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ON PANEL FLUTTER AND DIVERGENCE OF INFINITELY

LONG UNSTHTENED AND RING—STHTENED

THIN-WALLED CIRCUIAR CYIZNDERS

By Robert W. Leonard and John M. Hedgepeth

A preliminary theoretical
divergence of infinitely long,

SUMMARY

investigation of the panel flutter and
umstiffened snd ring-stiffened thin-walled

circular cylinders is described. Linearized unsteady potential-flow
theory is utilized in conjunction with Donnell’s cylinder theory to

.

obtain equilibrium equations for panel flutter. Where necessary, a sim-
plified version of Fliigge’scylinder theory is used to obtain greater
accuracy. By applying Nyquist diagrsm techniques, analytical criteria
for the location of
of computed results

stability boundaries are
are presented.

derived. A limited number

INTRODUCTION

Although considerable effort has been expended in studying the flut-
ter smd divergence of thin, flat panels exposed to m airstream (see, for
exsmple, refs. 1 to 9), little is known of the importance of similar aero-
el.asti.cphenomena in the design of thin-walled cylindrical missile bodies
or of other aircraft components where -, curved panels are used. The
purpose of this report is to describe a preliminary theoretical.investiga-
tion of the aeroelastic stabi13ty of such configurations. Analytical
criteria for the determination of panel flutter sad panel-divergence
boundaries for infinitely long, unstiffened and ring-stiffened thin-walled
circular cylinders are presented along with a limited number of ccmputed
results.
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SYMBOIS

&

distance between ring stiffeners
?

amplitude of mth term in expansion for lateral motion of
ring-stiffened cylinder

dummy variable

speed of sound in

speed of sound in

speed of sound in

-,

air

fluid inside cylinder

rcylinder material, #-

3
plate flexural stiffness per tit length, Et

12(1 - V2)

Young’s modulus

base of natural system of logarithms

outside and inside air-force functions
and (6), respectively

outside.and inside air-force functions
eqs. (34) and (35), respectively)

.

f

definedby equations (5)

for vibrating ring (see

~fl),<)
Hankel functions of first and second kind, respectively,

h

Im

In

i =
r-1

of order n

t?d.cknessof cylinder wall -.

hl#@lery part —

modified Bessel function of first kind of “order n

Jn

Kn

k

Bessel function of first’kind of order n

+’

integer

modified Bessel function of second kind of order n
@

dimensionless frequency of harmonic vibration, ~ for unstiff-

ened cylinder and Q# for ring-stiffened cylinder .
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x
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xl

resonant frequencies of internal air-force function for
unstiffened cylinder (see eq. (22))

function defined byeqmtion (8)

function definedby equation (9)

outwsxd lift force on cylinder wall

smplitude of harmonically varying outward lift force for
unstlffened cylinder

smplitude of mth term in expansion for outward lift force for
stiffened cylinder

Mach number of

Mach number of
cylinder

flow along vibrating

external or internal

cylinder

flow along stationary

integer, number of longitudinal ha3X-waves in each
ring-stiffened cylinder

function definedby equation (~)

integer, number of full waves around circumference

forces exerted on cylinder wall by ring stiffeners

sm~litudes of harmonically varying reaction forces

bay of

of cylinder

exerted
by ring stiffeners

radius of cylinder

real part

radial coordinate

time

lateral deflection of cy13nder

snplitude of lat+mal motion of
cylinder

wall, positive outward

cylinder wall.for unstiffened

longitudinal coordinate for vibrating cylinder

longitudinal coordinate for stationary cylinder
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a

?m

5(X)

argument of Bessel functions for supersonic relative flow,

~~1J=~ for ~tiffened wl~der and 1~1~~-
for stiffened cylinder

aspect-ratio parameter, Rsr/a

function defined after equation (39)

J
m

Dirac delta function, 8(x) =0 for x+O; 5(x)dx = 1
-w

dsmping coefficient

argument of Bessel functions for subsonic relative flow,

lfi!~’ forunstiffened cylinder and lmla~’
for stiffened cylinder

b

-= circ@erential coordinate
.

Poisson’s ratio

wave number of longitudinal

itbnensionlesswave number,

dummy variable

mass density of air

P
waves in unstiffened cylinder

Rv

mass density of fluid inside cylinder

mass density of cylinder”material

midplme stresses”in circumferentialand longitudinal
directions, positive in tension

dimensionless midplane stresses,

parsmeter defined after equation

parameter defined after equation

frequency of harmonic vibration

.-

aO/E and crx/E,respectively

(8)

(39) ‘d

v



V4 operator,

(

&_

)

+LS2

&#. R?&2

‘4 V-4 inverse of operator V4

Subscripts:

cr critical value

min minhum value

max maximum value

Primes are used to indicate
argumsnt. Subscript notation is

METHOD

4

differentiationwith respect to complete
used to denote partial differentiation.

OF APPROACH

.
The configuration under consideration consists of a thin-walled

unstiffened or ring-stiffened circular cylinder extending to infinity in
..4 the positive and negative x-directions. (See fig. 1.) The cylinder is

filled with a stationary fluid and is surrounded by air flowing in the
positive x-direction at a Mach nuniber M. The effects of midplsne ten-
sile stresses in both the circumferential and longitudinal directions
smd of a small smo~t of structural damping are taken into account.

For simplicity in the analysis, it is assumed that the deformations
of the cylinder walls cam in most cases be ad.equtil.ydescribed by
D3nne11’s differential equation. (See ref. 10.) It is kept in mind,
h~ever, that the validity of Ibnnell’s theory is Mted to cases In
which there are a large number of circumferentialwaves; where this con.
dition is violated, a simplified version of Fliigge’scylinder theory
(see refs. 11 and 12) is employed to improve the accuracy of the results.

The problem to be considered is the determination of those combina-
tions of the parameters characterizing the cylinder and its environment
that correspond to the boundary between states of stable and unstable
motion. For the purposes of this paper, a system is considered stable if
its motion is either demped or purely sinusoidal; only timewise divergent
motion is considered to be unstable. In order to determine the stability
boundary itself, attention can be restricted to simple harmnic motion.

