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NATIONAL ADVISORY COMITIEE FoR AERONAUTICS

TECHNICAL NOTE 3574

ACOUSTIC ANALYSIS OF RAM-J73TBUZZ

By Harold Mirels

A one-dimensional analysis of ram-jet buzz is presented. The par-
tic~ mechaniam leadlng to buzz, which is treated herein, is the am-
plification of acoustic waves in the ram-jet ccmiiustionchamber due to
successive reflections itromthe inlet and exit sections.

It is assumed that the combustion chamber is of constant area and
is long compared with the length of the inlet. The inlet of such a con-
figuration operates quasi steadily, or nearly so, during unsteady opera-
tion. It is assumed that the exit operates qmsi steadily at all times.
The configuration is shown to be unstable when the real part of the
acoustic bpedance of the inlet is greater than a term of the order of
the combustion-chsmberMach number. For quasi-steady operation, the im-
pedance of an inlet is proportional to the slope of its characteristic
curve. Increasing the combustion-chamberMach number or decreas@ the
slope of the inlet characteristic curve during mibcritical operation
will tend to increase the range of stable ‘operation.

Computations indicate that burning increases the stable operating
range of a given configuration. The computations assume a fixed planar
flame front and a constant heat release per unit mass.

The requirement of a relatively long combustion chamber is relaxed
in the appendix that treats the case of isentropic flow in the combus-
tion chamber.

The
inlet is
REMARKS.

applicability
replaced by a

of the results for configurations yherein the
cmpressor is mentioned briefly in CONCLUDING

moDucTIoN

Self-sustained oscillations frequently occur in systems through
which a fluid is flowing. The oscil&tions are induced by that com-
ponent (or components) of the system that tends to amplifY incident

-—-—.— .— -..—.—— . — — — —— -— —



2 NACA TN 3574

pressure waves. The surging of a systm containing a centrifugal- or
axial-flow compressor (e.g., refs. 1 to 4) is an emmple of a self-
sustained oscillation. Mets designed for supersonic jet engines also
have been observed to induce oscillations (e.g., refs. 5 to 111)which
are usually referred to as “buzz.” The origin of buzz in rsm-jet en-
gines is the subject of the present report.

Consider a nose inlet and an exit section connectedly a cmnbustion
chamber of constant area, as indicated schematicaHy in figure 1. Such
a configurationhas the essential features of a rs.m-~etengine. If the
exit section is wide open, the normal shock is downstream of the inlet
cowl lip, and the engine is said to be operating supercriticdly (fig.
l(a)). Decreasing the exit area tends to move the shock forward, in-
creasing the pressure in the combustion chamber but leaving the mass
flow unaffected. With further decreases in e-t area, the shock even-
tuzdd.ymoves forward of the inlet cowl lip and the inlet is said to be
operating subcritically (fig. l(b)). During mibcritical operation, the
mass flow decreases with decreases in eat area. Eventually a mass flow
is reached below which operation is unstable, this resulting in buzz. A
typical plot of combustion-chamberpressure against mass flow is shown
in figure l(c). The slope of this curve is generally positive at the
mass flow corresponding to the transition between stable and unstable
operation.

The origin of buzz maybe attributed to either of two types of phe-
nomenon. These are distinguished,herein, as follows:

(1} Linear instabilltyorigin: Consider a weak pressme wave to be
propagating upstream in the ccmibustionchsder. The wave will be re-
flected by the inlet section and will travel downstream where it wi~ be
reflected by the etit section. If the successive reflections tend to
increase the smpMtude of the wave, the system is unstable smd oscilJR-
tions wXU result. If the magnitudes of the corresponding incident and
reflected waves at the inlet are linearly related, then the oscillation
is termed herein as ba.rbg a linear instability origin. The essential
feature of this type of instability origin is that the ratio of the mag-
nitudes of the incident and reflected waves at the inlet be constsmt,
the constsmt depending on the naninal steady flow through the rsm jet.
This instabild~ can be analyzed by the method of small perturbations.
The entire ram-jet configurationmust be considered.

(2) Nod.inear instabiMty origin: Ih some cases, a weak incident
wave may create large-scale aerodynamic changes with the inlet (e.g.,
large-scale separation, shock motion, etc.) such that the magnitude of
the reflected wave is not directly related to the magnitude of the inc-
ident wave. Oscillations induced by such inlet behavior are termed
herein as having a nonlhear instabfity origin. The weak incident
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wave may be thought of as “triggering” the buzz cycle. The occurrence
of this type of instability is expected to depend primarily on the aer-
odynamic behavior of the inlet without particular regard for the remain-
der of the configuration.

