NACA TN 363	NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
	TECHNICAL NOTE 3631
	RESULTS OF AXIAL-LOAD FATIGUE TESTS ON ELECTROPOLISHED
	2024-T3 AND 7075-T6 ALUMINUM-ALLOY-SHEET
	SPECIMENS WITH CENTRAL HOLES
	By Charles B. Landers and Herbert F. Hardrath
	Langley Aeronautical Laboratory Langley Field, Va.
	NACA
	Washington
	March 1956
	AFMOC

Ξ

1

TECHNICAL NOTE 3631

RESULTS OF AXIAL-LOAD FATIGUE TESTS ON ELECTROPOLISHED

2024-T3 AND 7075-T6 ALUMINUM-ALLOY-SHEET

SPECIMENS WITH CENTRAL HOLES

By Charles B. Landers and Herbert F. Hardrath

SUMMARY

Results are presented of axial-load fatigue tests at stress ratios of 0 and -1.0 on electropolished 2024-T3 (24S-T3) and 7075-T6 (75S-T6) aluminum-alloy-sheet specimens with central holes. The specimen widths and hole diameters were varied in order to provide data suitable for a study of the effect of notch size. The data are compared with previously published results of tests on unnotched electropolished specimens and on unpolished specimens containing central holes.

INTRODUCTION

During the past several years, the National Advisory Committee for Aeronautics has sponsored a long-range experimental program intended to provide data for an evaluation of the effects of notches on the fatigue behavior of aircraft structural materials. One series of tests (refs. 1 and 2) was conducted at the National Bureau of Standards on unpolished 2024-T3 and 7075-T6 aluminum-alloy-sheet specimens with and without holes. Battelle Memorial Institute (refs. 3 to 6) provided data from axial-load fatigue tests of electropolished-sheet specimens made of 2024-T3 and 7075-T6 aluminum alloys and normalized SAE 4130 steel. The latter tests included nine specimen configurations and four mean-stress levels. Battelle (ref. 7) also tested rotating-beam specimens of 7075-T6 aluminum alloy.

Another part of the long-range program was conducted at the NACA Langley Laboratory and is reported herein. The present results are from axial-load tests of electropolished 2024-T3 and 7075-T6 aluminum-alloysheet specimens containing single central holes.

¥ 1

SPECIMENS AND TESTS

The material from which the specimens were made was taken from the NACA stock of 2024-T3 and 7075-T6 sheet described in reference 8. Specimen identifications are in agreement with the sheet layout given in reference 3. The specimen blanks were cut from the sheets with the long dimension parallel to the direction of rolling and were clamped in stacks for machining the edges. The specimen configurations and the various combinations of central-hole diameters and specimen widths are presented in figure 1. The central holes were made in three steps as indicated in table I. Tool speeds, depths of cuts, and feeds given in table I were chosen to give uniform cutting conditions, to avoid tool chatter, and to minimize work hardening of the surface. All holes of 0.490-inch diameter or greater were bored and the rest were drilled. Drill sizes were chosen to give approximately the same depth of cut obtained in the bored holes. Extreme care was exercised throughout the preparation to avoid damaging the specimens in any way. After being machined and deburred, all specimens were sent to Battelle Memorial Institute for electropolishing; this process removed approximately 0.0008 inch from the surface.

Axial-load fatigue tests were conducted on a series of specimens for each combination of hole diameter d and width W in both materials at stress ratios R of O and -l.O, where R is the ratio of minimum stress to maximum stress in the cycle. The maximum stress S_{max} for each specimen was computed for the area of the net cross section. The testing procedure and monitoring techniques used in this investigation were the same as those described in references 8 and 9. All fatigue specimens were clamped between guides similar to those described in reference 10 except five which were tested at a stress ratio of 0.02 without guides.

Most of the tests were performed in subresonant fatigue testing machines with capacities of 20,000 pounds at 1,800 cpm (ref. 8). Because of the trial-and-error procedure required to start each test, it was not practical to use these machines for tests in which failure occurred in less than 10,000 cycles. Consequently, a hydraulic machine operated at 180 cpm was used for tests in which failure was expected to occur in 500 to 10,000 cycles. Tests in which failure was expected to occur in less than 500 cycles were performed in a static testing machine which was manually controlled to apply load at approximately 2 cpm.

RESULTS AND DISCUSSION

The results of all tests are presented in tables II and III and data are plotted in figures 2 to 24. Those tests which ran less than one thousand cycles and those which resulted in failure at the grip line are not plotted. The data for specimens which did not fail are plotted with arrows pointing to the right. On four occasions the automatic cutoff failed to operate when the specimen failed and fatigue life was estimated for each specimen. Due to the fact that these were long-life tests, the possible error in position of the plotted point is small. Static tensile tests were performed on each type of specimen and the tensile strengths are plotted with arrows pointing to the left.

Table IV gives average values of stress at various fatigue lives (given by the number of cycles to failure' N) for 1-inch-wide, unnotched, electropolished sheet specimens of 2024-T5 and 7075-T6 aluminum-alloy sheet taken from the same lot of material, tested at Battelle Memorial Institute and the NACA Langley Aeronautical Laboratory, and reported on in reference 8. These values of stress were divided by the corresponding values of stress in notched specimens of various widths at the same lifetime to obtain the fatigue-stress-concentration factors $K_{\rm F}$ given in table V. For the most part, the variations in $K_{\rm F}$ for a given configuration tested at a given load ratio are not significant. However, the 2024-T3 specimens tested at R = 0 show some tendency for $K_{\rm F}$ to decrease with increasing stress (decreasing life). In these latter specimens the maximum local stress was probably in the plastic range, and a reduction in the stress-concentration factor is to be expected.

A comparison of $K_{\rm F}$ values at some long life, where plastic action will not affect the results, is of interest in an evaluation of the notch-size effect (ref. 11). Values of $K_{\rm F}$ at N = 107 cycles are plotted against the ratio d/W for each material and stress ratio in figures 25 and 26. The theoretical elastic stress-concentration factor $K_{\rm T}$ from reference 12 is shown for comparison. It is clearly evident that $K_{\rm F}$ decreased with decreasing size for a given d/W (therefore the same $K_{\rm T}$). Also, the difference between $K_{\rm F}$ and $K_{\rm T}$ showed a tendency to increase with decreasing d/W. These plots form a consistent pattern which appears to give definite evidence of a notch-size effect. Preliminary analysis of these data indicates that the Neuber technical factor $K_{\rm N}$ (refs. 11 and 13) with a material constant of 0.02 inch provides a possible method of predicting this effect.

The National Bureau of Standards (NBS) conducted tests (refs. 1 and 2) similar to the present tests, except that unpolished specimens were used. In addition, a series of unnotched specimens with a width corresponding to each width of notched specimens was tested. Surface defects and a "sampling" effect due to various sizes of specimens probably contributed significantly to the rather large scatter in results of tests on the unnotched specimens. These factors probably explain why

values of $K_{\rm F}$ computed from the NBS data produced apparently unrelated curves and gave only slight or inconclusive evidence of a size effect in notched specimens.