.
However, such shple-harmotic-motion snalyses often yield a multiplicity
of boundaries, ad it is necesssry to derive equilibrium conditions for

t divergent oscillatory motions in order to determine the degree of insta-
bility in regions separated by the various boundaries and, thus, to
identify the prhary stability boundary.
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In line with the foregoing discussion, the method of approach is
first to derive the equilibrium conditions for sinusoidal motion. These
conditions are then extended to apply to divergent motion by means of *

analytic continuation. ANyquist diagram technique is used to determine
states of stability and stability boundaries. b

UNSTIFFENED CYLINDER

Derivation of Equations
Q

It is assumed herein that tti”cylinder wall may deform into any
—

number of sinusoidal waves around its circumference and into sinusoidal
waves of’any wave length and constant smplitude along its length and,

-—

further, that the motion is simple harmonic in time; spacewise divergent
motion (motion increasing in smplitude along the cylinder) is specifi-
cally excluded. “Thus,the ltiteraldeflection of the cyltnder wall may
be written

(- -ivxeiutcos n~w(x,e,t) = Re we
)

where 7? is the complex amplitude of the motion, v is the real wave num--- .:
ber of the longitudinal waves, n is the number of full waves around the
circumference, and u is the frequency of oscillation. This assumed
deflection shape will be the basis for the-determination of the air
forces exerted on”the cylinder, the equilibrium condition, and, through
it, the criteria for flutter. Note that n = O and n = 1 have been
specifically excluded from consideration in this panel-flutter analysis

-.

because neither of these two motions involves panel action. The first
value n = O represents pure dilation or contraction of the cross sec-
tion; the second value n . 1 merely represents a rigid-body translation
of the cross section.

Air forces.- !17heair forces exerted on en infinite cylinder tibrating
harmonically in still air have been reporti-din the literature. (See~-for - “=
exsmple, ref. 13.) Although some of these.resul.tscan be applied to tle
present problem of determining the forces exerted on an oscillating cylin-
der in moving air, it is convenient to derive this result directly. The R

unsteady-flow pro%lem can be reduced to a s-i%ady-flowproblem by means of
-z

a moving coordinate system in a manner similar to that of reference 7. r
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Accordingly, the perturbation pressures exerted

L or internal flow of Mach number Ml on a stationary

the shape

4

(

-ivx~
w= ReVe )

cos nf3

7

by a steady external
cylinder deformed in

(2)

have been determined in appendix A. The assured deformation (eq. (1))
has the form of a wave traveling in the positive x-direction with veloc-
ity m/v; hence, the flow of Mach number M outside the vibrating cylin-
der is equivalent to a flow of Mach number M - ~vc outside the
stationary cylinder plus a flow of Mach number -@c~ inside the sta-

tionary cylinder. Thus, by making the appropriate substitutions, the
steady-flow results of appendix A are readily combined to give, for the
outward air force exerted on a vibrating cylinder,

2(x,e,t) = Rv%e[ii7e_i*-~)cos ne].
where .

4

‘= ‘pc2F(M-k’”n)+‘ici2F4w’n)
In equation (4),

(3)

(4)

q(c)
Fi(E,b,n) = E2-

~2 Jn(z)
=

zJn’(z)

(l El< 1)

}

(6)

(IEI >1)
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with

I~,yquations (~) and (6), Jn is the &ssel function of the first kind,

H;) is the Hankel function.of the first or second kind, and ~ and ~

are modified Bess”e”lfunctions of the first and second kind, respectively.
(See, for example, refs. 14 and 15.) !I!heprimed quantity in the denomina-
tor of each function is the derivative with respect to the entire argunent.
Note that a dimensionless frequency k = U/vc and a dimensionlesswave
number 7= Rv have been introduced in eqution (4).

Equilibrium condition.- Donnell’s equation for the equilibrium of
thin, cylindrical shells (ref. 10) may be written in the modified form
(see, for example, ref. 16)

where the subscripts x, Q, and t on w indicate differentiationwith

respect to these variables. The operators V4 and V-4 are defined by

(az )la22v4=_
&2+R2 &2

and

v-4i74.*-4 .“l .

Substitutionof w and Z fmmequations (1) and (3) into eqmtion (7)
gives

—

—.

.

t

Y“
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as the condition for equilibrium of the motion
the presence of the moving air outside and the

9

of the cylinder wall in
stationary fluid inside

b the cylinder. Written in terms of pertinent nondimensional parameters,
this expression becomes

*

In the preceding definition, 6 = u/E, and C6 = [/E p~ is the speed

of sound in the cylinder material. ,Note that, in-equation (8), an adM-.
tional term -i L

[vi
~k has been added in order to include qualitatively

d the effects of structural dsmping of the Sezawa (viscous) type. The
dsmping coefficient e is actually related to the parameters of the
system in a rather complicated fashion but is always positive. A pre-
cise definition of e is not necessary because, in the following deriva-
tion, it is considered to be a vanishi.ngl.ysmall, positive quantity.

Extension of Equilibrium Equation to Mvergent Motion

The flutter equation (eq. (8)) has been derived for sinusoidal motion.
As has been pointed out, an extension to divergent motion (of the form of
eq. (1) with m a complex number having a negative imaginary part) is
necessary. WS requires the analytic continuation of equation (8) into
the complex k-plane. The only terms in equation (8) for which this con-
tinuation is not trivial are the air-force functions F and Fi. The

analytic continuations of these functions are presented snd discussed in
appendix B. These functions are analytic throughout the half-plane corre-
sponding to divergent motion and approach the values givenby equations (5)
and (6) as k becomes real. -t the analytic extension of eqqation (8)
into the lower half of the m-plane is indeed the equilibrium equation for

i divergent motion of the cylinder can be rigorously shown by the application
of Fourier transform analysis.
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Stability Determination
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by tke of Nyquist Diagrams

In order to determine the stability states of the structure whose
a

behavior is governed by eqution (8), ii is expedient to examine the
vsriation of the function L in the L-pla& as

.—
k traverses, in the P

clockwise Urection, a curve enclosing that portion of the k-plsne
corresponding to divergent motion of the cylinder (the lower half-plane
for positive values of ~ or the upper half-plane for negative
values of ;). This, of course, is the well-known Nyquist diagram.
(See, for exsmple, ref.’7.) The number of resulting clockwise encircle-
ments of the origin in the L-@ane is equal to the number of zeros of L
minus the number of poles of L enclosed by the curve traversed in the
k-plane. Poles of L do not occur in the unstable half-plane since the
functions comprising L are analytic everywhere in that region. (It —

should be noted-that, in all instences, the real k-axis is excluded from
the unstable half-plane.) Therefore, thq Nyquist diagram gives directly
the number of roots of equation (8) for which the frequency of oscillation
has a negative imaginary part; in other words, it gives tirectly the num-
ber of modes of unstable motion.