It is desirable to determine criteria defining the stable operating
range of rsm-jet configurations. In reference 7 it was observed that a
series of nose inlets buzzed at that mass flow where a vortex sheet
(origins.tingatthe upstream shock configuration) just enters the cowl
lip. A qualitative analysis of the flow for this condition suggested
that the vortex sheet causes separation on the inner surface of the
cowling. This separation a~ently triggered the buzz cycle. However,
reference M. presents data which indicate that the entrance of the vor-
tex sheet into an inlet cowling need not necessarily result in buzz. In
reference H, it is suggested that the occwrence of buzz in the experi-
mental ram-jet configuration test reported therein might be associated
with separation on the inlet centerbody. The role of separation and

kl boundary-layer build-up as mechanisms leading to buzz is also discussed

3
in reference 8. Both references 8 and 11 present extensive experimental
data and discussions of the nature of the buzz cycle.

$
0
u Several papers, such as references 6 and 9, have investigated ana-

Iy-ticallythe stabili~ of rsm-jet configurationshaving a linear insta-
bility origin. Reference 6 likens the rsm-jet configuration to a
Helmholtz resonator having a mean through flow. The system beccmes un-
stable when the slope of the characteristic curve (pressure against mass
flow) of the inlet becames sufficientlypositive. Both burning and non-
burning cases were considered. For the nonburning case, conditions in
the combustion chamber are assumed umi.format any instant, the wave
structure in the combustion chamber thus being neglected. T%i.sassmp-
tion is valid provided that the cdbustion chsmber is very short can-
psred with the wavelength of the oscillations. A similar restriction
applies to the analysis of the burning case. When the corcibustionchsn-
ber is not short compared with the wavelength of the oscillations, it is
necessary to take into account the existence of waves in the combustion
chsmber. The stability of a relatively simple configuration of this
type is analyzed in reference 9, which considers a configuration con-
sisting of an open-nose inlet, a relatively long constant-area combus-
tion chamber, and a choked exit. The stability of the system is ana-
lyzed using transfer functions (ref. 12}. (The transfer-function con-
cept provides an extension of classical acoustic-impedancetechniques
to systems having a mean through flow.) Reference 9 reports that the
configurationbecame unstable at flight Mach numbers above a certain
critical value, the critical value depending on the Mach number of the
mean flow through the combustion chamber. This theoretical trend was
confirmed by experhent.
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A stability analysis, sMW to that of reference 9 is presented
herein. It is assumed that the ram jet has a constant-area combustion
chamber and a linear instability origin. However, the inlet is not

.

specialized to be an open-nose inlet. The flow is considered to be
one-dhensional. (Some justification for this assumption csm be de-
duced from ref. 10, which correlates the wave structure in an experi-
mental ram-jet cabustion chamber with calculations based on one-
tiensional flow theory.) Both bv-wi~ and nonburning cases are
treated.

ANALYSIS

Flow through a tube of constant area
fluid is assumed to be slight~ perturbed

is first considered. The
ham the condition of umiform

through flow, and the corr&pond%g equations of motion are noted. Pos-
sible standing waves are indicated and the stability of flow through a
simple rem-jet configuration is then investigated. .

Basic Equations

Consider a We of constant mea wtth a through flow of velocity
u, pressure p, etc. Assume the flow to be sL@rKl_y ~erturbed and
represent the perturbations by 4, Au, etc. The equations of motion,
neglecting viscosity, heat conduction, and second-order terms, are

Momentum:

Continuity:

Energy:

%?’’%?-
State:

424’-:=0
PP

(la)

(lb)

(lC)

(id) ~

.

-—.
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(Symbols are
lated to the
relations

The solution

5

defined in appendix A.) The entropy perturbation is re-
pressure, temperature, and density perturbations by the

43=4x!_y$=- (r-l)4J2+Y $
CvP

of equations (1) can be expressed in the form

$ = f[x - (a + u)t] + g[x + (a - u)t]

Al
r~’ fcx-(a+ u)~-g[x+(a-u)~ “

T*= f[x - (a -tu)t] + g[x + (a - u)t] - h(x - ut)
P

(2)

(3a)

(3b)

(3C)

(3a)a=h(x-ut) . .
% .

The functions f and g represent waves moving upstresm and downstreemj
respectively, with the speed of sound relative to the steady veloci~ u.
The function h represents an entropy wave that is convected by the
steady velocity u.

It is now assumed that the perturbations are sinusoidal. (This as-
sumption is not unduly restrictive since a nonsinusoidal oscmtion may
be considered as a superposition of sinusoidal waves.) With the use of
complex notation, equations (3} may be expressed as

(4a)

(4b) ‘

[4C)

(4d)

_._.. _.—._._— _—. .—_ . ..——_— —____ _ .-— —— —-—
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(the real part of the right-hand side being understood) where F, G,
H, and k = m + iA are complex constants. Equations (4) represent si-
nusoidal waves with fkequency CD and amplification A. The numerical U

values of m and A depend on the boundary conditions at the inlet
~ and the etit ~ of the tube. If A < 0, the waves axe damped.

