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SUMMARY

Inflow distributions, azimuth and spanwise, were determined analyt-
ically from measured pressure distributions and blade-motion data on a
model helicopter rotor blade under hovering and simulated forward-flight
conditions. Pressures and corresponding blade flapping were recorded
for various rotor conditions at tip-speed ratios of 0.10 to 1.00. In-
cluded in this range are one-bladed-rotor operation effects, deliberate
blade stall, data on the effects of cyclic pitch, and tests on a rotor
with a 13-percent-offset flapping hinge. Since the offset-flapping-
hinge rotor was used primarily as a means of alleviating stall in order
to obtain inflow data at high tip-speed ratios p 1n the viecinity of
1.0, no cyclic pitch was used to balance out the hub moments resulting
from the incorporation of offset hinges. It is these moments which are
the primary source of the stall alleviation.

Analyses of the data are presented in the form of raw data, span-
wise loadings, and plots of inflow ratio against azimuth. For rotor
operation at p = 0.30, zero- and 13-percent offsets, additional plots
of loading and inflow ratio contours are presented for comparison.

The inflow plots indicate variations very different from the uni-
form distributions which are sometimes associated with a rotor disk.
An extensive investigation of the p = 0.30, zero-offset rotor condi-
tion shows that larger inflow variations than predicted by theory can
exist; however, upflow over the forward portion of the disk and rela-
tively large induced velocity at the trailing edge are verified. The
inflow patterns for the zero-offset and 1l3-percent-offset rotors under
the same conditions of operation, except for the presence of hub
moments in the offset-hinge case, are found to be very different in
general character.
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Supplementary information concerning reverse-flow effects on offset-
blade motion, measured forces and moments on a typical offset model rotor,
and additional recorded pressure data are also included.

INTRODUCTION

There are many instances in helicopter design where much can be
gained from a knowledge of the correct induced velocity or inflow dis-
tribution throughout the rotor disk. Solutions of the problems of
excessive vibration, structural fatigue, roughness of control, and
rotor interferences would become more evident if the nature of the
rotor disturbances was known. At least, with a reasonable knowledge
of inflow variations, it may be possible to design away from these
adverse characteristics.

The available current experimental inflow data are not adequate to
permit a thorough evaluation of exlisting theories. With the exception
of the hovering condition, therefore, only a limited amount of material
has been published about the correlation between inflow theory and ex-
periment. In reference 1, longitudinal inflow variations were deter-
mined from flight smoke traces. Each plotted variation represents the
average of data obtained between the center of the rotor and halfway
to its lateral tip. The agreements with both Coleman's and Mangler's
theoretical studies, references 2 and 3, respectively, are shown to be
reasonable. It is possible, however, that the agreement between refer-
ences 1 and 3 may be misleading in that it suggests the use of theory
in the prediction of inflow over the entire disk on the basis of lim-
ited comparison.

If the smoke technique of reference 1 could have been applied to
more of the rotor disk and the tests could have been conducted on the
retreating part of the rotor disk, it is possible that the forward and
rearward or longitudinal inflow variations would not have agreed so
well with the theories of references 2 and 3. It is also believed
that the severest inflow variations occur in the outboard annulus of
the disk and, therefore, any experimental program should include this
region. Further experimental study is warranted and additional com-
parisons with theory are desirable.

Direct pressure and blade flapping measurements on a rotating
blade offer a possible means of obtaining inflow distributions rather
conveniently. The present program was concerned primarily with the
experimental determination of pressure distributions and corresponding
blade-motion data on a model rotor blade and with the possibility of
obtaining inflow distributions therefrom. Rotor conditions for the
most part were selected as representative of possible full-scale rotor
operation.
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Since no force and moment data for offset-flapping-hinge rotors

J were available, it was desirable to obtain some information for corre-
& lation with the theory previously developed in reference 4. The

‘ program, therefore, has included a brief experimental force and moment

J study on a typical offset model rotor having no cyclic pitch.

As a matter of refinement, reverse-flow effect has been introduced
‘ in the blade flapping analysis of reference 4 and a comparison has been

made with the theory excluding reverse-flow effect as well as with ex-
( perimental results.
|

This investlgation was conducted at Massachusetts Institute of
Technology under the sponsorship and with the financial assistance of
the National Advisory Committee for Aeronautics.

} SYMBOLS
J ] A total disk area, sq ft
( X Ag mean blade pitch angle
| a 1ift slope, per radlan
} ag rotor coning angle
‘ By coefficient of cos ny in expression for B
By coefficient of sin ny in expression for 6
} b number of blades per rotor
{ by, coefficient of sin ny in expression for B
| Cp drag coefficient, D/qA
J Cy, 1ift coefficient, L/qA
Cy rolling-moment coefficient, L'/qA
Cm pitching-moment coefficient, M/qA

J g Ch yawing-moment coefficient, N/qA
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thrust coefficient, T/pAQ°R2
lateral-force coefficient, Y/qA

blade-section chord, ft unless otherwise stated
drag, 1b
flapping-hinge offset, ft unless otherwise stated

blade mass moment of inertia about flapping hinge, slug—ft2

relative power
Iife, 1b
rolling moment, ft-I1b

blade-element loading at radius r at any azimuth, 1b/ft unless
otherwise stated

pitching moment, ft-l1b
mass of blade per foot of radius, slugs/ft

total mass of blade, slugs

yawing moment, ft-1b

rotor torque, ft-1b

dynamic pressure, pV2/2, 1b/sq ft

blade radius, ft unless otherwise stated

radial distance to blade element, ft unless otherwise stated
rotor thrust, 1lb

component at blade element of resultant velocity perpendicular
both to blade-span axis and to Up, ft /sec

component at blade element of resultant velocity perpendicular
to blade-span axis and to axis of no feathering, ft/Sec

true airspeed of helicopter along flight path, ft/sec
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induced inflow velocity at rotor, ft/sec

indu;ed inflow velocity at span station r at any azimuth,
ft/sec

ratio of blade-element radius to rotor-blade radius, r/R

chordwise distance, ft unless otherwise stated

rotor angle of attack; angle between axis of no feathering and
line perpendicular to flight path, positive when axis is

pointing rearward, radians unless otherwise stated

blade~element angle of attack, radians unless otherwise stated

blade flapping angle at particular azimuth, ap - aj cos y -~
by sin ¥ ~ ap cos 2y ~ b sin 2y -~ . . ., radians unless
otherwise stated

mass constant of rotor blade, cpaRh/Il

blade~section pitch angle, Ay - By sin ¥ - . . ., radians
unless otherwise stated

inflow ratio, (V sin a - v)/OR

inflow ratio at span station r at any azimuth

tip-speed ratio, (V cos a)/R
flapping-hinge offset ratio, e/R
mass density of air, slugs/cu ft
rotor solidity, be/xR

blade azimuth angle measured from downwind position in direc-
tion of rotation, radians unless otherwise stated

rotor angular velocity, radians/sec

APPARATUS AND METHODS

For the most part, the apparatus used in the present investigation
was the same as that described in reference 5. Test procedure was
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similar and the same zero- and l3-percent-offset flapping-hinge rotors
were employed. Figures 1 to 4 summarize the blade geometry, wind-tunnel
control and recording equipment, rotor installations, and rotor hub
details. In brief, the rotor was two bladed with a diameter of ) aHEE
and had a 3-inch constant-chord blade with an NACA 0015 profile. The
steel-spar and balsa-wood blade construction resulted in a section stiff-
ness of 43,000 pound-inches squared and a uniform mass distribution of
0.0178 slug per foot. These blades were used on both the zero- and
13-percent offset rotors.

A more versatile and convenient measuring system replaced the autosyn
system of reference 5 in the recording of blade flapping motion. The
rotor of a small tuning capacitor was coupled to the flapping-hinge pin
through gears which served to amplify the blade motion. The general
installation and gearing details can be seen in figure 5. The variable
capacitor was used in series with a 1,000-cycle source, amplifier, and
rectifier. The resulting signal, recorded on an oscillograph, was a
single trace whose amplitude was proportional to the angular displacement
of the blade. Simultaneously recorded was a zero reference set relative
to the rotor shaft axis which, in all but one test condition, corresponded
to the axis of no feathering. The calibration curve of the recording
equipment was linear over a +20° range, and the sensitivity was of the
order of 10°/inch of galvanometer deflection. Sample records of blade
motion are presented in figure 6.