The effect of surface defects is probably not so important for unpolished notched specimens since the maximum stress occurs in a rather localized area and the chance of having a scratch nearby is negligible. Consequently, a comparison of data from unpolished notched specimens with data from polished unnotched specimens might be expected to exhibit better correlation. However, a comparison between the NBS data on notched specimens (ref. 2) with the data on unnotched specimens given in table IV (from ref. 8) yields curves of $K_{\rm F}$ against d/W which also appear unrelated. This lack of correlation may be attributed in part to the fact that the burrs around the holes of specimens in reference 2 were not removed. Such burrs may have influenced the fatigue failure in some erratic fashion.

CONCLUDING REMARKS

Axial-load fatigue data on electropolished 2024-T3 and 7075-T6 aluminum-alloy-sheet specimens with central holes have been presented. The specimen widths and hole diameters were varied in order to provide data suitable for study of notch-size effect. The data are compared with data from tests of unnotched electropolished specimens made from the same lot of material. The fatigue stress-concentration factors K_F are plotted against the ratio of hole diameter d to specimen width W. From these plots it is evident that K_F decreased with decreasing width for the same value of d/W; the difference between K_F and the elastic stress-concentration factor K_T increased with decreasing d/W. Definite evidence of a notch-size effect was thus indicated.

Langley Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Va., December 13, 1955.

REFERENCES

- 1. Brueggeman, W. C., Mayer, M., Jr., and Smith, W. H.: Axial Fatigue Tests at Zero Mean Stress of 24S-T Aluminum-Alloy Sheet With and Without a Circular Hole. NACA TN 955, 1944.
- 2. Brueggeman, W. C., and Mayer, M., Jr.: Axial Fatigue Tests at Zero Mean Stress of 24S-T and 75S-T Aluminum-Alloy Strips With a Central Circular Hole. NACA TN 1611, 1948.
- 3. Grover, H. J., Bishop, S. M., and Jackson, L. R.: Fatigue Strengths of Aircraft Materials. Axial-Load Fatigue Tests on Unnotched Sheet Specimens of 24S-T3 and 75S-T6 Aluminum Alloys and of SAE 4130 Steel. NACA TN 2324, 1951.
- 4. Grover, H. J., Bishop, S. M., and Jackson, L. R.: Fatigue Strengths of Aircraft Materials. Axial-Load Fatigue Tests on Notched Sheet Specimens of 24S-T3 and 75S-T6 Aluminum Alloys and of SAE 4130 Steel With Stress-Concentration Factors of 2.0 and 4.0. NACA TN 2389, 1951.
- 5. Grover, H. J., Bishop, S. M., and Jackson, L. R.: Fatigue Strengths of Aircraft Materials. Axial-Load Fatigue Tests on Notched Sheet Specimens of 24S-T3 and 75S-T6 Aluminum Alloys and of SAE 4130 Steel With Stress-Concentration Factor of 5.0. NACA TN 2390, 1951.
- 6. Grover, H. J., Hyler, W. S., and Jackson, L. R.: Fatigue Strengths of Aircraft Materials. Axial-Load Fatigue Tests on Notched Sheet Specimens of 24S-T3 and 75S-T6 Aluminum Alloys and of SAE 4130 Steel With Stress-Concentration Factor of 1.5. NACA TN 2639, 1952.
- 7. Hyler, W. S., Lewis, R. A., and Grover, H. J.: Experimental Investigation of Notch-Size Effects on Rotating-Beam Fatigue Behavior of 75S-T6 Aluminum Alloy. NACA TN 3291, 1954.
- Grover, H. J., Hyler, W. S., Kuhn, Paul, Landers, Charles B., and Howell, F. M.: Axial-Load Fatigue Properties of 24S-T and 75S-T Aluminum Alloy As Determined in Several Laboratories. NACA Rep. 1190, 1954. (Supersedes NACA TN 2928.)
- 9. Hardrath, Herbert F., Landers, Charles B., and Utley, Elmer C., Jr.: Axial-Load Fatigue Tests on Notched and Unnotched Sheet Specimens of 61S-T6 Aluminum Alloy, Annealed 347 Stainless Steel, and Heat-Treated 403 Stainless Steel. NACA TN 3017, 1953.
- 10. Brueggeman, W. C., and Mayer, M., Jr.: Guides for Preventing Buckling in Axial Fatigue Tests of Thin Sheet-Metal Specimens. NACA IN 931, 1944.

- 11. Kuhn, Paul, and Hardrath, Herbert F.: An Engineering Method for Estimating Notch-Size Effect in Fatigue Tests on Steel. NACA TN 2805, 1952.
- 12. Howland, R. C. J.: On the Stresses in the Neighbourhood of a Circular Hole in a Strip Under Tension. Phil. Trans. Roy. Soc. (London), ser. A, vol. 229, Jan. 6, 1930, pp. 49-86.
- 13. Neuber, Heinz: Theory of Notch Stresses: Principles for Exact Stress Calculation. J. W. Edwards (Ann Arbor, Michigan), 1946.

TABLE I .- SPECIMEN MACHINING DATA

æ

.

....

¢

. .

8

Hole diameter, in.		1/32	1/16	1/8	1/4	1/2	1	2
Starting siz	ze, in.	0.021	0.052	0.116	0.238	0.490	0.990	1.990
Second cut,	in.	0.026	0.059	0.120	0.246	0.496	0.996	1.996
Final cut, i	n.	0.031	0.0625	0.125	0.250	0.500	1.000	2.000
			2024-T	3				
W = 4 in.	Speed, rpm Feed per rev., in.		 	1450 0.001 6	1450 0.0016	385 0.0016	385 0.0016	385 0.0016
W = 2 in.	Speed, rpm Feed per rev., in.		2240 0.0003	2240 0.0003	385 0.002	385 0.002	385 0.002	
W = 1/2 in.	Speed, rpm Feed per rev., in.	2240 0.0002	2240 0.0002	1450 0.0002	935 0.0003	0.0006		
			7075 - IC	5				
W = 4 in.	Speed, rpm Feed per rev., in.			1450 0.00035	1450 0.00035			385 0.0015
W = 2 in.	Speed, rpm Feed per rev., in.		1450 .00035	1450 0.00035			385 0.0015	
W = 1/2 in.	Speed, rpm Feed per rev., in.	2240 0.0002		1450 0.0003	935 0.0006			

.

. .

NACA IN 3631

-

-1

.

