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TECHNICAL NOTE 3574

ACOUSTIC ANALYSTS OF RAM-JET BUZZ

By Harold Mirels

- SUMMARY

A one-dimensional analysis of ram-jet buzz is presented. The par-
ticular mechanism leading to buzz, which is treated herein, is the am-
plification of acoustic waves in the ram-jet combustion chamber due to
succegsive reflections from the inlet and exit sections.

It is assumed that the cambustion chamber is of constant area and
is long compared with the length of the inlet. The inlet of such a con-
figuration operates quasi steadily, or nearly so, during unsteady opera-
tion. It is assumed that the exit operates quasi steadily at all times.
The configuration is shown to be unstable when the real part of the
acoustic impedance of the inlet is greater than a term of the order of
the combustion-chamber Mach number. For quasi-steady operation, the im-
pedance of an inlet is proportional to the slope of its characteristic
curve. Increasing the combustion-chamber Mach nmumber or decreasing the
slope of the inlet characteristic curve during subcritical operation
will tend to increase the range of stable operation.

Computations indicate that burning increases the stable operating
range of a given configuration. The computations assume a fixed planar
flame front and a constant heat release per unit mass.

The reguirement of a relatively long cambustion chamber is relaxed
in the appendix that treats the case of isentropic flow in the combus-
tion chamber.

The applicability of the results for configurations wherein the
inlet is replaced by & compressor is mentioned briefly in CONCLUDING
REMARKS.

INTRODUCTION
Self-sustained oscillations frequently occur in systems through

vhich a fluid is flowing. The oscillations are induced by that com-
ponent (or components) of the system that tends to amplify incident
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pressure waves. The surging of a system containing a centrifugal- or
axial-flow campressor (e.g., refs. 1 to 4) is an example of a self-
sustained oscillation. 1Inlets designed for supersonic Jjet engines also
have been observed to induce oscillations (e.g., refs. 5 to 11) which
are usually referred to as "buzz." The origin of buzz in ram-jet en-
gines is the subject of the present report.

Consider a nose inlet and an exit section connected by a cambustion
chamber of constant area, as indicated schematically in figure 1. Such
a configuration has the essential features of a ram-jet engine. If the
exit section is wide open, the normal shock is downstream of the inlet
cowl lip, and the engine is said to be operating supercritically (fig.
1(a)). Decreasing the exit area tends to move the shock forward, in-
creasing the pressure in the cambustion chamber but leaving the mass
flow unaffected. With further decreases in exit area, the shock even-
tually moves forward of the inlet cowl lip and the inlet is sald to be
operating subcritically (fig. 1(b)). During subcritical operation, the
mass flow decreases with decreases in exit area. Eventually a mass flow
is reached below which operation is unstable, this resulting in buzz. A
typical plot of combustion-chamber pressure against mass flow is shown
in figure l(c). The slope of this curve is generally positive at the
mass flow corresponding to the transition between stable and unstable
operation. ‘

The origin of buzz may be attributed to either of two types of phe-
nomenon. These are distinguished, herein, as follows:

(1) Linear instability origin: Consider a weak pressure wave to be
propagating upstream in the cambustion chamber. The wave will be re-
flected by the inlet section and will travel downstream where it will be
reflected by the exit section. If the successive reflections tend to
increase the amplitude of the wave, the system is unstable and oscilla-
tions will result. If the magnitudes of the corresponding incident and
reflected waves at the inlet are lineariy related, then the oscillation
is termed herein as having a linear instability origin. The essential
feature of this type of instability origin is that the ratio of the mag-
nitudes of the incident and reflected waves at the inlet be constant,
the constant depending on the nominal steady flow through the ram jet.
This instability can be analyzed by the method of small perturbations.
The entire ram-jet configuration must be considered.

(2) Nonlinesr instability origin: In some cases, a weak incident
wave may create large-scale aerodynamic changes within the inlet (e.g.,
large-scale separation, shock motion, etc.) such that the magnitude of
the reflected wave is not directly related to the magnitude of the in-
cident wave. Oscillations induced by such inlet behavior are termed
herein as having a nonlinear instebility origin. The wesk incident
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wave may be thought of as "triggering" the buzz cycle. The occurrence
of this type of instability is expected to depend primarily on the aer-
odynamic behavior of the inlet without particular regard for the remain-
der of the configuration.

It is desirable to determine criteria defining the stable operating
range of ram-jet configurations. In reference 7 it was observed that a
series of nose inlets buzzed at that mass flow where a vortex sheet
(originating at the upstream shock configuration) just enters the cowl
lip. A qualitetive analysis of the flow for this condition suggested
that the vortex sheet causes separation on the inner surface of the
covling. This separation apparently triggered the buzz cycle. However,
reference 11 presents data which indicate that the entrance of the vor-
tex sheet into an inlet cowling need not necessarily result in buzz. In
reference 11, it is suggested that the occurrence of buzz in the experi-
mental ram-Jjet configuration test reported therein might be associated
with separation on the inlet centerbody. The role of separation and
boundary-layer build-up as mechanisms leading to buzz is also discussed
in reference 8. Both references 8 and 11 present extensive experimental
data and discussions of the nature of the buzz cycle.

