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TECHNICAL NOTE 3438

ON THE KERNEL FUNCTION OF THE INTEGRAL EQUATION __"
RELATING IIFT AND DOWNWASE DISTRIBUTIONS OF
OSCILIATING WINGS IN SUPERSONIC FICW

By Charles E. Watkins and Julian H. Berman
SUMMARY

This paper treats the kernel function of the integral equation that
relates & known or prescribed downwash distribution to an unknown 1lift
distribution for harmonically oscillating wings in supersonic flow. The
treatment is essentially an extension to supersonic flow of the treatment
given in NACA TN 3131 for subsonic flow. For the supersonic case the
kernel function is derived by use of a sultable form of acoustic doublet
potential which employs a cutoff or Heaviside unit function. The kernel
functions are reduced to forms that can be accurately evaluated by con-
sidering the functions in two parts: & part in which the singularities
are isoleted and enalytically expressed, and a nonsingular pert which
can be tabulated.

The kernel is treated for the two-dimensional case, and 1t is shown
that the two-dimensional kernel leads to known 1ift distributions for
both steady and oscillating two-dimensional wings. The kernmel function
for three-~dimensional supersonic flow 1s reduced to the sonic case and
is shown to agree with results obtalned for the sonic case in NACA
TN 3131, and the downwash functions associated with "horseshoe" vortices
in supersonic flow are discussed and expressions are derived.

INTRODUCTION

In reference 1 the kernel function of an Integral equation relating
& known or prescribed downwash dlstribution to an unknown 1ift distri-
bution for a harmonically oscillating finite wing of arblirary plan form
was treated for compressible subsonic flow. The purpose of the present
paper is to extend this treatment of the kernel functlon to supersonic
flow.

ThHe kernel functions under consideration arise when linearized-
boundary-value problems for obtaining aerodynamic forces on oscilleting
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wings are reduced to integral equations involving the distribution of
pressure or wing loading as the unknown. In such integral equations
the kernel functions pley the importent role of aerodynamic influence
functions in that they give the normal induced velocity or downwash at
any one polnt in the plene of the wing due to a unlt pressure loading
at any other point in the plane of the wing.

As the kernel functions arise in the analysis, they are mathemati-
cally defined by rather intricate improper integrals and possess singu-
larities as high as second order. It 1s therefore desirable to 1asoclate
the singularities and determine their explicit nature in order to make
the integral equation more amenable to solubtion, in particular amenable
to solution by approximate or numerical procedures.

Approximate lifting-surface theories for finite wings, such as the
methods developed by Falkner and Multhopp (refs. 2 and 3) and others,
have afforded considerable success in the calculation of aerodynamic
coefficients for steady subsonic aerodynamics. Similar approximate
methods have been successfully employed to obtain coefficients for
two-dimensional oscillating wings in subsonic (compressible) flow (for
example, refs. 4 and 5) and are now being extended to the finite oscil-
lating wing in subsonic flow by Harry L. Runyan and Donald S. Woolston
of the Iangley Aeronautical Isboratory and by W. P. Jones (ref. 6). It
is reasonsble to expect that these methods cen be further extended to
apply to finite wings in supersonic flow.

In supersonic flow, solutions of the boundary-value problem for
some particular plan forms and downwash conditions can be cobtalned in
the form of infinite series in terms of a parameter involving the fre-
quency of oscillation (see, for example, refs. 7 to 10) or in the form
of rather complicated definite integrals (refs. 11 and 12). The infinite-
series method furnishes a relatively simple means of obtaining the loading
on osclllating wings for low values of the frequency parameter, but faor
large values of this parameter the serles expansions converge so slowly
that recourse must be had to other procedures for obtalning the wing
loading. One feasible method is to study and develop approximste pro-
cedures for solving the integral equationg that involve the unknown
loading end 1its assoclated kernel function. The first step toward such
a development 1s to isolate and determine the explicit nature of the
singularities of the kernel functlon; this step 1s accomplished in the
present report.

The report conteins the derlivation of the kernel function in the
form of an improper integral and a reduction of this integral to proper
form. The singulerities of the kernel function are lsolated and expreased
analytically, and the nonsingular parts are reduced to a form readily
amenable to numerical evaeluation, as was done in reference 1 for subsonic
flow. Some expanded forms of the kermel function are derived, and one of
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these is used to obtain a reduction to two-dimensional flow. TIn
appendix A, the limiting case for soniec flow is derived and shown to
agree with the results in reference 1. Appendix B is devoted to certain
integrals of the kernel function. These integrals relate to "horseshoe"
vortices in supersonic flow, as treated, for example, in the steady case
by Schlichting in reference 13, and may be of interest in certain modes
of application.

SYMBOLS
c velocity of sound
I (x) Bessel function of first kind, of first order with
imaginary argument
Fn(x) Bessel function of first kind, of order n
Kq modified Bessel function of second kind, of first order
K(%0s¥0) kernel function for three-dimensional flow
k reduced-frequency parameter, 1w/V
K (%o) kernel function for two-dimensional flow

L(g,m), L(&) 1ift distributions

Iy modified Struve function of first order
1 unit length

M Mach. number, V/e

P _ perturbation pressure

r = ‘/y02 + z2

S region of xy-plane occupied by wing

t time

U(x) unit function

A forward veloclty of wing
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downwash velocity, el®bw(x,y)

complex amplitude functlon of prescribed vertical
velocity

Cartesian coordinates attached to wing moving in
negative x-direction

Dirac delta function

Cartesian coordinates used to represent space location
of doublets

fluid density

velocity potential, eiwta(x,y,z)

complex amplitude function of velocity potential
acceleration potential, elwty(x,y,z)

conplex amplitude function of acceleration potential

circular frequency of oscillation

ANALYSIS

Integral Equation Relating Downwash and Iift Distribution

The linearized-boundary-value problem for the determination of the
aerodynamic forces on a wing can be lmmediately reduced to a problem of
solving an integral equation that relates downwash and 1ift distribution.
The purpose of this section is to introduce and briefly discuss this

equation.

Since the integrel equation has the same formal appearance for sub-
sonic and supersonic flow and is derived in various publications (for
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exemple, refs. 1 and 14), the equation will not be rederived here but
will be formally stated so as to serve as a starting point in the
analysis. TIn keeping with linear theory, the wing is considered as a
plane, impenetrable surface S which lies nearly in the xy-plane as
indicated in the. following sketch:

Vv
,//////////
X,E
S/

The X,y,z coordinate system and the surface S are assumed to move in
the negative x-direction at & uniform velocity V.

Z

pEAL

In terms of these coordinates, the integral equation may be formally
written as

#(x,y) = ﬁﬁL(E,n)K(X-E,y-n)de dn (1)
S

where W(x,y) 1s the complex amplitude function of prescribed vertical
velocity or downwash at points in S and is defined as follows:

W(x, Y, t) = eiU)t‘Tr(x: y)

where o 1is the frequency of pulsation or oscillation. The kernel
function K(x,,¥o) physically represents the contribution to the down- _
wash st a point (x,y) in S due to the presence of a pulsating pressure
doublet of unit strength located at some other point (¢,m) in S. It is
a function not only of x, y, £, and 17, but also of Mach number and
frequency. The function I{t,n) in equation (1) is the unknown lift
distribution or local doublet strength. (Although it is ususlly conven-
ient to factor out the density term 1/p as indicated in eq. (1),

this was not done in ref. 1.)