2

TABLE II.- AXIAL-LOAD FATIGUE-TEST RESULTS FOR

	R = 0				R = -1
Specimen	S _{max} , ksi	N, cycles to failure	Specimen	S _{max} , ksi	N, cycles to failure
		W = 4 in.;	đ = 1/8 ir	1.	
A148D8-7 A148D8-3 A148D8-3 A146D4-7 A146D4-7 A146D4-7 A146D4-3 A146D4-3 A148D8-1 A148D8-1 A148D8-2 A145D4-6 A145D4-6 A146D4-2 A146D4-2 A146D4-4 A145D4-7 A148D8-4 A145D4-1 A145D4-1 A145D4-1	62.2 40.0 35.0 35.0 30.0 25.0 25.0 20.0 17.0 17.0 17.0 17.0 17.0 15.0	Static 24,000 24,000 35,000 46,000 62,000 74,000 99,000 182,000 703,000 887,000 818,000 8,692,000 ^a 18,775,000 ^a 18,775,000 ^a 48,226,000 ^b 79,881,000 ^b 99,681,000	A143D4-2 A143D4-3 A143D4-4 A143D4-5 A144D4-5 A144D4-5 A144D4-6 A143D4-6 A143D4-7 A144D4-1 A144D4-1 A144D4-2 A144D4-3	25.0 22.0 19.0 15.0 14.0 13.0 12.0 12.0 12.0 11.0 10.0 9.0	11,000 30,000 130,000 418,000 235,000 3,03,000 3,115,000 1,029,000 1,586,000 4,596,000 7,097,000 8,864,000 58,657,000
		W = 4 in.;	d = 1/4 in	1.	
A148D4-2 A146D8-7 A148D4-1 A146D8-1 A145D32-7 A146D8-3 A146D8-3 A146D8-5 A146D8-5 A146D8-5 A146D8-4 A145D32-5 A145D32-1 A145D32-1 A145D32-2 A145D32-3 A145D32-2	63.1 40.0 35.0 35.0 30.0 25.0 25.0 20.0 17.0 15.0 15.0	Static 11,000 18,000 25,000 36,000 57,000 63,000 112,000 190,000 262,000 298,000 890,000 986,000 39,455,000 40,856,000	A144D8-6 A144D8-7 A144D8-7 A144D8-5 A144D8-5 A144D8-3 A144D8-1 A143D8-1 A143D8-1 A143D8-7 A143D8-7 A143D8-6 A144D8-2	25.0 25.0 20.0 19.4 14.5 12.0 12.0 10.0 9.0 8.75	7,000 10,000 39,000 44,000 249,000 274,000 657,000 741,000 9,029,000 12,637,000 17,053,000 17,575,000

2024-T3 ALUMINUM-ALLOY-SHEET SPECIMENS

^aFailed at grip line. ^bDid not fail.

TABLE II.- AXIAL-LOAD FATIGUE-TEST RESULTS FOR

[R = 0			R = -1						
Specimen			Specimen		·····					
	S _{max} , ksi	N, CYCLES to failure		S _{max} , ksi	N, CYCLES TO failure					
	W = 4 in.; d = 1/2 in.									
A150D4-3	63.2	Static	*							
A150D4-2	45.0	7.000	A14508-1	25.0	5,000					
A15004-1	45.0	10,000	A14508-2	25.0	7,000					
A148D32-7	40.0	17,000	ATHING -3	20.0	22,000					
A148032-6	40.0	17.000	A144064-1	20.0	25,000					
A148D32-5	35.0	38,000	A143032-2	15.0	99,000					
A1/18D32_J	35.0	bh 000	A143D32-2	15.0	145,000					
A108032-2	30.0	°27,000		15.0	171,000					
A11/8030 3	30.0	² 7,000		12.0	307 000					
A140002-0	30.0	51,000		12.0	1 <u>16 000</u>					
A140032-5	30.0	70,000		12.0	kai 000					
	25.0	01,000		10.0	1 004 000					
A11/508.3	25.0	101,000		10.0	2 296 000					
A105D8 6	200	132,000		10.0	2,2,50,000					
A14508-5	20.0	251,000			1 386 000					
A11/6032-1	17.0	658,000	Alkhoch_7	10.0	⁴ 20,000,000					
A146D32-4		1 065 000	A145032-7	9.0	20,000,000					
A1)(8D32-1	17.0	°2 600 000		, ,	20,092,000					
A146D32-7		C3.376.000								
A146D32-2		9.971.000								
A14508-7	15.0	15.824.000								
A146032-3	15.0	21.374.000								
			<u> </u>	L	l					
	r	₩ = 4 in	.; d = 1 in.		·					
A150d16-7	66.5	Static								
A150D16-5	45.0	12,000	A143D16-3	27.0	6,000					
A150D16-4	45.0	13,000	A143D16-5	25.0	8,000					
A150D16-2	40.0	16,000	A143D16-4	25.0	10,000					
A150D16-3	40.0	24,000	A145D64-2	20.0	26,000					
A148D16-4	35.0	51,000	A145D64-1	20.0	48,000					
A148D16-5	35.0	55,000	A145D64-3	20.0	48,000					
A148D16-3	30.0	65,000	A145D64-4	15.0	133,000					
A148D16-2	30.0	74,000	A144D32-6	15.0	197,000					
A148D16-1	25.0	153,000	A145D64-5	15.0	213,000					
A146D16-7	25.0	280,000	A144D32-5	15.0	237,000					
A146D16-2	20.0	212,000	A144D32-2	12.9	483,000					
A146D16-6	20.0	837,000	A144D32-1	12.0	547,000					
A146D16-1	20.0	924,000	A144D32-3	10.0	~3,791,000					
A145D64-7	17.0	476,000	A144D32-4	10.0	11,889,000					
A145D64-6	17.0	15,000,000	A143D16-7	10.0	13,459,000					
A146D16-5	17.0	18,944,000	A144D32-7	10.0	14,185,000					
A150D16-1	15.0	650,000	A143D16-6	9.7	13,541,000					
A146D16-3	15.0	~8,494,000	A143D16-2	9.0	46,965,000					
A148D16-7	15.0	13,558,000	A143D16-1	9.0	47,193,000					
A146D16-4	15.0	38,054,000	ł							
A148D16-6	15.0	1 ⁰ 52,056,000			1					

2024-T3 ALUMINUM-ALLOY-SHEET SPECIMENS - Continued

^aFailed at grip line. ^CNo guides. ^dEstimated life.

a,

×.