.-

With regard to the practical application of the Nyquist C&grams in
the present case, it should be pointed out_that actual computation of “ -
~uccessive values of L is unnecessary; that is,”t~ough careful examina- ‘-
tion of the nature of the fumctions comprising L,”it is possible to con- P
struct approximate diagrsms correct in all essential features and to see
clearly the conditions under which critical changes (correspondingto
flutter hmrdaries) occur. I?urther,it is only necessary to consider
positive values of T because, if 7 is replaced by its negative and
k by its conjugate, then L is replaced by its conjugate; therefore, no
new flutter boundaries would result from the negative values of v.

Analysis of IhnptyCylinder

Flutter criteria.- If the cylinder is assumed to be empty (pi = 0),

equation (8) reduces to -.

z= (&~k2- Q2)- F(M-k,T,n) - i
PR T%k=o

(9)

Let the damping coefficient e be very small but positive. With this
restriction, the functions comprising L T(for ; > O) vary with k in
the manner shown in figure 2. Note that the inclusion of the imfinitesi- ~

mal damping is influential only in the range M - 1< k< M + 1 where
Tm(-F) = O; elsewhere, Tm(-F) is large in cmnparison with the ds.mping v



term , In the range M -l<k<M+ l, the damping mskes Im(~) nega-
tive for positive k and positive for negative_k. Hence, for subsonicL
flow (fig. 2(a)), the damping insures that Ih(L) = O onlyat k= O;
for supersonic flow (fig. 2(b)), it permits lin(~). 0 only at k = M - 1

d (in the limit as 6+0). The si~ficance of this will be made apparent
by considering the variation of L as k traverses the path shown in
figure 3 (with the other parameters held constant).

First, consider subs~nic flow. (See fig. 2(a).) Two possible
resulting variations of L sre shown in the following Nyquist
(where the full circle at infinity corresponds to the infinite
in the k-plane):

diagrsm
semicircle

i-plane

/
1-”

,

>

k=-co

v
/

‘Ir ‘,

>

.-
k=co

For different values of the parameters, paths similar to I or II may
be traced. For path 1, there is no encirclement of the origin and the
cylinder is stable; for path 11, oh the other hand, one encirclement
occurs snd the cylinder is unstable. Since, by virtue of the damping
term, Tm(~ must pass through zero at k = O, it is apparent that the
boundary between these two conutions is a static (divergence) boundary
defined throughout the subsonic range by

i

(lo)
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Equation (10) may be put into the form

( )
&3+ A&n B=.o
R R

NACA TN 3638

(11)
b

where

are positive numbers. Equation (11) has the one real root

(12)

Thus, for selected values of the other parameters, the thickness ratio
corresponding to the stability boundary in the subsonic range may be can-
puted directly. This.i.sthe bounding value of h/R above which the
cylinder is stable. For certain ranges of the panuneters, namely when
the Mach number is only slightly less than 1 or when the wave length of

‘2 is permisflutter is very large, the approximation F(M,~,n) =-y sible.

When this approxhuation.is valid, equation (10) maybe solved directly
for M to yield

M-F
Equation (13) gives the
the cylinder is stable.

( )%(1 - M2) << ~

2n(n - 1)
(13)

.

P

approximatebounding value of M below which.— w.

w
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For supersonic flow (fig. 2(b)),

6 resulting when k traverses the path
following sketch:

I

the possible Nyqtist diagrsms
of figure 3 appear as shown in

L.-plane

13

the

Since, now, the sign of the imaginary
k =M - 1, the criterion for a boundary is

psxt of ~ always chauges at
seen to be

- Q~ - F(lfi,n) (14)

Thus, the instability is dynsmic, snd, since k = -f&.,the flutter mode

is a traveling wave whose propagation velocity ~ is the velocity of

external fluw minus the velocity of sound.

The solution of equation (14) for h~R canbe csrried out to yield
a result in the sare form as equation (12) with appropriate redefinition

? of A snd B. Tn the supersonic case, however, the F-function is inde-
pendent of M and is actually equal to -l/n; hence, equation (14.)may
be solved directly for the Mach nmber of flutter to give the convenient

d fo?ml

T 1M=l+ #-—
P= h

n
75

(15)
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Determination of critical stability boundary.- In computing sta-
bility boundaries, a factor which must be kept in mind is the admissi-
bility of all longitudinalwave lengths snd of all integral values of n

*

greater than or equal to 2. ~ critical boundary must necessarily —

correspond to the values of v and n for which the cylinder is most 9
prone to flutter. This critical boundary c~be obtained either by
expressing the bounding value of h/R as a function of the rest of the
parameters (as in eq. (1.2))and maximizing this value of h/R with “

—

respect to both ~ and n or by finding the bounding value of M (as
in eqs. (13) and (15)) snd minimizing with respect to 7 and n. Of
the two alternatives, the latter ‘ismore easily accomplished, analytical
minimization of M being possible. For subsonic speedsl however, the
expression for M (eq. (13)) is only approximate snd, in sme instances,
it becomes necessary to msximize h/R as givenby equation (I-2). This
is most readily achieved by graphical methods.

Minimization of M canbe pe@ormedby first minimizing Q2 with
respect to V and then mini.mizi.ngthe resulting M with respect to n.
The minimization with respect to U is particularly simple when there
are no imposed midplane stresses crx= cre= O);

respect to the quantity (v+ # ● The result

at

it canbe performed with

is .

!?

(16)

(17)

However, the quantity
()
V+*2 is itself a minimum at 7 = n; hence,

equation (17) can be satisfied only when

-’ ii
and, if this condition is violated, ~2

4n2 (18)

can never achieve the value
giv&by equation (16). me m&dm& value it can achieve is

2*
()[ 1%nin2=> ~(l-pp)+fi (19)

a

—

v

——

—
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If the result given by either equation (16) or eqwtion (19) is sub-
stituted into equation (1~), the minimum value of M is seen to corre-

.
spend to the smallest admissible value of n
for supersonic flow, the critical boundary is

-*

%r =1+

=1+

(that is, n= 2); hence,
given by

( +
Q< 12(1 -jla)
R 1

\

}
(20)

Similarly, for subsonic flow, if the approximate
is valid, the substitution of equation (16) into

. critical boundary

equation, equation (13),
equation (13) yields the

Numerical exsmple.- For illustrative purposes, the critical stability
boundary (n = 2) has been computed for an empty, unstressed aluminum cyl-
inder at sea level; additional curves corresponding to n = 3, k, 5, and
10 have been obtained for comparison. These results are shownby the
solid curves in figure 4. Portions of the curves in the subsonic range
were obtained by graphically maximizing h/R with respqct to 7 aa pre-
viously mentioned. It is interesting to examine the wave lengths of the
flutter modes corresponding to these boundaries. In the range where equa-
tion (18) is satisfied, solution of equation (17) yields two different
wave lengths for the sane critical thickness ratio. The larger one of
these two wave lengths is shown in figure 5 for supersonic Mach numbers
in the form of a plot of the aspect ratio of the flutter mode n/7 (the
ratio of longitudinal to circumferential wave length) against Mach number
for n= 2, 3, k, and5. The aapect ratios associated with the smaller
wave lengths are not plotted; they are merely the reciprocals of the ones

