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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAT. NOTE 3722

GENERAL, THEORY OF WAVE-DRAG REDUCTION FOR COMBINATIONS
EMPIOYING QUASI~-CYLINDRICAL BODIES WITH AN APPLI~
CATION TO SWEPT-WING AND BODY COMBINATIONS™

By Jack N. Nielsen and William C. Pitts
SUMMARY

The wing~body interference theory of NACA TN 2677 applied to symmet-
rical wings in combination with quasi~-cylindrical bodies permits the
direct calculation of pressure-distribution changes produced by body
shape changes. This theory is used to determine the relative magnitude
of the wave-drag reduction produced by changes in cylinder cross-sectional
area and that produced by changes in cross-sectional shape (without change
in area). The body distortion 1s expressed as a Fourier series, and an
integral equation is derived for the body shape for minimum drag for each
Fourier component. Thus the wave-drag reductions for the various Fourier
harmonics are independent and additive.

To demonstrate the use of the method, it is applied to a body with
a 45° swept wing having a chord of three body radii, s span of six body
radii, sonic leading and trailing edges, and a biconvex airfoil section.
Calculations of the various drag components for this configuration show
that the axially symmetric harmonic of body distortion caused a reduction
of 22 percent of the wave drag of the wing panels on the cylindrical
undistorted body. The second harmonic, which causes no change in volume,
produced a drag saving of 42 percent. The wave-drag saving was obtained
by decreasing the wing-panel drag by twice as much as the body drag was
increased. The wing panels have negative wave drag for two harmonics.
These reductions are accompanied by pressure gradients that are adverse
for the boundary layer. With regard to body shape, volume is removed
from the sides of the fuselage and added to the top and bottom. A net
volume less than the wing volume is removed if the distortions are
limited to the interval of the root chord. Although the second harmonic
removes no volume, it causes indentations about five times as deep as
those due to the axially symmetric harmonic. As & result the wing thiek-
ness for which the full theoretical distortions can be utilized is about 5
percent or less. )

A very simple theory for the aiially symmetric harmonic can be
derived by neglecting three~dimensional effects. This theory is valid

1Supersedes recently declassified NACA RM A55BOT by Jack N. Nielsen,
1955.
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for small chord lengths. An approximate treatment of the three-dimensional
effects ylelds a fairly simple theory applicable to longer chord lengths.
The effects of semispan-radius ratio and chord-radius ratio on indentation
shape, indentation volume,‘'and drag saving have been determined using the U
approximate theories for the axially symmetric harmonic.

An alternate method is developed for determining the body shapes for
minimum drag for any Fourier harmonic. By this method it is possible to
obtain for the particular case considered an analytical expression for the
shape of the axially symmetric harmonic. Since this is the only known
analytic solution for the shape of a drag-reducing body at supersonilc
speeds, it is used as a standard to determine the accuracy of the numeri-
cal methods used in the general method of this paper and also to determine
the accuracy of applying the supersonic area rule to the nonslender con-
figuration considered in this paper.

INTRODUCTION

The experimental verification by Whitcomb (ref. 1) of the area rule
has opened up a new realm of possibilities of reducing the wave drag of !
complete configurations at transonic and supersonic speeds. The theo~
retical basis for the ares rule lay undiscovered for some time in the
Hayes drag formula (ref. 2), which contains the implication that by
indenting a body, a saving in wave drag equal to the drag of the wing
panels can be produced. Thus, in principle, the wave drag of a slender
combination utilizing an infinite cylindrical body can be reduced to
zero. Lomax and Heaslet (ref. 3) have used this Hayes drag fermule to
determine wing-body combinations of minimum wave drag. They start with
a wing alone and then, using the invariance principle of Hayes, distrib-
ute multipoles along the longitudinal axis that will cancel the drag
producing pressures of the wing alone. The wing-body combination thus
obtained has zero wave drag if all multipoles are used. If, to obtain
practical shapes, only a finite number of multipoles are used, the wave
drag is a minimum for this number,

[

In the foregoing method the problems of actual body shape and of
pressure distributions are secondary considerations in the mathematical
solution of the minimum-wvave-drag problem. A method for minimizing wave
drag of wing-body combinations dealing directly with the body shape and
the pressure distributions has been developed based on the interference
theory of references 4, 5, and 6. The method, presented herein, is
applicable to combinations with bodies which are approximately cylindri-
cal in the region of the wing. The principal restriction on the wing
other than small thickness and sharp leading edges is that it possess
& horizontal plane of symmetry or that its upper and lower surfaces be
irdependent. It i1s the purpose of this paper to present in the first v
part a general theory of drag reduction for wings on quasi-cylindrical
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bod.:l.es-.

In the second part the method is applied to the refuction in

wave drag of & combination employing a swept wing with sonic edges.

' SYMBOLS

All lengths are measured in body radii.

(=)
Dw(1+4)
Dw(c)
Dy (w)
dz

body radius

aspect ratio of exposed wing pz;.nels jéined together
local wing chord or chord of rectangular wing

chord at wing-body Juncture

wave-drag coefficient of combination based on exposed wing
area

reduction in drag coefficient based on exposed wing area as
& result of body distortion

drag of body in combina'l;ion

drag of body due to 2nth Fourier harmonic

drag of combination

saving in drag of combination by body distortion

drag of wing in combination with body due to body distortion
dr;a.g of wing in combination with body due to interference

drag of wing in combination due to interference and distor-
tlon pressures propagated along characteristic body cones

drag of wing in combination due to interference and distaor-
tion pressures falling behind characteristic body cones
drag of wing panels on distorted body

drag of wing panels acting as part of wing alone

local slope of wing surface in streamwise direction
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fon(x) velocity amplitude function of 2nth harmonic neglecting tip
effects .
fong (x) velocity amplitude function for a pair of opposing sources
inclined at the Mach angle
€on (%) amplitude of body distortion due to 2nth harmonic
(1)
& >
(2) successive approximations to g,(x)
2
go 3 o o o
hop (x) nonhomogeneous part of integral equation for gop(x)
hol(x):
ho (x) 5 components of ho(x)
h03(x)’
1 upstream limit of body distortion
m slope of wing leading edge
free-streem Mach number
n normal to quasi-cylindrical body
2n index of Fourier harmonics
P local static pressure
Pop(x) ~  half-amplitude of the 2nth Fourier component of the pres-
sure acting on the body due to the wing alone neglecting
tip effects
P, free-stream static pressure
P -P
P pressure coefficient,
Pp(qd) body pressure coefficient due to body distortions
PB(:L) body pressure coefficient due to interference
PB(W) body pressure coefficient due to wing alone

Py(a) " wing pressure coefficient due to body distortions
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Py(1)
Pu(w)
q

r,0

Ty
R.P.

84 (x)

8¢ (x)

Wan(x,r)

X5 2

X3

wing pressure coefficient due to interference

wing pressure coefficdient due to wing alone

free-stream dynamic pressure, %—pvz

polar coordinates in y,z plane; y =r cos 8, 2z =r sin 0
radial distance to point on body of combination

real part of a complex function

semispan of wing-body combination

local semispan of inner portion of wing plan form
(sketch (c))

local semispan of outer portion of wing plan form
(sketch (c))

area of one exposed wing panel
area of two exposed wing panels
maximmm thickness of wing section
perturbation velocities along x, y, and z axes, respectively
velocity normel to quasi-cylindrical body, positive outward
velocity along radius vector, positive outward
free-stream velocity
volume of body indentation
volume of exposed wing
influence function
coordinate axes with origin at vertex of wing alone,
x measured downstream, y laterally to the pilot*s right,

and z vertically upward

intersection with body of most forward body characteristic
touching exposed wing

intersection with body of most rearward body characteristic
touching exposed wing




xt,yt,z!

Y(x)

Z(x)
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oblique coordingtes; x' = x -my, y' =y - mx, z'= zN1 - m2

fx W, (E)at

(o]

f W, (E)at
(o]

local thickness of lower wing surface measured from chord
plane, z = O

local thickness of upper wing surface measured from chord
plane, z =0

M2 -1

S
f Won(x,r)dr
1

semiapex angle of wing section:

function defining the plan-form distribution of wing thick-
ness (eq. (2))

constant, Ao = 4, \y =2 if n >0
free-stream densi'l:.y

potential of distorted. body alone

potential of complete combination

interference potential, @ - (cpw + q;B)

potential of wing alone

An asterisk (*) distinguishes a quantity associated with the wing |

tip.

