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By Simon Ostrach and Frankliin K. Moore

SUMMARY

The steady, compressible, inviscilid channel flow to which heat is
added at a cross-sectional plane and which is also subject to a trans-
verse body force is analyzed. The prime parameters governing the flow
are a dimensionless heat parameter and the Mach and Froude numbers. So-
lutions which are qualitatively similar are obteined for the cases in
which either the Mach number is small or the Froude number is large. If
the heat is added uniformly over the plane, the streamlines are dis-
placed in the direction of the body force, and downstream of the heat
addition the flow is found to be a shear flow. If the heat addition is
concentrated near the center of the cross-sectional plane, a strong vor-
tex motion appears downstream in addition to the shear flow. In the
first part of the analysis, the through-flow Mach number is considered
small. Subsequently, the alternate assumption of large Froude number
is made. TFor large Froude numbers it is found that an increase in Mach
number to unity increases the magnitude of the body-force effects.

The configuration studied can be considered to be an idealization
of, for example, the flow in a ram jet mounted at the tip of a whirling
helicopter rotor blade. The effects of the transverse body force are
important in this example. Actually, even 1f the Froude number is
large, the vortex motion due to any nonuniformity of heat addition may
be quite vigorous.

INTRODUCTION

It is well known that the motion of a fluid in which there are den-
sity variations is altered by the action of body forces on the fluid.
Until recently, such buoyancy effects have been negligible in practical
applications, because both the density variations and the body forces
were relatively small. However, considerations of present-day propul-
sion systems with thelr associated large heat additions, rapidly rotat-
ing components, or their operation in sudden maneuvers at high speeds
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suggest a reevaluation of these effects. Of prime importance in this

respect is the effect of the body forces on the internal aerodynamics “
of such propulsion systems or their components. The influence of the

body forces has been studied for channel flows with uniform heat addi-

tion and with the body force parallel to the direction of motion (see

ref. 1, e.g.). The flow with heat addition in pipe bends, through

rotor-tip combustors of helicopters, or through ram jets in abrupt ma-

neuvers represents configurations of interest in which, on the other

hand, the body force is transverse to the flow direction.

3593

Configurations of the latter type will be considered herein. More
specifically, in the present analysis a steady uniform (in velocity and
temperature) flow in a channel subject to a transverse body force is
assumed perturbed by a steady small addition of heat at a cross-
sectional plane (fig. 1). The fluid is considered to be inviscid. The
neglect of viscosity is in contrast to the analysis of reference 1. The "
reason for this difference can be explained as follows:

Tmportent hody-force effects appear in regions of large temperature .
gradients transverse to the body-force direction. In internal natural-
convection flow problems (ref. 1, e.g.), the largest temperature gradi-
ents occur in the viscous heat-conducting layers of fluid next to the
channel walls; accordingly, a parameter (Grashof number) comparing vis-~
cous and body-force effects governs the solutions of these problems.

In the present problem, the important temperature gradient is not asso-
ciated wilth viscous wall effects, but, rather, with the addition of heat
at a flame front or combustion zone. Therefore, the fluid may be con-
sidered inviscid in this problem; and the Froude number, which compares
inertia forces and body forces, and not the Grashof number is of chief
importance. In addition, of course, a parameter specifying rate of heat
addition to the fluid and the Mach number are also of significance.

If heat is added uniformly over the cross section (fig. 2(a)), the
sudden reduction of density at x = O (for smasll through Mach number)
would be expected to cause the streamlines to have a tendency to rise
in the vicinity of the heat addition. Perhaps the most interesting ef-
fects may be expected when heat is added over only part of the cross
section, as in figure Z(b). Then, the difference in buoyancy between
the flow near the center and the flow near the edges of the channel
would be expected to result in the formation of vortices with axes
alined with the through flow.

With a view to studying these flow patterns, solutions are sought
for the perturbation equations further simplified by the assumption of
small Mach number or, alternatively, of large Froude number.
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DIFFERENTTAT, EQUATIONS AND BOUNDARY CONDITIONS

Basic Equations
The differential equations governing the steady flow witﬁ heat ad-
dition of a compressible, inviscid, nonconducting fluid which is subject
to a body force are, in rectangular Cartesian temsor notation, ‘

‘5}8{—3 (pU5) = 0 (12)
pU; ;;% = pfy - SEX; . (1)
pc;ujg%ﬂ-?g;j- (1c)

-gi = RT (14)

(A complete list of the symbols used herein is presented in the appen-
dix.) Equations (la) to (lc) express, respectively, the conservation
of mass, momentum, and energy; equation (1d) is the state equation.
The more familiar notation U,V,W and X,Y,Z2 instead of Uy,Us,Uz

and. Xy,X5,Xz will be used in the remainder of this report.