Equation (1) pertains formally to either subsonic or supersonic
flow; however, separate treatments of the two cases are required because
of wide differences associated with flow characteristics. So far as the
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integral equation 1s concerned, the differences in the two cases lie
mainly in the kernel functions. These differences are assoclated with
the differences in character of doublets for the two cases. Although
the main purpose of this analysis 1s to derive and treat the kernel
function for the supersonic case, & necessary first step is to formulate
a doublet sultable for such a treatment. In the following section, a
desired form, which was arrived at by a convenient use of a cutoff, or
Heavigide unlt function, 1s presented In equation (5).

Pulsating Doublet Moving at Supersonic Speed
The governing differential equation for linearized unsteady flow
at elther subsonic or supersonic speeds, which the doublet potentisls

must satigfy, is the well-known wave equation referred to a moving
coordinate system:

22y , 2% , 2% l(v 3, a)a _
~dfv L 8\ y=0
dx2 Jy? 3z 2\ dx dt

Under the assumption that disturbances vary harmonically with respect
to time, thils equation becomes

2 2 2 d 2
g—x-g+g—yg+g—zg-;l§(va—£+iw)ﬁ=0 (2)

where ¥ 1s a complex amplitude function defined by

*(X:Y:Z"b) = eiwti(x)y, z) (3)

Tt may appear that, since the same differential equation (eq. (2)) is
involved, a logical way of obtaining the potential for a pulsating
doublet moving at supersonic speed is by simple anelogy or continuation
from the potential for the doublet moving at subsonic speed. This pro-
cedure is applicable only in a broad sense because, as discussed in
reference 15 with regard to sources 1n supersonic flow, the potential

of a doublet moving at supersonic speed consists of the sum of two
effects corresponding to a retarded-type potential and an advanced-type
potential which relate to the two wave fronts encountered by a point at
any time; whereas for subsonic speed only the retarded type of potential
1s admissible. (The advanced-type potential for subsonic or sonic speed
does not satisfy the Sommerfeld radiation condition, which requires that
disturbances be propagated away from their point of origin.) TIn the
second place, the potential that may be obtalned by analogy with the
potential for subsonic speed must, as subsequently discussed, be rather
severely restricted before it mathematically describes the physical
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realitles of a disturbance moving at supersonic speed. In the following
development, a desired form of the doublet potential 1s arrived at by
consideration of these restrictions applied to both a retarded and an
advanced type of potential that may be obtained by analogy with results
for subsonic flow.

By snalogy with results for subsonic speed (for example, eq. (A9)
of ref. 1) or, more directly, from the discussion of source potentisls
in supersonic flow (ref. 15), the sum V¥ of the retarded and advanced

types of potentials required to form the doublet potential for supersomic
speeds mey be written with the doublet situated at the origin as

A y

. M Vx2-32y2-[32z2) ( Mx \[x2_52y2_[322,2)
i(b( cB2 Cﬁz eiﬂ) t c32+ CBZ

+
Va2 - p2y2 - p252 V<2 - 242 _ g2.2

=2 (e
¥D oz

=2 _a—. ei(a)‘t-Mz&X)COE(m\IXZ - BEyE - 52224) (h-)

oz V<2 - g2y2 - poz? -

where M= V/c, B = \,Me -1, and & = o/VR2. The restrictions that must
be placed on this expression are: (a) only real values of the radical

term sz - p2y2 - p222 are to be considered and (b) the values of the
expression and its derivatives are to be considered zero when x 1s
negative. These restrictions follow from the physical consideration
that small disturbances propagete at sonic speed, and in & supersonic
stream do not progress forward of their polnt of origin.

A convenient way of wrlting the expression for vV wilth these
restrictions accounted for, as previously mentioned, is to employ a
cutoff or unit function as a factor. Thus, if V¥, represents the

restricted value of +Vp, the amplitude function of VY, may be written
e S

Vo = 2 & o 1PExy(x g 202 ) cos1eslh2 - g2y2 - 22 (5)
°© Joz 2 2 - g2z2
Vx2 - p2y2 - g2z

where

U(x-B\/y2+z2) = 1 (x > B y2 + ze>
U(x—B y2+22)=0 <x_<=By2+z )

:

(6)

N
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and only positive values of the radical ﬂye + z2 are considered. A
method whereby this form of potential can be determined in a more direct
manner is discussed in detail in reference 16. The discusegion in this
reference 1s in connection with the Green functions associated with the
dispersion of sound waves in an n-dimensional medium in which a pulsating
source exlsts. When appropriate changes are made in notation, the
expression for Wo glven in equation (5) agrees essentially with results
for the dispersion of waves in a three-dimensional space given in equa-
tion (55), chapter XVI of reference 16.

With regard to the unit function U(x), in many spplications where
this function is employed it need not be defined as having any particular
value when its ergument is zero. In other applications, especlally where
the unit function is involved in a Fourier asnalysis, it must be defined
as having a velue of 1/2 when its argument 1s zero. In the present case,
it 1s conveniently defined, as may be noted in equation (6), as having
zero value when its argument is zero.

Derivatives of the unit function give rise to an impulse function
called the Dirac delte function. For example,

53_ U(x) = 8(x) = 0 (x # 0)
2 u(x) = 8(x) = = (x = 0)
ox

A useful integral property of this delta functiom is

b
f £(x) 8(x) dx = £(0) (a > 0)

=8,

The next step in the analysis is to make use of the doublet
potential (eq. (5)) to derive the kernel function for supersonic speed.

Derivation and Reduction of Kernel Function

In this section the kernel function is derived and presented. The
function i1s given in terms of an improper integral by equation (13) and
in a reduced form with no improper integrals by equation (15). As 1t
is frequently desirable to present results in terms of nondimensionel
length veriables, the results given in equation (15) are presented in
this menner in equation (16). .
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In order to derive the kernel function, the function ¥ of
equation (3) is consildered as the complex amplitude of the acceleration
potential. As such, V¥ 1is directly proportional to a perturbation

pressure field p = eiaﬁi, through the simple relation

B = -o¥ (7)
and to a velocity potential
g - ot
through the equation
V§%+u@=? (8)

By differentiation of equation (8) with respect to 2z and integration
of the result with respect to x, the vertical velocity associated with

the acceleration potential ¥ is obtained. Thus, when ¥ i1s consgidered

as the potential of e pressure doublet, equation (8) affords a straight-
forward means for obtaining an equation for XK(xo,¥o), namely:

K(x05¥0) = g% 5(xo:Yo:Z)z=o (9)

Detaills of the procedure are as follows:

The result of the differentiation of equation (8) with respect to
z may be written as

= (10)

When this equation 1s considered as an ordinary differential equation

with dependent varieble %ﬁ and independent variable x, & complete
z
solution is

- _dex oy 10,
%g = -‘1; e V f ga; ¥(Ny,2) eV oaa (11)

where the lower limlt of integration is employed in place of a constant
of integration and mey be considered as a condition that 5 vanish far
ahead of the origin A = 0. Thus, from equation (9) there is obtained
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iwA

1o %o 3 A
K(%05¥0) = lim % e V Jf 3 Vo(Myosz) Vi oax (12)
z—30 -00 Z

or, after substitution of the expression for ¥, (eq. (5)) into equa-
tion (12), the results may be written as

Jlaxg  Ax
K(Xo¥o) =2 lim e 7V © -1 22 U(A-pr) cos (MBIN2 - por2 ) o
v 2
z—>0 Br oz N Bzéé
(13)

where r = dyoa + 22 and, since the integrand is zero for A< Br; the
lower limit of integration has been changed from - to Br.