I - GENERAL THEORY

Statement of Problem and Determination of Boundary Conditlons

In references 4, 5, and 6 the boundary-vaelue problem of determining
the pressure distribution acting on a combination composed of a wing and
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an infinite, circular, cylindrical body was solved. In the method, the
flow field of the wing alone is pictured as causing a virtual distortion
of the body surface, and the pressure field due to such distortion is
computed term by term for each Fourier harmonic of the distortion. The
pressure field on the body is computed with the help of a table of char-
acteristic functions or influence coefficients which give the pressure
coefficient at any point of the body due to a unit bump at the origin.

By summing the pressure contributions of each bump on the body by mmeri-
cal integration, the entire pressure field is built up. An essentially
different and more complicated method using axial distributions of
sources and multipoles was used to obtain the pressure field off the hody.
However, it has recently been possible to extend the method for computing
the pressures for points on the body to points off the body by expanding
the tables of influence coefficients. The theory of the new method is
set forth in Appendix A, This method which has been applied to combina-
tions with cylindrical bodies hawing virtual distortions-is equally
applicable to combinations having bodies with real distortions. Thus we
can evaluate the pressure field and the pressure drag of a combination
with a body of arbitrary’ small distortion using the above methods. The
pressure drag of the combjination can be minimized with respect to body
shape by the calculus of-/variations to determine the best shape Ffor mini-
mum drag. In this part of the report the theory of determining this
shape will be considered.

In this paper the wing alone is teken to be the wing panels plus the

portion of the wing blanketed by the body when the leading- and trailing- -

edge intersections with the body are joined across the body in any arbi-
trary manner. The wing-body combinations to which the analysis applies
possess a vertical plane of symmetry and either & horizontal plane of
symuetry or upper and lower wing surfaces that are independent (e.g., a
triangular wing with supersonic leading edges). An additional assumption
is that the body shape at any point does not greatly deviate from a cir-
cular cylinder; that is, the body is quasi-cylindrical. Sketch (a)
illustrates the winged portion of a r
Wing-body combination together with the

system of axes used in the analysis.

All distances are based on a radius of

unity so that the formulas in the anal- V— 1 y
ysls can be written in simple form. : !
The body cross section at any x posi- Ve Vo ]

tion is taken as & circle on which are N X
superimposed distortions that vary as Cr——i

cosines of even multiples of 06 to
preserve a vertical plane of symmetry.
Thus

(o)

B_r] = (Z.E.) " gon(X)cos 2n6 (1) Sketch (a)
ox Jpy g
n=o
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The function gon(x) is the shape amplitude Punction of the 2nth Fourier
harmonic and is to be so determined that the wave drag is a minimum.
With regard to the wing, no limitations are made on its plan form. The
coordinates of the wing section at any spanwise station y are taken to
be

zu = -2y = tmn(x - Br + B,T) (2)

where 1 1s a function giving the thickness distribution and is zero off
the wing.

Consider now the boundary-value problem of determining the combina-
tion potential. This problem is solved in essentially the same manner as
in reference 4. For a cylindrical body the combination potential is the
sum of the wing-alone and interference potentials, but when the body is
distorted, an extra potential P must be added.

o =Py +9; + (3)

All potentials are to satisfy the wave equation in cylindrical coordinates.

2
Fop,13 , 1% Fp_,
Sc2 T or 2 392  3x2

The first boundary condition is thet the derivative of the combination
potential normal to both wing and body be zero with the body taken as
the r = 1 cylinder and the wing as the 2z = O plane. Thus

d =1 0<9-<2
P o T <6-<2x (body) (ha)
dn r>1 9 =0,x (wing),

The second boundary condition is that there be no upstream waves.

Pe=0 x50 ()

The second boundary condition is satisfied naturally by using Laplace
transform methods, but the first one is not so easily met. Consider

7
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skatch (b) which shows a region of
the quasi-cylindrical surface
R(x,r,8) = congtant in the neigh-
borhood of point P. The direction
cosines of the normel to the surface
at point P are

oR/0x ORfdr 1 OJR/de
J ) =
|ered R| |gred R| r |erad R|

The velocity in the normal direction
is thus

Sketech (b)

R /ox Bch 3Rfor OPg , _OR/30 3P
|grada R| ox |grad R| or r2|grad R| 0@

Vn =
For a quasi-cylindrical body the equation of the body surface is

-qn 00 . X, .
R(x,r,8) = r - (’c?) Zcos 2ne f gon(E)dE =1
n=o

(o]

2220
ox cr/’ dr ’39

so that

Since

v o (@@

the third term in the equation for vy 1is negligible compared to the
first two terms so that

g 9%¢ R 3R,
3 T wmaxs TV TSP )
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Combining equations (1) and (5) ylelds the boundary condition for zero
normal velocity at the body surface

opc  Owy  99; g (tm So:
= = H = <
5 - + + 5 v Cr) 8on (x)cos 2n6; r=1,0<6<2x
n=0 (6)

For no flow normal to the wing surface, we obtain

3pp/dz _ dzy
v T x

In texms of potential functions this boundary condition becomes

B 1% _ 1% % ) __dm
9z T 3 T\d6 d 98 /] @ x

5 r21; 8 =0,x (7)

Equation (7) is fulfilled by expanding @; and q)hb in cosine series of
even multiples of 6. Equation (6) is fulfilled by satisfying the
following equations for each term of the Fourier series as in refer-
ence L,

d d =
9L = - R _ v (2-’3) Z Pop (x)cos 2n6

a—gg =V (%) i 8op (x)cos 2n6
n=o

It is to be remembered that ¢; 1s the interference potential defined
so that the combination possesses a cylindricel fuselage. It changes
if the definition of the wing alone changes. All effects of distorting
the circular cylinder are contained in P

Pressure Field Acting on Wing-Body Combination

The first step in the present method for evaluating the drag of a
wing-body combination is to determine the pressure distribution acting
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on the combination. This can be done for the body very simply by means
of the Wan(x) functions tabulated in reference 5. The pressure field
off the body has been obtained in references L4 and 5 by distributing
multipoles along the body axis. However, the determination of the pres-
sure field off the body can be reduced to the same amount of work as
determining that on the body by generalizing the Won(x) functions to
Wzn(x,r) functions. This new procedure besides vastly simplifying the
calculation of the pressures off the body also avoids the necessity of
integrating across logarithmic singularities involved in the original
method. The generalization of the Wpp(x) functions to Wop(x,r) func-
tions and their use in calculating the pressure field off the body are
described in Appendix A. The Wzn(x,r) functions are plotted for
n=0andl in figure 1.

The pressure coefficients of the combination are the sums of the
coefficients due to the body alone, wing alone, and interference. Accord-
ing to Appendix A the pressure field due to the body alone (distorted) is
given on the body and the wing as

Zz% = %DZ [gzn(x)-% fx gzn(g)wanC‘;g, 1>d§]cos 2ne (8)

M= 2 N Eon(x-Br+p) 1 x-B(r-1) .
('bm/cr) ' B nZo l:‘nT" B L[ gzn(ﬁ)wzn<g -7 +1- %,r)dg]
(9)

The pressure field due to the wing alone can be determined as a pure wing
problem in linear theory. ILet Py(w) be the component of this field act-
Ing on the wing and PB(W\); the component acting on the body. ILet PB(W
be composed of a component due to infinite aspect ratio plus a componen’
due to the difference between infinite and the actual aspect ratio, that
is, & component due to the tip. Performing a Fourier analysis of the
PB(W) field around the body section and indicating the part due to the
wing tip with an asterisk, we obtain

Pp(w)

m = 2 Z [Pzn(X) + Pan*(x)}cos ane (10)
xr

D=0
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The factor of 2 has been introduced purely for later convenience, and the
values of pop(x) and p,,*(x) thus represent only half the true Fourier
amplitudes. The quantity pop*(x) can be thought of as due to the image
system of line sources and sinks representing the tip when the wing pres-~
sure field is constructed of line pressure sources in accordance with
reference 7.