Boundary Conditions
Particular consideration is given to the configuration illustrated
in figure l: Far upstream, there is a flow with uniform velocity and
temperature 1n a straight channel, so that
U(-=,Y,Z) = U, (a constant) (2a)
V(-=,Y,Z) = W(-=,Y,Z) = 0 (2b)

T(-w,Y,Z) - T, (2 constant) - (2e)
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The channel has a uniform rectangular cross section, so that
v(X,0,2) = V(X,H,Z) = O (3a)

Ww(X,Y,0) = W(X,Y,L) =0 (3b)

l

The fluid is subject to a transverse body force f, acting in the
direction of positive Y. Thus, f; and fz are defined to be zero,
and f, 1is a negative quantity if the body force acts in the direction

illustrated in figure 1. The action of the body force leads to pressure
and density gradients in an equilibrium state. This equilibrium will be
disturbed by the addition of heat to the fluid.

Thus two specific problems are treated herein according to the
specified distribution of heat addition. If heat is added uniformly
(fig. 2(a)) over the cross section at X = 0, the problem is two di-
mensional in X and Y. A three-dimensional problem will also be
treated, in which the rate of heat addition at X = 0 varies with
the coordinate Z, which is transverse to the direction of body force

(see fig. 2(b)).

However, the analysis will be carried forward as far as possible
with an arbitrary function to represent heat addition.

Linearization of Equations

In the present analysis, a perturbation procedure will be employed.
Accordingly, the actual rate of heat addition per unit volume Q at
= 0 is included in the dimensionless quantity

= QH,

ea(X,Y,2) = 5T ol (4)
™ o P

where the function q is of unit order and € is a small parameter.

As a consequence of the small rate of heat addition, the flow is assumed

to be disturbed only slightly from the uniform conditions prevailing far

upstream (eqs. (2)). The disturbances are assumed to be of the order

€, and the following definitions are made:

P o P
U=TU l+e-£u),V=sUm—£v,W=eU®—rw
= o, o, o,

(5)

T=T(1+et), P=F_ + eP.0, p=p_ + epyX

3593
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where Py 1s a constant reference density. Also, dimensionless coordi-
nates are defined as

x,y,z = X/H, Y/H, Z/H (6)
respectively.

Substituting equations (5) and (6) into equations (1) yields, to
zero order in g,

-
G,
Ty T T2 =
> (7)
B (y) = RTp_(y)
.
so that
p_ = Py exp(-ery/FTZ)
and
Pm = Pr exP("YMET/FrZ)

These expressions involve the Froude and Mach numbers defined by

Fr = Um/—\/(-fz)H
M, =U,/+/yYRL,

Clearly, equations (7) express the conditions of static equilibrium of
density and pressure with body force, if no heat is added. In such a
case, the presence of a uniform through velocity U, would not affect
this equilibrium.

(8)

The following equations to the first order in g result upon elim-
ination of o, 1, and X Zfrom the equations obtained by cambining (1),
(5) and (8):

Uyy = Wy = O (9a)
Uy - o+ Muy +‘vy+wz)=0 (9b)

(1 - M2)uy + vy +wy +A(r - 1)M2v = q (9¢c)
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where X\ = l/Fr2 and, hence, represents essentially the ratio of body
to inertia forces.
Definition of & Potential

In order to reduce the number of variables of equations (9), a
function V¥ 1is defined such that

Ve = Mu, + vy + ,) (10)

From equations (1a), (5), and (10) it may be shown that the func-
tion V¥ is related to the perturbation in density:

q‘rx:: -AX

Then, in view of equations (2) and (10), the Cauchy-Riemann conditions
may be extracted fram equations (9) in the form

u, - wy=0 7
uy - (v W)= 0 (11)
wy—(v-ﬂr)z=0d

Accordingly, a potential ¢ may be defined so that

-
U= @y

v -¥= Py & - (12)
W’Eq)Z_J

Equations (9c) and (10) to (12) yield
Vo - Mo, + (r - l)XM§¢y =a-¥, - (r- 1)z (13a)
VY ~ Ny = AV (13b)

Equations (2), (5), és), (10), and (12) yield the boundary condi-
tions to which equations (13) are subject:

q)("‘”:yxz) = ‘llf(—w,y,Z) =0 (148')

3593
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q)y(x}o}z) + 'L]I(X,O,Z) CPy(X,l,Z) + Ilf(x}liz) =0 (l4b)

L
05(x,7,0) = 0, (%75 )= 0 (10c)

Hereinafter, the heat addition will be assumed to occur abruptly at
x = 0. That is,

q = 8(x)a*(y,z) (15)

where ©(x) is the Dirac delta function.