If A >0, the waves ampli~ and the system is unstable. If A . 0,
the waves are neither amp~fied nor damped and the system is in a
state of neutral equilibrium. 5e case A = O is of particular in-
terest since it generally defines a 13mit of stable operation. *F

Examination of equations (4) indicates that the dimensionless com-
b
m

plex ratios a4 -S4 etc ., are independent of time. This is a
y-pAu’c@l’

consequence of having chosen k to be the ssme for the various waves

be used in later developments. These ratios may be termed acoustic im-
pedance and entro~ impedance, respectively, by analo~ with classical
acoustic theory (ref. 13).1 The quantity 0 is termed the acoustic
resistance while $
ratios were used in

l?romequations

i~ termed the acoustic reactance. Similar
reference 9.

(4) and the definitions of ~ and ~,

L- -e
F

If ~ ahd g are known at some point ~

G/F and H/F can be expressed in

lIn classical acoustic theory
E does not appear as a parameter.
the specific acoustic impedance in

terms of

there is

asl-M2~

complex

(5a)

(5b)

then the complex constants

the lmown quantities ~r

no mean through flow so that
The paramieter ~ is referred to as
ref. 13. . w

. .
-.. .

.-
.. . . . .. . — . - — —.— —
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and ~r . Equations (5) can then be written in the forms

‘=77%3
l-*e

r)ik -+——

‘=%?%?
l-&e

k- d

(6b)

Thus, if ~ and ~ are known at one point in a tube, the values of C
and ~ everywhere in the tube are def-tid by equatio& (6). If the -
boundary conditions at the tube inlet and etit are specified, then k
is so chosen that equations (6) satisfy the given boundary conditions.

Equations (4) to (6) can also be applied to a configuration wherein
the undisturbed flow consists of a series of uniform flows sepsxated by
interfaces (such as planar flame fronts or shock waves). For each type
of interface,‘there is a corresponding set of boundary conditions that
must be satisfied. The boundary conditions that must be satisfied
across a flame front are derived in appendix B. Note that each section
of uniform flow will, in general, have different values for the con-
stants G/F, H/F, M, and a. The,constant k, however, has the ssme
value throughout the system.

— ..—-.
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Configuration

The configuration investigated is of the form indicated in sketch
.

(a). Accmibustion chaderof length L=% - ~ isassumed to be of

(a) ConfYgur&tion investigated.

constant area and to have a planar flame front at ~. At its upstream

end, the ccmkmstion chaniberis connected to an arbitrary supersonic in-
let. At its downstream end, the combustion chamber is connected to a

.

short exit section which is choked. The length 2e (distance from ~
to the throat of the etit section) is assumed very small compared with
L SO that Ze/L <<<1.

The characteristic length of the inlet 2i will later be assumed

smll cmpared with L (i.e., 2i/L << 1) so that the inlet may be con-

sidered as operating quasi steadily, or nearly so, during unsteady op-
eration.2 The restriction 2i/L <<1 may not be applicable for prac-

tical ram-jet configurations. This restriction is made because it si.m-
p~fies the problem of determining the appropriate boundary conditions
at ~. The rkason for choosing 2e/L $<<1 is that the tit ~ at
all times be operating quasi stea&U.y.

2Quasi-steady operation @lies that at each instant, the flow
through a component is as though the operation was steady. Nearly
qmsi-steady operation implies a snald departure from the quasi-
steady condition. A camponent of an acoustical system operates quasi
steadily if ml~a << 1, where 2 is a characteristic length. It
wiJl be shown that mL/a = O(1) for the fundamental mode of the rsm-
jet configurations considered. Therefore, 2j./L<<l implies that

the inlet will operate quasi steadily, or nearly so, during unsteady
operation. If le/L <<<l, the exit will operate quasi steadily at

ECU-times.

.

— — _ ——
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Conditions in the burned-es region (~ < x <~)

the subscript b, while conditions in the unburned gas
(Xi< X<Xf) are i.ndicatedby the mibscript u. When

case is considered, no special subscripts are used for

Boundary Conditions

Exit section. - The boundary condition at ~

pendix C and may be expressed as

Equation (7), which is valid provided that the exit
quasi steadily, is assumed to apply throughout MS

is

are indicated

region

the nonburning

those regions.

derived in ap-

9

by

(7)

section is operating
investigation.

y Combustion chamber. - The boundary conditions across the flame
o front are givenby equations (B6a) and (B6b) of appendix B. With the
u heat release perumitmss assumed constant (AQ= 0), fiese equations

become

where

The
the

the

C3 = (Tu

%,b%

= %,UTU

subscript f indicates that the quantities are evaluated at q,
flame position.

Inlet section. - If ti2i/a is

inlet during unsteady operation

sufficiently mall, the flow through

may be considered as quasi steady.