The pressure due to the interference field is obtained in the same
manner as in references 4 and 5, or analogously as that due to body dis-'
tortion. Let the normal velocity induced at the body surface by the
wing-alone field be Fourier analyzed around the body in a manner similar
to the wing-alone pressure field so that-

| . (’59 i [fzn(x) + fzn*(x>]cos oo (12)
n=o

Equation (11) gives the virtual distortion of a cylindrical body neces-
sary to conform to the wing-alone flow field. Since the cylindrical body
is, in fact, not distorted by the wing flow field, it sets up an inter-
ference pressure Tield equal and opposite to that associated with the
virtual distortion. This opposite effect also explains the use of a
minus sign in equation (11). Analogous to equations (8) and (9), we
obtain

. . Lo N
'(—:;3—2:7 = %n-:o{fzrl(]{) + fzn*(x) - -:é—'- [ [fgn(g) +

fan*(ﬁ)]wzn<x; £, l) dﬁ}cos 2n6 (12)

Bi(i) o i {fgn(x- Bref) | fon(x-frsf)
(tm/er) P = Nr NT

fx-Br+ﬁ [fzn(g) +fan*'(§):lW2n<%'r+l'%’r d§} (13)

o]

w|H
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Drag of Body and Wing in Combination

The resultent pressure acting on the body of the combination is the
sum of the pressure coefficients given by equations (8), (10), and (12).
Let the body be distorted over the inmterval O < x < 1. Then the body in
combination has the drag

OB(C) f f " [PB(a) + Pa(y) + Ps(i)] rEawa ()

With r taken as unity, we obtain

-(—('i'tf/)TBr()(Q- = lzdxfznr i [gzm(xScos 2m6:| IZO {gzn(X) + BPZn(X) +

© m=o

w]|o

. |
B *(x) + fan(x) + £an*(x) - L f [2en®) + £an(®) +

fon* (g)] w2n< 1> d§} cos 2né do . (15)

The totel drag of the body in combination can be expressed as the sum of
the drags of the various Fourier components since the components are
orthogonsl; that is, the pressures due to one component cause no drag by
acting on the shapes of the other components.

{p/q) ® (D/q)
S B(C) z B(C)on (16)

(tmfer)® (tm/er)®

Then for n =0

(D/Q)B(C) L v)
(.bm/Cr)a_O = —B—’t- A _So_(x) {80(2:) + BPo(x) + BPO*(X) + £o(x) + £o*¥(x) -

% fx [80(§)+fo(§) + fo*(g):lwo (2%5-, 1>d§}dx (17)

(o]
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and for n #0

(D/q)B(C) 2 :
('l'qn/cr):n B %ﬂ-[ 8zn(x) {gzn(x) + Bpop(x) + BPZn*'(x) + £ (x) +

£an*(x) - 3 fo . [sznm + 2 (E) + fzn*(g)] Won <_B£1>dg}ax
(18)

The pressure coefficient acting on the wing in combination is given
by the sum of Pw(d)’ PW(W): and Py(1)-. Consider the drag of the wing
panel Dy(y) known from wing-alone theory, and evaluate Dy(g) and Dy(i)

as follows: Consider first the pressure components 2g2n(x Br + B) /B NT~
and 2f,y, (x - pr +B) /BNT vhich represent Ackeret pressures or two-
dimensional linear-theory pressures attenuating inversely as the square
root of T salong the body characteristics. Including tip effects and
considering both sides of both wing panels, we obtain for this component
of the wing wave drag

(o/ q-)W(i+d) 2o ( -ar+s) (x-pr
x fon (x-Br+B)
(tm/cx) _ B f‘—/;l, HZ:O [ NT +

fon* (x-pr+p) T
= +]ai“ (19)

NT

(2) ©
(D/‘l)w(1+d) _8 Z f f [gzn(x-'ﬁr-l-ﬂ) N £, (x-Br+B) .
'bm/cr) B n=o NT

ar a(x-fr+p) (20)

fon” (x-Br+B) ]c o (x-pr+B,r)
NT * ox
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It is convenient to integrate first out- X-B(r-l)=x./-, ol XBUr) =X
ward along strips in the characteristic r /4--",',,’/ "£8=5o(x)”
direction and then to sum the strips 7 T /’
between the leading and trailing char- ’drd[x—p(r-lﬂ
acteristics tengent to the wing plan &4,—5 (%)
form as shown in sketch (c). i
Y (xh') (x2,l) )
@)
o0
——— 3 f gon(x-Br+p) +
(t!D./ cl‘) n=o X1
Sketch (c)
8o a (
n{x~pr+B,r) dr
fon(x-pr+p) + fon (x—Br+B):I f Cp Z— — a(x~pr+p)
(21)

oxr

= = E ( 2 ) dr
'bm/cr)z B n=o fl l:gan(X) +f2n(X) +f2n*(X):l‘/s; . %ﬁ -

(22)
Consider now that part of the drag due to the pressure disturbances
lying behind the Mach cones on which they originated and represented by

the integral forms in equa.tions (9) and (13). This second component of
the wing wave drag is

@) |
A I S

fzn*(g)]wzn (‘13{' ~r+l- %’ r>d§ cr -g% dSp (23)
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¢ The volume of integration is shown in
? sketch (d). In this sketch the posi-
v tive r direction has been reversed
1 N for clarity. Let us reverse the
~ Surface order of integration so that in the

& =x-Blr-1)

x,r,t space we integrate over a slab
perallel to the x,r plane and then
sum the slabs with respect to E§.
Since Wop(x,r) =0 if x 1is nega-
tive, there is obtained

3 0
fan(§)+f2n*(§)]d§ ff Wan %-r"'l—g,r chidr d(x-&"l'ﬁ)
Sp

(2k)

or

@

(tm/cr)z -Esz.lzo‘/;xz [gzn(x) + £ (x) + fzn*(x)] ax

ff W2n<%-r+l-x§,r>cr g—'gldr a(t -pr +B) (25)

Sp
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The entire drag of the wing in the presence of the distorted body is
thus

o]

(0/ddyey P/dyey o ‘s
(tM/cr)z i ('l"m/cr)2 +EnZo X1 [Sgn(x) +.f2n(x) +f2n*(X)]dx

L:o T : g’r) % i % i f ~ [32n(x) + £ (x) +f2n*(x):)dx
[¢]

H

n=0

ff W2n<%-1‘+l-%,r)cr gjg- d-;‘ a(g - pr + B) (26)

Sp

Body Shape for Minimmm Drag and Drag Saving

In this section we will derive an integral equation for the body
shape for minimum wave drag. As noted in the Introduction, the alternate
method of Iomax and FHeaslet also ylelds a solution for body shape for
minimum wave drag. The two solutions are equal to the order of quasi-
ceylindrical theory. The solution by the alternate method as well as its
relationship to the present method is described Iin Appendixes C and D,

The drag of the combination can be expressed as the sum of the wing-
alone drag plus the drag of & number of independent Fourier components.
We can minimize the drag of any component or combination of components
independently of the others; for instence, we can minimize the drag of the
second component without altering the first component which controls the
volume. The equation for the wave drag of the combination to be used in

the minimization is
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% Z P f 8on () 8on(x) + Bpon(x) + BPon® () + fon (x) + £2n*(x) -

n=o0

% fx [gan(g)+f2n(§)+f2n*(§)] W2n< g,l> dg} =
o
5 i J; | [gzn(x) + (%) +fan*(")]fs:° o MG F s

n=o0

-

Ol g 7 .
('bm/cr)z Bz nZo h/o‘ [:gzn(x) +Eon (%) +£op (x):ldx

fL Wzn(%"l‘"'l-— >0r—’ldrd(§ fr + B) 27

P

The range of the integrals in the terms was increased from x; <x < Xp
to 0 < x <1 with the help of simple properties of Wap(x,r) and 7(x,r).
The constant An i1s 4 for n =0 and 2 for n > 0. In the minimization
of the drag as gliven by the above formula, the condition is considered in
which the shape of the indentation for the particular Fourier harmonic

is at its velue for minimm drag and then a variation Og,,(x) from this
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shape is considered. The additional drag due to the veriation, 8Dg, is
zero and is given as