Several papers, such as references 6 and 9, have investigated ana-
lytically the stability of ram-jet configurations having & linear insta-
bility origin. Reference 6 likens the ram-jet configuration to a
Helmholtz resonator having a mean through flow. The system becames un-
stable when the slope of the characteristic curve (pressure against mass
flow) of the inlet becames sufficiently positive. Both burning and non-
burning cases were considered. For the nonburning case, conditions in
the combustion chamber are assumed uniform at any instant, the wave
structure in the combustion chamber thus being neglected. This assump-
tion is valid provided that the combustion chamber is very short cam-
pared with the wavelength of the oscillations. A similar restriction
applies to the analysis of the burning case. When the combustion cham-
ber is not short campared with the wavelength of the oscillations, it is
necessary to take into account the existence of waves in the cambustion
chamber. The stability of a relatively simple configuration of this
type is analyzed in reference 9, which considers a configuration con-
sisting of an open-nose inlet, a relatively long constant-area combus-
tion chamber, and a choked exit. The stability of the system is ana-
lyzed using transfer functions (ref. 12). (The transfer-function con-
cept provides an extension of classical acoustic-impedance techniques
to systems having a mean through flow.) Reference 9 reports that the
configuration became unstable at flight Mach numbers above a certain
critical value, the critical value depending on the Mach number of the
mean flow through the combustion chamber. This theoretical trend was
confirmed by experiment.




4 NACA TN 3574

A stability analysis, similar to that of reference 9 is presented
herein. TIt is assumed that the ram jet has a constant-srea combustion
chamber and a linear instability origin. However, the inlet is not
specialized to be an open-nose inlet. The flow is considered to be
one-dimensional. (Some justification for this assumption can be de-
duced from ref. 10, which correlates the wave structure in an experi-
mental ram-jet cambustion chamber with calculations based on one-
dimensional flow theory.) Both burning and nonburning casges are
treated. .

ANATYSTS

Flow through a tube of constant area is first considered. The
fluid is assumed to be slightly perturbed from the condition of uniform
through flow, and the corresponding equations of motion are noted. Pos-
sible standing waves are indicated and the stability of flow through a
simple ram-jet configuration 1s then Iinvestigated.

Basic Equetions

Consider a tube of constant area with a through flow of velocity
u, pressure D, etc. Assume the flow to be slightly perturbed and
represent the perturbations by Ap, Au, etc. The equations of motion,
neglecting viscosity, heat conduction, and second-order terms, are

Momentum:
p[§-(§%l+u§-(§—lxl]+§(§)-=o (12)
Continuity: ‘

é—a—ﬁ’i+u%’i+p§a§1—=o (1p)

Energy:
I (1c)

State:
b L X _, (1a)
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(Symbols are defined in appendix A.) The entropy perturbation is re-
lated to the pressure, temperature, and density perturbations by the
relations

D-Er R r-1 R T (2)

The solution of equations (1) can be expressed in the form

ép?i = f[x - (a +u)t] + g[x + (a - u)t] (3a)
R N, I Ry A R es

T % = #[x - (a +u)t] + g[x + (2 - u)t] - n(x - ut) (3e)
%—3 = h(x - ut) . (3a)

The functions f and g represent waves moving upstream and downstream,
respectively, with the speed of sound relative to the steady velocity u.
The function h represents an entropy wave that is convected by the
steady velocity u.

It is now assumed that the perturbations are sinusoidal. (This as-
sumption is not unduly restrictive since a nonsinusoidal oscillation may
be considered as a superposition of sinusoidal waves.) With the use of
complex notation, equations (3) may be expressed as

kf x k{x
A Fei g(m - &t) . Ge-i EG:FI + at)
> =

(4a)

kf x kf x

Au -1 E(m - a.t) -1 EGT-E + at)
T o = Fe - Ge (4b)
kf{ x . k( x
Ao iE——_l_ﬁ-at) -1 E(i:ﬁ"'at) 1—%-8.1:)
T > = Fe H (4c)
i g(ﬁ - at)
ﬁ = He (46-)
Cy
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(the real part of the right-hand side being understood) where F, G,

H, and k = + iA are complex constants. Equations (4) represent si-
nusoidal waves with frequency o and amplification A. The numerical
values of o and A depend on the boundary conditions at the inlet
x; and the exit x, of the tube. If A < 0, the waves are demped.
If A > 0, the waves amplify and the system is unstable. If A = O,
the waves are neither amplified nor damped and the system is in a
state of neutral equilibrium. The case A = 0 is of particular in-
terest since it generally defines a limit of stable operation.

Exsmination of equations (4) indicates that the dimensionless com-

plex ratios __a_ép_, 2 é—rl, etc., are independent of time. This is a
Yp A Cp A

consequence of having chosen k to be the same for the various waves
=g -1y =280 =8 N
in equations (4). The ratios { =6 - i¥ = 5 M and & = o M will

be used in later developments. These ratios may be termed acoustic im-
pedance and entropy impedance, respectively, by analogy with classical
acoustic theory (ref. 1.3).l The quantity 6 is termed the acoustic
resistance while ¥ is termed the acoustic reactance. Similar complex
ratios were used in reference 9.