Ē

TABLE II .- AXIAL-LOAD FATIGUE-TEST RESULTS FOR

		R = 0			R = -1		
Specimen	S _{max} , kei	N, cycles to failure	Specimen	S _{max} , ksi	N, cycles to failure		
			W = 4 in	1.; d = 2 in.	·		
	A150D64-6	69.7	Static				
	A150D64-1	50.0	15,000	A145D16-4	25.0	12,000	
	A150D64-2	50.0	17,000	A145D16-3	25.0	15,000	
	A148D64-4	45.0	18,000	A143D64-2	20.0	44,000	
	A148064-3	45.0	26,000	A143D64-1	20.0	000,48	
	A148D64-2	40.0	31,000	A143D64-3	18.0	53,000	
	A148064-6	40.0	46,000	A143D64-4	18.0	65,000	
	A146D64-7	35.0	39,000	A143D64-5	15.0	321,000	
	A148D4-1	35.0	53,000	A143D64-6	15.0	361,000	
	A146064-5	50.0	61,000	A144D16-1	12.0	993,000	
	A140004-0	50.0	65,000	A144010-2	12.0	1,025,000	
		2.0	102,000	A145064-7	12.0	1,806,000	
	A140004-5	2.0	105,000	A144016-6	12.0	3,090,000	
	A140004=(22.0	215,000	A144010-2	10.0	7,259,000	
		22.0	152,000	A144DL0-2	10.0	24,151,000	
	A10004-2	20.0			10.0	20,020,000	
		20.0	9,545,000		10.0	Z(,995,000	
	A150D64-3	18.0	12 713 000		10.0	74,001,000	
	A150D64-5	18.0	17 337 000		9.0	61,000,000	
	A145016-7	15.0	\$103,970,000	A145D16-2	9.0	81 016 000	
		·	W = 2 in.	; $d = 1/16$ in.		ı — — — —	
	A145C2-6	63.6	Static				
	A149C2-1	64.6	Static	A146032-6	25.0	18,000	
	A143C2-6	64.0	94	A143C32-1	25.0	23,000	
	AU4902-7	63.0	191	A143C8-3	25.0	23,000	
	A143C8-4	60.0	255	A143032-7	20.0	52,000	
	A14300-1	60.0	229	A14308-6	20.0	58,000	
	A140002-1	22.0	1,690	A15002-6	20.0	81,000	
	A14902-4	55.0	2,031	A143C8-2	15.0	268,000	
	A143032-6	50.0	3,516	A145C2-7	15.0	374,000	
	A14902-2	50.0	4,075	A143C2-7	15.0	401,000	
	A14402-0	45.0	0,000	A143C8-7	15.0	525,000	
	A14002-4	45.0	14,000	A140C32-4	15.0	2,0/9,000	
	A15002-5	40.0	10,000	A144C2-7	15.0	2,510,000	
	A14402-2	40.0	20,000	A14000-5	1 11.0	5,410,000	
	A1002-7	27.0		A14902-7	1 11.0	0,272,000	
	A14402=1	30.0	24,000	A14502-2	11.0	9,5(5,000	
	A1002-1	30.0	17,000	A140032-7	1 10.0		
	115002-0	25.0		A14902-3	10.0	27 186 000	
	A15002-2	25.0	124,000	A144C2-4	10.0	32 596 000	
	A122002-2	22.0	350.000		1 10.0		
	A11-3032-9	22.0	555.000				
	A146C32-2	20.0	1.009.000	1	{	1	
	A144C2-3	20.0	7,719.000				
	A146032-5	18.0	30,438,000	R			
	A143032-4	18.0	32.348.000	11	1	1	
	A14302-1	17.0	105,511,000				
	A14302-5	17.0	b126,085.000	l.	1	1	
	A143C2-7	17.0	^b 166,717,000	1	1		

2024-T3 ALUMINUM-ALLOY-SHEET SPECIMENS - Continued

⁸Failed at grip line.

•

^bDid not fail. ^dEstimated life. 4

4

TABLE II.- AXIAL-LOAD FATIGUE-TEST RESULTS FOR

					·				
		R = 0			R ≠ -1				
Bpecimen	S _{max} , ksi	N, cycles to failure	Specimen	S _{max} , ksi	N, cycles to failure				
	W = 2 in.; $d = 1/8$ in.								
A145C4-1 A149C32-5 A150C4-3 A149C32-1 A146C4-1 A145C4-1 A145C4-4 A148C32-6 A148C32-6 A148C32-6 A148C4-7 A148C4-7 A148C4-3 A148C4-3 A148C4-3 A148C4-2 A148C4-5 A148C4-5 A148C4-6 A148C32-5 A150C4-2 A148C32-4 A148C32-1	63.9 61.6 61.0 60.0 50.0 40.0 50.0 40.0 55.0 55.0 55.0 20.0 18.0 15.0 15.0 15.0	Static Static Static 344 533 1,681 9,570 15,156 31,000 38,000 65,000 100,000 104,000 172,000 409,000 2,005,000 12,607,000 8,970,000 34,008,000 43,221,000	A149C32-7 A144C4-6 A145C4-6 A150C4-4 A145C4-3 A146C4-4 A148C32-3 A150C4-5 A150C4-5 A150C4-1 A146C4-2 A144C4-1 A144C4-1 A144C4-3 A144C4-1 A148C32-4 A148C32-7 A148C32-7	26.0 25.0 20.0 20.0 20.0 15.0 15.0 15.0 15.0 13.0 13.0 11.0 11.0 11.0 10.0 10.0	8,000 9,000 12,000 33,000 43,000 138,000 138,000 213,000 411,000 1,838,000 976,000 1,063,000 1,472,000 13,864,000 16,860,000 b91,920,000				
	·	W ≠ 2 in.	; $d = 1/4$ in.	<u> </u>					
A145C8-7 A148C8-2 A148C8-2 A148C8-3 A146C8-5 A146C8-5 A146C8-5 A145C8-2 A145C8-1 A146C16-2 A146C16-2 A146C16-3 A146C6-3 A144C8-3 A144C8-6 A150C8-4 A150C8-4 A150C8-2 A148C8-4	64.2 62.0 61.0 40.0 30.0 25.0 20.0 25.0 20.0 18.0 18.0 18.0 16.0 15.0 15.0 14.0	Static Static 280 13,000 19,000 51,000 56,000 158,000 158,000 124,000 155,000 286,000 4,196,000 5,300,000 9,578,000 20,883,000 25,848,000 66,472,000 138,541,000	A14508-6 A148016-6 A148016-2 A148016-7 A146016-7 A14608-4 A14608-3 A14608-3 A14608-1 A14408-1 A14508-5 A148016-3 A148016-3 A148016-5 A148016-5 A148016-5 A148016-5 A148016-4 A14408-4 A14608-7	25.0 25.0 20.0 20.0 20.0 15.0 15.0 15.0 15.0 10.0 10.0 10.0 9.0 9.0	9,000 9,000 10,000 30,000 31,000 90,000 112,000 175,000 731,000 2,485,000 3,529,000 5,714,000 6,637,000 29,305,000 32,134,000				

2024-T3 ALLMINUM-ALLOY-SHEET SPECIMENS - Continued

^bDid not fail.

TABLE II. - AXIAL-LOAD FATIGUE-TEST RESULTS FOR

<u>. </u>		R = 0			R = -1					
Specimen	S _{max} , ksi	N, cycles to failure	Specimen	S _{max} , ksi	N, cycles to failure					
W = 2 in.; $d = 1/2$ in.										
A15004-1 A150016-4 A14602-5 A150016-5 A14908-1 A144016-2 A144016-7 A144016-7 A143016-5 A150016-6 A14602-2 A149016-3 A149016-3 A14908-5 A14908-5 A14908-5 A14908-5 A14908-5 A14908-5 A14908-5 A14908-2	68.0 63.0 40.0 40.0 35.0 35.0 25.0 25.0 25.0 25.0 25.0 25.0 20.0 18.0 16.0 16.0 16.0 16.0 15.0 14.0 14.0	Static Static 16,000 25,000 25,000 25,000 46,000 62,000 71,000 223,000 128,000 163,000 395,000 12,507,000 368,000 381,000 37,120,000 77,092,000 129,020,000	A144C16-5 A145C16-2 A146C2-1 A144C16-6 A149C16-7 A149C16-4 A149C16-4 A149C16-1 A149C16-1 A149C16-1 A149C16-5 A149C16-5 A149C16-7 A145C16-7	25.0 25.0 20.0 20.0 20.0 15.0 15.0 15.0 15.0 12.0 12.0 10.0 10.0	8,000 9,000 29,000 32,000 36,000 108,000 122,000 125,000 340,000 516,000 674,000 18,767,000 25,450,000					
		W = 2 in	.; d = 1 in.							
A145C32-1 A143C4-2 A148C2-1 A149C4-6 A143C4-1 A143C2-3 A148C2-3 A148C2-3 A148C2-3 A149C4-1 A150C32-7 A148C2-5 A145C32-7 A146C32-7 A146C32-1 A146C32-1 A148C32-6 A145C32-7 A150C32-3 A144C32-2	69.7 64.0 40.0 35.0 35.0 25.6 20.0 28.0 28.0 18.0 18.0 18.0 18.0 17.0 15.0	Static Static 23,000 34,000 41,000 57,000 50,000 62,000 6,049,000 10,326,000 20,917,000 1,438,000 18,514,000 19,590,000 48,550,000 49,227,000 b161,857,000 b163,096,000	A150032-6 A14904-4 A14904-2 A14802-4 A14802-2 A14802-2 A143032-5 A14502-7 A144032-5 A14602-7 A144032-3 A14904-5 A14904-5 A14904-3 A14904-3 A14904-7	25.0 25.0 25.0 20.0 20.0 15.0 15.0 15.0 12.0 12.0 12.0 10.0 10.0	15,000 16,000 19,000 41,000 55,000 74,000 131,000 171,000 190,000 1,336,000 7,441,000 7,853,000 23,328,000 42,305,000 114,576,000					