= 1
('bm/cr)g = :g' Z -An.£ 58211(1{) 2g2n(x)+ szn(x) + BPan*(x) +f2n(x) +

fzx;*(x)-% fx [Szn(§)+f2n(§) + o (E)] W2n<—'5 :L)dg} ax -

.0

o0

(o]
n=0

w |

n=o0 I' n=0

if 8 (x)f a“(x’r) & dx -5-2- i[zﬁgan(x)dx

ILszn@'r+l‘%’r>°r?§]'drd(§-ﬁl‘+ﬁ) (28)

With the inversion of the following integral

o

f zgz;(x)dx l * agzn(ﬁ)wan@;—g, l>d§= L[: Zﬁgzn(x)dx Ll; zgzn(E)W2n<%,l>d§

(29)
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equation (28) becomes

5(D/a) & 1 '
(-bm/cl,)ca'“'g Z Y l Bgon (%) {2s2n(X) + BPon (%) + Bpop*(x) + £op(x) +
n=o

Ton*(x) - % \/;lgzn(g)wznlg“;‘x' at - %lx[fan(ﬁ) +

fan*(g)]wzn ("—;——5-,1>ag}ax + % nZ ‘/0-3 8 (x)

[;/;:ocl_ Bx %-%ff Wan(ﬂ-r+l——- >

Cr gg'dl‘ ae - ﬂr+ﬁ):’ (30)

Now G(D/q)c mst be zero to the first order and since Bg,,(x) is
arbitrary and not zero, we must have for each n
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3 n{2g2n(x) + BPan (%) + Bpop™ (%) + fop (%) + £opn*(x) -% f 8on (€)W, I |d§ -
bt v (55 Ja o [ [ Dl

ff Waon —-r+1-F )crgﬂg-drd(E-ﬁr+B)]=o (31)

This integral equation defining the optimum body distortions Por each
Fourier component can be written

1
on(x) = hon(x) + él_s j: gan(g)wznl% at (32)

wherein

han() = - & [ By () + B 1)+ £y () + 25 @ |3 [ f o (§ x4

l_&,r>cr Mdr d(g-ﬁr-kB) -fsocr ME]_I_—.
B ot 8y 3 T

(33)

o f" [fan(f.) + fzn*(g)]wan<_’-3—§,l> *
(o]
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The nonhomogeneous term th(x) must be evaluated for the particular wing
under consideration, the values of Don(x), Pop*(x), fon(x), and £ *(x)
following from a knowledge of the wing-alone flow field. Equation I(32)
is then solved by mumerical means to determine the best distortion of the
body for the Fourier harmonic under consideration. The actual distortions
are proportional to the wing thickness because of the use of quasi-
cylindrical theory and the application of the boundary conditions on the

r = 1 cylinder. The wing thickness must be sufficilently thin, therefore,
for the distortions to be within the compass of quasi-cylindrical theory.
For a wing of greater thickness an suxiliary condition can be imposed on
the allowsble magnitude of the distortion and the minimm problem resolved
subject to such a condition in a manner similar to thet of Lomax and
Heaslet (ref. 3).

A simple rule for the drag saved can be determined by evaluating the
drag of the combination at the minimm-drag condition. Under this condi~
tion the drag is

.(_::%.(;—2 = % i An J;z &n(x)[-&n(x)+%nga(§)Wm (g ;x,l>d§] dx +

1-%,1- crg—gdrd(ﬁ-ﬁr+ﬁ) .(34)

The last three terms represent the drag of the wing panels with a cylin-
drical body, in which case the drag of the panels is the total drag of



NACA TN 3722 23

the winged part of the combination., - The first term thus represents the
drag saved., _If the order of integration of this term is reversed, we
obtain

20 1
--“Bl Z M f 8on(x)hon (x)dx (35)
o

n=0

It is readily seen that the drag saving is simply the drag of the dis-
torted body without any wing panels, end that this drag is the same
whether the distorted body moves in one direction along its axis or in
the other direction. If the combination is operated at a Mach number
other than the design Mach pumber, the drag saving is less than that
given by equation (35).

Body Shape for Minimum Drag by Alternate Method

It is possible to build up the potential fields due to the addition
of a quasi~-cylindrical body to a wing, ¢; and ¢p, by distributing sources
and multipoles along the x axis as well as by the Wén(x,r) method.
Any set of solutions to the wave equation in cylindrical coordinates
that is of the form of a function of x and r multiplied by cos 2n6
can in principle be used for the purpose. In reference 4 a method is
given of relating the body distortions to the multipole strengths for .the
particular set of solutions used therein. The same method is used in
Appendix B to show the relationship between body distortion and multipole
strength for the multipoles of reference 3. In Appendix C the equivalence
between the quasi-cylindrical and multipole methods is used to develop an
alternate method for determining the body shapes of a minimum-drag wing-
body combination in a form amengble to analytical as well as numerical
calculation.

IT -~ CAICUIATIVE EXAMPIE OF SWEPT-WING AND BODY COMBINATION
WITH SONIC LEADING AND TRAILING EDGES

An interesting example of the general theory is the case of a swept-
wing and body combination with sonic leading and trailing edges. By dis-
torting the body properly it appears possible to reduce the drag rise
that occurs as s swept-wing airplane approaches the Mach number for which
its leading edge becomes sonic and thereby to increase the Mach number
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The supersonic area rule (refs. 8 and 9) gives an approximate idea of the
shape of the distortion due to the axially symmetric harmonic. A compari.-
son is made in Appendix D of the body shapes given by the supersonic area
rule and the present method.

As an example, & minimm-drag computation is made for two harmonics
of the swept wing and body shown in sketch (e). The calculation is for
M =~2. If a combination at some other Mach mumber is desired, it can

r be Pirst transformed to M =2

’ in accordance with Appendix E and
45° then the answers should be trans-
formed back to the original Mach
mumber. The results of the calcu-
s JRg Z lation for swept wings with sonic
Y { Z — x edges are plotted in nondimensional
AN N . form applicable to any Mach number.
t A biconvex airfoil section has been
2 used with a thickness distribution
\vzz;\ L given by
b—3— - 2ty (ﬂ)( ] E)
M=yZ Za c c
Sketch (e)

= tpnlx -~ (r-1), ] (36)

on the wing and 2z, = O off the plan form. The first major step in the
calculaetion is to evaluate the various components of hon(x) as given by
equation (33). The relative magnitudes of these components are in direct
proportion to their importance in prescribing the proper shape for minimum
-drag so that considerable insight into the problem is obtained in +this
step. The second step is to solve the integral equation for the minimiz-
ing shapes, and the third step is to evaluate the drag saving, volume of
cutout, pressure distributions, etec.

Velocity and Pressure Amplitude Functions

. The Pirst four terms of equation (33) relate to the pressure and
normal velocity fields produced at the surface of the body by the wing-
e _© alone flow field. For the present

) example consider the wing alone to
include the area blanketed by the
body when the leading and tralling
edges are extended as straight
lines. The pressure and velocity
fields of the wing alone can be
bullt up by superimposing line
pressure sources of the type glven
by R. T. Jones in reference 7. The
u, v, and w =fields of such a line
source, as pictured in sketch (f)

Sketch (f)
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are given in reference 10 for M = N2 as

— cosh~t =X . (37)

u
7 = =R.Pe —F]/—
v N 1-m? Ny1Z4ze2

vy +2°

Jy2+za 'Jy'2+z'2

~ = R.P. £ cos-?

v T (39)

wherein

x'=%X -my; y'=y-mx; 2z'=zNlm?

For a sonic leading edge, let m approach unity and obtain the limits
of equations (37), (38), and (39) as

NE 2 2 %o
(x-7) (0)

<i|e
M |m

‘sz-yz-zz

=5 - cosh~t X ___ | ’
Vol -y Jy2iz2 (1)

W _€ g Y -x)+22

B ey =] )

From these equations the normal velocity and pressure distribution acting
on the cylinder y2 + 22 = 1 can easily be determined. The velocity
normal to the cylinder was computed for 15° intervals around the cylinder
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and then Fourier analyzed using numerical methods for the peir of line
sources 1-1 shown in sketch (g) as well as for a pair of tip sources 2-2.
The coefficients so calculated correspond to the Fourier series

fog(x) + £25(x)cos 26 + . . . (43)

= £o.*(x) + £2.*(x)cos 20 + . . . (4h)

wherein the asterisk refers to the tip sources. The values of the

Fourier coefficients are shown in figure 2. The constancy of the foi(x)

y

N <=
. +=--=-+ Section A-A 4
Infinite wing source-sink system  Wing tip source-sink system

Sketch (h)

coefficient is noteworthy since
the normal velocity distribu-
tion varies with x. It is
apparent that the tip has a
minor influence.