●

shown. At the higher Mach numbers, the critical value of h/R becomes
large enough to cause equation (18) to be violated; when this happens,
the two flutter modes coelesce to give a single flutter aspect ratio of.
unity as shownby the horizontal.cutoff line in figure 5.
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As has been pointed out, Ibmel.1’s theory is somewhat inaccurate for
small values of n. (See, for example, ref. I-2.) In order to obtain scme ,
idea of the magnitude of the resulting error> a new Q.-functionbased on a
simplified version of Fl&e’s cylindrical-shelltheory (see, for exemple,
refs. 11 and 12) has been derived and minhized with respect to 7; the
details of this derivation are presented in appendix C. ~Computations in

L,

the supersonic range with the new (Fl~ge) Q-function result in the dashed
curves shown in figures 4 and 5. As in Dcninell’stheory, the Fl~e
theory yields, for the lower thickness ratios> two values of wave length
for which Q (and, hence, the Mach number) is a minimum. In contrast
with Donnell’s theory, however, the two wave lengths are not equally crit-
ical; the larger one always @elds a lower Mach number. For this reason,
only the higher aspect ratio and its associated stability boundary are
plotted in the figures. CC& critical boundary (n = 2) is found to require
thickness ratios approximately ~ percent higher t_@n those predictedby
Donnell’s theory. The two curves for n = 3 still differ by 10 to 15 per-
cent; but, for n = 4, the two theories agree very well. For the sake of
clarity, the stability boundary associated with the lower aspect ratio has
not been shown in figure 4. It shotidbe remarked, however, that this
boundary agrees very well with the boundary givenhy lXmnell’s theory,
even for n = 2. The practical implications of the results shown in fig- -
ures 4 and ‘jare discussed subsequently.

v
Analysis of Fluid-Fine& Cylinder

When the cylinder is assumed to contain a fluid, the additional term

%YFf(~kfi,n)in equation (8) must be included. A typical plot of

this function for real values of k is shown in figure 6. Note that the
force is always real and becomes infinite at the resonant frequencies

(J = 1,2, 3,...) (22)

where the

Since

of L can
k =M-1
occur only

Zj’s are the zeros of Jn(z).

Fi is always real for real values of k, the imaginary part

again be zero only at k = O in the subsonic range and at
in the supersonic range. Stabj.lityboundaries can consequently .
at these frequencies. In the subsonic range, the inclusion of

Fi has no effect upon the stability boundaries since Fi = O at k = O.
In the supersonic range, however, the inclusion of Fi has a considerable w

effect on the stability boundaries, not ofiy because of the additional
force at k = M - 1 but also because of the resonances of Fi.
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The condition for the stability boundary at supersonic speeds is

This equation can be solved for h/R in the ssme form as equation (lZ?);
that is,

where now

A=
l’(1 - pa)

()7’ 1+$2

and.

.

1 ~2
+6x+—5g- 21(M - 1)’

()
7’ 1+$2

P
()
%.—
cd

.

The vsriation of h/R with Mach number for particular values of
the other p~ ters is shown in the following sketch:

I l+: I+kl l+k2 l+k~

M

(24)



Note that h/R beccznesinfinite when the Mach number is equal to 1 .+kj
(~ =1,2,3,.. .). (See eqo (22)● ) ~s arises from the infifite- .
ness of Fi and, consequently, of B at these Mach numbers. Note also
that the footprints of the secondary stability boundaries occur when ‘-
B=O. The numbers within the regions separatedby the solid lines indi-
cate the *gree of instability as determined by use of Nyq&st diagrsMs. “--

Since the value of h/R for the empty cylinder is given by equa-
tion (24) with Fi equal to zero, and since Fi is positive for values

of M less than 1 + kl, it can be seen that the fluid inside the cyl-

inder hks a destabilizing effect.

In order to find the critical stability boundaries, all values of
v and n, must be considered. Of particular interest in this connec-
tion is the fact that, for very large values of ?, the infinities shown

Ci (Seein the sketch all approach a value of M eqyal to 1 + ~.

eq. (22).)’ Thus, the critical stability boundaries would appear as
shown in the following sketch:

o

L

.

.

.

.

v

U)

o I 1+:

M

For Mach numbers greater than 1 + ~, the cylinder is unstable to an

infinite degree. If the fluid inside the cylinder is air at the seine
temperature as the surrounding air, this limiting Mach number would be
equal to 2. If the cylinder contains a relatively incompressible fluld,
however, this Mach nunibercouldbe very high. In sny event, the result

*

v
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is somewhat anomalous; it is probably caused by the use of linearized

a potential-flow theory and, undoubtedly, would not occur for real fluids.

. Some Remarks Abut the Solution f&

an Unstiffened Cylinder

The stability criteria for the infinitely long, unstiffened cylinder
which were derived in the preceding sections were o%tained by including
the effects of structural damping and then taking the limit as the damping
approached zero (e~O). This procedure was followed because different
criteria are obtained when damping is not considered (e ~ O). This hpor-
tant fact is illustrated in appendix D where the stabiM.ty criteria for
the empty cylinder with zero dsmping are discussed. Since structures
always exhibit some demping, it is apparent that stabtity criteria
obtained by tsking the limit as c approaches zero are more realistic
than those obtained by setting e identically equal to zero. It is
interesting to note that, in this case, the addition of damping makes
the structure more prone to flutter. This somewhat surprising result

. may be ex@.ained by the fact that a damping force, even though in itself
dissipative, can cause phase changes in such a manner as to allow the
meting outside air to feed more energy into the structure; the result is

. a net energy gain.

With regard to the applicability of the results for the infinitely
long, unstiffened cylinder to a flutter analysis of cylinders of finite
length, the following remarks are in order.

It is clesm that the results for the infinitely long cyldnder would
be applicable to a ftiite cylinder only if the wave lengths of the flutter
modes were small in comparison with the length of the finite structure.
But, the most critical wave lengths for the infinitely long, unstiffened
cylinder are very large. (See fig. 5.) It is conceivable that, for a
finite structure, the flutter mode would tend to settle on the smaller of
the two possible longitudinalwave lengths discussed previously. However,
it should he mentioned that, for higher Mach numbers (above M = 5), even
these smaller wave iengths are fairly high; for n = 2, for exsmple, wave
lengths from one to three times the radius wouldbe experienced.

