, that wtllbe more or less uniform through-
out the Mach nuniberrange, for calculating aerodynamic forces on oscil-
lating (or steady) wings of arbitrary plan form and with arbitrary down-
wash conditions. The labor involved in such approximate or numerical
procedures will indeed be prodigious and will require the use of modern
high-speed computing equipment.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Vs., February 15, 1955.

.

.

.
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APPENDIX A

REDUCTION OF KERNEL FUNCTION TO SONIC CASE

The purpose of this a~ndfx is to reduce the results obtained for
the kernel function in supersonic flowto the sonic-fluw case. Such a
reduction should, by comparison with results obtained for We sonic case
in reference 1, provide a partial check on the correctness of the res.ul.ts
for the supersonic case. To effect this reduction, it is first necessary
to discard terms arising from the advanced-type potentials employed in
deriving the doublet potentials for supersonic flow. This may be accorn-

anaiysis. The limiting value
then be written as

e~&G%3
in equation (16a) of the

of K(~,yo) as M approaches 1 can

When the limit M = 1 is approached frcxnthe supersonic side, the term
M is conveniently replaced by

M= l+:G (A2)

where e is infinitesimally small, so that

~2= (M- 1)(M+ 1)
‘* ’F+*’)-’
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With this approximation, equation (Al) can be written as
●

✎

.

(A3)

A next step is to show that the result in equation (A3) is equivalent
to that given in reference 1. For this purpose, the final integral in
equation (A3) is considered as two integrals:

JIYOI

The second integral on the right-hand
in suitable form. The first integral
follows:

(A]+)

side of equation (A4) is alredy
on the right must be converted as

.

.
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By Slibstitutionof

or

the first integral becomes

31

f

pol ()~~Y02
f

a
U(A)e 2 A dA=

o 0

Since the argument ~S%yo2-~
the right in equation (A5) is

of the unit function in We integral on
always greater than zero for y. # O, this

integral has the sam value as the integral

. f ~ - *)’=-i’~ d!

Iirt.egratingthis e~ressicm by parts with

u=-

‘ & ‘U=-(’2+Y:2)3’2

dv=e -ik~ dc iv=-e -i’&’
k

(A6)

FYOm reference 18 (pars. 6.16 and 10.41), this result may be written as
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w

J(
1-

0

where K1
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,

is a modified

J
m

Y02
sin k! 1d~o (~2 + yo2j3/2

{

= ~ -i + iklyolK~(klyol) -

Bessel function of the second kind,

1}

2--
Yc

11 iS

Bessel function of the first kind tith an imaginary argument, and

.

(A7)

a

2 is a Struve function of the first kind with an imaginaryLl=ul-;

argument. Substitution of the second integral in equation (A4) and the
results of equation (A7) into equation (A3) gives, for the sonic case,

[

&l&( 2
1 XO-LL

-2U(~) e 2 % )
WO)YO)*l = — +l+ilqro -

VZ2Y02

()& ~ Y02

f

‘o
U(l)e2 A dA

‘k IYOI 1

(A8)

.

.

A comparison d--this result with the result given in equation (47a) of
reference 1 shaws that the two equations are equivalent.

.

.
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DERIVATION OF DOWl?WASHFUNCTIONS ASSOCIATED WITE

“HORSESHOE” VORTICES IN SUPERSONIC FLOW

The downwash associated tith a vortex line can be obtained by an
integratim, between appropriate limits, of the kefiel function K(mjYo)
with respect to q = y - Yo. D.Iorder to perform such an integration
analytically, recourse must be had to term-by-term integrations of an
expanded form of K(~,Yo) . In this regard, use can be made of the
expansions given in equtions (36) and (38) of the analysis to obtain
expanded forms of the downwash functions for vortex lines that ksve very
good convergence properties, especially for the range of values of the
parameter Mk/P2 that would usually be of interest in applications.
Expressions so obtained will be cunibersomeand will require high-speed
computing equipment to make them very usefU.

W regard to “horseshoe’;vortices in supersonic flow, there are
five different significant regions in which a field point may be con- -.
siderd. to be located (see sketch).

/
/

/

/’ (4) /
/

/ hailing vortex / <5)
/

\
\ , (2) /’

Wind direction
(1) ‘>:;3) ~

/
/ (2) ‘\\

/
\

, Trailing vortex 1. (5)
\

\ \ (4)
\

\
\

\

.

.