SOLUTIONS OF SPEGTAT, PROBLEMS
Small Mach Number
Equations (13), while linear, are not especially simple. There-

fore, results will be obtained under further simplifying assumptions
If the Mach number is sufficiently small so that M2 << 1 and the

Froude number is of unit order, then, in place of equations (13),

¥ o= xfx dxf 5(x)g¥dx = A\x 1(x)g¥* (16a)

Voo = 8(x)a* - M 1(x)q (16b)

where 1(x) is the unit step function.

Quite evidently, equations (13) may also be simplified by the as-
sumption of small (but nonvanishing) A. This approach will be discussed
in the subsequent section, Large Froude Number.

Reduction of potential problem to familiar forms. - In order to ob-
tain a more familiar problem of potential theory, equation (lsb) may be
solved in two parts, defining

S
l

where

q = 8(x)q¥ | : (17b)

Vo,
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vchz = - fx dxf\x g dx = ~\x :L(x)q; (17¢)

A function which is a particular integral of equation (17c) for
x>0 is

0z = -2x 1(x)h(y,z) (182)
where h(y,z) satisfies Poisson's equation
hyy +hy, = q;f (18b)
but is otherwise unspecified, as yet. Then, if the definition
Py = 0z + @y (19)
is made, substituting equations (18) into equation (17c) yields

vZo, = \8(x)h(y,z) (20)

Except precisely at x =0, ¢; and ¢, satisfy Laplace's equa-
tion. Solutions of laplace's equation, valid for x< 0 and x> O,
are denoted by superscripts - and +, respectively. Integrating
equations (17b) and (20) across the discontinuity in the plane x = O
yields the compatibility conditions

+ -

(;plx ) qj#)x:o
+ -

@’4:: ; ‘P4x)x=o Y (21b)

In addition to equations (21), the boundary conditions (egs. (14)) must
be satisfied. B

o* (212)

I

Thus, after the singular solution (eq. (18a)) is extracted, the re-
maining differential equations are.slimply Laplace's equation (&pplied
independently for x > O and x < O) subject to the jump conditions of
equations (21) and Poisson's equation (18b) in two dimensions.

3593
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Fourier series solution for g¥* = q¥(z). - The foregoing equations
mey readily be solved by Fourier analysis, if .g¥* 1is assumed to be a
function only of z (fig. 2), representable as

a*(z) = Z Qucos mmaz (22)

vhere o = H/L A solution of Laplace's equation which also satisfies
equations (14a), (1l4c), and (21a) is

+ = -
97 = Qux - Qnemax

= S COS Tnaz (23a)
n=1
o = - %n eMOXoo maz (23b)
1 Z2nna
n=1
. Because q? = 0, it i1s permissible to take
sinh ma(y - %)
h(y,z) = E Q —=% cos mmaz (24)
nno cosh -

as the proper solution of equation (18b). In view of the definition of
¥ (eq. (16a)) and of equation (22), this choice provides that Pz (eq.

(18a)) satisfies equation (14b). Also, equation (14a) remains satisfied.

The function ¢, must be found so that it is consistent with equa-
tion (21b). Also, of course, ¢, must satisfy equations (14a) and (14c)
and together with ¢; must satisfy equation (14p).

Being antisymmetric about the plane y = 1/2, the y-dependence of

h(y,z) in equation (24) is represented by the Fourier series in order
that the boundary conditions can be satisfied. Thus,

o sinh ﬂna(y - -—) Z BycO8 Ty . (250)

o cosh —-——-2
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where, by Fourier's theoren,

an = 0 (m zexro or even)
25b
4 (m Odd) ( )

- J'[z[mz + a,znz] Qn

Then, equation (24) becomes

Zz BynCOS Iy COS Wnoz (26)

m=0 n=0

the proper equation for Py must be

2,.2 2
N \ é?nx1bn-+m n
P, = -~ = COS mIy COS Tmaz (27)
47 em [ + o2t
m® + afn

m=0 n=0

and, from equation (21b),

satisfying equation (21b).
To recapitulate equations (17a), (18a), (19), (23), (24), and (27),
the result for ¢ is

1
haid shﬁlnmm@'—j) ® Q
quuxl(x)Qo—XE Q, 2/ cos mnaz -Ef—emcosmo.z
ﬂmmcom1ﬁ35
n=0 a n=1
eTrx dm2+a2n2cos Iy COS Az (28)