To obtain the velocity
amplitude functions for the
wing as. a whole as defined by
equation, (11), it is necessary
to superimpose the effects of
the souices and sinks that form
the wing in accordance with
sketch (h). The effect of the
infinite nmumber of small sinks
between the leading and trail-
ing edges is summed by inte-
gration. The resultant values

.of fo(X'), fz(X), fo*(x); Po(x),

Po(x), and po*(x) are given in
figure 3.

The main terms of equa-
tion (33) are readily deter-
mined. The final term involves
numerical integration using the
values of the Wopn(x,r) func-
tions in figure 1. The sixth
term can be ascertained in
closed form. Since from equa-
tion (36)

n(x-r+l,r) = 2(::_;__)( _%
(45)
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we obtain
SRt B w
Thus
* nix,r) a 2(x-1)
nix,r) dr _ _ 2(x- _
[onen i 2]y (u)

The term involving a double integral can be reduced to a single integral
with the aid of equation (46)

ff Wan(ﬁ-r+1-x,r)ch(§-r+1,r)d_rd(g_r+1)
Sp ot

—2ff Wan(§-r+1-x,r)[ 2(¢ - r)]drd(E-r+l)

- fc+1[1 _.2(_-5»0'_1')](1(_& -r 4+ l)[swzn(g -r 4+ 1 - x,r)dr

1

=af <-_ f Won(t + 1 - x,7)ar (48)
(o]

With the following definition

S
Tan(x,s) = f Won (x,7) dr (k9)
1
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we achieve the desired result

ff Wan(g _r+1_x’r)ca'fl(§-r+l,r)drd(g_r_ltl)
Sp ot

_a [ 2¢
=2 1- 2= )Ten(é-x+1,8)aé (50)

o
Solutions of Integral Equations for First Two Harmonics

The solutions of the integral equations represented by equation (32)
have been obtained both by iteration and by simultaneous equations. If

©)
a first approximation to gyn(x) is known, say gp,(x), then a second
approximation can be determined from the integral equation as

1
on) = han) + 3 [ Eon(8 Wanl-t et (51)
(o)

The process is repeated until it converges (or diverges). The conver-
gence is greatly aided by a close first approximation. If a means of
solving many simultaneous algebraic equations is at hand, the integral
equation can be expressed as a number of simultaneous equations by writ-
ing the integral approximately as & summation. The more equations, the
more accurate the answer. The rate of convergence is decreased by
increasing the interval 0 < x < 1 or by increasing the order of the
harmonic.

For the n=o0 harmonic the solution was started by using ho(x) as
a first approximstion. The component terms of hy(x) are shown in fig-
ure 4. It is clear that the terms f£,(x) and py(x) are equal and oppo-
gite and the tip effects are small, so that the effect of the body dis-~
tortions sending waves directly along the Mach cones is the dominant
effect. This fact leads subsequently to & simple approximate theory.
In the first cdlculation, the body was distorted only over the interval
of the root chord. The subsequent approximetions to go(x) were obtalned
by iteration in accordance with the equation

e )
0@ o + L [ eoltolxtlar (52)

1
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The successive approximations converge so rapidly as shown by figure 5
that the initial approximation could have been used as the basis of a
good approximate solution. In the second calculation, the possibility

of distorting the body in front of the wing was considered with the
result that the calculated distortion here is very close to zero, as
shown by figure 6. For a general wing this corresponds to no distortion
in front of the Mech rhombus enclosing the wing, & condition that follows
readily from & consideration of momentum transfer through a large volume
enclosing the combination. The effect of distorting the body downstream
of the wing wes investigated with the result that some distortion in this
region is effective in further reducing the drag. However, the additional
gain calculated for the present example is small. Thus, the significant
interval for the purpose of the present example is the root chord, and no
large change in the shape for minimum drag occurs over the interval of
the root chord by considering a distortion interval greater than the root
chord.

A solution for the integral equation for n = 1 was attempted in the
same way as that for n = 0, but it was soon apparent that the rate of
convergence was relatively slow. For this reason a better initial approxi-
mation was sought by solving a system of 11 simultaneous algebraic equa-
tions using the trapezoidal rule to evaluate the integral. The approxi-

mation so obtained is shown as gg%x) in figure 7. Several iterations
then produced convergence.

Body Shape, Drag Saving, and Pressure Distributions

The solutions to the integral equations, go(x) and g,(x), give the
shape of the body for two harmonics from the integral of equation (1).

x
;?.= 1+ (tm/b)‘/h go(t)dt + (tm/c)cos 20 k/~x g,(E)at  (53)
o

o]

The shapes of the indentations for the n = 0 and n = 1 harmonics at the
wing-body Jjunctures are shown in figure 8 for unit wing thicknéss. It
is to be noted that the n = O indentation is similar to the wing profile.
However, because of the finite chord length, the indentation does not
come up to the full body radius at the wing trailing edge, a fact in
accordance with the supersonic area rule. This point will be further
elucidated when we consider effects of plan form on the n = 0 indenta-
tion. The n = 1 indentation is much larger than that for n = 0, an
effect that tends to discourage the use of the higher harmonics. For
the 5-percent-thick wing postulated, the indentation due to the second
harmonic is so large that the assumption of a quasi-cylindrical body is




30 NACA TN 3722

being stretched. The body cross section given by equation (53) incor-
porating both harmonics is shown in figure 9. The change in shape behind
the trailing edge does not contribute much to the drag reduction as will
be discussed later, and we therefore have the alternatives of incorporat-
ing the n = O afterbody, n = 1 afterbody, the afterbody using two har-
monics, or a cylindrical afterbody as in figure 9. The percentage of the
wing volume removed up to the trailing edge is 69 percent and up to the
end of the Mach rhombus (x = 8) about 101 percent. Body volume is
removed only by the n = O harmonic.

The slope of the indentation at the wing leading edge can be deter-
mined from the integral equation with the aid of the fact that gzn(x)
must be nearly zero in front of the Mach rhombus (see Appendix C). The
discontinuities in gzn(x) mist coincide with the known discontinuities
of hop(x) &t x = 1 because the integral of equation (32) is contimuous.
Hence,

2n(1%) = han(1) - hon(17) (54)

The only term contributing to the discontinuity is the next to the last
term of equation (33). With the help of equation (47), we obtain

BCo. y
faleF gan(1") = 2E(WE - )
Panels Body (55)
A Since each harmonic contributes
(1) Exposed panels of wing alone a Pinite smount, the indenta-
) +ion for all the harmonics is
initially radial in the 6 =0
Panels Body Harmonics and 6 = x planes.
A+B [548 ] O n=0
A+B+C| 567 ] O nz0,1 The net drag saving due

. T to body distortion has been
(2) Wing-cylindrical-body colmbmahon computed by evaluating the
1 s H < and drag of the distorted body
Panéls Body Pzz:'eds inrer:cglnsl?fm along in accordance with equa-
. body distortion tion (35) and also from the
pressure distributions acting

on wing and body in combina-

A+B+C+D[ 360 | 79 [ 4.39 | n=0,153.<8

X
" aeBrer0r| ol oo | 2o n=0,I<3-<8| tion. The distributions of the
E : '€ [ne1,1cX<4]| drag along the wing penels due
: Ba” | 4o two harmonics of interfer-
(3) Wing-distorted-body combination ence and distortion, shown in

figure 10, have been integrated
i s

Sketeh. (1) to obtain the net panel drags.