From equations (4) and the definitions of { and &,

-21 ]_‘(_E_)
c a\j_m2

lL+=-¢
= - i -_'—_i‘g: F .
=6 11].r_‘ D E x—j (52)
G a\1-M2
l--Fe
15—(—-—)-"
H a|M(14M
= e
= & &g F
g= 200 (5b)
cp M _Zil_&__ls_)
L c a‘l_MZ

If ¢ and E are known at same point x, then the complex constants
G/F and H/F can be expressed in terms of the known quantities Er

11n classical acoustic theory there is no mean through flow so that
g does not appear as a parameter. The parameter ¢ 1is referred to as
the specific acoustic impedance in ref. 13. .
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and E,. Equations (5) can then be written in the forms

. ;ls(x_‘xz)
gr -1 a\1.mM2

1+ -é——:—l' e 1 - igrcot ]Es(f_—_x%
g - r " x_xr - 1 : M (6&)
-2i ~(1-—§) ¢, - 1 co 5(-—3{1'
gr -1 a\1_M a\] - MZ
ik __"_r_) ) | -xr)
. ZEr ea-MG;‘M ) 1 -1 cotEg(l Y -a._M(XT—-iM
TG FE i s
21 =—= € - 1 cotj— >
¢, - 1 a\1-M2 a\1 - M
1 -
E+1° (6b)

Thus, if { and & are known at one point in a tube, the values of ¢
and £ everywhere in the tube are defined by equations (6). If the
boundary conditions at the tube inlet and exit are specified, then k
is so chosen that equations (6) satisfy the given boundary conditions.

Equations (4) to (6) can also be applied to a configuration wherein
the undisturbed flow consists of a series of uniform flows separated by
interfaces (such as planar flame fronts or shock waves). For each type
of interface, there is a corresponding set of boundary cornditions that
must be satisfied. The boundary conditions that must be satisfied
across a flame front are derived in appendix B. Note that each section
of uniform flow will, in general, have different wvalues for the con-
stants G/F, H/F, M, and a. The,constant k, however, has the same
value throughout the system.
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Ram-Jet Configuration

The configuration investigated is of the form indicated in sketch
(a). A combustion chamber of length I = Xo - Xy 1s assumed to be of

- 1j—>le————— T, ﬁj |<— le
< \
u,~—» S we
<
< (.
%y xp X =X
Inlet ) Ext
™ section Combustion chamber l section

(a) Configuration investigated.

constant ares and to have a planar flame front at xp. At its upstream

end, the cambustion chamber is connected to an arbitrary supersonic in-
let. At its downstream end, the combustion chamber is commected to a
short exit section which is choked. The length 1o (distance from xe

to the throat of the exit section) is assumed very small compared with
L so that 1g/L <<<1.

The characteristic length of the inlet 37; will later be assumed
smell compared with L (i.e., 1;/L << 1) so that the inlet may be con-

sidered as operating quasi steadily, or nearly so, during unsteady op-
eration.2 The restriction Zi/L << 1 may not be applicable for prac-
tical rem-jet configurations. This restriction is made because it sim-
plifies the problem of determining the appropriate boundary conditions
at x;. The reason for choosing le/L <<<1 is that the exit will at

all times be operating quasi steadily.

2Quasi-steady operation implies that at each instant, the flow
through a component is as though the operation was steady. Nearly
quasi-steady operation implies a small departure from the quasi-
steady condition. A component of an acoustical system operates quasi
steadily if ol/a << 1, where 1 is a characteristic length. It
will be shown that L/a2 = O(1) for the fundamental mode of the ram-
jet configurations considered. Therefore, Zi/L << 1l implies that

the inlet will operate quasi steadily, or nearly so, during unsteady
operation. If 7,e/L <<< 1, the exit will operate quasi steadily at

all times.

3677
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Conditions in the burned-gas region (xf <x < xe) are indicated by

the subscript b, while conditions in the unburned gas region
(xi <x <:xf) are indicated by the subscript wu. When the nonburning

case 1is consideréd, no speclal subscripts are used for those regions.
Boundary Conditions

Exit section. - The boundary condition at x, is derived in ap-
pendix C and may be expressed as

E‘:‘J’r%lg'b.i(rz-l):‘e:() (7)

Equation (7), which is valid provided that the exit section is operating
quasl steadily, 1s assumed to apply throughout this investigation.

Cambustion chsmber. - The boundary conditions across the flame
front are given by equations (B6a) and (B6b) of appendix B. With the
heat release per unit mass assumed constant (AQ = 0), these equations
become

b Eu,t Eb,2  [TD
Bt [tﬁ et (- )J“’"ﬁ’ (5a)
€ Ey.f
Co fzf E;;+03+O(Mﬁ)=0 (8b)
where
1Y (R_uT_g) Av
178, RpTy, / &y ¢
Cy,bTb
G2 = cv,uTu
s - (- (g -

The subscript £ indicates that the quantities are evaluated at xg,
the flame position.

Inlet section. - If wl;/e is sufficiently small, the flow through
the inlet during unsteady operation may be considered as quasi steady.
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Then i and £&; can be expressed in terms of the slope of the charac-

teristic curve of the inlet under steady operating conditions. If
p = p(u) designates the combustion-chamber static pressure as a function

of combustion-chamber velocity during steady operation, then

- (3), 2

du

gi = - (Yi - l)(gl + Mj_) (Qb)

Equation (9b) is obtained from equation (2) by not that, for flows

with constant stagnation temperature, % = - (r-2 I]'_IAM and
1+ L5=m

= » 80 that —~— Z% = - (r - 1)M. Both ¢; and Ey, as

An AM a AT
8 1+ I;%_L M2
given by equations (9), are purely real.