Tt is apparent upon examination of equation (13) that, if the indi-
cated differentiation under the integral silgn is carried out, the
integrand has singular and perhaps troublesome terms. The indicated
differentistion with respect to 2z, however, can be replaced by equiva-
lent operations and followed by integrations by parits that lead to a
reduced form of the kernel function containing no improper integreals.
These steps follow.

Reduced form of kernel function.- As may be directly verlified, the
indicated differentiation with respect to z 1in equation (13) is, in
the 1limit 2-—50, identical wilth

e~1BN 14m 32 U(%—Br)cos(Mm A = B2r2) _
z—>0 022 2 - per2

13 _1zn| A cos (Mm@ - g2y 2) J
" yo2 O U(A-8[vo] ) & e - 2y = riafope - Beyoeil -
e;:,?l%;@ 0(r-sfro|)stn(i ~ P ) - £ 5(3lyo JotnlmfiE - By ) -

l[:—a:——__ﬁ__!;;—laS(x-B|yo|)cos(Mﬂ/A2 - Bzyozﬂ (1)
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Since the coefficients of 8(%—B|yo|) in equation (14) vanish at
A = B|¥o|, 1t follows from the integral properties of 5(A-B|¥o|) thet,

when equation (14) is substituted into equation (13), the integrals
involving the delte function vanish and equation (135 becomes:

_daxol -idx
K(x0s¥0) = -—2ge V X870 U(xo-8]yol ) cos(bﬁ)\,xoe - 2y2) +

Vyo \[xoa - Bayoz
%& om0 U("‘O"Bli"ol)E"i:‘l(h"ﬁ‘!)xc;2 - Bzyoa) +

£ [0 o18M y(rply,|) stn(imio? - Py )in (15)

M)yl

Equation (15) provides an expression for the kermel function that
involves no improper integrals. Except for the Integral, the terms of
the expression cen be quite easlily evaluated with the aid of trigono-
metric tables, except at y, = O, where the function is singular, and
at x5 = Blyol, where the function is indeterminste. The integral is
well behaved and can be accurately evaluated by numerical or approximate
procedures. The singularities and indeterminate values are lsolated and
discussed in & later section, but it is desirable first to express the
function K(xg,¥o) 1n terms of nondimensional length variables. As a
check on the correctness of equation (15), the expression for K(%gs¥0)

is also reduced to the limiting value for M= 1 and compared in
appendix A with the corresponding limiting value for the subsonlc case.

The kernel function in terms of nondimensional length variaebles.-
Although the preceding results contein dimensional length varisbles, it
is usually desiraeble to have such results in terms of nondimensional
length variables. By employing the variables x, and yy in a new

sense +to mean that they have been referred to some chosen length 7 and
by introducing the reduced-frequency parameter k = Zm/V, the length
variables may be made nondimensional. (In flutter theory the reference
length normally 1s selected as a semlchord b.) The variables are used
in this sense throughout the rest of this paper. The kernel function
(eq. (15)) can be written in terms of these nondimensional variables as
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ikxq
BE

2 5 o~Lkxo | Xg€ U(xo-8lyol ) cos(%‘[xoa _ Bayoa) "
Vi¥o V%2 - Bey.2 B
. ikxo '

e B2 U(xo-B[Yol)sinCE%ona - Bayoz)-+

K(%0s¥0) =

4 L

ic4 [

f e (7\..5 |y°| ) sin(-B—MQ“}xZ - 32y02)c17\ (16a)

Bl¥ol

An equivalent expression for K(xg,¥o) which will be useful in subse-
gquent considerstions is

1Mkxo
2
Ko = grals P (B » 4 leorsivelin 5 R
x kA _
ﬁ e~1kxo BIO ' e B2 U(k—ﬁlyo])sincggvaé - BEyOQ)dx (16b)
Yo

Isolation and Discussion of Singularities of Kernel Function

As previously mentioned and as may be noted in equations (15) and
(168), the kernel function becomes eingular at yo, = O and is of an
indeterminate nature when xg = Blyol. It 1s therefore desirable to
make special treatment of the function in the nelghborhood of these
values of xo and yo 1n order to be gble to express the function in
s form which 1s more amensble for calculstions. The indeterminate
condition arises from the first term of equation (162) because of the
manner in which the unit function has been defined for this analysis.
(The denominator of the first term vanishes at xo = Byy. The presence
of the unit function in the numerator, however, renders this singularity
indeterminate.)

In the next few sections the forms of the singularities are ex-
tracted (see eq. (24)) and the aforementioned indeterminete forms of
the kernel function are explicitly determined (see eg. (20)). A form
of the kernel function more suliteble for calculation purposes, since
the troublesome points ere isolated, is presented in equation (26). A
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manner of integrating the kernel function across its singularities is

given in equation (27). The singularities of the supersonic and subsonic
cases are then compared.

Indeterminate form.- Consideration is first given to the indeter-
minate form, and it 1s convenient for this purpose to consilder the value
of K(x5,¥0) @&t points on the positive branch of a hyperbola. (See
sketch.) The equation of the hyperbolas masy be written =&

b
OA

2;‘3°l X5 = € cosh 6

(17)
+0 Blyol = ¢ sinh 0

In these equations € = O corresponds to Xg = BYgs since elimination
of 8 glves xo2 - B2y2 = €2. S

After substitution of these expressions for X, and ﬁlyol into
equation (162), the results may be written as

k
_ 2p2e-1ke cosh © -1k8 cosh ©

K(e,0) = R U(ee=®)e B2 cosh 6 cos Z_ﬂé:e_ +
_ 1ke cosh ©
bil{ U(ee"'e)e pe gin B% +
x f € cosn ® e-% U( M€ sizh ©) sin(ﬁ\b@ - &2 sinh2e)c1>\
MJe ginh & B2
(18)

To obtain a limiting value of this equation for small values of €, the
trigonometric and exponential terms can be replaced by terms up to the

second power of € 1n & series expansion. TIf the result of performing
this expansion is denoted by K@', the equation
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2o-1ke cosh ©
K'(e,8) = _ 2pce U(ee"e) cosh 8 _ ik
V12 €2ginh20 p2e

k2COSh e - k2 log cosh 8 + 1 (19)
oph 2p2 sinh ©

is obtained, which, in terms of the original coordinates x5 and yq,
is

K'(XgsY0) = - erli%o ik kg) -

Xo 2 2
——7~ U(Xo-B|Y¥ - - =
e ool el - 22
k2 log Xo + %02 = BPyoP

BIYol

(20)

Although these equations were obtained in order to reveal the form of

the indeterminate value of the kernel functlomn, they are found to contain
singularities at y5 = 0. Prior to any further dlscussion of this result
it 1is desirable to consider the limiting form of K(xg,¥o) 88 Yo
approaches zero to determine all the singularities at ygo = O.