Although the analysis has been carried out for the case of an
unstiffened cylinder, the flutter criteria may also be applied to the
case of a cylinder with essentially rigid, longitudinal stiffeners.
These longitudinal stiffeners would have the effect of raising the mini-
mum value of n and, hence, of decreasing the critical thickness ratio
of flutter. For example, the curve for 20 stringers (n = 10) has been

. plotted in figure 4. K1.so,the decrease in circumferentialwave length
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would cause an attendant decrease in the longitudinalwave length at
flutter and so might possibly make the analysis applicable to practical.,
finite cylinders.

&

The effects of d.dplane tension stresses (caused, say, by a static- ~
pressure differential across the cyltnder wall) have not been investi-
gated qwtitati.vely; it is evident, however, that these stresses would
increase the critical Mach number since they always increase Q (defined
imediatd.y after eq. (8)).

ih addition, a qualitative investigation of the behavior of the
Q-function for ~nnell’s theory shows that the longitudinal stress ISx

has no effect on the ctitical wave length but that the circumferential
tension cre tends to decrease both the wave lengths corresponding to

minimums of Q. More hnportantly, the hoop tension makes the lower of
these two wave lengths critical because it is less influential for the
lower wave lengths. Thus, for large circumferential stresses, in view
of the aforementioned agreement between F1-l!gge’sand Donndl.’s theories
for the lower wave lengths, the preceding analysis, based on Donnellts
theory, might indeed give useful results for finite cylinders+ .

This completes the discussion of unstiffened cylinders; en analysis
of ring-stiffened cylinders is presented in the next section.

w

RING-ST@FENED cnm

‘I& ring-stiffened cylinder consists of the unstiffened cylinder
with added, rigid ring stiffeners which prevent radial deflection at the
locations x = tja (j =0,1,2,.. .). (See fig. l(b).) The stiff-
eners are assumed not to interfere with the flow of air outside or of
fluid inside the cylinder. The anslysis proceeds
in reference 7.

Derivation of Equations

along the lines of that

If the assumptions sre made that the cylinder wall may deform Into
any number of sinusoidal waves around its circumference and into any shape
periodic over 2 bay lengths in the longitudinal direction, the deformation
may be written, with cmplete generality, as

[

al

w(x,f3,t)= Re
EE4

$

-iMY(X
a icot

he e Cos

. .

)
.

M (25)
.
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provided that the coefficients ~ satisfy the constraining relations

(26)

These condltiorm
They may also be

correspond to zero deflection at the ring locations.
written as

mz %=0
=.4X

(m even)

(27)

Only one circumferential term is included in eqution (2’5)because there
is no structural or aerodynamic couplibg between the various cosine terms.
Also, in this case, n = 1 is admitted. The assumption of periodicity
over 2 bay lengths is made because it permits a considerable degree of
generality without overcomplicating the analysis. It is believed that
the critical flutter mode wouldbe of this type.

Air forces.- In view of the linearity of the aerodynamic theory,
the air forces exerted on a cylinder executing the motion givenby eqya-
tion (25) may be delxxminedby separately considering each term of the
summation over m and superposing the results. Hence, the aerodynamic
loading on a cylinder deforming in the shape of the traveling wave

[ -W5%osljwm(x)e,t) = Re ~e (28)

is sought.
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If equation (28) is compared with equation (1), it becomes apparent
that the air force is given by equations (3) to (6) when the substitu-
tions f = rim/a are made.

A–
~andv= Thus, the total air force may

be written immediately as

t(x,e,t) =Rfi~Re
~

m

a2 =4 )=%%flJtcos ~
‘m%e e (29)

where, for m # O,

(
-pc%2F M k

) (

2#Fi & $m’n
Zm = ---jmjn + Pici

)
(30)

The functions

repeated here

F(6,b,n

F and Fi are given by equations (5) and (6). They are

for convenience.

~(c)
c%’(!) (I51<1)

1(31)

H@(z) ~

({

= 1 for b~>O

Z@’(z) 2forbg<0
)

(Id >1)

Fi(5,bjn) = E2 In(C)
C.In’(!)

where

= ~2 Jn(z)

Zzn’(z) 1
(IEI <1)

(32)

(IE.I >1)

.

.

.

.

-*
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In equation (m), k = u/fit and a = Rfi/a..The quantity a is the
ratio of one-half the circumference to the itl.stsncebetween the rings.
For the specisl case of m = O, a limiting process gives

10 = (~ k,ajn)-pc2G(k,a,n) + PiCi2Gi ~

h equation (33),

({3 )lfor~<O
‘2 forFj>0

Gi(E,a,n) = E2 Jn(alEl)

a1131Jn’(al~l)

(33)

(34)

(35)

Equilibrium conditions.- By virtue of the assumed longitudinal
spatial perioticity of the deformation, satisfaction of equilibrium
over any interval of length 2a assures satisfaction of equilibrium
over the whole length of the cylinder. !Ilus,it is sufficient to write
Imnell’s equation for the segment O S x< 2a as

pshwtt = 2(x,f3,t)+Po(e

where po and

by the two ring
the Dirac delta

,t)~(x) +Pl(i3,t)5(x-a) (36)

P1 are the reaction forces exerted

stiffeners included in the interval
function.

on the cylinder

and where 5(X)

wall

is

.
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P&t)
,(

= Re Foetit

}

)
Cos ne

pl(e,t)
(

. R. Fleiatcos ne
)

4

(37) ●

If PO and Pl fran equations (37), w fram equation (25), ad 1 from

equation (29) are substituted into the equil-~briumequation, equation (36),
*

and if this equation is then multiplied by e and integrated over the
interval.,there results

(m=O, *1, *2, *3, . . .) (*)

Hence, for J3m# O,

PO+ (-l)mPl
%=

2Y12c2pR
— Pm8

where, for m # O,

(39)

.

.

.

.
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that, as in
added to =ach of

In the Limit as

the case of the unstiffened cylinder, a term has been
the ~’s to approximate the effect of &mp@ (em> O).

m~O,

where

“ “’l17-‘=~*
Finally, substituting from equation (39) into the con@raining relations,
equations (27), gives the following conditions for the existence of the
motion defined by eqution (25):

tion

(m even)

(40)

(41)

~pection of these relations indicates that simultaneous satisfac-
of the equilibrium equation and the restraint conditions can be
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achieved in a nontrivial fashion in several independent ways. One possi-
bility is that L

(which implies that ~ = O when m is odd) and

and another is that

( ), whtch implies that ~ = O when m is even and

(43)

9

(42.)