2024-T3 ALUMINUM-ALLOY-SHEET SPECIMENS - Continued

bDid not fail.

dEstimated life.

TABLE II. - AXIAL-LOAD FATIGUE-TEST RESULTS FOR

		P = 0	<u> </u>		n - 1				
		R = 0							
Specimen	S _{max} , ksi	N, cycles to failure	Specimen	S _{max} , ksi	N, cycles to failure				
	W = 1/2 in.; $d = 1/32$ in.								
A146A1-4 A149A8-6 A149A1-1 A150A0-6 A149A1-3 A146A1-3 A146A1-3 A143A0-2 A143A1-4 A144A1-5 A150A0-7 A148A8-7 A146A4-8 A150A1-1 A144A1-5 A150A1-7 A146A1-6 A144A1-1	66.2 35.0 35.0 30.0 20.0 25.0 25.0 25.0 25.0 25.0 23.0 23.0 20.0 20.0 20.0 25.0 25.0 25.0 25.0 25	Static 37,000 61,000 259,000 408,000 408,000 455,000 616,000 ⁸ 1,113,000 10,204,000 1,368,000 12,192,000 5,652,000 11,963,000 1,092,000 ^b 51,634,000 ^b 51,137,000 ^b 53,839,000	A149A1-5 A148A1-4 A144A1-6 A145A1-3 A146A1-8 A146A1-7 A149A1-2 A143A1-2 A143A1-3 A148A1-8 A143A1-5 A144A1-2 A143A1-7 A148A1-5 A148A1-5 A148A1-2 A149A1-6 A143A1-1 A144A1-4	30.0 30.0 25.0 25.0 20.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 1	12,000 13,000 29,000 45,000 777,000 94,000 654,000 843,000 ⁸ 1,521,000 1,777,000 2,522,000 56,860,000 14,587,000 14,674,000 55,163,000 20,399,000 85,779,000				
			A149A1-7 A143A1-8	10.0 9.4	² 91,315,000 ⁸ 25,493,000				
		W = 1/2 i	.n.; d = 1/16 i	n.					
A145A2-3 A145A2-2 A146A2-4 A145A2-1 A150A2-6 A149A2-7 A150A2-6 A149A2-4 A149A2-4 A149A2-4 A149A2-3 A146A2-7 A146A2-8 A146A2-8 A146A2-8 A146A2-8	67.1 35.0 35.0 30.5 30.0 25.0 24.6 23.0 21.0 21.0 20.0 20.0 20.0	Static 41,000 51,000 67,000 156,000 797,000 446,000 144,000 501,000 596,000 11,741,000 21,709,000 28,123,000 36,422,000	A145A2-4 A145A2-8 A146A2-2 A146A2-6 A150A2-7 A145A2-6 A145A2-6 A145A2-6 A145A2-7 A145A2-7 A145A2-7 A145A2-1 A145A2-1 A145A2-1 A145A2-2 A144A2-5 A144A2-5 A144A2-5 A144A2-6 A145A2-6 A145A2-6 A145A2-6 A145A2-6 A145A2-6 A145A2-6 A145A2-6 A145A2-6 A145A2-6 A145A2-6	30.0 25.0 20.0 20.0 20.0 20.0 19.8 15.0 19.8 15.0 15.0 15.0 15.0 12.0 11.0 11.0 11.0 10.6 9.9 9.0 9.0	9,000 18,000 21,000 38,000 132,000 140,000 240,000 356,000 532,000 2,586,000 3,256,000 3,256,000 14,177,000 27,267,000 15,482,000 35,480,000 48,582,000 5,219,000 $^{b}103,533,000$ $^{b}112,484,000$				

2024-T3 ALLMINUM-ALLOY-SHEET SPECIMENS - Continued

⁸Failed at grip line. ^bDid not fail.

TABLE II. - AXIAL-LOAD FATIGUE-TEST RESULTS FOR

		R = 0			R = -1
Specimen	S _{max} , ksi	N, cycles to failure	Specimen	S _{max} , ksi	N, cycles to failure
		W = 1/2 in.;	d = 1/8 in	•	
A149A4-7 A145A4-2 A145A4-2 A145A4-3 A143A4-3 A143A4-5 A144A4-5 A146A4-5 A145A4-3 A150A4-7 A146A4-2 A148A4-8 A148A4-5 A144A4-7 A143A4-5	69.5 39.5 35.0 35.0 30.0 25.0 25.0 25.0 25.0 23.0 20.0 20.0	Static 23,000 39,000 131,000 108,000 154,000 302,000 127,000 5,218,000 4,125,000 6,994,000 35,869,000 ^b 52,276,000	A150A4 -8 A143A4 -4 A143A4 -7 A143A4 -7 A143A4 -7 A143A4 -1 A144A4 -1 A144A4 -1 A144A4 -2 A150A4 -5 A150A4 -5 A150A4 -2 A144A4 -8 A144A4 -8 A145A4 -5 A145A4 -5 A150A1 -3 A150A1 -3 A150A4 -3 A144A4 -3 A144A4 -3	30.0 30.0 25.0 20.0 15.0 15.0 15.0 14.0 13.0 12.0 12.0 11.0 9.5	8,000 9,000 16,000 21,000 118,000 124,000 859,000 1,526,000 4,426,000 1,920,000 4,157,000 2,174,000 2,174,000 31,663,000 33,589,000 28,099,000 117,588,000 b128,510,000
		W = 1/2 in.	; $d = 1/4 i$	n.	
A145A8-8 A150A8-2 A146A8-3 A148A8-3 A145A8-3 A145A8-4 A143A0-3 A143A8-7 A144A8-2 A148A8-8 A150A0-1 A143A8-7 A150A0-4 A146A8-1	68.2 35.0 35.0 28.0 25.0 25.0 25.0 25.0 25.0 25.0 23.0 23.0 22.0 22.0	Static 62,000 107,000 228,000 278,000 451,000 2,890,000 13,889,000 22,233,000 10,064,000 10,204,000 11,309,000 49,987,000	A146A8-4 A150A0-3 A144A8-8 A144A8-7 A146A8-8 A145A8-7 A145A8-7 A145A8-7 A145A8-7 A145A8-7 A144A8-6 A150A0-5 A144A8-1 A144A8-1 A144A8-1 A150A8-8 A150A8-6 A146A8-7	25.0 25.0 20.0 20.0 15.0 15.0 15.0 14.0 14.0 14.0 14.0 14.0 12.0 11.0	$\begin{array}{c} 16,000\\ 30,000\\ 70,000\\ 71,000\\ 117,000\\ 988,000\\ 1,384,000\\ 2,906,000\\ 8,002,000\\ 140,000\\ 265,000\\ 398,000\\ 8,002,000\\ 8,002,000\\ 140,000\\ 265,000\\ 31,873,000\\ 8,608,000\\ 24,876,000\\ 31,873,000\\ 32,599,000\\ 43,669,000\end{array}$