The method of dynamic calibration of the pressure-measuring equip-
ment essentially followed the method outlined in reference 5 with the
exception of two changes. The vacuum-tube flush-type pressure standard
was replaced by a Statham pressure gage, model P6-5D-350, and different
amounts of lead in the electrical circuit were used for each span station.
The introduction of variable lead made it possible to control amplitude
distortion with frequency. The amplitude dynamic response of the pressure-
measuring system appears in figure 8. Tt can be seen from the figure that
the frequency-response characteristics of the pressure-measuring system
are not altogether satisfactory at frequencies higher than the second.
Small errors in aerodynamic loading are introduced as a result and may be
significant in the reverse-flow region of the rotor disk where relatively
low values of pressure occur and the higher harmonic components are of
the same order of magnitude as the first. Although this consideration
might affect the absolute magnitude of the downwash in these areas, it is
expected that the overall trends indicated by the data are correct.

The distribution of inflow through a rotor disk from experimental
aerodynamic loading and blade-motion data was determined as follows: From
the continuous pressure-difference traces obtalned at a number of points
in the chordwise and spanwise directions, the spanwise aerodynamic loading
was found at specific azimuths. The blade was then divided into a number
of elements in the spanwise direction. For a given operating condition,



NACA TN 3492 7

azimuth, and blade radius, an elemental loading I, was obtained from
which the blade-element angle of attack apr was calculated for an
assumed value of 1ift slope. Thus,

i

(],I, —
pacUT2

which also had the equivalent form

ar=e+_—
Up

where

Up = MR - (r - e)p - uORB cos ¥

Up = Q(r + uR sin ¥)

B =ay - ay cos ¥ - by sin V-
EN= alQ sin ¢ - le (elofch e A
BN R
e=§R

Substitution of the above quantities into the second relation for
blade-element angle of attack yields the following expression for blade-

element inflow:

p S N - T ap) (x + p sin ¥) + (x - £)(ay sin ¥ - by cos ¥) + up cos ¥

Tt is evident that the blade-motion data are needed in the final
computation of the inflow distribution. The flapping coefficients were
determined from a graphical harmonic analysis of the recorded blade-
motion data. The results are listed in table I.
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The mounting rods of the rotor installation shown in figure 7 were
redesigned to accommodate the support system of the M.I.T. Wright Brothers

tunnel, which has a 7%- by 10-foot test section. This tunnel was used

for the force and moment measurements on a typical offset rotor.

No corrections were applied to the data to account for the effects
of tunnel-wall interference on the mean angle of attack of the rotor or
to the angle-of-attack distribution over the rotor. Although such cor-
rections might affect the magnitudes of the resultant downwash to some
extent, particularly at the higher 1lift coefficients, it is expected that
they would not significantly influence the overall conclusions that are
drawn from the results.

RESULTS AND DISCUSSION

HOVERING

The problem of the determination of induced velocity or inflow
distribution in the hovering case has been adequately solved by both
theoretical and experimental methods. The solutions in references 6 and
7 are two illustrations. As an additional check on the instrumentation
used in the current investigation, hovering inflow distribution was deter-
mined from experimental pressure measurements and compared with the theory
of reference 6. The results are shown in figure 9. Agreement is reason-
able, varying from a maximum discrepancy of 10 percent inboard to 15 per-
cent at the tip. The experimental data used to find the hovering inflow
distribution were taken from reference 5, which employed essentially the
same measuring equipment. The theory assumes no tip losses. The test
condition corresponds to a blade pitch setting of 80, a tip speed of
209 feet per second, and a Cp/c value of 0.061. A two-dimensional value
of lift slope of 5.7 per radian was used in the analytical solution for
the hovering inflow distribution. In general, inflow is referred to the
axis or plane of no feathering and is considered negative downward through
this plane.

SIMULATED FORWARD FLIGHT
General Considerations of Blade Flapping Motion
The blade flapping data were used to correct the lag in the pressure-
measuring system in the same manner as described in reference 5. In sum-

mary, the fact that the azimuth of maximum flapping coincides with the
azimuth of maximum aerodynamic moment establishes a boundary condition
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which enables lag corrections to be made. It should be noted that these
lag corrections agreed closely with those determined by dynamic calibra-
tion of the pressure-measuring system and therefore may be considered
free from excessive error. The azimuth of maximum flapping was obtained
from the blade-flapping results of table I. As previously mentioned,
these coefficlents were determined from graphical harmonic analyses. The
flapping coefficients for the last rotor condition, involving cyclic
pitch, were corrected to axis of no feathering. It will be noted that
for the zero-offset rotor the change to the one-bladed rotor condition
did not appreciably change the first-harmonic flapping coefficients. The
bl coefficients for the 13-percent-offset rotor are all negative and

opposite in sign to those for the zero-offset rotor. This is character-
istic of the behavior of an offset rotor. For the two rotor conditions
of @ = 0.30 and 0.50, the reduction in flapping due to offset can
readily be seen.

The curves of figure 10 show the variations in blade flapping, 1lift,
and relative power for a rotor with a 1lO-percent flapping-hinge offset
and various values of blade mass constant. The changes in 1lift and power
are seen to be negligible, but the corresponding changes in maximum blade
flapping and flapping coefficients are rather severe and therefore may not
be neglected. It is well then to note that the selection of blade mass con-
stant for model testing, even when comparatively small offsets are involved,
may be of importance in the simulation of full-scale blade flapping. This
brief experimental study used the equipment pictured in figure 7.

Zero-0Offset Rotor

Consideration of second- and first-harmonic pressure variations.-
Since the current zero-offset pressure data differed from the data
recorded in reference 5 in that it contained relatively large second-
harmonic variations, it was felt advisable to investigate first one rotor
condition thoroughly. The rotor condition p = 0.30, £ = 0, Ay = g,

and a = -5° was therefore selected for study and comparison. The
results of this investigation appear in figures 11 to 29.

The curves of figures 11 and 12 are plots of the current aerodynamic
data after the first graphical integration. The presence of ‘the second-
harmonic component is evidenced by the sizable variations in spanwise
loading with azimuth. These data result in a loading concentration about
the 300 azimuth near the tip. Details of the analysis of the rotor con-
dition p = 0.30 and & = O recorded in reference 5 are presented in
reference 8. Comparison of the loading curves of reference 8 (fig. 15)
with those of figure 11 shows that the differences in loading appear at
azimuths of 0°, 45°, 270°, and 315°.
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A comparison of the resulting inflow distributions at two repre-
sentative span stations for the two tests under discussion is shown in
figure 16. The dashed curves refer to the test results of reference 8
which from a practical viewpoint contained no second-harmonic pressure
variation. Inasmuch as the measured values of flapping for the two
cases were the same, the curves of figure 16 reflect the change in
inflow due to the differences in pressure data only. It is therefore
concluded that the absence or presence of second-harmonic pressure varia-
tions is not a major factor in the consideration of inflow distribution.

It was expected that the strong second-harmonic pressure variation
would appear in the plot of total 1ift against azimuth. The solid line
of figure 18 is the result of the double integration of the pressure
data. The predominant second harmonic is evident., The dashed curve was
determined from conventional theory using a 3-percent tip loss in
loading and a constant value of A. The theoretical curve substantiates
the experimental results.

Since the rotor under discussion had zero-offset hinges, any sizable
first-harmonic aerodynamic moment would indicate faulty instrumentation.
Therefore, it was necessary to determine the total aerodynamic-moment
variation and analyze the result harmonically in order to prove the
validity of the recorded data. A semigraphical integration method was
used to compute the total aerodynamic-moment variation using the loading
data of figure 11. The first-harmonic component was then removed and
the remaining moment curve compared with the total. As can be seen from
the comparison in figure 13, the first-harmonic contribution is negligible.

Comparison of theory and experiment.- Figure 14 gives the inflow
distribution from the experimental loading and blade-motion data previously
discussed in this section. It can be seen that the inflow is somewhat
unique in distribution and is anything but uniform. In the azimuth range
of 45° to 180° note the reversal in the values of inflow over the blade
span with a minimum at x = 0.55. The dashes indicate local blade stall,
stall being defined as Ay 2 12°, Note the upwash (upward) trends at

¥ = 120° and 240°. The contour plot of inflow, figure 15, clearly shows
these trends. The small heavy-line circle in the center represents the
area swept by the model hub and btlade shanks. The crescent represents
the reverse-flow region. Since the flight component of inflow p sin «
is equal to -0.026, the contour line of -0.025 is the approximate boundary
between areas of induced upwash and downwash. The area of upwash is some-
what undefined because of the inboard stall region in the retreating half
of the cycle. The occurrence of the inboard stall before tip stall was
probably due to the following two reasons: The rotor angle of attack
(forward tilt) was about 1° less than the rearward tilt of the tip-path
plane and the pressure was not converted to 1lift but left as normal force.
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However, it is not believed that the use of normal force for 1lift had
an appreciable effect on the remaining area of the rotor dlsk, where the
blade angles of attack were relatively small. In all but two cases
analyzed (deliberate stall and p = 1.0), the excessive stall regions
were minimized by restricting rotor test conditions and therefore repre-
sent small percentages of the total disk area.