Singularities at ygo = 0.~ For the purpose of obtaining e limiting
value of the kernel function for vanishingly small values of - y,, the

integral appearing in equation (16a) may be written as the sum of two
integrals, namely:

kA

Xg - :
f e B2 U(?x-ﬁlyc,')sin
B|¥o|

I

ol

" e B2 u/n e - a2 2)
fxoe u(» Blyol)sin(g% 2 - p2y 2lan (21)

T
DlF

he - 32}’02)5-7\ =

Y

e B2 U(n-8| yopsin M2 aEyOE)aA -

32
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The first of these integrals may be evalusted from the teble of Taplace
transforms of reference 17 and has the following value:

1kA
® T2 Mi 5 2\a —
J;IYol e B U(7\-B|yol) sin(ge- N - By, )dx = MIyOIKl(klyol) (22)

where Kj 1s the modified Bessel function of the second kind, of first

order. In the second Integral, the integrand may be replaced by terms
up to the second power of Yy, 1n a serles expansion. Thus,

ikA
f‘*ﬂ e 82 U(?\-Blyol) sin(bs%dia - Bzyoa)d')\

Xo

_ ikA
52

= e
X0

U(X-Blyol) (sin % - MZ;’\E cos g—ﬂé‘z})dk

s o s 55

Nﬂ?;oz E;i(::i) + cn(%) + Si(%) - Si(%)] (23)

where Ci and S1 denote the cosine integral function and sine integral
function, respectively, which are defined as follows:

« -]
Ci(x) = -/ &L gp Si(x) = & - gin t g4
x x

Substituting equations (22) and (23) into equation (16a) gives, as a
limiting value of K(xg,¥o))»
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2e~1kxo k2y o2 [, fkxo
lim  X(xg;¥Yo) 1im @ -—=/k|y,|K(kly - cj_( )+
¥o—>0 (¥orYo Yo—0 ViZy S~ [0l (x{¥ol) 4 M+l

Ci(ﬁ—f—%) + 51(%—;) - Si(;—-f—?—_—)]}U(xo—Blyo')

"M oS U(xo‘ﬁlyol){;fﬁ i (I

M-1

(52) - ()] @)

where the following series expression for K;(z) (see ref. 18) 1is
employed: :

s 2l Blos(39) + ()

- 2\(2 . 20 4 22 1_(z,58, 52
Ki(z) = (7 + log 2)<2 + T + 384“f .. .) + = <k + < -+ T + . . .>

(25)

where 7 is Euler's constant (y = 0.5772157). Examination of equa-
tion (24) shows that the only singular terms are the same as those which

appear in equation (20), namely - 28~ 5 O and -k2e~1¥Xo log’yo|.
Yo
Thus, for the purpose of lsgolating the singularities of the kernel
function, only K'(Xg,¥o), 28 defined in equation (20), need be con-
gsldered. Nevertheless, the results given in equation (24) may be useful
in some applications since they provide a ready means for eveluating the

nonginguler part of 1im K(xo,yo).
yo_’o

Form of kernel function suitable for calculations.- As in the sub-
sonic case, with knowledge of the critical values of the kernel function,
an expression can be written in which the kernel function 1ls separated
into two parts, one of which contains no singularities or indeterminate
values and the other of which contains all the singularities and critical
values of the kernel function. Thilis expresslon is

K(xo’Yo) = [K(xo,yo) - K'(xo;Yo):’ + K'(XgsY0) (26)
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vhere K(x%g,¥0) 1s defined in equations (15) or (16), and K'(Xq,¥o) 18
defined in equation (20). The term K(%05¥0) - K'(%X05¥0) 1in equa-

tion (26) has no singuler or indeterminate values. The term X'(xg,¥o)
ie singular at y, = O and indeterminate when x5 = Byq-

Integration of singularities of kernel function.- Since integration
of the kernel function is often necessary, a few remarks on how to cir-
cumvent its inherent singularities are in order. Each term of K'(xq,Yo)
in equation (20) possesses a simple indefinite 1integral with respect to
the variable 17 =y - y,- In performing integrations with respect to 17
that involve & passage across the line 1 = y, & principal value is to
be teken. For example,

1 U(xo-B|yo|)¥o &0 _ 1 [U(xo=Bly-1]){xc® - B2(y - 1)2

-1 (y - 0)2Vx2 - p2(y - m)2 X y-1

U(xo-ﬁly+l|)\lx02 - B2(y + 1)2
y+1

(27

where the symbol f indicates that the singular integrel is to be con-

sidered simply as a function of its limits. A Justification for this
consideration is that it leads to results that could, with considerable
labor, be rigorously esteblished by maintaining the varlable 2z in the
anslysis until all operations are performed. T

Comparison with singularities of subsonic case.- It mey be of
interest to compare the above results with corresponding results for
the subsonic case, that is, for x5, > 0 and ygo = 0. Results for the
subsonic case may be obtained from equation (31) of reference 1 as
follows:

5 Y2
- X~ + (1 - M +
Un  K'(Xo,¥olyep = Mm == e Mol (%o Yol ¥ %o,

Yo—>0 Yo—0 Vi2 To2VE2 + (L - B)y2
1% DR o k(J:;o2+ (1-1)y02 - x;)
Vxo2+ (1- M)y 2 2 2(1 - M)
-1 2
_eiot 2 2, KO+ MyeT (26)

V12 Y02 *o 2 Lxg
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The singular terms of this expression for x, >0 and M< 1 are

-ikxo<
v12

los[yo|>
Yo

Comparison of this result with equation (20) shows that the singularities
for subsonic and supersonic flow are of ldentical form.

Some Infinite-Series Expansions Pertinent to the Kernel Function

The kernel function can be expressed as a serles by various expansion
procedures. Same particular expansions, which should be useful in appli-
cations, are discussed in succeeding paragraphs. These are the power-
series expension in terms of the reduced-frequency parameter (see eq. (29))
and an expansion in terms of Bessel functions. The latter expansion is
used in a later section to obtain the kernel function for two-dimensional
filow from thet for three-dimensional flow.

Power-series expansion with respect to k.- As In the case of sub-
sonic flow, the kernel function can be expanded into a power series with
resgect to k that, 1n the present case, is useful for small values of
k/B a cambination of reduced frequency and Mach number that is ilnherent
in such an expansion of the supersonic kernel. The terms of the expansion
may be simply obtained by expanding the terms of equation (16a) that are
functions of k and collecting the results. The firet few terms are

i 2
K(xo,yo) =..2§__Efg'u(xo_3'yoi) Xo _ ik BZYO _

V22y02 X2 ~ B2yl p2 X2 - 32302

!—.(%)2< B2yoPxo + ptyo2 cosn~l 2o\ .
2\62) \ [k - oy 2 B|¥o|

(_E)s (32 - 1)B2y2x.2 + (2 - 3M2) Pyt 0<_k_)1+
6\p be - B2y° p?

Although this power-series expansion converges to the appropriate value

of K(xg,¥yo) for all finite values of a great number of terms are
required unless k/B2 is small. These first'few terms of the expansion
can be consldered to represent the kernel function for values of k in
the range of magnitudes generally encountered in dynamlc-stability studies
and, therefore, they are pertinent for cbtaining time-dependent stability
derivatives. A noteworthy feature of the expansion is that each term can

(29)
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be integrated, in the sense that it contains a simple indefinite integral,
with respect to the varisble 1 = y - yo. When such integrations involve
e passage across the line 7 =y, & principal value is to be taken in the
sense described after equation (28).