The drags of the panels and body in combination for various conditions are
sumsrized in sketch (i) which is to be studied in conjunction with
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figure 10. Part (1) of the sketch shows the drag with the panels as part
of the wing alone. Part (2) of the sketch illustrates hew the addition
of the cylindrical body has .the effeect of reducing the panel.drag in the
proportion T.67 to 5.67. (It has been assumed that the interference drag
for harmonics higher than the n = 1 harmonic is negligible.) Part (3)

of the sketch shows the drag saving due to two harmonics of distortion.
Incorporating the n = O distortion into the body reduces the drag of the
combination by 22 percent (of 5.67) and the addition of the n = 1 harmonic
has the effect of reducing the drag of the combination anothér 42 percent
for a total of 64 percent. It is to be noted that distorting the body
has the effect of reducing the drag of the wing in the presence of the
body while increasing the drag of the body in the presence of the wing.
The wing has negative wave drag when two harmonics of distortion are
incorporated into the body. The net gain in drag is the result of reduc-~
ing the wing-panel drag about twice as much as the drag of the body is
increased. It is interesting that the section drag coefficients given by
figure 10 for the harmonics of interference and distortion attenuates
along the characteristics approximately inversely as the square root of
the radius, so that drag savings can be realized for aspect ratios greater
than that of the present example.

On the body the drag loading can be defined from equations (17)
and (18) as

i(-D_
B\ 5 ¢ N hp8on (X)
('bm/c)a( ) =nZ:o _Swn_ {gzn(x) + Do (%) +Pop* (%) +Eon (x) +£o1%(x) -
X
f [ggn(g) + fgn(g) + fgn*(g-):l Wzn(x" §)d§} (56)
o .

This quantity, plotted in figure 11, for the n = O and n = 1 harmonics,
shows the distribution of drag along the body. This drag results from
the pressure field arising from the body distortion and by distorting the
body in an existing pressure field. It is noteworthy that extending the
interval of distortion aft of the wing trailing edge causes only minor
reductions in wave drag for the first harmonic. An approximate calcula-
tlon shows this also to be true for the second harmonic.

The pressure distributions acting on wing and body both in combina-
tion can be readily determined, the distribution in the wing-body juncture
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being given by

('bm/Lc) =2 Zo {fzn(x) + £2n™* (x) -lx [fzn(g) +f2'n*(§):| Won (x - §)d§} +

(gt - [ " on®)en(x -£)at | + [Pnd) + 2@ | ) (57

o

The first component represents the effect of interference between wing
panels and cylindrical body, the second component the effect of body
distortion, and the third component the effect of the wing-alone field.
The pressure distribution at the wing-body juncture for a cylindrical
body is shown in figure 12(a). The wing-alone component of this pressure
distribution has an infinity at the leading edge of the wing-body juncture.
Because the body is a perfect reflection plane as far as this point is
concerned, the pressure coefficient is the same as that at the apex of the
wing alone, nsmely, 8/x. The finite contributions of a finite mumber of
harmonics of interference cannot overcome this infinity. However, we can
easily establish the curve for the combination near the leading edge by
Pairing it into the known value. It is to be noted that the resultant
pressure distribution has a favoreble pressure gradient for the boundary
layer. In figure 12(b) the pressure distribution for a distorted body
has been determined by adding the pressures due to two harmonics of dis-
tortion to those for the cylindrical body. The resulting distribution
has an unfavorsble gradient. The effects at the wing-body Juncture are
typical of the wing as a whole since the pressure distributions on the
span are essentially those of the root chord with an inverse variation

as the squere root of the radius (fig. 13). They are also typical of the
body since they are simply multiplied by a cos 2n6 factor. For a
5-percent-thick wing the complete pressure field at the wing-body juncture
shows a pressure-coefficient rise from about -0.20 at the leading edge to
about 0.25 at the trailing edge. This rise of Ap/q = 0.45 (Apf = 0.63)
' is less than the sudden pressure rise, Ap/p, of 0.9 necessary to separate
a ‘turbulent boundary layer as given by Bogdonoff and Kepler (ref. 11).

It is thus probable that turbulent separation will not occur.

Approximate Solutions for Axially Symmetric Harmonic;
Effect of Plan Form

On the basis of the relative magnitude of various terms of hg(x) in
the integral equation for g,(x), equation (32), it is possible to obtain
simple approximate solutions for the indentation shape and drag saving
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for the n = 0 harmonic. The relative magnitude of the various terms
depends primarily on the wing chord, or more specificelly on ¢ / pr, so
that a short-chord theory and a medium-chord theory can be distinguished.
In the analysis we will confine the indentation to the root chord and
let PAg be unity or greater so that no tip effects occur. The Mach
number need not be N2 although the anaslysis is carried out for this
Mach number. Under these conditions the effects of interference and the
wing-alone pressure field represented by £o(x) and p,(x) are equal and
opposite for this particular case,and equations (32) and (33) can be
rewritten

go(x) = ho(x) +% fc go(E)Wolx-EldE (58)
o A
ho(x) = o, (x) + B (x) + hog(x) (59)
with
s
- - RN ° aﬂ(x,r)E
ho, (x) o J, S (60)

ho(x)

on(E -r+1,
“—;‘; fLPWO(g-r+l _x,r)e _;; ) ara(t - +1) (61

Bog (%) % fx £, (E)W, (x - £)at (62)
(o]

The components of hg(x) involving the Won(x,r) functions are concerned
with departure of the pressures due to body indentations from the values
that would be calculated by linear two-dimensional theory, and as such

these components assume importance for medium to long chord lengths only.

Short-chord theory.- By neglecting hoz(x) and hOS(x) compared to
hol(x) , Wwe obtain an approximete simple theory that represents the solu-

tion for vanishing chord length. Under this assumption the pressures
acting on both body and wing are simply the linear-theory two-dimensional
pressures based on the body distortion attenuated inversely as the square
root of the radius. This simple physical model contains the primary
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Teatures of the flow due to the n = O harmonic, and the medium-chord
approximation can be considered a slight modification of the simple model
to account for three-dimensional effects on the pressure field. On the
basis of the short-chord approximation, equations (58) to (62) yield

s
go(x) = ho(x) = - % J; c _a_j%jr_; (63)

Utilizing the result of equation (A7), we obtain

L (Bt =- @) - 22D @m0 (o

f dr———(tm)(‘\l—-l) [1-"‘(—:i)]dx (65)

1

"Thus the shape of the indentation is given as

(1-p) <% 6a@E- 0 (55L) (2 - 572) = 2B 5o ane2)  (66)

The shape of the indentation is similar to the wing section, but the
volume of the indentation is usually less than the volume of the wing.
In fact the ratio of indentation volume to wing volume is

Vi N -1
VW a s-1 (67)

The volume ratio decreases as the span increases although the actual vol-
ume removed increases.
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The drag saving calculated using equation (35) is

(0/d)g = - (%)2 (k) f . g (x)ax (68)

1

Expressed as & drag coefficient based on the area of the wing panels,
the drag saving is

‘g (D/asy)g 2 @E-1)
(tw/c)®  (tm/c)® 3% (WE+1)

(69)

The coefficient of drag saving thus increases as the span increases but
g0 does the drag of the wing alone. The effect of chord length will sub-
sequently be discussed.

Medium-chord theory.- It was possible by neglecting three-dimensional
effects to obtaln very simple results for the first harmonic. However,
Por longer chord length than those to which the simple theory applies,
account mist be taken of the terms containing Wan(x,r) functions. The
value of ho,(x) remains as before. In the evaluation of ho,(x) a simple
assumption permits an approximate determination to be made readily. This
assumption, expressed in physical terms, states that the three-dimensional
effects represented by the Wo(x,r) function themselves attemate along
the body characteristic in accordance with a simple approximation similar
to that for the two-dimensional effects. Mathematically the approximation
can be expressed as

WO(O,I')

Wo(x,r) = Wo(x,1) m . (70)

The validity of the assumption can be measured by how closely the quantity
Wo(x,7)Wo(0,1) /Wy(0,r) is invariant to changes in r. A plot of this
quantity for various values of r is given in figure 14 to show that the
approximation is a good one. The value of Wopn(0,r) obtained from Laplace
transform theory is .