\
\



34 NACA TN 938

Region (1) is between the Mach cones emanating from the end points
of the bound-vortex line. The downwash at a point in this region is not
affected by the trailing vortices but is created by the bound vortex
alone. Therefore, the downwash is the same as would be prcduced by a
bound vortex of infinite length and corresponds to the kernel function
for two-dimensional flow discussed in the analysis. Region (2) is
between the trailing-vortex lines and is within the Mach cone emanating
from one end of the bound vortex but outside the Mach cone emanating
from the other end. The d“ownwashat a point in this region is created
by the bound vortex and one of the trailing-vortex lines. The other
trailing vortex has no effect on the downwash. Region (3) is between
the traillng-vortex lines and is within the Mach cones emsmating frcm
both ends of the bound vortex. Downwash in this region is created by
the bound vortex and both trail.ing-vcmtexlines. Region (4) is outside
the trailing-vortex lines and is within the Mach cone emanating frcm one
end of the bound vortex. The downwash is created by the bound vortex
and only one of the trailing-vortex lines. Region (5) is outside the
trailing-vortex line but within the ~ch cones emanating frcenboth ends
of the bound vortex. The downwash is created by the bound vortex and
both trailing-vortex lines.

For any of the five regions discussed
the integral corresponding to the downwash
written, with use of equation (16b), as

in the preceding par~aph,
function may be formally

where use of the substitution $Yo = L gives

.

.

-- ‘-

4-

(Bl)

.

.
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&.

and

In equations (B2) and (B3),,a principal part - as described after equa-
tion (27) in the analysis,- is to be taken when the integrations tie
carried across the ldne ~ = 0. The purpose now is to reduce these

-.

expressions to forms amenable to nmrical evaluation. The first step
—.

in this procedure is a reduction of the expression for ~ (eq. (B3)).
The double integral in this expression can be conside~ed as a surface
integral in the ~~-phe where the order of integration iS ffist wftfi

,...— —

respect to X and then with respect to ~. The steps in the reduction - “-
are first to delineate the area M integration for each of the five
different cases umder consideration, and then to change the order-of
integration in the surface-intigral representation of ~.

From the description of the different cases to be considered and
by examination of th~ limits of integration in equations (Bl), (B2),
and (B3), the area of integration for the case of a field point in each
of the aforementioned regions may be considered as shown by the hatched

..
.

areas in the following sketches:

.

A
o—

.

.

(1)

= C2

= -!.1

(3)

A

) = -cl

(2)

(4) (5)
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Expressions for
be expressed as

Case (l):

NACA TN 3438

14 for the five different regions or cases may then
simple integrals as follows:

ikA

J

Xo
Ih = e -~ F(X,-A)dx

o
(B4)

Case (2):

Case (3):

(E6)

Case (4):

(B7)

Case (5):

The e~ression

f

A
F(&-A) =

-A

is evaluated in the text in
dimensional kernel function

(w)

connection with the derivative of the two-
and is found to reduce (see eq. (47)) to

.

.

.
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(B1O)

The F-function for other erguments can be obtained by substituting appro-
priate limits in an integration by parts of F(&-t~Y ~ly (see the
development following eq. (41) in the analysis):

(Bli)

After the first term on the right-hand side of eqution (Bll) has
been expanded by comparison with the expansicm given in equation (38) of
the analysis and W Mmits of integration have been substituted, this
expression may be written as

(B12)
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Slibstituti.on of C2 for 1 in the limits of eqqation (Bll) gives

F(K2,-~1) =
{()

C2
-u(~-lc21) ~ Jo? sin-1~+

(B13) .

If -El is replaced by (1 in the limits of equs.tion(B1.1),then .

(B14)

Substitution of ~2 for A W Cl for -~1 in equation (Bll) gives
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.

r

(B15)

When equation (B1O) and equations (B12) to (B15) are substituted into
eqmtions (B4) tO (B8), res~ctively, tiey give We reduce fom of ~-- ‘-—
tor the five cases under consideration.

After the reductim of ~, the corresponding reduction of 13 is
considered. As may be found by examination of the expression for 13
(eq. (B2)) and the sketches showing the areas of integration for the
different cases, reductions of 13 corresponding to those of ~ can
be obtained from the F-functions (eqs. (B1O) to (B15)). Results for the
different cases may be e~ressed as follows:

Case (l):

Case (2):

(B1.6)

(B17)

.

.
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Case (3):

NACA TN 3438

Case (4):

Case (5):

(B18)

(B19)

(B20)

When the e~essions for 15 (eqs. (B16) to (B20)) and I&
(eqs. (Ilk)to (B8)) that are asswiated with each particular case are
substituted into equation (Bl), expressions for the downwash at each of
the five significant field-point locations may be obtained in terms of
the F-functions (eqs. (B1O) to (B15)) as follows:

Case (l):

r ikA
k -ikxo o

‘r F(A,-X)dA-e
M

e
o 1

Case (2):

(B21)

(B22)
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Case (3):

Case (4):

ikA

f
-ikxo ‘o - ~ F(A,~I)dXk-e

M
e

~1 }

(B23)

(B24)

Case (5):

The results fc$rcase (1) (eq. (B@) agree with results obtained for the
. two-dimensional kernel function given in equation (49) of the analysis.
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