Because of the difference in the form of presentation, and the
stated or implied rotor conditions, direct comparison of the model inflow
data of figures 14 and 15 with the data in references 1,42, S iandsOsls
not too practical. However, of interest are several similarities and
dissimilarities of a general nature. Consider first the forward and rear-
ward inflow variations of the above references. Since reference 1
includes forward and rearward inflow comparisons with references Aot Oy
and 9, the immediate discussion will chiefly refer to this one investiga-
tion. The rotor condition of figure 10, reference 1, agrees more closely
with model testing conditions than the other testing conditions investi-
gated. For 1 = O, the theory of reference 3 (Mangler curve) ylelds a
variation similar to the experimental curve. The points of interest are
the upwash shown for the forward part of the rotor disk and the quite
linear variation throughout. The indicated forward and rearward inflow
variation of figure 15 of this report differs in the forward part of the
rotor disk. The experimental model data show a comparatively large
induced downwash at the forward edge of the disk, at V¥ = 1800, and an
upwash which appears fairly asbruptly at about the 60-percent radius and
remains to the center of the disk. An approximate axis of symmetry
appears to exist about the V¥ = 330° to 150o line. The variation from
the center to the rearward portion of the disk (¥ = 0°) is simiiar to
theory in that it is somewhat linear. It is believed that, had the tests
of reference 1 been conducted on the left or retreating part of the disk,
larger lateral variations of inflow would have resulted and the fairing
of one curve through all the experimental data would not have been
satisfactory, and consequently the comparison with reference 2 would
have been difficult.

The theoretical induced velocity contours for a disk incidence of 0°©
presented in references 9 and 3 (ref. 9 is a preliminary account of the
theoretical development of ref. 3) can be compared with the experimental
inflow contour of figure 15 for general differences in features. The
most apparent difference is the lack of symmetry in the case of flgure=15:
the variations of inflow on the advancing part of the cycle  dififer
markedly from those on the retreating part of the cycle. There is no
provision for stall in the theory and therefore no stall areas are indi-
cated on its contour. The large upwash at the lateral tips (¥ = 270°
and 90°) is not present in the experimental contour, but rather a sizable
downwash at V = 270° and nearly zero values at V¥ = 90O are present.
The theory and experiment are in better agreement for the rearward half
of the rotor disk. Both show large downwash at about V¥ = 315° and 45°
and a gradual increase in downwash in the region about V¥ = 0°. It is
apparent that better correlation between theory and experiment is desired.
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Check on inflow calculation method.- In order to establish the
validity of the proposed method for determining inflow from blade loading,
it was considered desirable to compare a full cycle of computations
starting with an initially established inflow, determining the corre-
sponding airloads, and comparing the inflow computed from these airloads
by this method with the initially assumed value. (A list of trigono-
metric functions found useful in the present analysis is given in appen-
dix A.) The loading curves of figure 17 are the result based on the same
flight conditions of advance ratio, rotor shaft inclination, and pitch
setting which were used to obtain the experimental loading curves of
figure 11 except that no tip-loss effects have been included in the theo-
retical analysis. The comparison of figures 17 and 11 shows differences
of magnitude and variation although none are very severe except in the
region of the blade tip. Figure 19 shows the results of the theoretical
calculations of inflow based on the theoretically established airloads,
for which the original value of A had been computed to be -0.036 and
has been obtained for the representative span stations of x = O.h5,
0.65, and 0.85. Because of small differences in the values of )\ at a

given azimuth, one curve was drawn to represent the azimuth inflow dis-
tribution. Slight variations about Ny = -0.036 are shown particularly
in the vicinity of ¥ = 315°. The reason for this may be the relatively
large angles of attack in this neighborhood and the inadequacy of the
method when angles close to stall are experienced by the blade. It can
be concluded, however, that a reasonably constant value of inflow was
obtained over the major portion of the disk and, therefore, the applica-
tion of this method to experimental data can be expected to yield good
results. The method was put to further test by recomputing the inflow
distribution with 30-percent reduction in the second-harmonic aerodynamic

loading component. As can be seen in figure 19, no major change in
inflow resulted.

Effect of parameters on inflow calculation.- A more intensive
investigation of the inflow calculation method was conducted which
involved the combinations of experimental-loading—theoretical-blade-
motion data and theoretical-loading—experimental-blade-motion data.

The net result is presented in figures 20 to 22. The average values of
inflow in figure 20 are seen to be about equal to those of the corre-
sponding curves in figures 14 and 19, and the inflow variation is seen to
be more severe than that of theory, figure 19. The introduction of
experimental blade-motion data into theory necessitated the calculation
of new loading curves, since the theoretical expression for loading
involves blade-motion data. Figure 21 summarizes the loading distribu-
tion. The variation in inflow that resulted from the combination of this
loading and experimental blade-motion data is shown in figure 22. From
the consideration of figures 19, 20, and 22, it appears that any change
from the constant A assumption of theory, for example, the introduction
of experimental loading or flapping data, results in inflow distributions
of much larger variations.
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An error investigation was conducted in order to establish the
sensitivity of the resultant experimental inflow distributions to
changes comparable with possible experimental errors. Figure 23 shows
changes in inflow ratio AN, for various changes in flapping coeffi-

cients, pitch setting, loading, and 1ift slope. The span stations

shown are those for which the change in inflow was & maximum and a mini-
mum. It can be seen that the maximum inflow change occurs outboard and
the minimum inboard, so that the delta inflow values for all the other
span stations lie somewhere in between. Listed with each parameter is
the percent error used, a positive sign indicating increased values.
Figure 24 illustrates in detail the type of loading error AL, taken,

A reduced distribution of loading was used, in part, to compensate for
the increase in pressure values due to the amplitude distortion. It is
assumed that no likely combination of the errors could seriously alter
the inflow distributions of figure 1k4.

One-bladed-rotor operation.- The analyzed one-bladed-rotor data are
presented in figures 25 to 27. The rotor test conditions are identical
to those of the two-bladed rotor previously discussed throughout this
section. Figures 25, 26, and 27, therefore, are directly comparable with
figures 11, 18, and 14, respectively. As can be seen from these plots
of loading, total 1lift variation, and inflow distribution, no serious
changes resulted from the removal of one blade from the rotor. It is
interesting to note that the comparatively large differences in loading
at ¥ =0° to ¥ =90° figures 25 and 11, do not result in very large
differences in inflow distribution over this azimuth range, figures 27
and 14. The recorded data for the one- and two-bladed rotors are
included in figures 28 and 29.

High-tip-speed-ratio operation.- The results of the zero-offset
rotor condition p = 0.50 are presented in figures 30 to 33. There is
a marked deviation from symmetrical loading around the disk and a pre-
dominant second-harmonic 1lift variation, figures 30 and 31. In addition,
there is a definite positive value of aerodynamic loading in the neigh-
borhood of r/R = 0.50 and ¥ = 270° (fig. 30) which is not expected
at a tip-speed ratio of p = 0.50. Negative or close-to-zero values
would appear more reasonable. It may be possible that these positive
values are due to experimental error or the lack of satisfactory high-
frequency-response characteristics of the pressure-measuring system.
However, it should be noted that the remainder of the data presented in
this report do not indicate such a positive loading condition in the
region of reverse flow. The inflow variations of figure 32 are very
great and a very large upwash 1s present in the region of ¥ = 90°
to 225°. The general phenomenon of the distribution is similar to that
shown in figure 14.
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Offset Rotor

Comparison of zero- and l3-percent-offset rotor operation.- The
rotor conditions corresponding to the p = 0.30 and p = 0.50 =zero-
offset tests were repeated using a l3-percent flapping-hinge offset.
Similar to the zero-offset presentation, the analyzed data appear in
figures 34 to 43. The expected strong first-harmonic variation in load
is evidenced in figures 34 and 35, as well as in figures 40 and 41. Of
particular note is the comparatively large forward and rearward hub
moment indicated by the peaking of the load curve around ¥ = 150° in
figures 35 and 41. This is characteristic of all the offset load data
obtained. The loading concentration on the disk in the neighborhood of
¥ = 150° (fig. 36) and the general appearance of the lines of equal
loading are compatible with the previously recorded offset data at
uw = 0.22 1in reference 5. The inflow distributions of figure 37 are
very different from the corresponding zero-offset distributions (fdes 1)
There is a definite change from upwash to downwash in the viecinity of
¥V = 90°, a shift toward V = 180° of the inflow peaks, and a noticeable
reduction in magnitudes of inflow. An approximate axis of symmetry
appears to exist about the ¥ = 60° to 240° line. The Cp/o values of

both rotors are the same. The difference in azimuth of maximum inflow
can best be seen by comparing figure 38 with figure 15. The p = 0.50
inflow distributions of figure 42 resemble those of the lower tip-speed
ratio (p = 0.30). The only major change is seen to be in magnitude.
It should be realized, of course, that load distributions which were
measured for the offset rotor would be quite different if sufficilent
cyclic pitch were employed to reduce the hub moments to zero. In fact,
if the hub moments were canceled by cyclic pitch, the rotor conditions
would in effect be equivalent to the zero-offset case and the resulting
load distributions therefore would be the same.