. .. ——_——_—— ..— — . ..— — -—.—— — —
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Then ~i ~d Ki can be expressed in terms of the slope of the charac-

teristic curve of the inlet u@er steady operating conditions. If
P= p(u) designates the combustion-chamber static pressure as a function
of combustion-chsmbervelocity during steady operation, then

Equation (9b)

with constant

(9a)

(9b)

m L2ii&’: “O”sis obtained from equation (2} by not

stagnation temperatm, —= -
T -lMz

1++

Au AM—=
a ~+?- - 1M2’

2
given by equations

a AT
‘o&t xii7iT=-

(Y - l)M. Both ~i and &i, as

(9),‘arepurely real.

For slightly-largervalues of ~2i/a (i.e.,pearly quasi-steady op-

eration), the inlet impedance can be expressed as

(10]

where ~ei ad b~i are small and represent the departure of ei and

()
$i tlromthe quasi-steady values of ~ * and zero, respectively.

Di

A simik expression, representing small departure from equation (9b),
Cm be written for ~i during nearly quasi-steady operation.

A theoretical derivation for the ~lues of Ci ~d ~i corre-

sponding to a given inlet appears to be very difficult (even for the
cases of quasi-steady and nearly quasi-steady flows). So far, only
the open-nose inlet has been treated anal.yticalJy
-iti development willbe afiemptedherein.

Nonburnnn Case

The configuration indicated in sketch (a) M

(ref. 9). No such

assumed to be oper-
ating without burning. Egyation (7) is assumed to apply at all times.
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Expressing ~e a Q titemof <i and &i (through eqs.

amd substituting into equation (7) yields

-2il&
T-l M

a(l-M2) l+Q1-T
e =-—

l-ci~+T:lM

[

1

L

M

1 -*M

ilicl

1

w
e

IL

(n)

If ~i and ~i are specified, the corresponding value of k can be

determined fra equation (n). This solution for k defines the fre-
quency and amplification of possible standing waves within the tube.
If A > 0, the waves amplify and the system is inherently unstable.

Another viewpoint is to write egyation (n) in the form

&i
which defines the acoustic impedance at ~ in terms of k and

y

for a tube of length L having a through flow of Wch number M and
a short choked exit. If an inlet with a known acoustic hpedance is

added at ~, then k must be determined so that the right-hand side

of equation (12) matches the specified Q. Eqpations (U) and (12)

do not require 2i/L <<1.

It is not generaHy possible to obtain an explicit expression for
k, in terms of ~i smd gi. A particular solution of equations (lJ_)

and (12), applicable for a class of nonburning ram-jet configurations
operating near the neutral stabiltty point, wild.now be presented. (A
solution of eqs. (Id.)and (12) for the case of isentropic flow, is pre-
sented in appendix D.)

Consider a ram-jet configuration with the properties

lJL -=<1 (I-3a]

-. .-— .—-.-—— .. ..— —e— . .— . ---- ——— .-. -
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A=() (m)

M<<l (MC)

By virtue of equation (13a), the inlet wi~ operate quasi steadily, or
nearly so, during “unsteadyoperation. Equation (13b) signifies that
the rsm jet is operating near the point of inherent instability. Under
these conditions, it winbe ~hown that ei = O(M); it then follows that

O(M) and gi= 0(M).3 Thus, assume, first, that

anticipates the

(14), equations (n)

-2i
e

Q = O(M); Ei= O(M) (14)

result 0~ = O(M). BY using equations (13) and

and (12) become

IL
%- r 1=- 1.+2gi-(T-l)M+o(Mq (15a)

-4

assumed to be O(M)-,at most (i.e., nearly quasi-steady
sol- for k, yield

operation), and

((D + iA) :. [ 1 [(%)i*+’ei-+Ml’0(M2);(l+m]+aby~+i

(16)

Thus, the frequencies of the possible standing waves

mL—=; (1+2N)+
a

m
The fundamental mode is ==* + 5*i +

&x
operation becomes — = ~. (The latter

a

&#i + 0(M2)

0(M2), which

are given by

(17)

for quasi-steady

corresponds to the fundamental

v

3For nearly quasi-steady operation, _#i is small and may arbitrar- -

il.ybe considered O(M} even though it is not functionally dependent on
M. Therefore, if ei = O(M), then ~i= O(M). If ~i= O(M)) it then

follows that gi = O(M) (eq. (9b)).

——-—
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mode of an organ pipe, open at one end and closed at the other.) The
system is unstable when

or

():iw>r-l M 56i+O(M2)—-
du 2

(Ma)

(lab)
w
m
4 which is consistent with the original assumption that ei = O(M~. For
4 quasi-steady operation, the system becmes unstable when

(19)

That is, the system is unstable when the slope of the characteristic
curve exceeds the value indicatedby equation (19). With increasing
a2i/a, the effect of Mi must be considered.

.