160" +3  16n°-1

"W o,r) =
n(0,2) - 223 0

(1)
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so that
(72)

Wo (xir) ad

Wo(x)l) 3 1
ll- /2 + r3/2

From equstion (T72) we obtain the result

i [ g G )

o YO

Integration yields

B - -
o, (x) = Ws 11)rf[3§~/E+1) {[1 i e(xc l)]y(c-x+1)-§z (c_x+1)};

1<x<c+1l (T4
with the following simple mummerical quantities given in figure 15:

X

Y(x) = [ Wo(b)ag; r=1 (75)
£ o
p.<
7(x) = f B (E)ak; =1 (76)
(o} .
Likewise the value hog(x) with the help of
o(e -
fo(§)=-%[l-’£§c—l)]315550+1 (17)

can easily be expressed in terms of the foregoing mmerical quantities
as

bog() =- §{ [1 - 28D 1 x-1) + 22 (x-1)} (8)

With a good approximation to ho(x) including three-dimensional
effects, we can now solve the integral equation for the body shape. In
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evaluating the integral we will approximate gy (x) by ho(x) and apply
the trapezoidal rule to the interval 1< x<c + 1 broken into n parts
of length c/n. Then

n
Bo(x1) = holxt) + £ ) wgho(8 g Wolx1-5] (79)
j=0
where
3
cJ
EJ =1 + o
By = ]'2;3 ‘ J =0,n } (80)
By = 1; 0<j<n J

The example already solved exactly for the intervel 1 <x <c + 1 is used
in figure 16 to measure the accuracy of the approximate methods. For a
chord-radius ratio of 3 the short-chord theory is already inaccurate but
the medium-chord theory is in good agreement with the exmct solution.
Some improvement in accuracy can be obteined by iterating equation (79),
but for a more exact solution a better integration formula is needed -
one recognizing the slope discontimuity in Wy|x; -&j| at xi=Ei. The
drag saving evaluasted by the trapezoidal rule is

! e
Cpg = % S=-nsi; <%> 32 ujgo(xj)ho(xj) (81)
=0

Effect of chord-radius dnd semispan-radius ratios.- The effect of
the geometric varisbles on the body indentation, drag saving, and volume
of indentation have been calculated using the medium-chord theory to
study the limitations of the short-chord theory. The drag saving is
shown in figure 17 as a function of s/a and c/ Ba. The saving increases
as the wing span increases and increases slightly as the chord irhclreases.
The short-chord theory gives a good rough measure of the drag saving up
to values of c/pa of the order of 4. The volume of the indentation as
a fraction of the wing volume is given in figure 18. It is seen that
short-chord theory gives accurate volumes only for very short chords.
Some actual indentation shapes are given in figure 19. The main Ffeature
of the shapes is that for the longer chord lengths the indentations do
not return to the original radius. This result would be predicted by the
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supersonic area rule. Those that do tend to return do not have nearly
as much volume as the wing panels. Thus, as the design Mach number is
increased from unity, the leading edge remaining sonic, the body volume
to be removed decreases from the wing volume at M = 1 40 a fraction of
the wing volume at higher supersonic speeds. If distortion is made over
the entire length of the Mach rhombus, the transonic area rule gives an
indentation volume equal to the volume of the wing panels at M = 1 and

the present method gives 101 percent of that volume at M =\ﬁ5.
Body Shape by Alternate Method

The body shape for a minimum-drag wing and quasi-cylindrical body
combination can also be obtained by the alternate method developed in
Appendix C. For the example of this section, the alternate method gives
the first harmonic body shape in an analytic form that is accurate to the
order of quasi-cylindrical theory. This result is significant because it
represents the only known analytical expression for the minimum drag body
shape of nonslender wing-body combinations. As such it represents a good
standard for determining the accuracy of the numerical methods used in the
general method of this paper. It also is useful as & standard to determine
how well the supersonic area rule predicts the minimum drag body shape for
nonslender configurations.

The details of determining the shape of the axially symmetric body by
the alternate method are presented in Appendix D. The body slopes obtained
are shown in figure 20 together with the results of the guasi-cylindrical
theory. The two slope distributions agree to the order of the quasi-~
cylindrical theory assumptions. The body distortions corresponding to fig-
ure 20 are shown in figure 21 for the winged part of the body. These two
distortions are essentially the same but they differ considerably from the
supersonic-area~-rule distortions. Within the framework of theory, this
difference is to be expected since the supersonic area rule assumes slender
configurations and the present model is not slender. However, the practi-
cal consequences of this theoretical result must be determined by experi-
ment because of the known inaccuracy of linear theory for sonic leading
edges.

CONCLUDING REMARKS

The Nielsen~Pitts theory of wing-body interference has been applied
to the problem of minimizing the wave drag of wing-body combinations by
utilizing radisl body distortion. The method, applicable to combinations
with quasi-cylindrical bodies and horizontal planes of symmetry, deals
directly with pressure distributions and body shapes. An integral equa-
tion is derived for the body shape for minimum drag for each Fourier
component of the radial body distortion. To demonstrate the use of the
method, 1t i1s applied to the wave-drag reduction of = 45° swept~wing and
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body combinstion utilizing a wing chord of three body radii and a span
of six body radii. The leading and trailing edges are taken as sonic,
and the wing section is biconvex. The numerical results for this example
support the following statements:

1. The axlally symmetric harmonic of body distortion causes a
reduction in wave drag of about 22 percent of the drag of the wing panels
on. the undistorted body while the second harmonic causes a further reduc-
tion of 42 percent.

2. The over-all wave-drag reduction is -the result of reducing the
wing-panel drag by about twice as much as the body drag is increased.
In fact, with two harmonics the wave drag of the panels is approximately
Zero.

3. The axially symmetric harmonic yields results qualitatively in
accordance with the supersonic area rule in that the body indentation
does not return to the full body radius at the trailing edge of the wing-
body juncture. The volume of indentation is only about two thirds of the
wing volume for an interval of distortion of the root chord.

. The magnitude of the maximum indentation given by the axially
symmetric harmonic is about 50 percent larger than that given by the
supersonic area rule.

5. To the order of quasi-cylindrical theory the first bharmonic body
shape is the same as that given analytically by an alternate method.

6. The maximum distortion of the cross section at the wing~body
juncture due to the second harmonic is about five times that due to the
axially symmetric harmonic although no volume is removed by the second
harmonic. This limits the wing thickness for which the second harmonic
can be fully utilized to about 5 percent or less,

T. The interval over which the body distortion was effective in
producing reduction in wave drag is that of the root chord although some
further small saving could be obtained by distorting the afterbody.

8. The pressure distributions produced on the wing by body distor-
tion, although favorable for the wave drag, are unfavorable for the

boundary layer.

9. A very simple short-chord theory can be obtained for the axially
symetric harmonic by neglecting three~dimensional body effects. An
approximate treatment of these effects yields a simple medium-chord theory.

Ames Aeronautical Laboratory
Netional Advisory Committee for Aeronautics
Moffett Field, Calif., Feb. T, 1955
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APPENDIX A
PRESSURE FIELD DUE TO DISTORTED BODY AT ANY SUPERSONIC SPEED

Iet us determine the pressure field due to a body distorted in
accordance with equation (1)

g_i :L=1= (%) nz; &on(x)cos 2ng. (AL)

We will consider M =2 for the moment. The potential @p is to
satisfy equation (Al) on the body and to fulfill the wave equation. By
analogy with equations (12) and (16) of reference L,

tm \ -1 fo: Gzn(8)Kan(sr)
=Vv(—)L cos 2n
q>B <cr> = usn' (S ) o8 9 (A2)
wherein
Gon(s) = Lligen(x)] (a3)

and Kon(s) is the modified Bessel function of the second kind. For the
case r =1 it was possible in reference Ut to express the inversion of
equation (A2) in terms of characteristic functions independent of the
shape of the bumps of the body. Thus in terms of the characteristic
functions

Wom (%) = rl[%%l) + 1] (ak)

it was shown that on the body

P=- ?@‘;ﬁx—) =2 (—:%)i [gzn(x) - fx Zon (E)Wan(x~ §)d§]cos 2ng
n=o ° (A5)
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It is possible to determine the pressure at any point off the body
in a menner similar +to that for points on the body. This is accomplished
by generalizing the characteristic functions to functions of two variables

Won(x,r) = L™ [ 5(r-1) % + i] (46)
on .