High-tip-speed-ratio operation.- The third offset-rotor condition
analyzed (u = 1.0) is presented as spanwise loading, total 1ift per
blade, and inflow distribution plots, figures 44 to 47. The rotor values
of a = -150 and Ag = l7° were selected for this high-tip-speed-ratio

operation. Considerable blade stall resulted in the retreating half of
the disk. The plots of figures 44 and 45, therefore, necessarily include
stall. Although the inflow distributions of figure L6 are incomplete,
some noticeable trends are present. The inflow appears to be compara-
tively strong and uniform for the advancing part of the disk. Subtracting
the flight component p sin o from the inflow, it can be seen that the
remaining induced portion of the inflow is quite small in this area; this
is expected. The large upwash shown for the other half of the disk is
indicative of the negative 1ift present.

Consideration of excessive stall and cyclic pitch.- Some interest
has been expressed about the effect of excessive stall and cyclic pitch
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on loading distributions. The rotor condition of p = 0.30 and

€ = 0.15 was therefore modified to include deliberate stall and cyclic
pitch as two of the tests to be analyzed. Figures 48 tc 54 include tke
resulting data from these tests. The values of loading for deliberate
stall (fig. 48) are seen to be about twice those corresponding to the
rotor condition of u = 0.30, & = 0.13, Ay = 8% and a = -5°

(fig. 34). Without direct measurement of either drag, 1lift, or power,
it was difficult to determine the extent of the stall condition.

Figures 51 and 52 show the results of introducing 3° of cyclic
pitch into the rotor condition described in figure 34. The effect of
the cyclic pitch on pitch setting was to reduce the latter 3°© at
¥ = 90°. The rotor angle of attack is referred to the axis of no feath-
ering which accounts for the change from o = -5° to -8°. As can be
seen from figures 51 and 52, the introduction of cyclic pitch caused a
reduction in loading and 1lift, as might be expected from the resulting
decrease in blade angle of attack in the advancing part of the disk.

The inflow distribution resulting from an introduction of 3° of cyclic
pitch (fig. 53) is seen to be similar to that obtained without cyclic
pitch (fig. 37). The region of upwash of figure 53 is approximately

the same as that of figure 37 when the respective values of p sin a

are considered. The character of the inflow curves, in both cases, is
chiefly due to the presence of the offset flapping hinge. Supplementary
studies of offset-rotor behavior and experimental records of other rotor
conditions are included in appendixes B to D. It is hoped that this
additional information will aid in the understanding of the change in
inflow distribution caused by the introduction of flapping offset hinges.

CONCLUSIONS

Inflow distributions, azimuth and spanwise, were determined from
measured pressure distributions and blade-motion data on a model heli-
copter rotor blade under hovering and simulated forward-flight conditions.
Pressure and corresponding blade flapping were recorded for various rotor
conditions at tip-speed ratios of 0.10 to 1.00. Both zero- and l3~percent
flapping-hinge-offset 1lifting rotors were tested, with no cyclic pitch
used to balance out the hub moments resulting from the use of offset
hinges. On the basis of the experimental and theoretical treatments pre-~
sented, the following conclusions may be drawn:

1. Reasonable agreement was obtained between hovering induced veloc-
ity distribution calculated from theory and that derived from rotor
blade pressure measurements.

2. Although the pressure data for the forward-flight zero-offset
rotor condition show the presence of a second-harmonic component, it is
not a major factor in the consideration of inflow distribution.
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3. The experimental results of this investigation show larger
inflow variations than were predicted by theory; however, previous
indications of upflow over the forward portion of the rotor disk and .
relatively large induced veloclity at the trailing edge were verified.

4. The inflow contour plots indicate different distributions on
the advancing and retreating sides of the rotor disk. An approximate
axis of symmetry appears to exist about the line from azimuth angles 330Q°
to 150° for the zero-offset condition and about the line from azimuth
angles 60° to 240° for the 13-percent-offset condition.

5. The zero-offset and 13-percent-offset rotors operating under
the same conditions, except for the presence of hub moments in the
offset-hinge case, are found to produce inflow patterns which differ
appreciably in general character.

6. Results of tests on a model rotor having a 10-percent flapping-
hinge offset indicate that at a given tip-speed ratio large variations
in blade flapping occur with changes in blade mass constant.

Massachusetts Institute of Technology,
Canmbridge, Mass., October T, 1955.
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APPENDIX A

EXPANSION OF TRIGONOMETRIC FUNCTIONS

ENCOUNTERED IN HELICOPTER ANATYSES

The following list of trigonometric relationships which were found
useful in the present analysis and which frequently appear in helicopter
work are given for convenient reference:

sing = 1/2 (1 - cos 2§)
sin @ sin 2§ = 1/2 (cos @ - cos 3@)
sin @ sin 3@ = 1/2 (cos 2@ - cos 4@)
sin @ sin 4§ = 1/2 (cos 3@ - cos 5¢)
sin @ sin 5@ = 1/2 (cos 4@ - cos 6@)
sin ¢ sin 6@ = 1/2 (cos 5¢ - cos T9)
sing = 1/4 (3 sin @ - sin 3¢)

sin*g = % - % cos 2§ + % cos L4

L sin 5@

'5=..5..' __5_
sin ¢ 5 sin 1) sin 3¢ + T

16

sin2¢ sin 2¢ = % sin 29 - % sin L¢

sin2¢ gin 3¢ = % sin 3¢ - % sin g - % sin 5¢
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sin5¢ sin 2@ = % cos @ - % cos 3@ + % cos 5@

sin @ sin 3¢ = + 2 cos 28 - 2 cos Lg + L cos 64
8 8 8

-1
8
i =i - L 1

sin'@ sin 2¢ T 2p i sin Lo + = sin 6¢

sinu¢ sin 3¢ = - f% sin @ + % sin 3@ - % sin 5@ + i% sin 7¢

cos2g = 1/2 (1 + cos 2¢)
cos @ cos 2¢ = 1/2 (cos @ + cos 3@)
cos @ cos 3@ = 1/2 (cos 2¢ + cos L)
cos @ cos 4@ = 1/2 (cos 3@ + cos 5¢)
cos @ cos 5@ = 1/2 (cos 4@ + cos 6§)
cos @ cos 6@ = 1/2 (cos 58 + cos T9)
cos>@ = 1/4 (3 cos @ + cos 3@)

cos*g = % + E cos 2¢ + % cos 4¢

5¢ = 2 L -1
cos’@ I cos @ + 1 cos 3¢ + T3 cos 5¢

L cos 4¢

cos®P cos 2f = & + % cos 2¢ + i
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cos2¢ cos 3p = = cos @ + % cos 3¢ + L cos 5¢

i
n

- N
cos3¢ cos 2¢ = L cos g + 2 cos 3@ + L cos 5@
2 8 8
cos3¢ cos 3@ = % + % cos 2@ + % cos 4@ + % cos 6@
cosll-¢ cos 20 = 1% + i% cos 2¢ + = cos 4§ + 3}_6 cos 6

L cos 5¢ & L. cos 7¢

o e o ol
cos @ cos 3@ = =7 cos @ + = cos 3@ + m =

8
cos @ sin 2¢ = 1/2 (sin 3@ + sin @)
cos @ sin 3@ = 1/2 (sin 4@ + sin 29)
cos $ sin 4@ = 1/2 (sin 5@ + sin 3@)
cos @ sin 5@ = 1/2 (sin 6@ + sin 4{)
cos @ sin 6@ = 1/2 (sin 7@ + sin 5@)

sin @ cos ¢ = 1/2 sin 2¢
sin @ cos 2¢ = 1/2 (sin 3@ - sin @)
sin @ cos 3@ = 1/2 (sin 4@ - sin 2§)
sin @ cos 4@ = 1/2 (sin 5@ - sin 3@)

iy sin @ cos 5@ = 1/2 (sin 6@ - sin 4@)

19
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sin @ cos 6¢ = 1/2 (sin 7@ - sin 5@)
sin°f cos @ = 1/% (cos @ - cos 3@)