As has been noted, the derivation herein and the results achieved
exactly parallel those obtained in reference 7 for the infinite, flat
plate. As pointed out therein, still another nontrivial solution is
found when the restriction ~ # O (which characterized the foregoing

results) is removed. Specifically, if two or more ~’s of the ssme

type (m odd or even) vanish simultaneously,a flutter mode may exist.

Equations (42) and (43) are conditions for the existence of motion
of constant smplitude; equation (42) corresponds to motion which is
identical in each bay, whereas equation (43) corresponds to motion having
the ssme amplitude from bay to bay but with alternating direction.

Stability Boundaries

.
As in the case of the unstiffened cylinder, the Nyqtist criterion

csm be used to investigate the states of stability of the stiffened
cylinder. In this section are given the results of a limited investi-
gation which was chiefly concerned with the examination of the

8
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following three-tenu

function N, account

approximation

27

to equation (42):

N l+~+~=o (44)
‘~ P2 P-2

In applying the Nyquist diagrsm technique to the
must be taken of the poles of N at the zeros of

p2 snti B-2. (There are no zeros of PO.} The res~ts of such-

application with e~O shoticlearly that, for subsonic Mach numbers,
the onl?fuossible instability is divergence; further, the three-term
approx&\ion leads to as m&y as three static stabiiity
shown in the following sketch:

‘tJ()R max

o I

boundaries as

M

In this sketch, a typical variation of (h/R)- with M (with other

pertinent parameters fixed) is shown. The subscript max indicates that
the thickness ratio is maximized with respect to n. The rnmibersindi-
cate the number of unstable roots of equation (M) corresponding to each
region. Note that the upper curve corresponds to the condition that two
or more ~’s of the same type vsnish shultaneously, whereas the others

curves result from the condition (N)k~ = O.

Additional curves would result from the addition of more terms to
N and still more curves would result from the consideration of the odd



28 NACA TN 3638

solution, equation (43); further, examination of a four-term approxima-
tion (m = 1, -1, 3, and -3) to equation (43) indicates that, for reason-
able values of a, the most critical boundary for either the even or the
odd solution must stem from the condition (Pl)ka = (P.&=~ = 0“ (For

very small values of a, the distance between rings becomes large and
values of m other than unity may be critical.) The position of this
critical boundary has been computed for an unstressed aluminum cylinder
at sea level for various representative values of the aspect-ratio
parsmeter a. !12heresults are shown in figure 7. These curves corre-
spond to vsrious values of n ranging from 5 upward as illustrated on.
the plot; since n is large, Donnell’s theory is sufficiently accurate.

Note that the thickness ratios required for static stability at
subsonic Mach numbers are extremely small; therefore, divergence at
subsonic speeds is probably not a crttical design factor.

Supersonic flow.- Application of the Nyquist criteria for supersonic
flow is not so readily accomplished without the performance of further
computations. It is clear, however, that divergence boundaries extend
into the supersonic range ad that flutter boundaries arise which probably
become more critical thm the divergence boundaries.

‘lhedefinition of these flutter boundaries reqtires that solutions
be obtained to equations (42) and (43) or to suitable approxbnations,
such as equation (44). This, in turn, requires extensive cmputa.tions,
especially since the resulting thickness ratios must be maximized with
respect to n. !lMs maximization can probably onlybe achieved laboriously
by making each computation for several values of n.

CONCLUDING REMARKS

A preliminary theoretical investigation of
of infinitely long, thin-walled unstiffened and
cylinders has been conducted by using lXnnell’s

the aeroel.asticstability
ring-stiffened circular
cylinder theory and

linearized unsteady potential-flow theory. .AUmited study of the
resulting stability criteria has yielded the followlng information.

For unstiffened cylinders with vsnishingly small structural dmphg,
the only possible instability at subsonic Mach numbers is static diver-
gence; in supersonic flow, however, flutter is found to occur for suffi-
ciently thin cylinders in the form of a traveling waw”whose propagation
velocity is the velocity of the external flow minus the speed of sound.
For sn empty, unstressed aluminum cylinder at sea level, the critical
boundary is found to correspond to a mode of deformation havir@ only two
waves around the circumference. For this case, the use of the more

.

.

—

.

.

--

.-
=

●
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complicated cylinder theory of Fl&ge may be necessary. Relatively
large ratios of cylinder-wall thickness to radius axe found necessary
for stability, and the wave lengths corresponding to flutter are found
to be very large. With the addition of large, circumferentialmid-
plane tension stresses, however, the thickness ratios and wave lengths
would be reduced.

The addition of an internal fluid has a destabilizing effect on the
unstiffened cylinder. W fact, the anomalous result is found that for
Mach numbers greater than 1 plus the ratio of the speeds of somd in the
fluids inside and outside the cylAnder, no ad@hent of the physical
properties of the cylinder will render it stable.

The presence of even the smallest amount of structural damping is
found to be an tiportant factor in analyses of infinitely long, unstiff-
ened cylinders.

For the ring-stiffened cylinder it is found that flutter is not possi-
ble at subsonic Mach numbers and that only very small thickness ratios are
required to prevent divergence. Although both panel flutter and divergence
are possible at supersonic Mach ntiers, no numerical results have been
obtained; extensive computations would be required for a complete determi-
nation of the stability boundaries in this range.

Langley Aeronautical Lahratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., January 11, 1956.
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APPENDIX A

.

STEADY LIXWUZED FLOW PASI A STATIONARY DEFORMED CYLINDER

In this appendix are derived the pe?rlyu?bation
a steady external or internal flow of M@ number
long thin-walled cylinder with the deformation

w= ( )-‘im%os noRe we

.

pressures exerted by
Ml on an infinitely

(Al)

where n is a positive integer and the wave nmnber v may be either
positive or negative. The Mach number Ml is positive for flow in the

positive xl-direction and negative

(See fig. 8.)

In the cylindrical coordinate
potential-flow equation is

for flow in the negative xl-direction.

system (xl,r,e), the Linearized .
.

.

(A2)

where @ is the velocity potential and the subscripts xl, r, and 8

indicate differentiationwith respect to these parameters. With the
assumption that

!Uxljr,e) [ .1
= Re f(r)e-~wl-cos nf3

eqyation (A2) becomes

f~ +

[

~2
~fr + v2(M12 - 1) - _

~2
fo =

(A3)

.

(A4) .