For slightly' larger velues of a)Zi/a (i.e. s nearly quasi-steady op-
era‘bion), the inlet impedance can be expressed as

t; = [(%)1 e (10)

where 06; and dY; are small and represent the departure of 6; and
¥4y from the gquasi-steady values of (%)i 9%(1%)' and zero, respectively.

A similar expression, representing a small departure from equation (9b),
can be written for £&; during nearly quasi-steady operation.
A theoretical derivation for the values of §i and Ei corre-

sponding to a given inlet appears to be very difficult (even for the
cases of quasi-steady and nearly quasi-steady flows). So far, only
the open-nose inlet has been treated analytically (ref. 9). No such
analytical development will be attempted herein.

Nonburning Case

The configuration indicated in sketch (a) is assumed to be oper-
ating without burning. Equation (7) is assumed to apply at all times.

3677
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Expressing (., and &, in terms of ¢; and E; (through egs.
(6)) and substituting into equation (7) yields

-21 KT, S ik
ea.(l—Mz) ol oM 1. M £y ea‘M 14
1‘511+L%_1M l_I_E_lml'*ci

(11)

If gi and &; are specified, the corresponding value of k can be

determined from equation (11). This solution for k defines the fre-

quency and amplification of possible standing waves within the tube.

It A > 0, the waves amplify and the gystem is inherently unstable.
Another viewpoint is to write equation (11) in the form

gi ) L—%-i M+1i cot[—————-—a(l ]_SLMZ)]

KL

1+i M (y - 1)cos|— Kb Ei aM(l—Mz)

- 2 gin ___k_L’__:l & l - Mz)
a(l - M2)

(12)

E
which defines the acoustic impedance at x; in terms of k and -gi,
i
for a tube of length L having a through flow of Mach mumber M and
a short choked exit. If an inlet with & known acoustic impedance is

added at x;, then k must be determined so that the right-hand side

of equation (12) metches the specified (;. Equations (11) and (12)
do not require 1;/L <<1.

It is not generally possible to obtain an explicit expression for
k, in terms of {; and &;. A particular solution of equations (11)

and (12), applicable for a class of nonburning ram-jet configurations
operating near the neutral stability point, will now be presemted. (A
solution of egs. (11) and (12) for the case of isentropic flow, is pre-
sented in appendix D.)

Consider a ram-jet configuration with the properties

1;/L <<1 (132)

e A s e ————g
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A= 0 (13b)
M<<1 (13c) o

By virtue of equation (13a), the inlet will operate quasi steadily, or
nearly so, during unsteady operation. Equation (13b) signifies that
the ram jet is operating near the point of inherent instability. Under
these conditions, it will be shown that 65 = 0(M); it then follows that

¢; = O(M) and &; = o(M).3 Thus, assume, first, that

3677

¢y = o(M); £; = o(M) (14)

This anticipates the result 6;1_ = 0(M). By using equations (13) and
(14), equations (11) and (12) become

2y Kb
e % =- [1 +2t; - (r- 1M+ O(Mz)] (158) )
§i=(rz;lM+%)+i[%(l+2N)-%I-' + O(M2) (15b)

Expressing {5 as [(%)i g]%(‘ll—ll + aei] - idYyy, vhere B6; and dY; are

assumed to be O(M), at most (i.e., nearly quasi-steady operation), and
solving for Xk, yield

Ay L |x a dplu ry -1 2
(o + iA) E=[§ (1 + 2n) + aq;i]+i (_75)1 —Rézl + 865 - —T—M]+O(M )
. (16)
Thus, the frequencies of the possible standing waves are given by

‘%L = % (1 + 2N) + 8y + o(M2) (17)

o |B

The fundamental mode is = ‘% + By + o(M2), which for quasi-steady

de
wk

. . (The latter corresponds to the fundementel

1
noj A

operation becomes

SFor nearly quasi-steady operation, ¥4 is small and may arbitrar-

ily be considered O(M) even though it is not functionally dependent on
M. Therefore, if 6; = O(M), then ¢; = O(M). If &3 = o(M), it then

follows that &; = O(M) (eq. (9b)). )
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mode of an organ pipe, open at one end and closed at the other.) The
system is unstable when

o;> L2 m + o) (182)
or .
a dp(u T - 1
(ﬁ)i % >L==n - 86; + o(1?) (18b)

vhich is consistent with the original assumption that 64 = o(M). For
quasi-steady operation, the system becaomes unstable when

(1)1 aplu) S ¥ = 1 4, o) ‘(19)

1D du 2
That is, the system is unstable when the slope of the characteristic
curve exceeds the value indicated by equation (19). With increasing
a)Zi/a., the effect of 563 must be considered.

It may be concluded that the configuration defined by equations

(132) and (13c) will become unstable when (—%)i @-Lduul = o(M), and the

fundamental frequency of the standing wave is (‘%’ = % + O(M). Increas-

ing M or decreasing the slope of the Inlet characteristic curve,4 dur-
ing subcritical operation, will tend to make a configurastion more stable.