5in°g cos 2@ = - % + % cos 2¢ - % cos 4

sind@ cos @ = L sin 2¢ - * sin ug

b 8

sind@ cos 2¢ = - % sin @ + % sin 3@ - % sin 5@

sinh¢ cos @ = % cos @ - f% cos 3@ + i% cos 5@

sinu¢ cos 2¢ = - = + i% cos 2¢ - % cos 4@ + L cos 69

L
i 16

cos2¢ sin § = 1/4% (sin ¢ + 3@)
c032¢ sin 2¢ = % sin 2¢ + % sin 4¢
cos’@ sin @ = X sin 2§ + = sin 4gf
L 8
cos§¢ sin 2¢ = e sin ¢ 1+ 2 sin 3@ + = sin 5@
L 8 8
L - o ST g SO ol
cos*P sin 1) ) sin @ + T sin 3@ + T4 sin 5¢
L 5 £ KW 2 ot e
cos*@ sin 2 =z sin 20 + i sin 4@ + =% sin 6@

$1n°@ cos@ =
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2 56 = L e - L
sin“@ cos’¢ 8 cos @ T3 cos 3@ 7 cos 5@

sin’@ cos°g = % sin @ + f% sin 3¢ - i%-sin 5@

sin°@ cos @ sin 2f = % sin @ + % sin 3@ - % sin 5@

sin®@ cos @ cos 2f = -é‘- cos 3¢ - 31;- cos 5¢

sin3¢ cos¢sin 2¢=%——11'é-cos 2¢-%cos h¢+-%6-005 6¢
o) =- 1 L - L s
sin’@ cos ¢ cos 2¢ T sin 2@ + 5 sin L4¢ ¢ sin 6@

cos @ sin @ sin 2¢ = % - % cos Lg = 2 cos®f sin°g

cos @ sin @ sin 3¢ = 1/4 (cos @ - cos 5@)

cos B sin @ cos 28 = % sin 4¢

cos @ sin @ cos 3¢ = 1/4 (sin 5¢ - sin @)

21
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APPENDIX B

ANALYSIS OF AN OFFSET FLAPPING BLADE,

INCLUDING REVERSE-FLOW EFFECTS

Since a considerable amount of the work in this report is concerned
with offset-rotor operation at high advance ratios, an analysis has been
carried out for this condition in order to provide a better basis for
comparison. The previous analysis of an offset flapping blade developed
in reference 4 neglected the effect of reverse flow. The present analysis
includes reverse flow and applies the results to obtain a comparison with
the previous analytical study and tests.

Derivation of flapping coefficients.- Consider a rotor blade having
a flapping-hinge offset whose distance is e from the center of rotation.
The forces acting on such a blade are shown in the following diagram:

R =
dL W
— e —— XxRQ d'mb
i . l\ XRQZB.
T \
I Flapping hinge (x - E)RB dmy
i i

The equilibrium of moments about the flapping hinge is expressed
by the following equation which includes reverse-flow effects:

d ~-u sin ¥
f(x-§)RdL-2f (x - £)R AL =
3 g

/;l[ngﬂg(x -8B+ (x - §)232ﬁ] dmy, (1)

The method of analysis follows that of reference h, except that it
is necessary here to include the second harmonic in the expression for

blade flapping. The right-hand side of equation (1), representing the
inertia moment, becomes:
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2 ¥ 2
By b= 02R \]Q Bx it f) (ao - a) cos ¥ - by sin ¥ - a5 cos 2¥ - b, sin 2#) 4

E(x - E)(ao - aj cos ¥ - by sin ¥ - ay cos 2¥ - by sin 2¥) +

(x - §)2(al cos ¥ + by sin ¥ + Lkas cos 2¥ + kb, sin 2¢X] dmy, (2)

(3)

=
'-_.l
|
=
N
—~
»

1
v
N

no

I
E

2 8
b= [T - 1) am, (1)

Equation (2) therefore becomes

_EiE = ao(l +t) - ajt cos ¥ - by sin ¥ +
I,Q

as(3 - §)cos 2¥ + by(3 - {)sin 2¥ (5)

In treating the left side of equation (1) an approximation is
introduced by changing the lower limit of integration from ¢ to O.
This is done to facilitate the process of combining the two Fourier
series that are obtained from each of the two aerodynamic moment terms.

Let
& -¢ sin ¥
Ma=f(x-g)RdL-2f (x - E)RAL = Mg' + Mg"  (6)
0 0

where the series Mp' 1is applicable in the entire region O to e,
and Mg" is applicable only from = to 2x. Now

’ 2
dL = £ pacR [GUT + UPU.IZIdx (7)
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Up = MR - (x - £)R8 - uaRB cos (8)
Up = QR[x + u sin v] (9)
6 = Ag - By sin ¥ (10)

B = a0 sin ¥ - by@ cos ¥ + 2850 sin 2y - 2bd cos 2y (11)

Equation 7 becomes

dL = % pacQzRB[-fo(x2 + 2ux sin ¥ + uesinzv) - Bl(xzsin ¥ +

2ux sin®y + p2sind¥) + M(x + p sin ¥) - x(x - ¢)a; sin y +

x(x - £)by cos ¥ - 2x(x - £)a, sin 2y + 2x(x - £)b, cos 2y -

u(x - g)al sin®y + u(x - g)bl sin ¥ cos ¥ -

2u(x - g)ay sin ¥ sin 2y + 2u(x - £)b, sin ¥ cos 2y -

HXay cos Y + pxa) cosew + pxbq sin ¥ cos ¥ + pxa, cos ¥ cos 2y +
puxbo cos ¥ sin 2y - ugao cos V sin ¥ + ugal sin ¥ cos2y +

cos ¥ sinzw St uga

peb sin ¥ cos Y cos 2y +

il 2

u%, sin ¥ cos ¥ sin 2%]dx (12)
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Retaining terms through second harmonic only, equation (12) becomes

S 23[ 2  p2 e 4
dL 2pacQR Ao(x + > + 2ux sin y > cos 2y By{ux +

x®sin v o+ E ugsin ¥ - ux cos 2y) + AN(x + u sin y) -

x(x - £)a; sin ¥ + x(x - £)b; cos ¥ - 2x(x - t)a, sin 2y +
s B .
2x(x - g)b, cos 2y + = 5 hipasiicos ke Wbot sin ¥ +

Haq : Mbqy :
Ha,x cos 2y - R ia ¢ cos 2y + pxby sin 2¢ - ——E—g sin 2¢ -

2 2
a b b a
pxaocosw—m;gcosw-uzgsinw+%—2-+%—l-sinq;+

2 2
uubl cos ¥ - I-lgao sin 2\Lr]dx (13)

If a uniform blade is considered, the following integrals are useful:

il
i E B A TR
X fo(x P ax=f-2¢ 4 &
il : 1 5
B=_/:)(x—g)xdx=]-;—5
1
C=‘/;(x—§)xdx=%-§2— (14)
1K
D=f(x-§)gdx=5—g2
0 2
3L
E= | (x-tlax=2-¢
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The expression for Mg' then becomes

Ma‘ 1 %
—— = —=x (x - £)R 4L
;0 IlQ\/;
2 pa v
! WE) _ 1 -
—Q{AO(B+ 2) e ¥ D = B

—

o2 u2 c
2}1AOC = Bl B + )I ek )t HAE - aq A - T E| + }J.be D - -2- sin ¥ +
==

2 g
CuaOC + bl<A + %r E) + ua2<D - EE}COS v o+

2
. ETEQE + p.bl<C - g)- Eagﬂsin 2y +

-AOEE e (0 DY o ess (15)
i d i 2) ph |cos 2y 9

The expression for Ma" is obtained by considering the following
integrals, which result from the assumption of a uniform blade:

=HSsHa
A' jf (x - g)ex dx = Eg-sinAW + % uBg sin3W + %; pasinew
0

-¢ sin ¥ 3
B' = jf (x - £)x2 dx = EE sinhw & sinjw
0 L 5
-p sin v 5 2
¢! = jp (x - £)x dx = - & sindy - e sin2y (16)
Jo 3 &
-p sin ¥ 2
B = f (x - g)g dx = “—25- sin®y + pt2sin
0

2

-4 sin ¥ 2
E' J[ (x - £)ax = & sin®y + pe sin v
0
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It is necessary to substitute the values of these integrals into
the expression for dL since they contain trigogometric functions.
J . Using then equation (12), the expression for Mg becomes

n - sin v 3
J et = m2, (x - ¢)R AL = —7@(—1— phsinh'\[r + -—55 sin3\|/) -

| Ilﬂe Ilﬂz 0 12
g g A T e
| Bl-ﬁusin5w+%§-sinw +)\——6—sin\y+2sinw-

L 3 L
Y sind BE % B~ sind
‘ a0<6 sin/y cos ¥ + - sin2y cos \jr) a]-<l|. sin/y +

2.2 4 4

>
3 sinl"q; - &—QL sin5¢ + -ug— sin3wy cos 2y - % sin5\|; coszw -

/ 2

J 3g sin® Y cos \y + s1n2wy cos 24: £ b]_<2 sin ¥ cos § +

=

2€2 ).4.