< Bim

Result for uniform heaf addition. - In the instance of uniform heat
addition (fig. 2(a)), a¥(z) = Qy from equation (22), with all other Q,

Then, incorporating equatlon (25b) and using I.'Hospiltal's

being zero.
rule yield for equation (28):
F(23+1L)nx
l
x 1(x)}{1 - X - = ——— = cos{2] + 1)xn
o™ = Qpyx 1(x) 2 2 715 (23 + 1)y
j 0

- (29a)

3593
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Also, from equation (16a),
¥ o= Ax 1(;:)!.;)0 (29b)

The velocity components, from equations (12), are

1 o) T o241 )mx _
ut = QO (x)|1 - )\(y - 'E) :F;E m COS(ZJ + L)ny
J=0

(30a)

= 2§+ )nx

(27 4 N sin(2j + 1l)ry (30b)

2\
Viz-Qo-—z
" J

The result for vertical velocity (eq. (30b)) indicates that fluid
streamlines are displaced downward as they traverse the section where
heat is added in proportion to the amount of heat added Qy and the

Froude number (through A). Such a streamline is shown in side view
in figure 3(a). Inasmuch as equation (30b) is symmetrical in x, one-
half the displacement occurs upstream of the heat addition. The total
displacement of a streamline near the center of the channel (y = 1/2)
is approximately, from equations (4), (5), (7), and (30b),

OO x
Vogx = - X - -1 _OH dx
T dx 5 Qo 5 N RS (31)

—o -0

where the integral is, essentially, the total rate of heat addition per
unit ares.

This displacement occurs in a distance of the order of H and is
in a downward sense.- Figure 3(a) shows that downward displacement is,
in fact, consistent with a buoyant force acting et x = 0. The stream-
line curvature which is negative for x < 0 and positive for x >0
suffers an abrupt upward increase at x = 0. Of course, the restraint
imposed by the walls at y = 0,1 dJdetermines the particular streamline
pattern to accompany the upward buoyant acceleration at x = 0.

The result for the dimensionless through velocity U/UQ, fram equa-

tions (5) and (30a), is indicated in figure 3(b). Far upstream (station
1) the flow has a dimensionless uniform velocity 1. Far downstream
(station 4), the average dimensionless velocity is higher by eQ,
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because of the heat addition.l Because of the buoyancy effect, the ve-
locity profile has a uniform shear of such a magnitude that the dimen-
sionless velocity difference between the bottom and top of the channel
is €Qpk. For large distances downstresm, this is the dominant effect

of Froude number. The sense of the shear is such that the through flow
is more rapid in the constricted flow in the lower part of the channel
(cf. figs. 3(a) and (b)), and less in the expanded flow at the top.
This result is in accord with the usual behavicr of one-dimensional low-
speed flow in a channel of varying area.

In view of equation (2la), the actual velocity jump et x = O must
be independent of y and z. This requirement is met by the potential
flow described by the series terms of equations (30). Evaluated at
X = O, these terms yield the dashed-line profiles in figure 3, which are
parallel and differ by the constant €Qq, between stations 2 and 3.

The potential-flow terms attenuate exponentially in distances of
the order of H, both upstream and downstream from the zone of heat ad-
dition. At large distances, the most persistent of the series terms is
the first one, yielding contributions to u and v proportional to

exp[Fx][cos ny] and exp[Frx][sin xy ], respectively.

Result for cosine-wave heat addition. - For the problem of cosine-
wave heat addition (fig. 2(b)),

a*(z) =~% é(l - cos 2naz) (32)

Thus, from equation (22), Qy = % Q, Q = - % Q, and, from equation (28),

1
sinh 2na - =
1 =~ . 1 ( 2) 1l Tenax
¢i = E-Q X l(x) 1l - X(; -3 - YTy s—— ?os 2naz + T e cos 2RAZ

= = Bp2 2
- A E E.]ilge%m““cosnmy--Lfios 2naz E —-—2-—————18%0{ 4o 05 may
o m
m=0 m=0 (33&)

- lThe factor o) /p is omitted here and in similar expressions in

this section on small Mach numbers, because its value is unity to con-
sistent order in Mach number (see egs. immediately following eq. (7)).

3593
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and, from equation (16a),

¥ o= Ax 1(x)

molor

(1 - cos 2naz) (33b)

Again, part of the solution involves potential functions, attenu-
ating at distances of the order of H and L upstream and downstreem
of the station x = 0, where heat is added.