It maybe concluded that the configuration definedby equations

()
(13a) and (13c) will become unstable when ~ ~ ~ = O(M}, and the

CDL
fundamental frequency of the standing wave is — = ~+ O(M). Increas-

. ing M or decreasing the slope of the inlet ch&acteristic curve,4 dur-
ing subcritical operation, will tend to make a configurationmore stable.

%l?he characteristic curve of an inlet is frequently expressed as
pt against M or pt against W where pt is the stagnationpres-

-

3!5=sure in the combustion chmber and W s PUS . is the corrected mass

flow referred to free-stream (or other] refere~~e conditions. The rela-

=

where it has been assumed that the stagnation temperature in the combus-
tion chamber does not vary with mass fiow and that the right-hand side
of these equations are of order M (i.e., operation near point of insta-

1 dpt
bility). ~US, ‘—=

w dpt

y-pt dM
O(M) and ——=Pt dW O(M2] at the point of in-

cipient instability.

——.. ..-— — -—. --.—- . ——. ..-— .. ...— .——. .— -. —.— —
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~ appem E, it is shown that the etit tends to damp incident
waves while the inlet amplifies incident waves (for 19i> O}. Thus
the inlet is the component of the ram-jet configuration that is re-
sponsible for instability. The role of the exit, in damping incident
waves, was previously pointed out in references 9 and 10.

Burning Case

The possibility of burning at station q (sketch (a)) is now admit-

ted. It is assumed that the configuration satisfies equations (7) and
(13)(with eq. (13c) replaced by ~ << 1}.

The boundary condition at ~ is, from equation (7),

while the boundary
tions (8)(with the

conditions across.the
heat release per unit

xf to be-the origin of the x-coordinate

follo@lg constants:

&i

Eel= 1 (20)
J .

flame front are given by equa-
mass assumed constant). Take
system (Xf = O), snd define the

.

with use of equations (6); Eu,f/Cu,f Cm be exPressed

‘E~ f

c
= Ei ~l_

-icot U eiu ‘
,f

i ~icot u

It was previously fo~d that Li = O(M) ~d ~i = O(M}

operating without be at A = O. It will be shown

(21)

as

(22)

for the ram jet

that {i “ 0(%)

(and thus Ei = O(%)) for the corresponding burning ram

fore, to simpli~ the present analysis, it is assumed, a

Eu,f

Lu,f
= O(14J

jet. There-

priori, that

(23)
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which follows from equation (22), when ~i = O(%), &i = O(%), and
.

A = O (provided cot U<< =). Using equation (23) changes the bound-
ary conditions across the flame front

c1 (r~—-f-q-prub,f

(eqs. (8}) tO

1 )C3-T+o($)=o
2

(24a)

Expressing ~e and ge h te1711SOf ~b,f - ~b,f andutiI-izing

equations (20) and (24b} give

.

~ hb - l)+icotB

cb,f =
Mb C3 e~m

- (25)

h+i~(Tb-l)COtB 1
1

-— ——+o(q
rb -1C2 COSB

Substituting equation (25) into equation
terms of ~i give

(24a) and expressing ~,f in

(){-1 C1cot U+cot B
Cj.= +

[ @%]+
% C1cot B+cot U Tbl-l C~COtcgt~Ot U2C5+C2

[

Clcot B cot U-1 ~ C3

[1

()
sin ~

i
1 %

Clcot B-I-cotU
+ o(l@ (26)‘~~Clcot B+cot U sinB

where

rb C3c5=z-l-— C2

In the derivation of egyation (26) it was assumed tkt

1 C3 ei(B+B’)
cl - cot U cot B 1-

2-—
Tb -1% cos B Tb-1c5

Clcot B + cot U
‘40(1) (27)

_.. .—.——~ —.— .— ————
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Since the equation (27) is of order M for the nonbuning case, this
assumption appears reasonable. Eqution (26) indicates that 19i= 0(~), ,

which lem to ~~ = O(%) ad &i = O(%) and thus verifies equation

“(23)(provided that cot Uc< ~). Equation (26) is the counterpart of
equation (12). It defines the acoustic impedance of a constant-area
tube having a through flow, a choked etit, and a planar flame front at
x= o. If an inlet is added at xi, then k must have a value such

that the acoustic impedance of the tube matches the acoustic impedance
of the Met. This condition -defines k and therefore the stability
of the system can be determined.

c-
et+
U3
m

If it is assumed that the flame is fixed (Av = 0), and the gas
constsnts’are the same for both the burned- and unburned-gas regions
(i.e., Tb = Tu, Rb = ~, etc-), equation (26) becomes

where X = ~/Tu and equations such as ~ = ~, ~ = x~ + O(*1, -

%
and —=

%
&[ 11 + O(%) (based on eqs. (B2) of

used. Egpation (28) has been solved numerically
cial case:

A= 0, *i = o: Assume the configuration is

neutral stability point (A = 0}, so that U and
ther, assume that vi = O (quasi-steady operation). Equatiori(28)

a~endix B) have been

for the following spe-

operating at the

B are real. F’ur-

then becomes

O=~cot Bcot U-1+0(~) (29a)

Equation (29a) can be solved for u. Using this value of o in eqpa-
tion (29b) gives the value of 19i at the neutral stability point. A

ram-jet configuration is unstable when its value of ei is larger than

that indicated by egyation (29b).