4The characteristic curve of an inlet is frequently expressed &8s
Dt against M or py against W where py 1is the stagnation pres-

Tm
sure in the combustion chamber and W = puS APE is the corrected mass

flow referred to free-stream (or other) reference conditions. The rela-

p(u) dp
a dplu t
tion "tfetween ( )i EmY and dpt/dM or = is given by

(), 6t - (n%t o - M)[l + 002)

where it has been assumed that the stagnation temperature in the cambus-
tion chamber does not vary with mass flow and that the right-hand side
of these equations are of order M (i.e., operation near point of insta-

dp dp
S O(M) end ¥t 0(M2) at the point of in-
YDy daM

bility). Thus, Dy
cipient instability.
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In appendix E, it is shown that the exit {ends to damp incident
waves while the inlet amplifies incident waves (for 61 > 0). Thus

the inlet is the component of the ram-jet configuration that is re-
sponsible for instability. The role of the exit, in damping incident
waves, was previously pointed out in references 9 and 10.

Burning Case

The possibility of burning at station xp (sketch (a)) is now admit-
ted. It is assumed that the configuration satisfies equations (7) and
(13)(with eq. (13c) replaced by M, <<1).

The boundary condition at x, is, from equation (7),

%i [(rb - 16, + ge] =1 (20)

while the boundary conditions across the flasme front are given by equa-
tions (8)(with the heat release per unit mass assumed constent). Take
xp to be the origin of the x-coordinate system (Xf = 0), and define the

following constants:

kx kxe

U="aTLi1 B==

b
(21)

Ut = U B' = B
Muil + Mﬁi Mbil + Mbﬁ
With use of equations (6); gu’f/gu’f can be expressed as
E s

u,f 1 icotU ig! (22)

=Ei e
t £ 1-1 Qicot U

It was previously found that ¢; = O(M) and &; = O(M) for the ram jet
operating without burning at A = 0. It will be shown that §i = O(Mu)
(and thus Z; = O(My)) for the corresponding burning rem jet. There-
fore, to simplify the present analysis, it is assumed, a priori, that

-ziﬁ = 0(,) (23)
u,f

3677



— e —

NACA TN 3574 15

which follows from equation (22), when &3 = O(M,), & = O(M,), and

A = 0 (provided cot U << =). Using equation (23) changes the bound-
ary conditions across the fleme front (egs. (8)) to

c T- C :
1 1 b 3 2
—— - -Ml—-1-=)+0(M) =0 (242)
So,f  Su,r Ty Ca
b, Cs3 |
—2= = . == 10 24b
8o, ¢ Ca (1) (24p)

Expressing {, and &, 1n terms of gb,f and Eb,f and utilizing
equations (20) and (24b) give

M—zbi(rb-l)+icotB
, - C3eﬂ3/Mb - (25)

l+i-Mz—b—(*rb~l)cotBE.—Tb_l@ cosB+O(Mu)]

Substituting equation (25) into equation (24&) and expressing -C'u £ in
J
terms of §; give

gb,f =

B
Ty - 1 Cicot Utcot B | cot B 3 COS(M_b)
Ci= 7 Mo Cicot B+cot U 1y, -1 Cycot B+cotUzc5+'(E cos B
B
sinf—
Cicot B cot U-1 C ()
. o3 - YOl (4 o02)  (26)
Clcot B4+cot U 2 Cop Clcot B+cot Ul sin B
where '
T Cz
Cg=—2-1-=2
Tu Co

In the derivation of equation (26) it was assumed that

1 Cz oi(B+B') 2
Cl-cotUcotBE.— -155 cosB—Yb—-lC5
< 0(1)

Tp
Clcot B +cot U

(27)
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Since the equation (27) is of order M for the nonburning case, this
assumption appears reasonable. Equation (26) indicates that 6y = 0(M,),

vhich leads to {3 = O(M,) and &; = O(M,) and thus verifies equation

(23)(provided that cot U << «). Equation (26) is the counterpart of
equation (12). It defines the acoustic impedance of a constant-area
tube having a through flow, a choked exit, and a planar flame front at
x = 0. If an inlet is added at x;, then k must have a value such

that the scoustic impedance of the tube matches the acoustic impedance
of the inlet. This condition defines k and therefore the stability
of the system can be determined.

If it is assumed that the flame is fixed (Av = 0), and the gas
constants are the same for both the burned- and unburned-gas regions
(1.e., 1y = Ty» Bp = By, etc.), equation (26) becomes

oin B
S Jeost)
(28)

conl—B
- Q'W———mt]ﬁ+mu ;lﬁ&l{ﬁmu+|;).-z-(1-1) S:fBuu)]ﬂi—B-}+i[ﬂthth-l-I;—l-%%

&
where A= 'Ilb/Tu and equations such as £b=-,ﬁ:, ?=XE.+O(M§):I,
u

and % = /A {1+ O(ME)] (based on egs. (B2) of appendix B) have been

used. Equation (28) has been solved numerically for the following spe-
cial case: .

A =0, ¥5 = O: Assume the configuration is operating at the

neutral stability point (A = 0), so that U and B are real. Fur-
ther, assume that ¥y = O (quasi-steady operation). Equation' (28)

then becomes

0= «/A cot B cot U - 1 + 0(M) (29=)
m( B
I_;:-.uu'_\ﬁm‘f+mu{-\/{cotU+[n-g_(1_1)T§K_):|2t1_3}+0(uu) (eee)

Equation (29&.) can be solved for w. Using this value of w in equa-
tion (29b) gives the value of 65 at the neutral stability point. A

ram-jet configuration is unsteble when its value of 6; is larger than
that indicated by equation (29b).