On an average across the channel, streamlines are displaced down-
ward, as in the previous case of constant heat addition. The velocity
components which dominate for larger x are, from equations (33) and
(12),

ginh Zﬂcx,(y - %)

_1l= 1 ' ‘
u=3zQl - MY - 2 ona cosh mw | Co° anaz (343)
1 o cosh Zﬂa( —-%)
v=-3Qal- ——— cos 2naz (34p)
1. s:[nhZ:rcc(—%‘-)
W= -3 QM oo sin 2mraz (34c)

Equations (34) represent an incompressible vortex motion, satisfying the

gimple continuity equation u, + vy + w, = 0, and having the dimension-

less components of vorticity

Qp = Wy - V, = -n@x\a sin 2naz (35a)
Ry= 1, - Wy =0 (35b)

_ ar
R, = Vg - Uy =3 (1 ~ cos 2waz) (35¢)

Equation (34a) defines the part of the profile of u (fig. 4) which
corresponds to the shear flow (eq. (31)) occurring in the case of uni-
form heat addition (station 4, fig. 3). This portion of the profile
does not vary with x. In fact, from equations (35b) and (35c) the re-
lated vorticity components Ry and. R, axe also constant with x. Of

course, equations (34b), (340), and (55&) are valid only for moderate

X, inasmuch as the present -analysis is restricted to small perturbations.

Since, physically, the vortices must be finite even far downstream, the
conditions far from the plane of heat addition must be determined from a
more complete anslysis.
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In the present three-dimensional case, there is a tendency to form
strong vortices with axes alined with the flow. These vortices are in-
dicated by the streamline pattern for a cross section shown in figure 5.
The axial vorticity &, increases linearly with x, as equation (35a)
evidences; the amount of circulation in each half of the cross section
is found to be equal to e\GU_Hx.

Another view of the vortex motion is obtained by tracing the vortex
filaments of the flow. Fach filament lies in a plane of constant ¥
Ggy = 0, fram eq. (35b)) and is horseshoe-shaped, with the open end

downstream. The vortex filaments lying in the plane ¥y = 1/2 are shown
as dotted lines in figure 5. If the horseshoes are spaced equally in x
(this is required by the fact that Q, 1is independent of x, from eq.

(35c)), the number of filaments passing through a cross section appar-
ently is directly proportional to x. Accordingly, Q, must increase

linearly with x.2 Thege results are, of course, for M, essentially

equal to zero. The effects of Mach number will be determined in the
subsequent section.

Large Froude Number

As has been stafed, simplification of equations (13) can also be
1

2
_ - - Fr
rather then the Mach number is small relative to unity. Therefore,
expanding ¢® and V¥ in a Maclaurin series in A as

(0) +ch(l) + .

obtained by assuming that the Froude number is large so that A =

® =9

(36)
Yo w(o)‘+ Xw(l) + .
yields to zero order in A
2,(0 2,(0 0)
v2e(0) _ me}(m) =q - \Lf§ (37)

2The vortex system illustrated in fig. 5 suggests a comparison with
the system of bound vortices of a low-aspect-ratio wing, with a leading
edge at x =0 and with a span of L. The sense of the vortices in the
present problem corresponds to a wing with negative 1lift distribution,
and this is consistent with the downward inclination of the flow which
has previously been discussed as occurring in the vicinity of the heat
addition.

3593
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,,,,, +0) _ (38)

XX

and to first order in A .
Voll) L1 (1) Er}(,l) + (r - 1026 + w(o)] (59)
T XC IO (20

The boundaty conditions for equations (37) to (40) are
. { )
‘P(l)(""’:Y:Z) = ‘#( )(’“:Y:Z) =0 (418')

@§i)(x,0;2) + ¢(i)(x:0:z) = ¢§i)(x,l,z) + w(i)(x,l,z) =0 (41b)

‘Pgi) (X)Y; O)

(1)( ,y,H) =0 (41c)

where 1 is O and 1 for the zero- and first-order equations, respec-
tively. In view of equations (36), the zero-order solutions describe
the flow with heat addition and no body force, and the first-order so-
lutions represent the contributions due to the action of the body
forces. Thus, in order to find the effects of a transverse body force
on the flow, the first-order solutions must be determined. However,

in the case of the small Mach number previously treated, the body-force
effects are evident from the zero-order (in Mach number) solutions.
Thus, for small Mach numbers, the body-force effects can be of the same
order of magnitude as the effects of heat addition; whereas, for small
A, the body-force effects must be small relative to the heat-addition
effects. The solutions of the previous section are, therefore, perhaps
more meaningful, but the present section serves to show how the Mach
number affecﬁs the flow.