.
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Since U
()

=g l-~
()

~d B = ~ ~ ~, equation (29a) can be

written as

mL—=
%1 (+)%+..t-,~~~~)%]+o(%) (30)

wwhich, for a given 1, can be solved directly for ~ as a function of

()CDL~

fine

Tb3.S

%
—. This gives *

+
L.

as a function of ~ for the given X. De-

a frequency parsmeter Q according to the relation

(31)

parameter has-the value of 1 for ~/L. O and ~/L = l.(consid-

ering the fundamentalmode) and is somewhat larger than 1 for interme-
diate values of ~/L. For a given X, S2has

range 0<~<1. This ~ can he shown

and occurs at a value of ~/L given by

a single maxhum in the

to equal

O(MJ (32)

(33)

(for X ~ 1). ~US 1 S@)m + O(Mufl< 2 for 14 X s=. A plot of

Q against ~/L is presented in figure 2 for X = 4 and 9.

Equation (29b) is solved us5n.gthe value of m obtained fram equa-
tion (29a). Substitution of equation (29a) into equation (29b) permits
the latter to be written in’the more convenient form

ei ‘[[ (J]}Cos+B
Y~l%=1+X~ot2B ~+ 3X-2-(X - 1)

cot% + o(~)
cos B

(34)

—. —-—. — — —— ——_-——
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ei
For the nonburning case, 1. When ~re is burning, eqpation

r-l =
T%

(34) indicates that ‘i >1. Thus, a given configuration is made
T-1
~%

more stable because of the burning. Equation (34) gives
e~ e~

=7 2- l/X. for ~/L = O, and - ~-.— = X for ~/L= 1.
1

*%
J--+-u

The

the

of

against @L for X = 9 and ~ = 0.01 and 0.05 is presented in

Ifunction ei ~ -%wmmg maximum and midmunl points in

range O -=~/L < 1 because of the relatively rapid oscillations

K
u)
to

figure 3.
I

The value of t3i* - 1% increases fYconl.89at ~/L= O
Ft

to 9at ~/L=l. Oscillations about the mean are more numerous for

the ~= 0.01 case than for the ~= 0.05 case.
+,

These results assume a fixed pUanar flame front and a constamt heat
release per unit mass. The possibility of a ccmibustion-inducedinsta-
bility (AQ# 0) has not been considered. If any of these assumptions
are relaxed, considerably diffe~nt stability criteria would be expected.

CONCLUDING REMARKS

A one-dhensional analysis of ram-jet buzz is presented. The par-
ticular mechanism leading to buzz, which is treated herein, is the am-
plification of acoustic waves h the ram-jet cmbustion chaiber due to
successive reflections fran the inlet and exit sections (i.e., linear
instability origin). The system becomes unstable when the real part of
the acoustic impedance of the inlet is greater than a term of the order
of the cmbustion-chamber Mach nuder.

An analytical method for determidng the acoustic impedamce of an
arbitrary inlet would be of interest. As mentioned previously, only the
open-nose imlet has been treated analytically (ref. 9) and the analysis
therein is restricted to low frequencies.

It shouldbe noted that the previous derivations =e generally ap-
plicable to configurationswherein the inlet of the present report is

—. .



NACA TN 3574 19

replaced by a compressor. It would appear that only equation (9b) re-
quires modification (to account for the variation of compressor dis-
charge stagnation temperature with mass flow). If the quasi-steadyper-
formance of the compressor is Characterizedby a pol..ytropicexponent n

placed by

(35)

for n of order 1, ~ is at most of the order of ~i and the solu-

tions presented in the main body of the report (i.e., eqs. (15) to (34))
are applicable. If the flow in the combustion chamber can be considered
isentropicj then appenti D applies.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, August 30, 1955

— .— . . —_. ...— . .—..— — -.—.—— .-
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APPENDIX A

SYMBOLS

The following symbols are used in this report:

A

a

B,B’

C1>C2.$C3)C4

%

CT

F,G,H

f,g,h

k

L

z

Zi,ze

M

N

n

2

p(u)

Q

R

s

constant defining amplification

speed of sound

constants defined in eqs.

constants defined illeqs.

specific heat at constant

specific heat at constant

complex constants defined

functions defined by eqs.

camplex constant (m + ill)

(21)

(B6)

pressure

volume

by eqs. (4]

(3)

length of combustion chsmber

characteristic

characteristic
respectively

Mach nuniberin

NAC!ATN 3574

len@h

lengt@ of inlet and exit section,

combustion

integer (0,1,2, . ..)

pol.ytropicexponent

static pressure of

combustion-chamber
steady operation

gas in

static

.cbamber

combustion cbaniber

pressure as function

heat release per unit mass at flsme front

gas constant

cross-sectionalarea of canbustion chaniber

of u for

.