5 5 sin \V cos | - T 51n5\y sin 2y -

u’t sindy cos y +

W\

n W

2,2 ey
sinq/sin2wy)+a2—é—sin\ysin2\y+

ujg sin2\|r sin 2y - -~

3 u5g sinB\y sin 2y + uegg sinE\y sin 2¢ + %— sin5\y cos § cos 2¢ +

5 b
E-z—g— sinew cos ¥ cos 2\11) + bz(- %—- sinl*\y cos 2y -

i
/ % u3g sin5\1; cos 2y - “2§2 sin%y cos 2y + -%— sin5\y cos | sin 2y +

>
} E2_§ sin®y cos ¥ sin 2@ (17)

Retaining terms through the second harmonic only, equation (17) becomes



<ol

ml’:

3 _ cos 2y - p.Sg
8 e L

sin W] -

3

B 3 2 |
£/3 _ co8 2y g BEey . ik |
B1{6 sin ¥ + (8 : )Jf }\[8 sin ¥ + " (1 - cos 2w):|

¥

6

>

o
W Lot S e
ao<2h sin 2y + ) cos W> alL V)

3e
N

% uegz sin §y - — sin { - %g sin ¢ -
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3
. ui/é_cos 2y _ |
sin ¢ + g \8 )

b (;; uu cos ¥ + ) u5§ sin 2¢ + ——é—-cos V-

2p 2
% p5§ sin 2§ - E—%— cos W)

2

u |
I§ cos ¥ -

£ |

+ az(é% uh sin 2y + %; £ cos } +

L L
| N . B
5— sin 2y 96 sin 2W> T b2<2h
22 202 L L
BEET et B il
I > cos 2¢ + 18 9

Collecting terms, the expression for Ma"

n

Mg
192

4 5 2
——7{AO§_2"B1%+)\PT§'+

5
cos 2y + B

g 4l
96 "

) \
cos 2y + %; ¢ sin V +

—= sin

8

|
w)} (18)

finally is obtained as follows:

1—6- a]_u3§ < b2<u—- o+

N
16

e, I

T
+ 2h V) gbj]sin v o+
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The two Fourier series given in equations (15) and (19) are com-
bined, in accordance with relationships given in reference 10, to yield
a series which is applicable to the entire region of the disk from O
to 2. Corresponding terms of this series and that given in equation (5)
are equated to obtain the following expressions:

2a 2 b 3
0 vl vl 1] L
—-—7 (Q+t) = AO<B + i E - ——52 + O.l59u5§) - Bl(—-uC - 5 £ - 0.0331u ) -

2
7\< L “—f— 5 o.o&ﬁ) + al(ﬂ o2 ¥ 0030452 o.ol+6)+u1*> 4

2 16
T T L (20)
S T e
~2aqt L
1 p
o ag(-uC - 0.0554uk) + b1<A fh-E 0.05514135) - a2<UD ML
0.0088.% + o.heuu2g2> (21)
-2b, ¢ %,
e . L _ pog LH D P T
= = AO(Qp.C + 0.0531u T ) + Bl( B T uel - 0.2ien-€" 1+ % vl ) +

5 2
)x(uE + 0.holp2e - EB—) 4% al(—A + “—f + 0.318p7¢ - -g- plel -

—916 ;ﬁ*) g bz(p.D 4 P?C + 0.106u" + 0.424u22 - %117 u3§> (22)

2a, 2 b \ 5
) - e 3 SJERS i
SN0 ~1L) Ao( 5 B+ S5+ 0.106u £) + Bl(uC 5 - 0.022Lu ) -

2
BoE 3 e D L
)\(llL + 0.053u ) + al(pc = + g Visd 3 0.0350%

\ b 22 ;
o.159ﬁg2) + bE(ZA + %g i % 0.19hp5g> (23)
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2b, 2 4 5 by 22
B 4 S S T _ D _ HTE op B _ pTET
(2k)

The higher harmonics a, and by are now dropped and the analysis

continues with the steady-state and first-harmonic terms only. It was
necessary to carry the higher harmonics to this point to take account
of reverse flow satisfactorily. The equations to be solved are then
written

3
a.o(l =t {,) = Sle it TlBl 5 Ul7\ i Wlal

-ayl = Vpoag + Xpby (25)
"b]_C = SBAO + TiBl + UB-)\ + W3al
)
where
WL wee gt 5 )
Sl‘e(u T : + 0.15% g)
Gl LANE 08 4
Tl —2( 3 + > + 8 0'053]41)
(26)
2 3
Gl B BE 3
Uy 2(3 - +o.o8ou>
Selits WpEE 5 i3 2,2 I
wl—Q(ll- i —l6p§+0.2591§ + 0.0464
v2=§<.%+%-00551m“>
> (27)

2 Ly Ly
% -Z(i—gg+g P -%+0-0354u3§>

J
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| 7N ) w
. S3 2(5u HE n +0-0551u)
T, = %<_ if % L % G )% W2t - 0.213u0 + 0.0521;;1‘)
5 3 >(28)
U5=-72—(§—ug+0.1+21+5u§—%)
Lo R T U N 58 4
Wy 2( 14.+ 5 3 : +3 n ) £ + 0.3183u"¢ - 0.0729u
/
The solutions of equations (25) can be written
S, + B,T, + N\U, + a.,W
\ aO=A01 1Ty i b (29)

L+ ¢

3 Ro[Ves1¢ - Xps3(1 + )] - By[-Vamy + xpms(1 + 6] + A[VU1E - %051 + 1]

XgW5(1 + L) - WVt - £3(1 + ¢) o
-a,( - anV
i = e G b (31)
X5

Application of theory and comparison with experiment.- A calculation
of blade flapping coefficients was carried out using the theory developed
in reference 4 and the present theory which includes the effects of
reverse flow. The parameters chosen for this computation are ¢ = 0.20,
y =4, Cpfo =0.10, Ag =8°, and B} = 0. Values of the first-harmonic

blade flapping coefficients are plotted in figure 55. The solid line
indicates the coefficients resulting from the application of the theory
which neglects reverse flow. A calculation, using the modified theory,
was made at p = 0.60 and 0.90. The results are shown as points plotted
in the same figure. Data from experimental tests are also shown in fig-
ure 55. Additional blade flapping test data are given in figure 56 for
the same rotor but at various blade pitch settings. It is interesting

J to note the reversal in values of the aj coefficient for increasing

values of blade pitch. This is not so for the by coefficient; however,
- the change in by from Ap = 12° to 16° is less than the change from
| Ap = 8° to 12°. Consequently, at a given value of u, the total flap-

ping \/al2 = ble tends to level off with increase in Ap and the
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azimuth of maximum flapping shifts in such a manner that rotor pitch is
exchanged for roll at higher values of pitch setting.

A number of conclusions can be drawn from the plot of figure 55.
Although the two theories do not show a large difference between the
predicted values of aj, the theory which takes account of reverse flow

tends to be closer to the experimental results. Very little difference
in the theoretical values of bl is indicated. The differences between

the theories are not sufficient to merit the use of the reverse-flow
theory so long as the current assumptions and approximations are used.
In all cases, less blade flapping motion was obtained experimentally
than was predicted by theory. This observation is borne out by previous
tests on another model having a low blade mass constant of 1.8 and a
13-percent-offset flapping hinge (ref. 4).

A satisfactory and complete explanation of the discrepancy between
theoretical and experimental results is not presented herein. However,
the authors feel that tunnel walls may have had some effect upon the
rotor blade motion. This, coupled with the assumption in the theory
that the inflow is constant and uniform in distribution, may suggest
some reasons for the data not being in better agreement.
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APPENDIX C

EXPERIMENTAL INVESTIGATION OF FORCES AND MOMENTS ON A TYPICAL

OFFSET MODEL. ROTOR AND A COMPARISON WITH THEORY

A series of tests were conducted in the Wright Brothers wind tunnel
at M.I.T. for the purpose of obtaining force and moment data on a typi-
cal lifting offset rotor at high tip-speed ratios. A flapping-hinge
offset of 20 percent and a blade mass constant of 4 were selected as
representative of possible full-scale application. The additional con-
stant rotor parameters of the test were R = 2.19 feet, o = 0.073, and
QR = 137 feet per second.