Expansions in terms of Bessel functions.- The trigonocmetric terms
eppearing in the expression for K(Xg,¥o) in equations (15), (16a), and
(16b) can be expanded into infinite series involving Bessel functions of
the first kind. Such expansions have good convergence properties, even
for large values of the parameter k/B2, and each term possesses & simple
indefinlte integral with respect to 1. Such Bessel function series are
therefore useful for derlving an expansion for the indefinite integral
of K(xg,¥o) with respect to 7. The indefinite integral of K(xg,¥o)
leads to the downwash associated with pulsating vortex lines ("horseshoe"
vortices) and, as previously indicated, to the kernel function for two-
dimenslional flow. It might be useful to point out that the expansion of
the cosine term into & series involving Bessel functlons is also useful
for studying distributions of pulsating sources.

For the purpose of expanding the trigonametric terms under dis-
cusslon, conslder the expressions

ﬂ 2 _ g2
U(A-g) cos bYN\ 8
2

(30)

and

U(K-a)sin(bV%? - a2) = ..g%.U(},a) COS(bi%? - a2) (31)

where a, b, and A are positive.
By meking use of a known Fourier transform relation, expression (30)

can be equated to an infinlte integrel involving a Bessel function of the
first kind (see, for example, p. 33 of ref. 17):

L/ﬁm Jb(K Ta;bz)cos ar dr = cos(bV)® - a2) (A > a)
0

32 - a2

3\

- (32)
(A< 8)

n
o

(=]
JF Jb(% Ta¥b2)cos at dTt
0

/
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By use of the addition formula for Bessel functions (see, for example,
p. 358 of ref. 18) , the Bessel function appearing in this equation can
be written as an infinite sum of products of Bessel functions as follows:

Jo(?\ 2+'b2) = Jo(TN Jo(PN) + 2 il ('1)nJ'2n(T7\) Ty (BN (33)
n=
Thus,
f“’ Jo(')\ 7\2+'b2)cos at dr = U(A-28) 08 'b\l 2 _ g2
© 2 - a2

= f: E‘O(T)\)Jo(b')\) +

22.0: (-1)nJ2n('r7\) Jan('b')\)] cos at dt (34)
n=1

Tn view of the relstion (see ref. 17, p. 37)

U(A-a) on sin~l 2
COS( sin 7\) (35)

Jon(T™N) cos ar dt =
j: N - a2

the indicated integration on the right-hend side of equation (34%) can be
carried out term by term so that

U(A\~a) COS(b\J7\2— a2 ) _ U(A~a) > _q\B -la
e e Jo(bN) + 2 %‘ (-1)23,, (6N cos (an sin 7\)

(36)

Substituting the expression on the right-hsnd side of equation (36) into
equation (31) gives

U(x-a)sin(bﬁ2 - a2) - JAUZJ\:E [Jl('b'}\) - il (-1)“]}2,,_1(1:7\) - J2n+1(b7\):| cos (2n sin™t 2 }
- a n=

W(A-8) {cos(sm-l %\)i (-1™L3, 4 (6N cos l_(an - 1)sin=t %]} (37)

2 _ g2 n=1

N

i
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But, since

A - _
U(A-a) —7\-2—“—&—2 cos (sin 1 %) = U(A-a) (2 2 0)

the expression for U(K—a)sin(bd%? - a2) may be written as

U(A-a);sin(b.b\2 - a2)= 2U( A-a) i (-1)n'lJ2n_1(b7\) cos Ean - Dein~t %]
n=1

(38)

By direct comparison, equations (36) and (38) can be used to write
expanded forms of the trigonometric terms appearing in equations (15),
(16a), and (16b). Expansions thus obtained will now be used to derive
the kernel function for two-dimensional supersonic flow.

In contrast to three-dimensional flow, a physical interpretation
of the kernel function for two-dimensional flow is that it represents
the downwash at a glven field polnt due to s pulsating bound vortex
line of infinlte length. This kernel function may be obtained by inte-
grating the kernel function for three-dimensional flow from -« to o,
or, in view of the role of the unit function, from one Mach line to the
other, with respect to the variable 7 =y - y,. Pulsating "horseshoe"
vortices may be obtained by integrating K(xqo,¥o) Over an arbitrarily

finite range with respect to 1.

Derivation of Kernel Function for Two-Dimensional Flow

In this section the kernel function for three-dimensional flow is
reduced to the function for two-dimensional flow, and the final results
of the reduction are given in equation (49). For the purpose of deriva-
tion, K(X%o,¥o) Wwill be considered as given in equation (16b). The

two-dimensional kernel function can then be expressed as

- _iMPexg g2
f_@ K(xo:Yo)d-Tl="-% e P f M

-T0

3 .1
5=+
;" Ml: (xo-8]¥0|) sin(m‘\& - 8%, 2]&1 +

1A
k o-ik%o a ‘/#b -EE-U A= 1 M&ha..sa 23
T oo ;25 B|%o] ) (-#lvo])e n<52 Yo )d

= K (o) (39)
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or
_ 1MPixg
¢ (o) = 'v%(e R L 12> (40)
where
- (B2 2 4 l)
_ Mk Ox, M vic 5 = 5
H ——7[.°° (y _on)z E’("O'Bly"‘l)Sin@aJxo - 85(y - n) )d.'q (11a)
or-
= Ez_ i. !—_ xo U - l & 2 _ 2
I B<Mk axo + M) jé:xo “2 sin 32 n< Jan (ll-lb)
and

Ip = af -léf e B2 U(n=|n|) sin(Lﬂ‘é- R - nz)dx dn (42)
-xo 151 |1 B
' Tn equations (41) for I; and equation (42) for 'Ip, infinite limits

with respect to the integration of 1 are not necessary. In view of
the role of the unit function in the integrands, limlts of x5 include

all values of 17 for which the integrands are different from zero. The
symbol indicates that the integrals are to be considered simply as

functions of their limite or that the singularity at n =0 1is to be
ignored.

First comsider equations (41) for I} &nd then perform an integra-
tion by parts. The expression for I3 may then be written as

2 3 i\lLz M, 2 2)x°
5(&._4. ...)E_U xo-l'ql)sin — X~ - 1 l -
Mc dx,  M/| n ( (B2 ~¥o

I

(43)

I
§
N
w
TN
|o/
b
e
o
»
(o]
E
1
Q
[0}
0
I
ON
N
1
=3
N
~——
ey
-]
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By direct comparison with equation (36), equation (43) mey be written in
expanded form as

Xo -
O 4 ik U(Xo-|1| Mk

%o
2 Z (-1) J}gn(g X, )cos (211 sin~t —TL)] dn (bk)
n=1 g2

In this equation, the terms involving Jp, do not contribute to the
integral because

X
f ° M COS(ZD. sj_n"l f— d_'q =
0

V2 - 12

X X '
1 -1 °© °© -1 =
= U(xo—[nl)sin(zn sin™" o +j(; I-?]—ls(xo-ln[)sin@n sin l)d{, =0

Hence, since

JFXO Uxo-In1) 4n

0 xo2 - 72

U (%o n])snt % f L o(ron|nl)stn I an

% U(xo)

the expression for 1I; can be written as

T, -:rﬁ(i + 3 )U(xo)J %':‘E‘ xo)-

Oxo

~np E(XO) += e U(xo)Jo(:k ) - B% U(xo)Jl(';% xo):l (45)