Fourier series solution. - From the boundary conditions and equa-
tion (38), it is evident that

y(0) = ¢ (42)
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This fact together with the transformations

E=x
n = By
t = Bz

B=AlL-12

for M2 <1 reduces edquation (37) to a Poisson equation like equation
(l7b), except that the independent variables are &, 7, and t and the
coefficient l/B2 appears on the right side of the equation. For heat

addition of the type specified by equations (15) and (22), @ (0) satis-
fies Laplace's equation everywhere except precisely at x = 0. Thus,

¢(O) must also satisfy the compatibility condition
(0)+ (o).) 2
) - = q¥
( £ vy o= @ /B

The zero-order solution then is similar to equstions (23) and in the
X,¥,z system can be written as

o o
¢&0)* = SE; - EESEE e B cos maz (43a)
n=1
= DX
0)- _ _ Qn
q,() = ZZmBe P cos smaz (43b)
n=l

This solution is independent of y as expected, since to the zero or-
der the effects of the body force are not included. Recall that the

restriction ME < 1 has already been lmposed. Therefore, the factors

B and P2 in the denominators of equations (43) and others in this
section should cause no concern.

In order to solve the first-order system, substitute equations
(37) into equation (40), integrate, and apply the boundary conditions
to yield

D 26l s 1mer - (44)

3593
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Since q* is independent of Yy, w(l) is also, and equation (39) becomes

v2ell) _ Micpg;) =0 (45)

From equations (41b) and (44), the solution for o(1) involves the re-
moval of the singularity at x = 0, just as in the small Mach number
case previously discussed. Therefore, in a manner similar to the pre-
vious method (egs. (41b) and (44)), let

o) 27 - 120(%) _ x 1(x)n(y,2) (46)

vhere h is given by equation (24). Combining equations (41), (45),
and (46) yields

P + By + 8, = 000 1ra* + $%0(r,2)] (a7)
6('“:Y:Z) =0 (488‘)

Ey(x}o)z) = Ey(x:llzj =0 (481))
$Z(X,}",O) = az(x;y,v%) =0 (48(3)

Applying equation (24) and the previously given transformation to the
E,m,{ coordinate system to equation (47) yields

v = —-(glzz qnncos -—-— cos Egg- (49)

n=0 m=0

where v*z denotes the Laplacian operator for the independent variables
E, 1, and { and where the Fourier series representation

2 2 ll_i)
ZC cos——n Qann-!_Bsinh:ma,(B 5

_B ftna. cosh %E'
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with
QM .
Oy = 5 (m = 0) (50a.)
=0 , (m even) (50b)
aq [M2 2
: ‘?[;E ey J (n caa) (e0c)

is used in ordsr that the boundary conditions on @ can be satisfied.
The solution @ once again satisfies Laplace's equation except pre-
cisely at & = O so that the following compatibility condition must
also be satisfied:

(‘Dg - CPE)E -0 Bz Zz Cyncos —3 cos __Q

n=0 m=0

Hence, in the x,y,z system

F EB}—{ me+(an )2

- 1 E :Cmne
ot = <l|x 1(x)c COS Ty COS 7naz

min=1

(51)

Thus, from equations (36), (43), (46), (24), and (51) the function
¢ for large Froude numbers is to the first order in )\

JCD.CIJ{

= (1 - XME;Y) - l(X)QO Z 2701043 B cos maz

x 1(x)Cqq / ZZ '-'F %‘ _\m

2 B
\ min=1 + (cm) 2

" d QU sinh :ma,( - %‘-)
(cos miy cos ztncnz) - x 1(x) E oy — cos mmaz

cosh 5

(52)
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For zero Mach number, this solution reduces to that given for small Mach
numbers by equation (28).

' Result for uniform heat addition. - For uniform heat addition, as
shown in figure 2(a), equation (22) becomes q%*(z) = Q, with all other

Q being zero. Then using equation (50) and applying L'Hospital's rule
to equation (52) yield

X 2j41)x
B
£ o |x1(x) (1-x +l‘)+2)‘ Ze 2j +1
L Y +32)* 5 2 (2 v 1P cos(2j + 1)my
(53)
Also, from equations (36), (42), and (44)
N 1(x)
¥ = E—ﬁg— (54)

From equations (12), (53), and (54) the velocity components are

T 2)+L)x
= B
ut = %g— 1(x) (l - Ay +%)¥%Z-e—(ém cos(2j + 1l)ny
J=0
(552)
X 2J+1L)x
v = A% g sin(2j + 1) (55b
T % (2,j+1)zs J L )
J=0

Except for the factor 1/B 1in the coefficient and exponent of
equation (55b), this equation and equation (30b) are identical. With
increasing Mach number, then, and large Froude number, the total down-
ward displacement of a streamline remains the same as in the small Mach
number case; however, the axial distance over which the displacement
occurs 1s decreased.