The wind-on tare readings of the forces and moments obtained
included all of the tunnel rotor system except the two blades. The
gravity tares for the blades alone were negligible. A blade pitch vari-
ation of 8°, 10°, 12°, and 14° was used at each tip-speed ratio of 0.45,
0.60, 0.75, and 0.90. For convenience of testing, thrust and lift were
assumed equal, and, for comparison of data, the 1lift was kept constant.
The test procedure involved varying the rotor angle of attack ap until
the predetermined value of 1lift was obtalned corresponding to a CT/G

value of 0.10. However, because of the unusually large lift tares
experienced, the corrected CT/U value varied from 0.10 at p = 0.45

to 0.07 at p = 0.90. A maximum rotor angle of attack of -13° occurred
at p = 0.45 for Ag = 14°. In general, the rotor angles of attack
required for "constant 1ift" increased with increasing pitch settings
and varied slowly over the range of tip-speed ratios.

The data obtained on the six-component balance were reduced to
coefficient form and plotted in figures 57 and 58. It should be
emphasized that the forces and moments are those produced by the rotor
blades alone, since the effects of motor drive, support structure, and
hub have been taken into account in the reduction of the data. The
moments are those about the center of the rotor hub.

The most significant feature of figure 58 is the difference in char-
acter and magnitude between the pitching- and rolling-moment-coefficient
curves. The pitching-moment-coefficient values are relatively high and
vary more slowly with tip-speed ratio than do the corresponding rolling-
moment values. The corresponding variation of moments with tip-speed ratio
is shown in figure 59, where the experimental moment values are compared
with the theory from reference 4. The signs of the pitching and rolling
moments are such that the resultant steady-state hub moment lies in the
second quadrant. This is compatible with the offset data of appendix B.
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Although better agreement is indicated in the case of pitching moments
than in the case of rolling moments, neither shows reasonsble agreement.
Better agreement probably would have resulted had reverse flow and stall
effects been included in the theory.

If the resultant hub moments are considered, it is found that the
agreement between theory and experiment is improved. Such a comparison
is shown in figuré 60 for blade pitch settings of 8° and 12°. In gen-
eral, wherever there is a sizable difference in moments, the theory
appears to be conservative.

.
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APPENDIX D

EXPERIMENTAL RECORDS OF OTHER ROTOR CONDITIONS

The raw data included in figures 61 to 71l cover a wide range of
tip-speed ratio for various rotor-shaft angle and blade-pitch combi-
nations. It is felt that the values selected are representative of
possible full-scale application and, therefore, the data indicate
pressure distributions for helicopter forward-flight operation above
a tip-speed ratio of 0.10. i

A tip-speed-ratio range of 0.10 to 0.40 is included for both the
zero- and l3-percent-offset rotors (figs. 61 to 68). Since the oper-
ating conditions of these rotors were identical, these data may be
compared directly. Examination of figures 61 to 68 shows that the
striking difference between these sets of data lies in the predominant
harmonic. The zero-offset data show strong second-harmonic pressure
variations while the corresponding l13-percent data show strong first-
harmonic variations. This difference is present in all the pressure
data recorded. That a strong second-harmonic variation is possible in
the case of the zero-offset rotor is demonstrated in the section
entitled "Results and Discussion." Reference 5 explains the require-
ment for a large first-harmonic variation in the case of a rotor with
offset.

At a tip-speed ratio of 0.60, data are included for two combinations
of o and Ay. The first combination of a = -10 and Ay = 12° was

taken at a rotor speed of 800 rpm; the second combination of o = -15
and Ay = 17° was taken at 500 rpm. Thrust measurements were not made,

but from conventional theory the corresponding values of thrust are
18.3 pounds at 800 rpm and 10.4 pounds at 500 rpm. The resulting Cp/o

values are 0.146 and 0.203, respectively. As a matter of check, both
conventional theory and experimental results were used to find the Cp/o

value for the one condition at 4 = 1.0, a = -15, Ag = 170, and 500 rpm.
The agreement was very good; a theoretical value of CT/U = 0.314 was

obtained against the experimental result of 0.302. This represents a
rotor of substantial 1ift. The remaining high p rotor condition pre-
sented was tested at u = 0.80, « = —150, and Ap = 170 and the corre-

sponding theoretical value of CT/U is 0.23. The above range of testing
was confined to the 13-percent-offset rotor.

It is well known that the blade load for the zero-offset rotor is
comparatively constant with azimuth and, consequently, the CT/U value

for this rotor condition is indicative of the load on a blade at any
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azimuth. However, with the offset rotor this is not the case. Because

of the large aerodynamic first-harmonic variation in blade load the
Cp/c quentity no longer represents actual blade loads but rather the ‘
average blade load. As a consequence, it is possible to have reasonable
values of blade angle of attack in the retreating half of the disk even
though the wvalue of Cp/c 1is unusually bigh.
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EXPERIMENTAI, FLAPPING COEFFICIENTS FOR
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Figure 1l.- Location of pressure orifices. NACA 0015 profile.
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Figure 2.- Wind-tunnel control and recording equipment.
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(a) General installation. (b) Capacitor mounting detail.

Figure 5.- Blade flapping measurement.
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(a) Rear view. (b) Looking downstream.

Figure T.- Typical rotor installation used for force and moment measurements.
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Aerodynamic loading, 1b/in.
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Figure 11.- Experimental spanwise aerodynamic loading at various azimuths.
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Figure 12.- Curves of constant aerodynamic loading (pounds per inch).
Profile, NACA 0015; u = 0.30; £ = O; Ag = 8% o = =5%; CT/U = 0.071.
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Figure 20.- Inflow distributions using experimental loading and theoretical blade-motion data.
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Figure 25.- Experimental spanwise aerodynamic loading at various azimuths (one-bladed rotor).
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Figure 26.- Total 1ift per blade variation (one-bladed rotor). Profile,
NACA 0015; p = 0.30; & = 0; Ag = 80: g = =59,
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Figure 27.- Inflow distributions from experimental loading and blade-motion data (one-bladed
rotor). uw.= 0.30; € = 0 Ay = 8% a = ~5%; a = 5.7; & sin @ = -0.026. Dashed lines indi-
cate local blade stall.
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Figure 28.- Pressure difference in pounds per square inch against azimuth in degrees. Profile,
NACA 0015; speed, 800 rpm; & = 0; p = 0.30; Ay = 8% a = -5°.

S ‘IV Tw”:if o H W ' & _. 3 A - 1‘ ik : R ,‘ -~‘£ -

oL

26h¢ NI YOVN




26n¢ NI VOVN

c-1 c-2 G~1

(c) Span station C; r/R = 0.590. ﬁ
3 f ‘

Q4

(d) Span station Riser RS =SOSR

Figure 28.- Continued.
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(f) Span station H; r/R = 0.860.

Figure 28.- Continued.
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Aerodynamic loading, 1b/in.
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Figure 30.- Experimental spanwise aerodynamic loading at various azimuths. Profile, NACA 0015;

p = 0.50; £ = 0; Ag = 12°9; o = -10°.
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Figure 31.- Variation in total 1lift per blade. Profile, NACA 0015; p = 0.50;
£ =0; Ay = 12% a = -10°.
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Figure 32.- Inflow distributions from experimental loading and blade-motion data. p = 0.50;
£ =0; Ap = 1205 a = —lOO; a =>5.T; 4 sin a = -0.087. Dashed lines indicate local blade
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(e) Span station F; r/R = 0.790.
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Figure 33.- Continued.
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(g) Span station J; r/R = 0.925.

(h) Span station K; r/R = 0.960.

Figure 3%.- Concluded.
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Figure 34.- Experimental spanwise aerodynamic loading at various azimuths.
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Figure 37.- Inflow distributions from experimental loading and blade-motion data. p = 0.30;
E=0.15; AO =8% a =-5° a =5.7; u sin a = -0.026. Dashed lines indicate local blade

stall.

06

26hS NI VOYN



+

NACA TN 3492 91

} Figure 38.- Curves of constant inflow ratio. Profile, NACA 0015; u = 0.30;
£ = 0.13; Ay = 8% a = -5°; Cp/o = 0.070; p sin a = -0.026; QR = 209 feet
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Figure 39.- Pressure difference in pounds per square inch against azimuth in degrees. Profile,

NACA 0015; speed, 800 rpm; £ = 0.13; p = 0.30; Ay = 8% a = -5°.
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(d) Span station E; r/R = 0.725.
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(f) Span station H; r/R = 0.860.

Figure 39.- Continued.
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Figure 41.- Variation in total 1lift per blade. Profile, NACA 0015; u = 0.50;

E = 0.13; Ay = 12%; o = -10°.
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Figure 42.- Inflow distribution from experimental loading and blade-motion data.
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(b) Span station B; r/R = 0.460.