2024-T3 ALUMINUM-ALLOY-SHEET SPECIMENS - Concluded

^bDid not fail.

TABLE III. - AXIAL-LOAD FATIGUE-TEST RESULTS FOR

[R = 0				R = -1
Specimen	S _{max} , ksi	N, cycles to failure	Specimen	S _{max} , ksi	N, cycles to failure
		W = 4 in.	; d = 1/8 i	n.	
B7851-1 B5851-1 B7051-1 B7251-2 B6951-1 B9351-1 B7251-1 B9051-2 B6751-2 B9351-3 B5451-1 B6051-2 B8051-3 B7851-3	79.8 30.0 25.0 25.0 20.0 18.0 18.0 17.0 16.5 16.0 16.0 16.0 15.0	Static 16,000 19,000 39,000 68,000 107,000 136,000 1,783,000 2,404,000 a33,008,000 a33,943,000 b51,448,000 b67,386,000	B53S1-1 B93S1-2 B68S1-2 B70S1-2 B70S1-2 B70S1-2 B73S1-2 B73S1-2 B75S1-1 B74S1-1 B67S1-1 B67S1-1 B64S1-2 B61S1-1 B56S1-1 B56S1-1 B56S1-1 B90S1-3 B71S1-2 B73S1-3 B71S1-1	25.0 20.0 20.0 18.0 15.0 15.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 9.0 9.0	9,000 9,000 41,000 67,000 81,000 91,000 96,000 221,000 1,054,000 1,054,000 1,475,000 6,244,000 6,244,000 8,668,000 22,947,000 $a_{35},834,000$ $b_{57},279,000$
		W = 4 in.	; d = 1/4 in	1.	
B6181-3 B5681-2 B6581-3 B8681-2 B7581-3 B5381-3 B6481-3 B6081-1 B5581-3 B5981-3 B8781-1 B7481-3 B8781-1 B7481-3 B6181-2 B8781-3 B7381-1	80.5 30.0 25.0 25.0 20.0 18.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	Static 17,000 27,000 41,000 55,000 168,000 228,000 15,458,000 16,786,000 311,000 6,704,000 a6,986,000 a13,042,000 a19,321,000 a22,207,000 35,536,000	B9051-1 B6251-3 B5751-1 B7151-3 B6951-3 B6251-2 B7051-3 B5251-3 B6051-3 B8051-1 B5451-3 B5851-3 B8651-3	25.0 25.0 20.6 20.0 15.0 12.0 12.0 10.0 9.0 9.0 9.0	8,000 9,000 24,000 28,000 84,000 125,000 314,000 2,769,000 6,719,000 11,255,000 8,614,000 8,614,000 8,614,000 26,620,000

7075-T6 ALUMINUM-ALLOY-SHEET SPECIMENS

^aFailed at grip line. ^bDid not fail.

.

······	,		Ţ	,					
		R = 0			R = -1				
Specimen	S _{max} , ksi	N, cycles to failure	Specimen	S _{max} , ksi	N, cycles to failure				
	W = 4 in.; $d = 2$ in.								
B77S1-3 B77S1-1 B89S1-2 B79S1-1 B92S1-1 B84S1-1 B52S1-2 B77S1-2 B54S1-2 B94S1-1 B94S1-3 B95S1-2 B87S1-2	81.9 35.0 30.0 25.0 25.0 23.0 21.0 21.0 20.0	Static 14,000 16,000 25,000 64,000 40,000 82,000 117,000 140,000 692,000 4,605,000 11,791,000 b51,880,000	B9151-3 B9551-1 B9451-2 B8451-2 B7951-2 B9551-3 B9151-1 B6951-2 B9251-2 B5551-2 B6651-1 B8951-1 B7651-3	25.0 25.0 20.0 18.0 15.0 15.0 12.0 12.0 10.0 10.0 10.0	18,000 21,000 38,000 42,000 68,000 338,000 592,000 2,929,000 22,552,000 332,000 710,000 b100,325,000 b107,947,000				
		W = 2 in.	; d = 1/16	in.					
B9451-6 B7351-4 B9251-4 B7951-7 B9551-6 B7051-4 B9151-5 B6951-4 B5351-5 B8951-6 B6051-6 B6051-6 B6051-7 B9951-7 B9951-7	81.4 35.0 35.0 30.0 25.0 25.0 25.0 20.0 20.0 20.0 20.0 19.0 18.0	Static 15,000 43,000 32,000 37,000 66,000 124,000 107,000 257,000 257,000 82,457,000 7,333,000 7,677,000 22,111,000 830,650,000 b 3 80b 000	B7381-6 B9181-7 B8981-5 B5281-6 B7781-7 B9281-5 B6181-4 B6581-5 B7781-5 B9081-5 B9081-5 B9381-5 B6481-4 B7781-6	25.0 25.0 20.0 15.0 15.0 13.0 13.0 12.0 11.0 11.0 11.0	16,000 18,000 43,000 53,000 153,000 177,000 250,000 398,000 392,000 3,644,000 8,626,000 19,460,000 15,738,000				

.. • •

TABLE III .- AXIAL-LOAD FATIGUE-TEST RESULTS FOR

7075-T6 ALIMINUM-ALLOY-SHEET SPECIMENS - Continued

^aFailed at grip line.

^bDid not fail.