The jump across x = O 1n the dimensionless increment of through
velocity u is, from equation (55a), equal to QO/BZ; thus, the Mach

number incresses the jump. The series term in equation (55a}, which,
as has been pointed out, corresponds to a potential, also is increased
with Mach number but dies out because of Mach number effects at shorter
distances on either side of the plane x = O.
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The caomponent of u

-2

represents a shear flow downstream of the heat addition and, again, is
increased by Mach number.

Result for cosine-wave heat addition. - In order to find the ef-
fects of nonuniform heat addition in a plane transverse to the through
flow, a cosine-wave heat-source distribution is assumed (fig. zéb)) ,
and g*(z) is given by equation (32). For this case, equation (52)
becomes

2na. cosh no

+(1—m2y B XZCO:F_B_
e cos 2naz | - 5= o © cos mxy

o stinh chr,(y - =
_g_,:_:_l_@_l{_ Xy—-—— cos 2naz

45afB 2% =
N = Cpo ¥ %" Vn?+(2a)2
- 5 COS 2maz E e cos mry  (56)
=0 \sz + (20&)2
and, from equations (36), (42), and (44),
F 2nax
\3 1 MBe B
¥ = ?Q 5—%1 (1 - BPcos 2naz) + -:-EB—— cos 2naz (57)

The velocity components, determined from equations (12), (56), and (57),
once again are composed of potential flows which vanish at distances of
the order of H and L wupstream and downstream of the heat-addition
zone and the following components which persist for large x:

A g2 2mna cosh na cos Znoz (58s)

1 1
é 1 y-3 sinh ZmL(y-é-)
2

1
~ cosh Z2naly - S
_ _ 9 ( 2)
V= - [l - oo cos 2naz (58b)
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1
-~ inh 2raly -~ =
_ o ? ( 2) .
W= - e sin 2naz (58c)

The v and w components are identical to those found in the previous
section (egs. (34b) and (34c)) and are independent of Mach mumber. The
only effects of Mach number are spparent in equation (58&), which de-
fines a shear flow in this case which corresponds to that determined for
uniform heat addition. The Mach number, however, increases the average
(over the channel width) shear flow as compared with that for small Mach
number (see eq. (34a)). The jump in axial velocity is also increased
with Mach number. Equations (58) satisfy the simple continuity equation
Uy + vy + w, = 0 and represent a vortex motion having components of

vorticity

2, = ~nQxa) sin 2raz (592)

2y =0 (59b)

Qg = %l [—lﬁ - cos zﬁccﬂ (59¢)
B

The x-component is identical to that given by equation (35a) for small
Mach numbers, but the z-component is decreased by the Mach number.
Therefore, although the cross-sectional streamline pattern is unchanged
by Mach number (see fig. 5), the slope of the vortex filaments ,/@,

is infinite at the walls, as shown on the following sketch, instead of

GLLLLLLLLLLL L LS L LSS L L L

SIS S S ST

Y

Z

extending indefinitely dovnstream, as in figure 5.
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Helicopter Rotor-Tip Ram-Jet Cambustors

The solutions of the previous sections are all linearly dependent
on A. Therefore, the order of magnitude of A will be determined in
a practical problem. For this determination, consideration is given
to the rotor-tip combustors of helicopter ram Jets. It must, of course,
be realized that the configuration analyzed herein 1s only an idealiza-
tion of an actual unit of this kind. Thus,

2 18]
UT) H B
X=-'I-J,— T 7}

where UT is the tip speed, r 1s the rotor radius, and U_, of course,

is the speed of the gas at which combustion is to take place. It is
clear that the ratio H/r will be small in a practical case (H/r = 1/16
would be a possible va.lue) , Whereas UT/U’ will be large, assuming that
the flow at the inlet must be diffused to low velocity in the combustor
(a diffusion ratio of UT/U_ = 4 would be possible). Thus, values of

A of unit order megnitude are not unreasonable. Actually, even if A
is small, the analysis indicates that vortex motions can occur with
nonuniform heat addition.

13

For the case of uniform heat addition, the order of magnitude of
the nonuniformity of the resulting flow can be estimated from the ratio
of the velocity difference between the bottom and top of the channel D
to the jump in velocity across the plane of heat addition AU. This ra-
tio D/AU is just equal to A. For nonuniform heat addition, the ratio

T/(2E + L)AU will yield an order of magnitude for the flow nonuniform-
ity wvhere T 1is the circulation in half the channel cross section and
the bar over AU indicates that this is the average over 2. Thus

r . x
(2H + L)XD (1 + L/2H)

Therefore, in both cases the nonuniformity in the flow evidently will
be of the same order as A and hence can be gppreciable as is demon-
strated herein for helicopter ram-jet tip combustors.