—

●
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which, for supersonic
.

flow (IM1]> 1), has the solution

(1). ( )+mrqlvl$i?=)f(r) =% lvl~~”r

and, for subsonic flow (lMl~< 1), has the solution

f(r) =

(
) +%(,v,v-r)~n lvl~’r

(A5)

(M) “

Air Flow Outside Cylimder

For air flowing over the outside of the cyllnder, the formulation
of the problem is completed by the specification of the boundary condition

dr(xl,Rs e) = Mlcwxl (A7)

at the cylinder wall and the proper conditions at infinity.

By use of equations (Al) and (A3), equation (A7) becomes

fr(R) = -iMlcvF

The resulthg pressure perturbation 4 can
linearized BernouUi~s equation

and iS

4(xly.je) (=pMlcRe ifve-iw%os

(A8)

be calculated from the

(A9)

n~
)

(Ale)
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Supersonic flow.- For supersonic flow, the Sommerfeld condition
(that is, that there be no incoming disturbances from infinity) reqties .
that, for large values of r, the velocity potential @ be essentially
a function of xl - pr for Ml > 0 and a function of xl + Pr for

M1<O ( -).
?

where p = Then, from the relation for # (eq. (A3)),
it is appsrent that, for large values of r, f(r) must behave like —

Ml
i

n“Mle . Substituting the asymptotic approximations (ref. 14)

}

into equation (A5) gives, for large values of r,

(All)

1

.

.

Hence, the Sormnerfeldcondition requires that B= O for MIv>.O

and A= O for Mlv< O. Therefore, equation (A5) becomes

(:) (f(r)=% IV

If, now, A is evaluated by use of the
tion (A8), and the resulting expression for
equation (&I.O),the perturbation pressure on
obtained as

boundary condition, equa-
f is.substituted into -_
the cylinder wall is

I.
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.

[

=y (=)

&(xl,R, e) = - ‘iW1-cos nepc%e R&M12
a (J)* ‘e

q (z) 1
({J

1 for Mlv >0
=

)

(A14)
2 for MIV <0

where

Subsonic flow.- For subsonic flow over the outside of the cylinder,
the potential must remain finite at infinity; hence, equation (A6) reduces
to

f(r) =
( )

BKnlvl~~r (A15)

If B is evsluated by using the boundary condition, equation (A8),
snd the resulting expression for f is then substituted into equa-
tion (AIO), the resulting perturbation pressure on the cylinder wall is

[ 1~n(~) ~e-iml~osnO
@(xl,R,e) = pc%e Rv%12—

!Xn’(t)

where ~=Rlvl~’o

Fluid Flow Inside CyMnder

(JU.6)

●

It is assmed that the fluid inside the cyltier may be other than
air and may exist under different conditions from the air outside the
cylinder. Thus, the bomdsry condition at the cylinder wall is

.
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and Bernoulli’s equation

fr(R) = -iM~c~fi

may be written as

4i(x~jr,e) ( )‘iwkos nfl= piM1ciRe ifve

(Q7)

.

●

(u8)

where the subscript i refers to the properties of the fluid inside the
cylinder.

For either supersonic or subsonic flow, the velocity potential must
remain finite throughout the cylinder. If this requirement is to be met
atr= O, the solutions given by equations (As) and (A6) must reduce,

—.

respectively, to

f(r)=+,-)

With the constant A determined through the use of
tion, equation (A17), and the resulting expressions
into equation (A18), the perturbation pressure for

—
“

(Am)

the boundsry condi- -—

for f substituted
Ml > 1 becomes

[

%e R~12
Jn(z)

4i(x1)R> e) = Picj.

1

- ‘imlcos newe (M?l)

Zq’ (z)

and, for Ml < 1}

[

In({)
4i(x1tR@) = pici2Re RV%12

1

– ‘iW1-cos nf3we (A22)

Un’(!)

These results hold for flow in either direction. Note that, for these
air forces, the pressure is always in phase with the motion.

—
.
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The
harmonic
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APPENDIX B

AIR FORCES ON A CXLINDER IN DIVERGENT OSCILLATION

outwsrd lift force on a cylinder w&CL executing the shple
motion (u) real)

W(x,e,t) = ( )Re =e-i%iticos ne

in the presence of moving air
cylinder has been determined.
this force is expressed by

outside and a ~tationary
(See eq.s.(3) to (6).)

. . m eqpation (B2),

.

(Bl)

fluid inside the
me Smplitude Of

,= -pc2F~-&v,.) +pici2F~(~RV,n) (B2)

and

In(c)
Fi(~jRv>.) = !i2—

~In’(~)

Jn(z)
= E2

ZJn’(Z)
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.

It is desired to extend these air-force functions to apply to
divergent motion o,fthe cylinder (m complex with a negative imagtisry
part). This extension can be made by using analytic continuation; in
fact, it can be shown by Fourier transform smalysis that the necesssry
and sufficient conditions for the extensibility of the air-force func-
tions to divergent motion sre that the air-force functions possess analytic
continuations which have no singularities anywhere in the unstable half-
plane (Im(u$< O) and reduce smoothly to equations (B3) and (B4) on the’
real sxl.s. Singularities may possibly exist along the real axis, but
the real axis is specifically excluded from the unstable half-plane.

Consider the function F(~,Rv,n). Examination of the manner in
which u appears in F (see eq. (B2)) shows that the unstable ha~ of
the E-plane is the upper half-plane if v

d
is positive and the lower

half-plane if v is negative. It can be verified that the desired
analytic continuation of F into the proper W-plane is given as .
follows:

.

(B5)

where the desired branch of the multiple-valued function F IS the one
for which the cuts are as shown in the following sketch:

+

~-plane

-1 I

V>o V<o

.
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.

.

2&)(Rlvl)
F(~,Rv, n) = (v> o)

R\v[&)’(Rlvl) /
.

1
(m ,

= d2)(Rbl)

Riv&)t(Rivl)

(v <o)

As Im(~) approaches zero from the proper direction, the definitions
given by equations (B3) result. Furthermore, no branch potits or cuts
of the function F occur in the unstable hsllfof the g-plane, and, in
addition, Nyquist diagrsm techniques can be employed to show that there
me no poles of F in this region.

In a similar qsmner, the analytic continuation of Fi can be

expressed in the form

No difficulties with branch points occur for Fi; the tictio~ In

ti In’ are entire functions and the combination Sn/z~’ is sn even

function. Therefore, Fi iS inherently a single-valued function of E.

The air forces used in the analysis of the ring-stiffened cylinder
can be similarly written for divergent motion. For m # O, it is only
necesssry to replace v by M/a in equations (B5) to (B7). For m = O,
it is necessary to specify the dr forces separately. Thus, for divergent
motion (see eqs. (33) b (35))j

()20 = -pc%(k, a,n) + Pici%i ~ k,a,n
Ci

(B8)



38

where

Gi(3j%n)
EJn(c4)=-

~~ (@.)