3677
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oL Xe 1 foL) *e
Since U = o (1 _—f._) and B = _ﬁ (E—u) ~-» equation (29a) can be
written as
ok _ (ol Xe . o101 o)1 (L) %e
. = (au) = + cot i tan[_ﬁ (EE) 5 | ¢+ olry) (30)

which, for a given A, can be solved directly for % as a function of

(a)_L_) ;XE This gives oL ag a function of -x—e for the given A. De-
au/) L | ay L

fine a frequency parameter & according to the relation

oz Dol 2f5)] e

This parsmeter has the value of 1 for X¢/L = 0 and Xo/L = 1.(consid-

ering the fundamental mode) and is somewhat larger than 1 for interme-
diate values of xe/L. For a given A, 2 has = single maximm in the

range O < _};_e; < 1. This maximum cen be shown to equal
4 -
(Rmax = = tan~2(A1/4) + o(my) (32)
and occurs at a value of x./L given by
.xf. = JL (53)
VA +1

(for A #1). Thus 1 <[(Q)pey + OMy)]< 2 for 1< A <=. A plot of
Q ageinst x./I is presented in figure 2 for A = 4 and 9.

Equation (29b) is solved using the value of ® obtained from equa-
tion (29a). Substitution of equation (29a) into equation (29b) permits
the latter to be written in' the more convenient form

| cos(. )

o cotZB| +0(2,)
(34)

01 _ 1
Y-1 2
_Z_Mu L4 A cot“B

A+|3A-2-(A -1
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01

For the nonburning case, ToI o= 1. WUhen there is burning, equation
7 My
(34) indicates that T—:——]l_—— > 1. Thus, a given configuration is made

5 My
more stable because of the burning. Equation (34) gives

N 61
e ke 2 - 1/\. for xg/L = 0, and v —

7 M 5= My

The function eirélMu may have many maximum and minimum points in

the range 0 < xe/L < 1 because of the relatively rapid oscillations

of cos(B/~/\ M;) with x¢/L for small M,. A plot of ei/r; = My

against xg/L for A =9 and M; = 0.0l and 0.05 is presented in

=\ for x/L = 1.

figure 3. The value of ei/T 5 = M, increases from 1.89 at x/L = 0

to 9 at xe/L = 1. Oscillations about the mean are more numerous for
the M; = 0.01 case than for the M; = 0.05 case.

These results assume a fixed planar flame front and a constant heat
release per unit mass. The possibility of a combustion-induced insta-
bility (AQ % 0) has not been considered. If any of these assumptions

are relaxed, considerebly different stability criteria would be expected.

CONCLUDING REMARKS

A one-dimensional analysis of ram-jet buzz is presented. The par-
ticular mechanism leading to buzz, which is treated herein, is the am-
plification of acoustic waves in the ram-jet combustion chamber due to
successive reflections from the inlet and exit sections (i.e., linear
instability origin). The system becames unstable when the real part of
the acoustic impedance of the inlet is greater than a term of the order
of the combustion-chamber Mach number.

An analytical method for determining the acoustic impedance of an
arbitrary inlet would be of interest. As mentioned previously, only the
open-nose inlet has been treated analytically (ref. 9) and the analysis
therein is restricted to low frequencies.

It should be noted that the previous derivations are generally ap-
plicable to configurations wherein the inlet of the present report is

3677
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replaced by a compressor. It would appear that only equation (9b) re-
quires modification (to account for the variation of compressor dis-

charge stagnation temperature with mass flow). If the quasi-steady per-
formance of the compressor is characterized by a polytropic exponent n

Ap(u)] _ _n  [AT(u u ) ' _
(i.e., pa) ) T | T(a)l; - o= . etc.) equation (9b) is re
placed by

E; == = Lty (35)

for n of order 1, E; is at most of the order of {; and the solu-

tions presented in the main body of the report (i.e., egs. (15) to (34))
are applicable. If the flow in the combustion chamber can be considered
isentropic, then appendix D applies.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronsutics
Cleveland, Ohio, August 30, 1955
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APPENDIX A

SYMBOLS

The following symbols are used in this report:

A

a

B,B!
01,02,03,04
°p

Cy

¥,G,H

f,g,h

constant defining amplification
speed of sound

constants defined in egs. (21)
constants defined in egs. (B6)
specific heat at constant pressure
specific heat at constant volume
complex constants defined by egs. (4)
functions defined by egs. (3)
camplex constant (o + iA)

length of caombustion chamber

characteristic length

NACA TN 3574

characteristic length of inlet and exit section,

respectively
Mach number in combustion chamber
integer (0,1,2, - - )
polytropic exponent

static pressure of gas in combustion chamber

cambustion-chamber static pressure as function of u for

steady operation

heat release per unit mass at flame front

gas constant

cross-sectional area of combustion chamber

3677
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Q
oV
Subscripts:

b

temperature of gas‘in combustion chamber
time .