.

—
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T

t

U,u’

u

v

w

x

‘5

P

T

Q

a

Subscripts:

b

e

2

f

i

temperature of gas in combustion chamber

time

constants defined

axial velocity in

in eqs. (21)

combustion chwhber

velocity of planar flame f%ont

corrected mass flow

coordinate distance in stream direction

ratio of specific heats

net perturbation in a quantity

perturbation frm quasi-steady value

acoustic impedance, O - i* (eq. (5a))

entropy

acoustic resistance

ratio of temperatures of”burnedto unburned gases (~/~)

a ‘4 (eq. (~))entropy impedance, —
5A

density of gas in ccmtnzstionchamber

acoustic reactance

flrequenc yparameterdefinedby eq. (31)

frequency, radians/see

burned-gas region

combustion-chsmber

flame front

combustion-chamber

etit section

inlet section

— .—_________ _ _ . —-
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r

u

reference section

unburned-es region

NACA TN3574
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APPENDIX B

BOUNIMRY CONDITIONSACROSS PLANAR lIL!lMEFRONT

Consider a flame to be propagating with a small constant velocity
v relative to a wall, as indicated in sketch (b). Conditions in the

(b) Flame moving relative to wall.

burned- and unburned-gas regions are related by

Momentum:

pu + ~(~ - ~)2 = % + @(ub - ~}2

State:

Pu %

~=@bTb=l

Continuity:

pu(~ - v) = ~(”b - ~)

Energy:

i-u Pu
——+; (uu-v)2+Q= ~:+; (ub-v)2
Tu - l%

(Bl)

.. .. —.. ..- -. ——.- ——.— ——— - —. —.
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where Q is the enera
are ti compared with
respectively,

mm TN 3574

added, per unit mass. If the flow velocities
the speed of somd~ equatio~ (Bl) bec~e~

“ where ~ = ~~. NOW,

ing relations across the

.

4—.
%

A(% - v)

% -v-

assume that the flow is p&&rbed. The result-

flame front are

~=~~+o(dj 1 i
u

Rmm equations (id) and (2)
1

Substitution of equations {B4) into (B3) yielti ,

(B4)

(B5a) .

—
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.

.

Consider the equations (B3) as applied to a ram-jet cmhstion chauF
ber. Under steady operating conditions, the flame front is statio~
(i.e., v= 0) and is located at the fl.ameholder(x = ~), which is as-

sumed to be planar. If sinusoidal perturbations are assumed, and these
are expressed in camplex
(B5a) gives

where

form, division of equations (B5b) and (B5c) by

cv,bTb
c~ =

-CV,UTU

()

‘b%
c3=(Yu-1) ~-l

Uu

C4= yu(%m?_
Cp,ll%

The subscript f indicates that the

If the heat release per unit mass is
-tity is to be
assumed constant,

(B6b)

evaluated at ~.

AQ=O inequa-
tion (B6b). The choice for the proper values of Av/&, f in equation

(B6a) depends on the effectiveness of the flameholder in constraining
the motion of the flame. For low-flcequencyoscillations,Av/&, f can

, probably be taken equal to zero (i.e., the flame is considered fixed at
;f). For higher

to zero (despite
complex.

frequencies,Av/~, f probably cannot be taken equal

the presence of the flameholder) and, in fact, my be

----- .—.—..— -—-..--——— .— .—. — -—-—- —-— ——. . -. -——
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APPENDIX c

BOUNDARY CONDITIONSM! CHOKED EXIT

Assume that the exit section is operati% qwsi steam (@2e/a‘<<1)

and is choked. Under these conditions, the Mach number at ~ (sketch

(c)) is constant at all times, its value depending on the ratio of the

FIZe
U+ All>

(c) Exit section.

tube cross-sectionalarea to the exit throat area. ~U (A@e = 0 or

(~)e = (*)< Using a2 = TP/P and equation (2) then yields

(e)e ={+ [(, “) %+?]e
(cl)

IYom the definitions of ~ and ~, equation (Cl) can be written as .

[
c++

2

1.
0 (C2)l~--~e=

which rektes ~ and ~ at the exit. An expression s~ to equa:

tion (C2} is derived in reference 9.

If m2e/a is not small, the appropriate boundary conditions at

the exit must be determined bymethoti amalogous to that used in
reference 12.