TABLE III.- AXIAL-LOAD FATIGUE-TEST RESULTS FOR

		R = 0		R = -1					
Specimen	S _{max} , ksi	N, cycles to failure	Specimen	S _{max} , ksi	N, cycles to failure				
W = 2 in.; $d = 1/8$ in.									
B5681-7 B8481-6 B5881-7 B5581-7 B5581-7 B6081-4 B7381-7 B7381-7 B7381-7 B7881-7 B7881-7 B5781-7 B5781-7 B5481-6 B6881-6 B7481-6 B9081-7 B7181-6	77.7 35.0 35.0 30.0 25.0 25.0 20.0 20.0 19.0 19.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	Static 12,000 12,000 17,000 46,000 30,000 68,000 164,000 283,000 175,000 242,000 293,000 526,000 17,583,000 ⁸ 27,633,000 ⁸ 32,620,009	B7851-6 B9081-6 B5381-7 B6581-6 B8681-6 B6281-7 B8781-7 B5981-6 B5581-6 B7581-7 B6181-6 B5481-6 B6681-6 B7581-6	25.0 25.0 20.0 15.0 15.0 15.0 12.0 12.0 12.0 11.0 11.0 10.0 10.0	$12,000 \\ 13,000 \\ 40,000 \\ 62,000 \\ 85,000 \\ 97,000 \\ 1,052,000 \\ 243,000 \\ 381,000 \\ 381,000 \\ 575,000 \\ 368,000 \\ 10,482,000 \\ 9,109,000 \\ 45,207,000 \\ 45,207,000 \\ 10,00$				
	L	W = 2 in	.; d = 1 in.	L	I				
B84815 B86814 B66814 B66815 B55815 B94814 B55814 B74814 B75814 B75814 B70815 B58814 B53814 B53815 B63815 B63815 B63815 B63815 B63815 B63815 B56815 B65815 B65815 B65814	82.2 38.2 35.0 35.0 30.0 25.0 25.0 25.0 25.0 25.0 25.0 21.0 21.0 21.0 20.0 20.0 18.0 15.0	Static 12,000 13,000 16,000 26,000 26,000 68,000 70,000 63,000 287,000 5,251,000 138,000 411,000 434,000 13,374,000 28,164,000 b54,277,000 b90,287,000 b75,512,000 b80,746,000	B7251-4 B8751-4 B7651-4 B7751-4 B7751-5 B5751-5 B6851-5 B6851-5 B9151-4 B7551-5 B9351-4 B7851-4 B7851-4 B7851-4 B8651-5	26.1 25.0 20.0 20.0 18.0 15.0 15.0 14.0 14.0 13.0 13.0 12.0 12.0 11.0	15,000 15,000 33,000 72,000 154,000 212,000 2,764,000 2,879,000 10,162,000 14,077,000 12,309,000 27,850,000 78,111,000				

.

7075-T6 ALLMINUM-ALLOY-SHEET SPECIMENS - Continued

²Failed at grip line.

^bDid not fail.

TABLE III. - AXIAL-LOAD FATIGUE-TEST RESULTS FOR

[$\mathbf{R} = \mathbf{O}$		R = -1					
Specimen	S _{max} , ksi	N, cycles to failure	Specimen	S _{max} , ksi	N, cycles to failure				
W = 1/2 in.; $d = 1/32$ in.									
B8951-12 B6851-13 B8951-11 B6851-11 B7651-12 B6951-12 B6151-13 B9151-12 B9451-11 B9351-11 B7551-11 B7751-11 B7751-13 B9251-11 B7151-13	82.7 35.0 35.0 30.0 27.0 27.0 25.0 25.0 25.0 24.0 23.0 23.0 23.0 22.0 20.0	Static 23,000 26,000 85,000 95,000 61,000 254,000 2,699,000 5,792,000 152,000 8,588,000 29,000,000 145,000 227,000 ^b 59,879,000 23,393,000 ^b 54,531,000	B5581-12 B8781-11 B7381-12 B8681-4 B9581-11 B9581-12 B7081-11 B6281-12 B8981-13 B8681-13 B9481-12 B7681-11 B7781-12 B8081-13 B9281-5	30.0 30.0 25.0 25.0 20.0 20.0 18.1 15.0 15.0 13.0 13.0 13.0 13.0 12.0 12.0	11,000 12,000 21,000 51,000 239,000 262,000 543,000 2,013,000 ⁸ 2,906,000 ⁸ 3,543,000 26,767,000 36,235,000 51,922,000 ^b 59,056,000				
	W = 1/2 in.; $d = 1/8$ in.								
B6681-11 B9581-13 B6381-13 B7581-12 B7881-13 B9281-6 B5781-11 B6181-12 B7781-13 B9081-11 B6081-13 B8481-13 B5281-11	83.9 35.0 35.0 25.0 25.0 25.0 25.0 22.0 22.0 20.0 20	Static 21,000 26,000 38,000 144,000 9,095,000 18,344,000 1,855,000 2,381,000 25,969,000 45,156,000 b54,478,000	B69S1-11 B57S1-12 B80S1-12 B64S1-11 B64S1-12 B62S1-11 B72S1-11 B72S1-11 B72S1-13 B54S1-13 B67S1-13	25.0 25.0 20.0 20.0 17.0 15.0 15.0 13.0 13.0 12.0 12.0	20,000 25,000 70,000 90,000 352,000 1,195,000 1,001,000 2,727,000 9,298,000 53,314,000 8,806,000 64,530,000				

....

7075-T6 ALUMINUM-ALLOY-SHEET SPECIMENS - Continued

^aFailed at grip line. ^bDid not fail.

TABLE III .- AXIAL-LOAD FATIGUE-TEST RESULTS FOR

7075-T6 ALUMINUM-ALLOY-SHEET SPECIMENS - Concluded

		$\mathbf{R} = 0$		R = -1				
Specimen	S _{max} , ksi	N, cycles to failure	Specimen	S _{max} , ksi	N, cycles to failure			
W = 1/2 in.; $d = 1/4$ in.								
B54S1-13 B65S1-11 B79S1-13 B84S1-11 B63S1-12 B53S1-13 B70S1-13 B70S1-13 B70S1-12 B58S1-11 B74S1-11	79.4 35.0 30.0 25.0 25.0 24.0 23.0 23.0	Static 23,000 33,000 57,000 233,000 1,731,000 19,810,000 2,016,000 5,210,000 26,620,000 59,714,000	B60S1-12 B68S1-12 B73S1-11 B65S1-13 B52S1-13 B71S1-12 B60S1-11 B93S1-13 B78S1-11 B84S1-12 B61S1-11 B74S1-13	30.0 30.0 25.0 25.0 20.0 15.0 15.0 13.0 13.0 12.0 12.0	$10,000 \\ 11,000 \\ 28,000 \\ 54,000 \\ 84,000 \\ 176,000 \\ 231,000 \\ 3,585,000 \\ 3,437,000 \\ 50,106,000 \\ 19,417,000 \\ 19,417,000 \\ 554,651,000 \\ 19,651,000 \\ 10,000 \\$			

^bDid not fail.