constants defined in egs. (21)

axial velocity in combustion chsmber
velocity of planar flame front
corrected mass flow

coordinate distance in stream direction
ratio of specific heats

net perturbation in a quantity
perturbation from quasi-steady value
acoustic impedance, 6 - iy (eq. (5a))
entropy

acoustic resistance

21

ratio of temperatures of burned to unburned gases (Ty/T,)

entropy impedance, %% (eq. (5b))

density of gas in combustion chamber
acoustic reactance
frequency parameter defined by eq. (31)

frequency, radians/sec

burned-gas region
combustion-chamber exit section

flame front
cambustion-chamber inlet section




22

reference section

unburned-gas region

NACA TN 3574

3677
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APPENDIX B
BOUNDARY CONDITIONS ACROSS PLANAR FLAME FRONT

Consider a flame to be propagating with a small constant velocity
v relative to a wall, as indicated in sketch (b). Conditions in the

_ul.'l_._ }V:p_’

/7777777777 77777

(b) Flame moving relative to wall.

burned- and unburned-gas regions are related by

Momentum: ’ —
Py + Pyl - v)% = py, + oy, - V)2
State:
Pu___Po 1
N R L (81)
Continuity:
Puly - v) = py(u, - v)
Energy:
Ta Py 2 2 _ b Pp 1 2
o 1n Y2 (g - V)" + Q=g ot g (o V)_
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where @ is the energy added, per unit mass. If the flow velocities

are small campared with the speed of sound, equations (B1) become,

respectively,
-

%E =1 + o(M2)

PrTHRD _ 2

Pt o
TyBu(p - V) 2
Tofp (o = V1 ot)

cp,bTh - Cp,ulu = Q|1 + O(Mﬁi]

(B2)

—
where M, = uy/a,. Now, assume that the flow is perturbed. The result-

ing relations across the flame front are

f€9~=~f?i 1+ OCMﬁﬂ

—

P, P
- mbed] |

Aluy, - v) Al - V) (ATb ATu)—
nod fe Dl (-l v oud)

cp,pTh ATy ATy _ (cp,bTb } 1) 29 ;1 + o(Mﬁ)]

cp,utu Ty Ty Cp,utu Q _
From equations (1d) and (2)
-
&0 _ 1 GQE _'éﬂ)
P Y \P ¢y &
AT  1[A
T = ;:[53 + (v -1) %?

Substitution of equations (B4) into (B3) yields

bpy Ay
—£;'= —55 1+ O(Mﬁﬂ

(B3)

(B4)

(BS=)

ARTT7
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Ay,

- ) 1-
U, -V o, -v

SpbTo 1 (AT
p,ulu To | Sv,b

+ (Tb - 1)

25

Uy -Viay | (A, Any Tb"TuAPu)
(l ub-v)Auu.* (CP;b cP,u+ oy Py EL-K_O(ME)]

(B5D)

pp| 1O Ay L 4
a2 w02 @R )8 feod] oo

Consider the equations (B5) as applied to a ram-jet ccambustion cham-

ber.

Under steady operating conditions, the flame front is stationary

(t.e., v = 0) and is located at the flameholder (x = xp), which is as-

sumed to be planar.

(B52) gives

c"D,f c'u,

where

Tu gu,f i gb,f u
czgﬁz}l_%&ﬁ+cs-c4£‘5——é9—+o(bﬁ)=o (B6Db)
Co,r  Su,f Q Apy,r
& “u) Av
C = — - l -
17 ey [ ( uy, Auu,f]
cvszb
-y, ulu
RpTp
% = (- l’(m:" )
blb
o0 = mlag - )

The subscript f dindicates that the quantity is to be evaluated at xp.

If the heat release

¢ 1§
1 1 +Mb[_13€uzf
£

If sinusoidal perturbations are assumed, and these
are expressed in complex form, division of equations (BSb) and (B5c) by

g_b.’_f - (? - 15! + O(M:‘:l) =0 (Bea)

per unit mass 1s assumed constant, AQ = 0 in equa-

tion (B6b). The choice for the proper values of Av/Auu’f in equation

(B6a) depends on the effectiveness of the flameholder in constraining
the motion of the flame. For low-frequency oscillations, Av/Au.u,f can

probably be taken equal to zero (i.e., the flame is considered fixed at
xf). Por higher frequencies, Av Auu’f probably cannot be taken equal

to zero (despite the presence of the flameholder) and, in fact, may be

complex.
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APPENDIX C

BOUNDARY CONDITIONS AT CHOKED EXTIT

Assume that the exit section is operating quasi steadily (wle/a <<<1)
and is choked. Under these conditions, the Mach number at Xg (sketch
(c)) is constant at all times, its value depending on the ratio of the

——
o
—
3677

(c) Exit section. 2

tube cross-sectional area to the exit throat area. Thus CAM)e =0 or
(éi) = (22) . Using a2 = yp/p eand equation (2) then yields
e

u —é.—e
Au) QL Sy e An
’(u)e 27 [(T D3 +cv]}e (c1)
From the definitions of ¢ and &, equation (Cl) can be written as
1 2 _
[g+r-lE_M(Y—l)]e_'o (c2)

which relates ¢ and & at the exit. An expression similar to equa~-
tion (C2) is derived in reference 9.

If mle/a is not small, the eppropriate boundary conditions at

the exit must be determined by methods analogous to that used in
reference l2.
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APPENDIX D

SOLUTIONS OF EQUATIONS (11) AND (12) FOR ISENTROPIC FLOW

In the main body of the report, solutions of equations (11) and
(12) are presented, which are applicable for ram-jet configurations
satisfying equations (13). If it is assumed that the entropy waves
in the combusticn chamber are negligible (i.e., isentropic flow) then
¥ = 0, and equations (11) and Elz) can be solved without recourse to
the restrictions of equations (13). The solution is presented herein.