Figure 43.- Pressure difference in pounds per square inch against azimuth
NACA 0015; speed, 800 rpm; & = 0.13; p = 0.50; Ay = 12°%;

1)

in degrees. Profile,
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(c) Span station C; r/R = 0.590.

(d) Span station E; r/R = 0.725.

Figure 43,- Continued.
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(e) Span station F; r/R = 0.790.

Figure 43.- Continued.
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(g) Span station J; r/R = 0.925.

Figure 43.- Continued.
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Figure 45.- Variation in total 1lift per blade. Profile, NACA 0015; p = 1.0;
E = 0.13; Ay = 17°% « = -15°.
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Figure 46.- Inflow distribution from experimental loading and blade-motion
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(d) Span staticn E; r/R = 0.725.

Figure 47.- Continued.
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(e) Span station F; r/R = 0.790.

(f) Span station H; r/R = 0.860.

Figure 47.- Continued.
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(h) Span station K; r/R = 0.960.

Figure 47.- Concluded.
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Figure 49.- Variation in total 1lift per blade. Profile, NACA 0015; u = 0.30;
£ = 0.13; Ag = 159 a = 0.




26he NI VOVN

(a) Span station A; r/R = 0.325.

(b) Span station B; r/R = 0.460.

Figure 50.- Pressure difference in pounds per square inch against azimuth in degrees. Profile,
NACA 0015; speed, 800 rpm; & = 0.13; p = 0.30; Ag = 159% a = 0°,




(c) Span station C; r/R = 0.590.

Figure 50.~ Continued.
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() Span station E; r/R = 0.725.

Figure 50.- Continued.
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(e) Span station F; r/R = 0.790.

Figure 50.- Continued.
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(g) Span station J; r/R = 0.925.
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Figure 51.- Experimental spanwise aerodynamic loading at various azimuths. Profile, NACA 0015;
i =0.30; € =0.15; &, =897 B = 3% @ = -89,
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Figure 52.- Variation in total 1ift per blade. Profile, NACA 0015; u = 0.30;

€ = 0.13; Ay = 8% By = 3% a = -89,
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Figure 53.- Inflow distribution from experimental loading and blade-motion
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# sin o = -0.026. Dashed line indicates blade stall.

26%¢ NI VOVN

L2t



(b) Span station B; r/R = 0.460.

Figure 5k4.- Pressure difference in pounds per square inch against azimuth in de
NACA 0015; speed, 800 rpm; & = 0.13; p = 0.30; Ag = 89; By = 3% a =
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Figure 5k.- Continued.
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(d) Span station E; r/R = 0.725.




(f) Span station H; r/R = 0.860.

Figure 5k.- Continued.
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Figure 55.- Comparison of theoretical and experimental values of blade
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Figure 57.- Experimental values of the three force components at various
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(b) Span station B; r/R = 0.460.

Figure 61.- Pressure difference in pounds per square inch against azimuth in degrees. Profile,
NACA 0015; speed, 800 rpm; & = 0; p = 0.10; Ay = 8% o = 0°.
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(c) Span station C; r/R = 0.590.

(d) Span station E; r/R = 0.725.

Figure 61.- Continued.

g6he NI VOVN

65T

#




(f) Span station H; r/R = 0.860.

Figure 61.- Continued.
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Figure 61.- Concluded.
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(v) Span station B; r/R = 0.460.

Figure 62.- Pressure difference in pounds per square inch against azimuth in degrees. Profile,
NACA 0015; speed, 800 rpm; & = O; u = 0.20; Aj = 8°%; o = 0°.
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(c) Span station C; r/R = 0.590.
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(e) Span station F; r/R = 0.790.

NACA TN 3492

(f) Span station H; r/R = 0.860.
Figure 62.- Continued.
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(h) Span station K; r/R = 0.960.

Figure 62.- Conéluded.'-
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(b) Span station B; r/R = 0.460.

Figure 63.- Pressure difference in pounds per square inch against azimuth in degrees. Profile,
NACA 0015; speed, 800 rpm; &€ = 0; p = 0.30; Ag = 120; a = -10°,
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(d) Span station E; r/R = 0.725.

Figure 63.- Continued.
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Figure 63.- Continued.
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(h) Span station K; r/R = 0.960.

Figure 63.- Concluded.
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(b) Span station B; r/R = 0.460.

Figure 64.- Pressure difference in pounds per square inch against azimuth in degrees. Profile,
NACA 0015; speed, 800 rpm; & = O; p = 0.40; Ay = 12% a = -10°.
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Figure 6L4.- Continued.

26%¢ NI VOVN

EGT



| T e R

ol e e e
O 90 180 270 360 ©

-

o

3 N 1 MY Y i A1

F-1

X /,\\V_/\%.

o

1 ol 4
v Al v

P I% 1 R Letifieononifuiiit ¥
S0 160 270 3600 S0 180 z70 360 0 90 180 270 360 O 90 180 270 360 0 90 180 270 360

F-2 F-3

 JE -5

(e) Span station F; r/R = 0.790.

E-1

T

./f\ /P' ,} T

Jf \\ / J- /’\ = It 3 +
\/ LG AN i k

4 - ~ v <f\\\v//\\\/,/;.

-+ T *- =

b ; 1 L g 1 I T Il kel Il ek, i

H-2 H-3

/\_\/ L feea ‘\-J'

1 1l L

T(

H-4 BE-5

(f) Span station H; r/R = 0.860.

Figure 64.- Continued.

F-6

BE-6

~\

180 270 360 © 90 180 270 360 © 90 180 270 J6o O 90 180 270 360 O 90 180 270 360 © 90 180 270 360

2¢T

26he NI VOVN



(h) Span station K; r/R = 0.960.

Figure 64.- Concluded.
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(b) Span station B; r/R = 0.460.

Figure 65.- Pressure difference in pounds per square inch against azimuth in degrees Brofilen
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(d) Span station E; r/R = 0.725.

Figure 65.- Continued.
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(b) Span station B; r/R = 0.460.

Figure 66.- Pressure difference in pounds per square inch against azimuth in degrees. Profile,
NACA 0015; speed, 800 rpm; & = 0.13; p = 0.20; Ay = 8% a = 0°.
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Figure 66.- Concluded.
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(b) Span station B; r/R = 0.460.

Figure 67.- Pressure difference in pounds per square inch against azimuth in degrees. Profile,
NACA 0015; speed, 800 rpm; & = 0.13; p = 0.30; Ay = 12°; a = -10°.
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(f) Span station H; r/R = 0.860.

Figure 67.- Continued.
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(h) Span station K; r/R = 0.960.

Figure 67. -~ Concluded.
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(b) Span station B; r/R = 0.460.

Figure 68.- Pressure difference in pounds per square inch against azimuth in degrees. Profile,
NACA 0015; speed, 800 rpm; &€ = 0.13; p = 0.40; Apg = 120; a = =10°.
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(d) Span station E; r/R = 0.725.

Figure 68.- Continued.

264¢ NI VOVN

L9T



168 - NACA TN 3492

(f) Span station H; r/R = 0.860.

Figure 68.- Continued.
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69.- Pressure difference in pounds per square inch against azimuth in degrees. Profile,
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(c) Span station C; r/R = 0.590.

Figure 69.- Continued.
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(d) Span station E; r/R = 0.725.

Figure 69.- Continued.
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(f) Span station H; r/R = 0.860.

Figure 69.- Continued.
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(g) Span station J; r/R = 0.925.

Figure 69.- Continued.
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(h) Span station K; r/R = 0.960.

Figure 69.- Concluded.
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Figure 70.-
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(a) Span station A; r/R = 0.325.

(b) Span station B; r/R = 0.460.

Pressure difference in pounds per square inch against azimuth in degrees.
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(d) Span station E; r/R = 0.725.
Figure 70.- Continued.
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(f) Span station H;

r/R = 0.860.

Figure 70.- Continued.
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(e) Span station F; r/R = 0.790.
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(g) Span station J; r/R = 0.925.

(h) Span station K; r/R = 0.960.

Figure 70.- Concluded.
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(a) Span station A; r/R = 0.325.

(b) Spen station B; r/R = 0.460.

Figure Tl.- Pressure difference in pounds per square inch against azimuth in degrees. Profile,
NACA 0015; speed, 500 rpm; & = 0.13; p = 0.80; Ao = W5 a'= 158
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(c) Span station C; r/R = 0.590.

(d) Span station E; r/R = 0.725.

Figure T71l.- Continued.
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(e) Span station F; r/R = 0.790.
(f) Span station H; r/R = 0.860.
Figure Tl.- Continued.
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(g) Span station J; r/R = 0.925.

(h) Span station K; r/R = 0.960.

Figure Tl.- Concluded.
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