Now consider equation (42) for Ip, namely
_ikA

e B2 U 7\-|n|)s1n< e - na)d?\ dan
_xo 11 ,-ql B2
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The double integral in this expression can be considered as a surface
integral over a triangular region of the An-plane cut out by the
lines n=2A, N =-A and A= x5, 88 shown in the following sketch:

AN

P(xo""xo)
45\ A= Xo
D A
0 >
TS
\(xo,-xo)

By a change in the order of integration, which 1s admissible since the
singularity at n = O 1s to be ignored, the expression for I, may be
written as

1XA
X =5 A
9]

- 12

The inner integral in this equation 1is identical 1n form to the integral
in equation (41). Hence, by observation of and comparison with the
results obtained for Iy in equations (43), (44), and (45), it is found
that

A
j[ U§7\-2|n|z sin(% A2 - n2)an = I M u(n J'O( 7\) (&)
A 7 B B2 B

The expression for Io can therefore be written

<. _ ikA

Ip = -% . °e B2 un Jo<32 7\)&7\ (48)

Substituting this result and the results given in equation (45) for I3

into equation (40) gives a desired form of the kernel function for two-
dimensional supersonic flow:
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_ 1MPkxo
() = 28 4o ™ B o) + 48 0l Tt x0) -

%2 U(%0) Jl(bs%‘ xo):l + & 2 omikxo fx 82 () JO(B 7\)d7\ (49)

Examination of equation (49) shows that the only singularity involved in
the kernel function for two-dimensional supersonic flow is the d-function.
At zero frequency, all the terms of K (xg) except the &-function vanish.
The kernel function required to treat two-dimensional wings at steady
angle~of-attack conditions is therefore proportional to this d-function,
and, as shown in the following section, leads in a very simple manner to
the well-known Ackeret results.

The integral thet remains to be evaluated in equation (49) is well
behaved and simlilar to integrals, treated by Schwarz (ref. 19) and others,
that arise in the velocity-potential approach for treating two-dimensional
wings.

Application of Kernel Function to Iift Distributions
for Two-Dimensional Wings

The results obtained in the previous section for the two-dimensional
kernel function are now employed to cbtain the 1ift distribution on
oscillating and steady two-dimensionel wings moving at supersonic speed.
(See egs. (56) and (61).) Since the lift distributions so obtalned agree
with the Ackeret results for a steady wing and also with known results
for the oscillating wing (ref. 15), they serve as a check on the correct-
ness of the expressions for both the two-dimensional and three-dimensionsl
kernel functions.

The integrel equetion thet must be solved to obtain the 1ift distri-
bution for two-dimensional wings in supersonic flow is particularly
simple since it involves a single integrel of the convolution type:

#x) = ﬁpj: L(£) K (x0)dE =Ef?pf: 1(8) K (x-8)as (50)

TIntegral equations of this type can be readily solved by Iaplace
transform procedures since the Iaplace transform of & convolution integral
is ‘the product of the transforms of the functions that compose the
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integrand. In the present case, if & represents the Iaplace transform
operator defined by '

Lif(x)| = v e=BX f(x)dx = £(s) (51)
ol

the transform of equation (50) may be written as
#(s) = — L(s)K (s) (52)
hrxp

Solving this equation for I(s) gives the Iaplace transform of the 1lift
disgtribution:

L(s) = &‘%9 (s (53)

Inversion of the transform on the right-hand side of this equation gives
the 1ift distribution.

For the case of a steady two-dimensional wing,

#(x) = Vo w(s) = %?
K (x) =‘2r—’;§6(x) | K (s) =§1{£
Then
I(s) = 2p¥oa (54)
Bs

The inverse transform of equation (54) gives for the 1lift distribution:

I{x) = E&B"—aﬂ u(x) (55)
From thls result, the totel 1ift per unit of span 1s
Chord
{jp 2 L(x)dx = 2pV2a X Chord. (56)
0 B

This result agrees with the well-known Ackeret result.
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Now consider the unsteady case for oscillatory translation,
#(x) = ioth = ivkh (57)

where B 1is the amplitude of displacement referred to 1, and the
Iaplace transform of W(x) is

#(s) = 10 (58)

The Iaplace transforms of the different terms of K(x) (eq. (49)) can

be simply derived or they may be obtained from Iaplace transform tables

(for example, ref. 16). After combining the transforms of the different
terms, the results can be written as

\[ (s . 1M2k)2 L M2
k(s) = 218 B2 Bl

i s + 1k

(5__9)
Substituting equations (58) and (59) into equation (53) gives for 'bhe
transform of the 1lift distribution
o = _
L(S) = 21 pV=kh 8 + ik . (60)
B \/(; j_MEk> M2
82 B

The inverse of this transform gives for the 1lift distribution

- _ 1Mix _ iMPke
L(x) = El&;f.;k‘& U(x)e g2 JO(B%) + ik ‘/c;x U(e)e g2 J_O<1‘\:k§) £

(61)

This result can easily be shown to check with the results of refer-
ence 15. Moreover, if ikh is set equal to a, and then k 1s allowed
to approach zero, equation (61) reduces to the result for the steady
case.

CONCLUDING REMARKS

The main purpose of this paper was to derive and present in & form
that could be numerically evaluated the kernel function of the integral
equation relating downwash and 1ift distributions for oscillating wings
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in supersonic flow. This purpose has been achieved for three-dimensional
flow, and the results have been converted to a form more suitable for
calculation by isolating the singular or critical points. The kernel
function for two-dimensionsl supersonic flow has been presented and the
results show that the only singulerity is a Dirac delta function, which
appeared in such & manmer that further reduction with regard to singu-~
laritles is not reguiread.

The results presented in this paper for supersonic flow together
wilth those previously obtained for subsonic flow provide a kernel function
that is capable of being evaluated et any Mach number. As experlence
develops it is expected that use can be made of the kernel function to
develop approximate procedures, that will be more or less uniform through-
out the Mach number range, for calculating aerodynamic forces on oscil-~
lating (or steady) wings of arbitrary plen form and with arbitrary down-
wash conditions. The labor involved in such approximste or numerical
procedures will indeed be prodigious and will require the use of modern

high-speed computing equipment.

Langley Aeronautical lIaboratory,
National Advisory Committee for Aeronautics,
Iangley Field, Va., February 15, 1955.
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APPENDIX A
REDUCTTION OF KERNEIL. FUNCTION TO SONIC CASE

The purpose of this appendix is to reduce the results obtained for
the kernel function in supersonic flow to the sonic-flow case. Such &
reduction should, by comparison with results obtained for the sonic case
in reference 1, provide a partial check on the correctness of the results
for the supersonic case. To effect this reduction, it is flrst necessary
to discard terms arising from the advanced-type potentials employed in
deriving the doublet potentials for supersonic flow. This msy be accom-

%‘, 2 2
2% 2-B2y
plished by replacing cos( 2\] - Bgyo ) % eBe
B
xo2-B2y o7
Mk‘ﬁg _ q2y 2 52
sin(}32 o B<Yo ) with 21 e

analysis. The limiting value of K(X,,¥o) &8 M approaches 1 can

‘then be written as
~1kx (xo"vao -B2y 2 )
o|xcU(xo-Blyol) . B2

Koo = O | o - 2 2
(xo“deo -B2y 2 )

3 o)

end

in equation (162) of the

+

1 U(xg-s]5o] ) e

X5
ik U (%0=B|¥o | ) e B2 an (A1)