If £ = 0, equations (11) and (12) become, respectively,

KL
-2 ———— -1
a(1-M2) 1+t 1-t==un

l"§'11+—T—£—1M

(Dla)

and

—T—;—l- M+i cot( ))
¢ = (pib)
M cot(r( j}

Solving equations (D1) for k yields
2

2 WZ l.:;L
2* 1+0 4 1 - M
fm-f QL ﬂ‘ l ZN) -1 i zl i, ( i) i 2

a(l-M2) "~ 1-62-¥ (1-05)2+v% 1+T_é_;M

(p2)
The frequency of the standing waves is therefore
oL _ 1 1 1 ¥y 2
S = Z (1 + 2N) + = tan™ ————— | (1 - M%) (p3)
a 2 b 1 - 9% - w%

If ¥; end 0; are functions of o, then equation (D3) must be consid-
ered as providing an implicit, rather than an explicit, solution for .

When 1V; = O, the frequencies are given by g§i=~% (1 + 2N)(1 - M2).

e e e A ——— v o i+ = = T an — <t e o
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Increasing the Mach number tends to decrease the frequencies. The sys-
tem will become unstable when

b G-am |7 2y o (r -1 -
1 . 1+ (r - 1 M)z (1 + wf) 1+ (Y - 1 M)z %1
- a 2
1+qfl - - +KE} él%MQ)z (1 + %) (D4)

If ¥; =0 (but M is not necessarily small), equation (D4) becomes

Y - 1 2 l
s M<8; <r—7T§H

(D5)

which agrees with previous results for quasi-steady operation. If
M <<1 (but ¥; is not necessarily small), equation (D4) becomes

TélM(1+*§)l+°(Mz)]<ei<'(?'-§‘ﬂﬁ l+O(M2)] (Ds)

Equation (D6) indicates that a nonzero value of V3 will tend to in-

crease the stability of a configuration, but that the effect is negli-
gible when w?_ << 1. TNote that equations (D5) and (D6) give an upper
bound, as well as a lower bound, to the value of 64 which lead to

instability. In all cases, positive values of 6; are required.

Equations (D1) to (D6) are valid provided that the exit section
is short compared with the wavelength of the oscillations and provided
that entropy waves are negligible. There is no restriction on the rel-
ative length of the combustion chamber as campared with the inlet.

3677
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APPENDIX E

SUPPLEMENTARY DISCUSSION OF RAM~JET STABILITY

Additional insight into the source of ram-Jet instability can be
geined by considering the ratio of the magnitudes of the reflected to
incident waves at the inlet and exit of the combustion chamber. For
convenience, the nonburning case is considered.

The pressure and velocity perturbations in the eambustion chamber
are related by

Ap+= pa At
o ~ (£1)
- = -pa -

where the superscripts (+) and (-) designate quantities associated with
dovnstream and upstream traveling waves, respectively. The net pertur-
bation at a point is given by
Ap = Apt + Ap~
) (E2)
M =t o+ Aun

If sinusoidal waves are assumed, and the perturbations are expressed

a8 the real part of complex quantities, then B;Q%ﬁ-= t and equations
(E1) and (E2) give

The ratio of the magnitude of the downstream to the upstream wave at
any point is )

Vo O [ -

AP-. t"l ()
The ratio of the magnitude of the reflected to incident wave at the
inlet is then

>N I S (85)

AP-i gi"l
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The ratio of the magnitude of the reflected to the incident wave at the

Ap e

- The condition that the system be unstable is that successive reflections
of a wave (at the inlet and exit) should result in an increase in the
magnitude of the wave. That is, the condition for instability is given

ge"'l
§e+l

(E6)

by
(égi:)i (ﬁ%;) >1 (E7)
e
or, from equations (ES) and (Es)
. +1 ¢ -1
Qi-l§:+1 >3 7 (Ee)

Since ¢ = 6 - i¥, equation (E8) can also be written as

(6; +1)% +¥% (6, - 1)2 + 42

(6; - L)% + ¥2 (6 + 1)2 + 42 ~ (me)

which agrees with the stability criteria indicated by equations (16)
and (D2).

' 2
- thﬁgr a short choked exit, ge = T?_:Tfﬁﬁ (neglecting entropy waves),

(%)e' =1- (v - 1)M + o(M2) (E10)

Thus, the reflected wave is weaker than the incident wave, and the exit
tends to damp the wave system. The larger the value of M, the greater
the damping effect. The system becomes unstable when the inlet ampli-
fies incident waves by a greater amount than they are damped at the
exit. The values of 65, for which this occurs, is given by equation

(D4). As indicated in appendix D, 63 must be positive for the system

to be unstable. Thus, it is the inlet section that is responsible for
the instability of ram-jet engines.
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Figure 1. - Ram-jet configuration and typical performance curve.
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Flgure 2. - Frequency parameter as function of flame-front location.
(BEqs. (29a) and (31).)
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Figure 3. - Effect of planar flame front on acoustic resis‘fance
of inlet at point of neutral stability. Temperature ratio of
burned to unburned gases, 9. (Eq. (29b).)
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