.
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*

(B9) ‘

.

The desired branch of the multiple-valued function G is the one for
which the cut extends from the origin to infinity along the positive
imaginary axis and

~2)(a)
G(l,n,a) = --

Oi&)’(m)

(B1O)

(Bll) “

.
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EQUILIBRIUM OF UNSTIFFENED CKGINDER - FLtiGGE;S EQUATION

The simplifying assumptions used in deriving Ikmnellfs clifferential
equation (eq. (7)) result in a loss of accuracy when the condition
n2 >> 1 is ~olated; further, te~ which beCOUS import~t when the

longitudinal wave lengths become large (that is, when the behavior of
a cylinder approaches that of a ring) have been omitted.

The more complicated theory proposed by Fl”@e (see, for example,
ref. 11) is not characterized by either of these limitations. Fli,igge’s
equations may be written in the fom of a single equation h w, which,
for (h/R)2 << 1, reduces (see refs. 11 and 12) to

{

HD V4w+&
-4 12(1 - @) ~~ ~ 2(2 - V) wnee + ~ Weeee i-

R4 (h/R)2 R2 R4

2(4 - V) 2
2@w~ + 6w~ee + ‘~eeee +

1]

— Weeeeee + pshwtt = Z
R2 R4

(cl)

where imposed midplane stresses have not been included. As in llpnnell’s
equation, equation (Cl) takes no account of inertia forces in the longi-
tudinal and circumferential directions.

Substitution of w and Z ~or the unstHfened cylinder (eqs. (l),

(3), ad (4)) into equation (Cl) gives

where the term -i —,;, ek has been

effects of Sezawa (viscous) dsqping

- F(M-k,~,n) ;
-i~ek=O

added to include

and where, now,

[VJ

qualitatively

(C!2)

the
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(C3)

Equation (C2) is precisely equation (8); hence, the flutter boundary in
the supersonic range for the empty, unstressed cylinder is still defined
by

(C4)

but with Sl given by the more complicated function, equation (C3). As
before, the critical boundary corresponds to the minimum value of M .
as ; and n me varied. Setting ZlQ2~7= O yields

.

;lo

[ 1

+ 3n278+ 2n4+ 2(3 - ~)n2 - U(1 - P2) 76 -
h2

()E

[

nzah - 2(5- 2p)n2+k(2- V) -
12(1- pa)

2“

()
k-
R

;4 -

(C5)

Careful examination of equation (C5) indicates that, for small values of
h~R, there are two minimums of Q2 with an intervening msximum. Computa-
tions have been tie for an aluminum cylinder at sea level by letting
n= 2, 3, and 4; both the minimums of Q2 were checked arid,through equa-
tion (C4), the boundaries corresponding to * lower of *se were deter- ‘_.
mined. These results are shown by the ddshed curves in figure 4; in
addition, the corresponding wave lengths .Ne given in figure 5.

-.

.
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APPENDIX D

IMKUWINCE OF DAMPING IN UNSTD?FENED CYImmR

It is of interest to exemine some of the results of an analysis of
the emp~, unstiffened cylLnder which takes no account of dsmping (as
opposed to the analysis in the body of this paper which treats a cylinder
in the 13mit as dsmping approaches zero). The equilibrium condition,
equation (9), reduces to

and its constituent functions vary as in figure 2 except that now
W(Z) -O throughout the range M-l<k<M+l.

.
A typical Nyquist diagrem (resulting when k traverses the path

of fig. 3) is sho~ in ~he following sketch which corresponds to the
particular conditions v > 0, 0< M - 1< !2< M, Re(~~M-1 >0>.

d Re(~~~k)~M-1 < 0:

i-plane

(Dl)
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(The infinitesimal, counterclockwisesemicircles correspond to infinitesis
real,counterclockwise semicircles traversed by k to exclude zeros of ~

on %he real axis from the lower half-plane.) These particular conditions
are illustrated because the show clesrly the possible existence of a

Tstable condition with Re(L ~M-l > 0, a circumstance found impossible

tith damping present. The reason for the difference, of course, is that,
for k >0, the damping term is a negative imaginary quantity and even
the smallest amount of damping shifts all the potiio~ of the disgrsm
corresponding to the wnge M - l<k<M+l below theimaginsz’y
exis.

Note that, for the case of zero damping, satisfaction of equilibria
(E= O) tith k real is not always sufficient for definition of the
boundary; for the corxlitionsiu the cited example, the roots of ~ = O
do not pass directly from the upper into the lower U of the k-plane as
the other parameters are varied, but linger awhile on the real axis.
Instability occurs when a root leaves the real axis and enters the lower
half of t& k-plane. For the cited
to the simultaneous solution of the

Z=o

az=o

z

intherange M-l<k <M.

Another significant difference
damping is ignored, the instability

P

.

.

exsmple, this definition corresponds
eqtiatio~

.

(D4 -

in the two analyses Zs
in the subsonic region

that, when
is low-frequency

flutter and no purely static instability of the cylinder is possible. Sire- .
ilar differences”wo~d be found for the fluid-fi.fiedcylinder if the
damping were ignored. The fact that the two assmnptions, e~O and
e a O, produce such discontinuous~ different results testifies to the

.

bnportance of the presence of damping in the unstiffened cylinder.
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(a) Unstiffened cylinder.

45

(b) Ring-stiffened cylinder.

Figure l.- Infinitely long, thin-walled circular cylinder
outside and stationary fluid inside.

with air flow
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(a) Subsonic flow (M <l).

,

.

(b) Supersonic flow (M> l).

Figure 2.- Typical variations with k of ti.ctions comprising
eq. (9).)

.

.

c ..[see_.____ .4
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?

I k-plane

Figure 3.- Path enclosing lower half of k-plane (corresponding
motion for v > o).

to unstable

.
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––– FIGgge’s theory (ref. 12)
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Figure 4.- Stability boundaries for empty, tifinitely long, unstiffened
aluminum cylinder at sea level with no applied membrane stress.
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Donnell’s thiory(ref. 10)

——— Fltigge’s theory (ref. 12)
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Figure 5.- Panel aspect ratio of critical flutter tie for empty, infi-
nitely long, unstiffened aluminum cylinder at sea level with no

.
applied membrane stress.
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Figure 7.- Critical divergence boundaries for infinitely long, unstressed,
ring-stiffened aluminum cylinder at sea level.
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Figure 8.- Cylindrical coordinates for analysis of flow’past stationary,
deformed cylinder.
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