SUMMARY OF RESULTS

An analysis of the steady, compressible, inviscid channel flow to -
which heat is added at a cross-sectional plane and which is subject to
a transverse body force showed how the flow depends on the Mach and
Froude mumbers and a dimensionless heat parameter. Solutions were -
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obtained for uniform or nonuniform heat addition at a cross-sectional
plane under the simplifying assumption of either small Mach number or
of large Froude number. ZFor small Mach numbers and uniform heat addi-
tion, the flow was displaced in the direction of. the body force with
the velocity profile being one of uniform shear. Nonuniform heat ad-
dition in the cross~sectional plane in this case lead to the superpo-
sition of strong vortex motions on the shear flow.

The solutions for large Froude numbers yielded flows which were
qualitatively the same as for small Mach numbers. For large Froude
numbers, the shear component increased with Mach number, and the
streamline displacement was more abrupt at higher Mach numbers.

The flow in a rotor-tip combustor of a helicopter ram jet was
considered as an example, and the flow was shown to be appreciably
affected by the action of a transverse body force.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, November 10, 1955
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APPENDIX - SYMBOLS

The following symbols are used in this report:

U’Ui ,V,W

u,v,w

constants defined by egs. (25)
constants defined by egs. (50)

specific heat at constant pressure

3593

specific heat at constant volume

velocity difference between bottom and top of channel for
uniform flow

Froude number, U;/x/(:fgyﬁ

ith camponent of body force per unit mass, i = 1,2,3
channel height

function defined by eqg. (18b)

chamnel width

Mach number, U/-/YRT

pressure

rate of heat addition by sources per unit volume
constants defined by eq. (22)

constant defined by eq. (32)

dimensioniess heat parameters

gas constant

rotor radius

temperature

velocity components, i = 1,2,3

dimensionless perturbation velocity caomponents



£658%

CZ-4

NACA TN 3594 25

X:Xj_:Y:Z

X,¥,2

1(x)

dimensionless coordinates, i = 1,2,3

dimensionless coordinates

unit step function,ulNEC 5(x)dax =1 for x>0, = 0 for

N

x<O0
length ratio, H/L

2

circulation

1-M

ratio of specific heats

0 x40 o
Dirac delta function; , 8(x)ax = 1

o X=0

o-

small parameter (see eq. (4))
dimensionless parameter, 1/Fr? = (-£,)8/02
transformed dimensionless coordinates
density
dimensionless perturbation pressure
dimensionless perturbation temperature
potential function
potential function defined by eq. (46)

potential functions defined by eqgs. (17), (18a), (19), and
(20) i = 1,2,3,4

potential functions defined by eq. (36)
dimensionless perturbation density

density perturbation function defined by eq. (10)
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W(i) density perturbation functions defined by eq. (36)

szxggy,gz dimensionless vorticity components

Subscripts:

r reference condition
T tip

© upstream condition

REFERENCE

1. Ostrach, Simon: Combined Natural- and Forced-Convection Laminar Flow
and Heat Transfer of Fluids with and without Heat Sources in Chan-
nels with Linearly Varying Wall Temperatures. NACA TN 3141, 1954.

3593



JVYD

CZ-4 back

NACA TN 3594 27

Body force,

Section

where heat is
added ’

Figure 1. - Flow through a straight infinite channel with heat added at a cross-
sectional plane, under transverse body force.




(a) Uniform heat addition; q¥ = Qq- (b) Nonuniform heat eddition;
% . )
g = % (L - cos 2naz).
Figure 2. - Cross-sectionsl pettern of heat eddltlion at x = 0. Dark areas represent hesat
gources, )

C6S%

1314

¥65¢ ML VOVH



3503

NACA TN 3594 g

_\\\@:-mli_—

Station @ ® G@ @

(2) Path of typical streamline in center of channel; side view.
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{b) Profiles of velocity.

Figure 3. - Results for heat added uniformly at plane X = 0 1in two-dimensional
chennel. Station 1, far upstream; station 2, Just upstream; station 3, Just
downstream; end statlion 4, far downstresam.
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Figure 4. - Profile of increment in through velocity at large x for nonuniform heat

addition.

Mach number very much less than 1; length ratio, 1.
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Figure 5. « Vortex filements and mesoclated streemline pattern ganarated by nonuniform heat addition. Mach number

vary moch less than 1; length ratlo, 1.
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