TABLE IV .- AVERAGE VALUES OF STRESS AT VARIOUS FATIGUE LIVES

FOR UNNOTCHED-SHEET SPECIMENS OF 2024-T3

AND 7075-TG FROM REFERENCE 8

	Average stress, ksi					
N, cycles	R = -1	R = 0				
	2024-T3 and 7075-T6	2024 - T3	7075 - 16			
108	20.5	33.0	35.0			
107	21.0	33.5	35.3			
106	25.0	34.0	36.0			
105	36.0	47.4	44.2			
104	54.0	61.6	65.6			

		K _F									
		$\mathbf{R} = 0$			R = -1						
W, in.	N, cycles d, in.	10 ⁸	107	106	105	10 ¹	10 ⁸	107	10 ⁶	105	10 ⁴
					2024 – т	3					
ų	$\begin{cases} 1/8\\1/4\\1/2\\1\\2 \end{cases}$	2.20 1.94	2.10 2.24 2.24 2.23 1.81	1.79 2.00 2.00 1.89 1.62	1.76 1.82 1.89 1.69 1.75	1.47 1.40 1.28	2.28 2.28	2.10 2.34 2.34 2.19 2.00	2.00 2.08 2.27 2.19 1.99	2.00 2.12 2.30 2.19 2.02	2.00 2.16 2.25 2.16 1.93
2	$\begin{cases} 1/16\\ 1/8\\ 1/4\\ 1/2\\ 1\\ 1 \end{cases}$	1.94 2.20 2.36 2.20 1.89	1.81 1.97 2.10 2.13 1.76	1.62 1.79 1.89 2.00 1.62	1.72 1.90 1.98 2.11 1.86	1.37 1.47 1.40 1.34	2.06 2.16 2.18 2.10 2.05	2.00 2.10 2.19 2.10 1.97	1.98 2.17 2.19 2.12 2.00	2.02 2.18 2.32 2.18 2.08	1.93 2.12 2.16 2.16 1.93
1/2	$\begin{cases} 1/32\\ 1/16\\ 1/8\\ 1/4\\ 1/4 \end{cases}$	1.83 1.65 1.65 	1.64 1.68 1.60 1.43	1.42 1.58 1.42 1.28	1.50 1.58 1.50 1.39		2.05 2.05 2.05 1.83	1.86 2.00 1.86 1.72	1.71 1.92 1.72 1.79	1.80 1.85 1.85 1.85	1.64 1.83 1.97 1.80
7075-IG											
4	1/8 1/4 2	2.19 2.12 1.75	2.14 2.08 1.72	2.10 2.00 1.71	2.21 1.97 1.77	2.05 1.93 1.64	2.16 2.28 2.05	2.10 2.28 2.00	2.18 2.27 2.08	2.18 2.25 2.08	2.16 2.19 1.80
2	1/16 1/8 1	1.92 2.00 1.71	1.88 1.96 1.71	1.80 1.94 1.67	1.80 2.06 1.84	1.64	2.05 2.16 1.90	1.98 2.16 1.91	2.06 2.17 1.84	2.12 2.17 2.00	1.86 2.04 2.00
1/2	1/32 1/8 1/4	1.59 1.67 1.56	1.56 1.61 1.52	1.50 1.50 1.44	1.61 1.58 1.47		1.71 1.71 1.71	1.61 1.68 1.71	1.67 1.72 1.71	1.67 1.80 1.76	1.72 1.86 1.77

TABLE V.- EXPERIMENTAL VALUES OF $\ K_{\rm F}$ AT VARIOUS FATIGUE LIVES

21

	Hole diameter, d, in.					
Material	W = 4 in.	W = 2 in.	$W = \frac{1}{2}$ in.			
	L = 20 in.	L = 20 in.	L = 12 in.			
2024-T3 aluminum alloy	1/8 1/4 1/2 1 2	1/16 1/8 1/4 1/2 1	1/32 1/16 1/8 1/4			
7075-I6 aluminum alloy	1/8 1/4 2	1/16 1/8 1	1/32 1/8 1/4			

Figure 1.- Specimen configurations. All specimens were 0.091-inch thick.

Figure 2.- S-N diagram for 2024-T3 aluminum-alloy sheet. W = 4 inches;

 $d = \frac{1}{8}$ inch.

ß

NACA IN 3631

 $d = \frac{1}{4}$ inch.

NACA TN 3631

Т,

 $d = \frac{1}{2}$ inch.

NACA TN 3631

٤.

. . .

NACA TN 3631

R

90 TTT 111 80 R= 0 0 70 -----> Ultimate tensile strength R= -1 Did not fail -----60 50 S_{max},ksi 0 40 Ր 30 Ъ 20 10 00 0 ∟ 10³ 10⁸ 104 10⁵ 10⁶ 107 109 N, cycles

Figure 6.- S-N diagram for 2024-T3 aluminum-alloy sheet. W = 4 inches; d = 2 inches.

NACA TN 3631

<u>N</u>

 $d = \frac{1}{16} inch.$

NACA TN 3631

Figure 8.- S-N diagram for 2024-T3 aluminum-alloy sheet. W = 2 inches;

 $d = \frac{1}{8}$ inch.

3

NACA TN 3631

 $d = \frac{1}{4}$ inch.

ı

NACA IN 3631

Я

Figure 10.- S-N diagram for 2024-T3 aluminum-alloy sheet. W = 2 inches;

 $d = \frac{1}{2}$ inch.

Ч

NACA TIN 3631

NACA TN 3631

90 80 70 +> Ultimate tensile strength R= 0 0 R= -1 60 Did not fail ----50 S_{max},ksi 40 2 S 0 30 00 20 8 n 2 10 0 <u>-</u> 10³ 105 10⁶ 104 107 10⁸ 10⁹ N, cycles Figure 12.- 8-N diagram for 2024-T3 aluminum-alloy sheet. $W = \frac{1}{2}$ inch; $d = \frac{1}{32} \text{ inch.}$

naca in 3631

ĿJ

S

NACA IN 3631

峉

 $d = \frac{1}{8}$ inch.

સુ

NACA TN 3631

- S-N diagram for 2024-T) atuminum-alloy sheet. Widd = $\frac{1}{\mu}$ inch.

NACA IN 3631

Ж

Figure 16.- S-N diagram for 7075-T6 aluminum-alloy sheet. W = 4 inches; d = $\frac{1}{8}$ inch.

NACA IN 3631

90 1111 ↔ Ultimate tensile strength . 80 R= 0 Q 70 R= -1 Did not fail 60 50 S_{max},ksi 40 σ 30 0 δc 20 10 П 0 <u>-</u> 10³ 109 104 10⁶ 10⁶ 107 108 N, cycles

Figure 18.- S-N diagram for 7075-T6 aluminum-alloy sheet. W = 4 inches; d = 2 inches.

NACA IN 3631

Š

ram for 7075-16 aluminum-alloy she $d = \frac{1}{16}$ inch. NACA TN 3631

f

90 80 → Ultimate tensile strength R= O 0 70 R= -1 Did not fail 60 50 S_{max},ksi 40 2 9 30 曱 Ο 0 20 0.00 10 0 <u></u> 10³ 10⁶ 10⁴ 105 107 10⁸ 10⁹ N, cycles

ą,

 $d = \frac{1}{8}$ inch.

Ļ

Ħ

NACA TN 3631

5 F

Figure 22.- S-N diagram for 7075-T6 aluminum-alloy sheet. $W = \frac{1}{2}$ inch; $d = \frac{1}{32}$ inch.

NACA TN 3631

£

 $d = \frac{1}{8}$ inch.

-----<u>-</u>

114

NACA TN 3631

-

.

NACA TN 3631

£

k.

Figure 25.- Fatigue stress concentration factor $K_{\rm F}$ at N = 10⁷ for 2024-T3 aluminum-alloy sheet.

• -

(b) R = -1.

Figure 26.- Fatigue stress concentration factor K_F at N = 107 cycles for 7075-T6 aluminum-alloy sheet.