M8yl

When the limit M = 1 is approached from the supersonlc side, the term
M i1s conveniently replaced by

M=1+2Ze = (A2)
2
where € 1s infinitesimally small, so that

=M-1)M+ 1) = (2+;-)ze
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With this approximation, equation (Al) can be written as

e &% | 5 o) [ (1 E)roer? |

K(XO:YO)Nhl =

1k
-— ~-(1+ £ 2_ 2
- z U(*ome|vo))e © E{O ( * 2) *o "o |

1+ E
ik %o ' E\ €Yo]
e [ Sempvaye” < LA
2 o

2
ik ( e)( €Yo )J
-1 -2 x - (1+ &) {x. - TR
lin - 810 2U(xo)e € L° 2/\° 2% -
e—>0 V12y02

1k fxo U(?\)e—%g x-(1+§)<7\- €Z§\2+"'):l
0

2( _.Y_o?_) axfyx?)
- 1 ZU(XO)32 Xo Xo - ikfxo U(7\)e2 A Td?\
V1%y,2 0

(A3)

A next step is to show that the result in equation (A3) is equivalent
to that given in reference 1. For this purpose, the final integral in
equation (A3) is considered as two integrals:

2
J;xo U(7\)<_e12_k( d7\ f el U(Ne 12]‘(7\ XQ_)dML/IH;{oIU(?\) iak(x Z%-)dk
(Ah)

The second integral on the right-hand side of equation (A4) is already
in suitable form. The first integral on the right must be converted as
follows:
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By substitution of

or

the first integral becomes

fl Yol yne 2( -Z?\E)dx =fm U(W-Q) (1 Lt e gt (a3)
Y ° V§2 + yoé>

Since the argument \/§2+y02-§ of the unit function in the integral on
the right in equation (A5) is always greater than zero for Yo 74 0, this
integral has the seme value as the 1integral

f“’ ) ¢ _)e-ikg at
0 Je2 v v2

Integrating this expression by parts with

U=l -—> du = - yo© at
2 + Yo2 (§2 + y02)372

av = e~1%E g¢ v = L o—1K§

w1

glves

f m(l_.__C__)e-ikE at = 1 (1- 4 |°° . 1y52 f‘” e~1kt at
0 ‘/§2 +¥o2 k I/§2+ v.2/ '© k Jo (;2_,_3,02)3/2
(46)

From reference 18 (pars. 6.16 and 10.41), this result may be written as
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= % -1 + 1k|yo|Ky (k|vo|) -

- 5 ¥{vo [T (x[¥ol) - Ta(¥]7o]) - %}} (a7

where Kj 1s a modified Bessel functlon of the second kind, I; is a
Bessel function of the first kind with an imesginary argument, and

In =L - % is a Struve function of the first kind with an imsginery

argument. Substitution of the second integral in equation (AL) and the
results of equation (A7) into equation (A3) gives, for the sonic case,

1
K(X0sYo) pey = - -2U(xc)e

lye| K1(k[vo]) = F* [%o] [Ta(¥l¥o]) - Ta(¥l3ol)] +
. x( _¥e)
ik/; OU(7\)e2 Mg (A8B)

Yol

7/

A comparison of-this result with the result given in equation (47a) of
reference 1 shows that the two equations are equivalent.
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APPENDIX B

DERIVATION OF DOWNWASH FUNCTIONS ASSOCIATED WITH

"HORSESHOE" VORTICES IN SUPERSONIC FLOW

The downwash associated with a vortex line can be obtained by an
integration, between appropriate limits, of the kernel funection K(x%05¥Y0)
with respect to 1 =y - yo- In order to perform such an integration
analytically, recourse must be had to term-by-term integrations of an
expanded form of K(Xo,¥o)- In this regard, use can be mede of the
expansions given in equations (36) and (38) of the analysis to cobtain
expanded forms of the downwash functions for vortex lines that have very

good convergence properties, especially for the range of values of the
parameter Mk/ g2 that would usually be of interest in applications.
Expressions so obtained will be cumbersome and will require high-speed
computing equipment to meke them very useful.

In regard to "horseshoe" vortices in supersonic flow, there are
five different significant regions in which a field point may be con-
gidered to be located (see sketch).

yd
e
yd
7w -
e yd
~ Prailing vortex y 7 (5)
7

~
b N (2) s -
3 ~ e
5« AN - Wind direction
> (1) >~y —>
o ~ i
g 7 N
R 7 (9) N

yd \\

N Trailing vortex N (5)

N N
N
~N

~N
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Region (1) is between the Mach cones emanating from the end pcints
of the bound-vortex line. The downwash at & point in this region is not
affected by the tralling vortices but is created by the bound vortex
alone. Therefore, the downwash is the same as would be produced by &
bound vortex of infinite length and corresponds to the kernel function
for two-dimensional flow discussed in the analysis. Reglon (2) is
between the trailing-vortex lines and is within the Mach cone emanating
from one end of the bound vortex but outside the Mach cone emanating
from the other end. The downwash at a point 1n this region is created
by the bound vortex and one of the trailing-vortex lines. The other
trailing vortex has no effect on the dowmwash. Reglon (3) is between
the trailing-vortex lines and is within the Mach cones emenating from
both ends of the bound vortex. Downwash in this reglon 1s created by
the bound vortex and both tralling-vortex lines. Region (4) is outside
the trailing-vortex lines and is wilthin the Mach cone emenating from one
end of the bound vortex. The downwash is created by the bound vortex
and only one of the trailing-vortex lines. Reglon (5) 18 outside the
trailing-vortex line but within the Mach cones emanating from both ends
of the bound vortex. The downwash 1s created by the bound vortex and
both trailing-vortex lines.

For any of the five regions discussed in the preceding parasgraph,
the integral corresponding to the downwash function may be formally
written, with use of equation (16b), as

SN £ XY S
py Mewsartn = e B S ety (e Fren
1 1 o i _ )

1k
- -xo T 82
E Rt j[ﬂa %ﬂg‘jp e B2 U(X-BIYO])51n<§§J{2 - 32Yoé)d“
(o]

ni B{ YOI

} 1MPkxo
= %%(e B 4 "o Ia) (B1)

where use of the substitution By, = { gives

; .@Ea_a_,,_i.
13[2M_k Xo M oM kB 2)
Tx = & —— e U(x%o-B|¥o]) 8in(=E - Bzy dn
o] B mn yo2 ( lol) BE o °

By-11) rg2 3 | 1\ U(xg-Bly S

(y-n2) ¢2
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and

B(y-11) | %o -%—L
I, = 4 e BC U(x-lt sin(-'-@ N - ;2)63\ at  (B3)
* jél;(y-ﬂa) §2fl§| Ol B

Tn equations (B2) and (B3), & principel part - as described after equa-
tion (27) in the analysis - is to be taken when the integrations are
carried across the line ¢ = O. The purpose now is to reduce these
expressions to forms amensble to numerical evaluation. The first step
in this procedure is & reduction of the expression for I (eq. (B3)).
The double integral in this expression can be considered as a surface
integral in the Al-plane where the order of integration is first with
respect to A and then with respect to {. The steps In the reduction
are first to delineate the area of integration for each of the five

different ceses under consideration, and then to change the order of

integration in the surface-integral representation of Tj.