—
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APPENDIX D

●

SOLUTIONS OF

In the main body

EQUATIONS (lJ_)AND (12) FCElISENI!ROPICFLOW

of the report, solutions of equations (n) and
(12) are presented, ~ch are applicable for ram-je~ configu&tions
satisfying equations (13}. If it is assumed that the entropy waves
in the caibustion chmber are negligible (i.e., isentropic flow) then
& = O, and equations (H) and 12) cau be solved without recourse to
the restrictions of equations [13). The solution is presented hereti.

and

i% ~ = O, eqyations (n) and (12) become, respectively,

-Zi w Y--l M
a(l-M2) l+cil-~

e =- .* ..-

r-l—M+ icot

ii= 2
‘l Mcotl+i~

Solving equations (Dl) for k yields

M
(Dla)

(Dlb)

.

( )1{l+ei)2+~ 1-+M2
(1-ei)2+$: I+~M

(D2)

The frequency of the standing waves is therefore

UiLYc

[

z (WN)+:tad—=—

1

(1 - M2)
a

(D3)
1- :- +;

If vi ~d ei are functions of m, then equation (D3) must be consid-

ered as providing an implicit, rather than an explicit, solution for u.

UT-l
When vi = 0, the frequencies are given by ~ = ; (1 + 2N)(1 - M’2).

. . . . ..--— ___ .- ..__ ,. .-. — .——.-. -— ..—- ~ -— — .— ..— — ..—---—
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Increasing the Mach number tends to decrease the frequencies. The sys-
tem will.beccme unstable wheri

If vi = O (but M is not necessarily small), equation (D4) beccnnes

y-l 21
2.

M<@i<~–
-lM

(D4)

(D5)

which s+gees with previous results for quasi-steady operation. If
M <<1 (but vi is not necessarily mall}, equation (D4) becomes

Equation (D6) indicates that a nonzero value of vi will tend to in-

crease the stability of a configuration,but that the effect is negli-
gible when *$ <<1. Note that equations (D5) and (IK) give an u~er

bound, as well as a lower bound, to the value of ei which lead to

instability. ti all cases, positive values of ei are required.

-.

Equations (Dl) to (D6) are valid provided that the etit section
is short compared with the wavelength of the oscillations and provided
that entropy waves are negligible. There is no restriction on the rel-
ative length of the combustion chamber as compared with the inlet.

..
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APPENDIX E

~Y DISCUSSION OF RAM-JET STABILITY

Additional.insight into the source of ram-jet instabili~ can be
gained by considering the ratio of the xtudes of the reflected to
incident waves at the inlet and exit of the ccmibustionchamber. For
convenience, the nonburning case is considered.

The pressure and velocity perturbations in the ecmibustionchamber
are related by

Q+. palkl+

1
4P- =

J
-pa Au-

where the superscripts (+) and (-) designate quantities
do~mstream and upstream traveling waves, respectively.
bation at a point is given by

(El}

associated with
me net pertur-

(E2)

JAll=Au++Al-

If sinusoidal waves are assumed, and the perturbations are expressed

~ . ~ and equationsas the real part of ccmrplexquantities, then

(El) and (E2) give

The ratio of the magnitude
any point is

The ratio of the magnitude
inlet is then

of the downstream to the upstream wave at

of the reflected to incident “waveat the

(m)

(E-4)

(E5j

-———— .— ——
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The ratio of the magnitude of the reflected to the incident wave at the
exit is

(E6)

.The condition that the system be unstable is that successive reflections
of a wave (at the inlet and exit) should result in an increase in the
magnitude of the wave. That is, the condition for instability is given *A
by

I(%)J%).J”
or, from equations (E5) and (E6)

I Ic~+lCe-l,l

C.i- l{e+l

Since ~=@- i*, equation (E8) can also be written as

(8i+l)2+*~ (ee-l)2+&
>1

(Oi - 1)2 +~ (ee +1)2 +Vg’

io
to

(E7)

(E9)

which agrees with the stability criteria indicatedby equations (16)
and (D2).

For a short choked exit, ~e =
so that

,*M (neglecting entropy waves),

1()/%
4+ e

= 1- (T - l)M + 0(M2) (Elo)

Thus, the reflected wave is weaker than the incident wave, and the exit
tends to damp the wave system. The larger the value of M, the greater
the damping effect. The system becomes unstable when the inlet ampli-
fies incident waves by a greater amount than they are damped at the
exit. The values Of ei) for which this occurs, is given by equation

(D4). As indicated inappendix D, Gi must be positive for the systa

to be unstable. Thus, it is the inlet section that is responsible for
the instability of ram-jet engines.
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1.6

Temperature ratio of burned
to unburned gases,

1.2

.8-
0 .2 .4 .6 .8 1.0

Flame-front location, xc/L

Figure 2. - Frequency parameter as function of flame-front location.
(Eqs. (29a) and (31).)
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0
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Mach nuder in unburned-
gas region,

4.0
%
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Figure 3. - Effect of planar fla~ front on acoustic resistance
of inlet at point of neutral stability. Temperature ratio of
burned to unburned gases, 9. (Eq. (29b).)
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