From the description of the different cases to be considered and
by examination of the limits of integration in equations (Bl), (B2),
and (B3), the area of integration for the case of a field point in each
of the aforementioned regions mey be considered as shown by the hatched
areas in the followlng sketches:

th )
& 7\=xo_
W) _.

& By - n2) = -8y

)
N
(2)
EA %
Py lB(y -q1) =&
A= x4 “ "7“"0
\(_l>7\ 0 N o
\
By - 12) = &1 A B -m2) =
>
)
N

(%) (53
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Expressions for I for the five different regions or cases may then

be expressed as simple integrals as follows:

Case (1):
% - 1kA
ILﬁf e B2 B(x,-Nar
0O
Case (2):
S -
Ill-'_'f e B2 F(7\:-7\)d7\+foe pe
0 €1
Case (3):
ikA ik '
£y -3k by -1 *
I, = Jf 1 82 F(A, =N dA +'Jf 2 e 82 F(A,-t1)dn +,]P °
o) §l
Case (U4):
_ 1
Ih = ero e 32 F(K:gl)dx
€1
Case (5):
Lk - 3A

F(A,=E1)an

o

e

L
pe

to -~ x
Ih=f2e B2 F(,t1)dn +/; °e 2 F(o,81)dA

€1 2

The expression

A
F(A, =N =j[ M ain MEH2 _ t2 at
Y §2 . B2

(B4)

(B5)

F(§2,~§l)dk

(B6)

(B7)

(B8)

(B9)

is evaluated In the text in connection with the derivative of the two-
dimensional kernel function and is found to reduce (see eq. (7)) to
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F(n-N = 2 U(x)JO(-éix) (10)

The F-functlon for other arguments can be obtained by substituting appro-
priate limits in an integration by parts of F(?\,-Ql) , namely (see the

development following eq. (k1) in the analysis):

A
F(N\-t1) =f_§l % sin -fg—dxz - 2 at

= -%U (7\—|§|) sin

-ty % (F )U(Hg')m_lsl
B et
A

Z 'LD— Jzn(Ba )EI(K-IC,')sin(an sin™t %\) l +

A
_g_ - n —l-g_ ]
f§1 el s(A-|¢]) st (21'1 sin )\)ng (B11)

After the first term on the right-hand side of equation (Bll) has
been expanded by comparison with the expansion glven in equation (38) of
the analysis and the limits of integration have been substituted, this
expression may be written es

05 - 0S(02) o) [ ol §

n=1 <1

(-1)2 Mk -1 81
% — Jan(?)sin@n sin —7\-—):' (B12)

i lj.%('in:i Jan_l(%)cos[(&l - 1) s:_Ln'l E}%‘-:I +
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Substitution of {5 for A in the limits of equation (B1ll) gives

sz, ) = (- lel) 2 ot

Z” E(_'JQE J2n-l(Mk )cos [211 - l)sin'l ga:l
n=1 to p2 A

n
Z% ';Ll) Jen(BmT}\)sin(az sin~1 %\2)]} -

UO\"IC;,_I)[%% Jo(g%ﬁ)sin'l b1,

=] n=1
%-[ia_(:%%._ J2n_1<gmg—7\)cos[(2n -~ 1) gin-1 %Tl] +
fs% (-i - Jal(b:;;é)ﬂn(an sin~t %l):'} (313)

If -{7 is replaced by ¢; in the limits of equation (B1l), then

F(AN81) = 'B—'- U(A)Jo(b;kw + U(7\-|§1I>{%@:§ Jo(-b%l)sin"l % +

B
%[—ﬁ—-ﬂ Jon-1 ( zk)cosl:(an ~ 1)sin~t %}] +
EME“ ('%Ln Jan(:?)sin@n sin™t %\l):l} (B1k)

Substitution of {p for A and {; for ={; 1in equation (B1l) glves
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F(;E,gl) = —U(7\- IQEI){%% JO(%)Sin-l % +

i[? ( _Z')an—l J'Zn_l(-gﬂaix)cos [(211 - 1) gin~L %\2-] +

n=1

M“ﬁé—iﬁ JEn(;_%A>Sin(2n sin~t %):l +

90 |5a1) 125 30 (E)etar? L 4

n=1

© -1
Zl:g;%‘)a_n_ Jzn_l(gl\)cos E2n - 1)sin~t %:] +

M{B;:l') i Jon (%)sin (En sin~1 %)J (B15)

When equation (B10) and equations (B12) to (B15) are substituted into
equations (B4) to (B8), respectively, they give the reduced forms of I,
tor the five cases under consideration.

After the reduction of 1), the corresponding reduction of 13 1s
considered. As may be found by examination of the expression for I3
(eq. (B2)) and the sketches showing the aress of integration for the
different cases, reductions of I3 corresponding to thoge of I; can

be obtained from the F-functions (egs. (B1O) to (B15)). Results for the
different cases may be expressed as follows:

Cese (1):
- B2 3 1) -
I3 ?\:E-)mxo<m ST F(A, -2 | (B16)
Case (2):
- B2 3 |, Ll -
z )J;i»mxo(m 2, M)m, £9) (827)
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Case (3):
- B2 .1 B}
g ximxo<m " M)F(gz’ f1) (18)
Case (4):
- B2y L1
Tz xli»mxo(Mk > + M)F(')\, 1) (B19)
Case (5):
- B2 .1

When the expressions for Iy (egs. (B16) to (B20)) and I,

(eas. (B4) to (B8)) that are associated with each particular case are
substituted into equation (Bl), expressions for the downwash at each of
the five significant field-point locations msy be obtained in terms of
the F-functions (egs. (B10O) to (B15)) as follows: '

Case (1):
n 1iMPkx »
2 28} - g2 g 3 1
f K(xo,70)dn = -Z£fe B lim (— + —)F(?\ -N +
n 02J 0 1 A% Mk s M . s
_ 1k
k ik fx °e B2 (N, =N dA (B21)
M 0
Case (2):
- 1iMPkxo
-— 2
f K(x0,¥0)dn = "? e p2 lim ('SE Sai + :'_")F(N"Cl) +
n1 A—>xq
£ oLk
k e-ikxo[)n L e EE— F(A, -A)aA +
M 0
5. = iXA
A °e #° F(A,~£1)dA (B22)
1
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Case (3):
fﬂaK 4 28 _24.25_];59 1m (B2 .1
1 (xor¥o)dn = - 2 |° R——+XQ<Mk YN * EDF(CQ,‘Qlj *
g - A
ﬁe-ihol:fo e B2 F(H,-NdA +
tp, -iEA
f e BZ F(A-t)an +
€1
R 2 .
foe B2 F(gz,-gl)d{l (B23)
L2
Case (4):
Mo - 1 2
= 28 p2 B2 .1
[ll K(x0,¥0)dn ” e 7\l-_:{.->mx()<ij Y + M)F(?x, £1) +
. - ikA
i_ife'ib‘o j;1 e B% A ty)an (B2k)
Case (5):
1MPkx,
fna K(xos¥0)dn = -28 e- B2 lim <‘§%i+ 1>F(§2 1) +
- T A—rxo WK oA M ’
gy -
ﬁe'ﬂ%[fg e B FOutpan+
1
_ 1k
_/:%e E“"‘“F(ge,gl)d{l (B25)
2

The results for case (1) (eq. (B21)) agree with results obtained for the
two-dimensional kernel function given in equation (49) of the analysis.
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