In Laplace transform notation the pressure coefficient is
(o]
sr
-2 G:ﬂ) Z Gon(s) Xen(sr) cos 2n6@
. Kon'*(s)
n=o0

-2 <‘bm> z -s(r- 1)G2 (s )[ s(r-1) 222255(’3 ;/}_17- Fi]cos 2n6 (A7)

v
I

With the aid of the following equalities from Laplace transform theory

L-l[e's(”) an(s) | = fenx - 7 + 1) (48)
L1 zan(‘:r; + e'f;;'l)J = Won(x - T + 1,7) (49)
on'(s

o5 (r-1)

I.” G- ( ) K2n(8r)

X-r+l

the final result for the pressure field on or off the body is

( ) Z [gzn(x-r+l) fx—r+132n(§)W2n(x- r+l- §,r)d§] cos 2no
o
(a11)
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For any Mach number the pressure coefficient is

_ x~Br+p
( >Z gzn(x Br+B) % f San(g)w2n<%'r+l'%’r € {cos 2n@
o

(a12)

In this equation the functions g,,(x) are taken to be the actual ampli-
tudes of the body distortion and do not depend on Mach mumber. If the
combination is distorted as in the Prandtl-Glauert transformation (see
Appendix D), then the gon(x) functions will change with Mach number.

To make computations using equation (Al12) it is necessary to evaluate
the integral mmerically using tabulated or plotted values of Wop(x,r).
Plots of Wy(x,r) and Wuo(x,r) sufficient for the purposes of this report
are included in figure 1.
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APPENDIX B

RELATTONSHIP BETWEEN SHAPE OF QUASI-CYLINDRTCAL BODY

AND STRENGTHS OF AXTAL MULTIPOLE DISTRTBUTIONS

The method used in this report deals exclusively with the flow Pield
external to the wing-body combination and requires no continmmation of the
solution inside the body. However, it is intuitively clear that any
quasi-cylindrical flow can be built up by superimposing distributions of
sources and multipoles along the axis of the body. For the particular
set of sources and multipoles used in reference Lt a set of characteristic
functions, the Mop(x) Punctions, were defined and tabulated to allow the
axial distributions of multipole strengths to be determined for a given
body shape. (The problem of finding the body shape from the multipole
distribution is a direct, although laborious, mathematical process.) The
same characteristic functions are applicable to the particular set of
mltipoles used in reference 3. These multipoles written in several
forms as follows

c n cosh™ X .
e s [ E )R

= cos 2n9L-l[K2n(rs)] (B1)

are distributed along the axis in strength Apn(x). The multipoles are
started along the body axis at x = O, as shown in sketch (J) so that

r,Agn(x)

M}:ch wave dr
an,” _/dx " 9enlXlcos2ng

’,

’ 2n(d)- multipole strength

Sketch (J3)
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the body distortion starts at x =1 for M = N2. The maltipoles are
not started at negative values of x since Apn(x) would not then have
a Laplace transform vhen x < 0. The Laplace transform of the potential
due to the multipoles is

Py(s,r,0) = - 21—:( Z Aon(8)Kon(sr)cos 2n6 (B2)
n=o

and the potential in the physical space is

cosh <2n cosh™1 _x_;_ﬁ)

J(x-£)Z-r2

at (B3)

2 X
cpM(x,r,e) = - 21;; Z (cos 2n6)“/; Aon(E)
n=o

Let be equal to @g Pproduced by a distortion of the body given by
equation (Al). Then, according to equation (A2) we have

_ ()t N Gen(Ven(Er) o
CPM(x,r,G) CPB(X,r,e) V<Cr> nz:o ot (5) cos 2n (

Comparison of equations (B2) and (B4) establishes the relationship
between body shape and multipole strengths in the Laplace space as

sKon' (8)Aon(s) (B5)
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Form the Faltung integral corresponding to equation (B5) with the help
of the relation

L1 [:Kgn'(S) ] - 1 [Kon(s)] = cosh(2n cosh™'x)
s = -1

Thus

cosh(2n cosh™*x - &)

X=—-1
1
e — "(E) -
Gan(*) 21V (tm/cr) k[ fen (x-£)%-1

at

(B6)

Equation (B6) gives a method of determining the shape of a quasi-
cylinder corresponding to a given distribution of multipoles along the
axis. The reverse problem of determining the multipole distributions
for a given body shape is not as simple. This problem will arise when-
ever a minimum-drag wing-body combination is operated away from the
design point. Equation (B5) is written in a form to facilitate the solu-
tion of the reverse problem

® Ton(s) = -2=zV<t‘“> en(e) | (87)

se®Kon ' (s)

The occurrence of Kon'!(s) in the denominator makes the determination of
the inverse transform difficult if at all possible in terms of known
functions since the zeros of Kop!'(s) in the complex plane are generally
unknown. However, if we define the following fumction by its Laplace
‘transform, .

= 1"1 1

e e e e e ———————— e e ———— ey - ap—— =
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then the solution to the reverse problem can be written down

Xe=]1
hen(x-1) =247 () [ gon(ehn(e- 12t (39)
(o]

Tabulated values of Mg(x), Mo(x), Ms(x), and Mg(x) for 0 < x < 4 are
included in reference 5 for numericel work. REquation (B9) thus allows a
simple calculation of the multipole strengths for a given shape. The
functions Mop(x) have logerithmic singularities at the origin. Thus
whenever gon(x) is finite, so is Agn(x-1), and if gpn(x) has a singu-
larity, so will Apn(x-1).
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APPENDIX C

ALTERNATE METHOD FOR DETERMINING BODY SHAPE

FOR MINIMUM~DRAG COMBINATION

In this appendix we will consider the solution for the body shape
for minimum drag by the method of reference 3, and its relationship to
the present method. In reference 3, the potential function for a general
class of minimum~drag combinations is found without recourse to solving
a boundary-value problem as already described in the Introduction. If
the streeam tubes corresponding to the potential are known, any stream tube
can be replaced by a body to form a minimum-drag wing-body combination.
To carry out the precise determination of the body shape requires the
simultaneous solution of a pair of nonlinear differential equations.
Practically, the shape must be calculated by some approximate method.
However, the potential function for the minimm-drag combination is accu-
rate to the order of linear theory. In the quasi-cylindrical theory it
is assumed that the flow is known for a cylindrical body and wing combina-
tion by the use of the interference methods of references 4, 5, and 6.
Then the shape perturbation from the circular cylinder necessary to pro-
duce minimm drag is calculated harmonic by harmonic. In this method the
boundary conditions are applied on the r = 1 cylinder. However, for thin
enough wing panels the minimum-drag body will approach a cylindrical body
as closely as desired. (For both solutions the wing boundary conditions
are applied on the 2 = O plane instead of-on the wing surface.) Under
these conditions we may therefore equate the potentials given by the two
methods to the order of quasi-cylindrical theory.

In the present paper, the combination potential is
o =P + 0 + Py (c1)
and 1n reference 3 the combination potential is

% = U + Py (c)

where Py is the potential due to the canceling multipoles. We can thus
say that to the order of quasi-cylindrical theory

P13 + P = U (c3)
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’

Since from equations (B2) and (Alk) the following relationships are true,

Lipy) = - 21—“ Z cos 2n6 Eon(s)Kop(sr)
n=o0

o N Gon(s)Kon(sr)
L(pg) = <0r> z cos 2n0 ' (5)

L(p;) = V(%) Z cos 2n@ Fans(;::f?s()sr)
n=o0

we obtain the following relationship smong the variables

Gon(s) = ~Fon(s) - —=——— Kon(s)sKon' (8) (ck)
24V (tm/cr)

The following relationships permit us to form the Faltung integral
corresponding to equation (Ck).
-1 [Xon'(s -
y 1[2115( )] 1 [Rn(e)]

cosh(2n cosh™'x) .
2

x2-1

x>1

=0 3 x<1l (c5)
The inverse of equation (C4) is thus

= Por(x) - 1 =L ey cosh[2n cosh™1(x -t)]
ggn(X) fan( ) > ( /cr) ‘-[XAen (§) __._(m.___ (13
(c6)

The Pirst term can be thought of as the virtual distortion of the cylinder
by the wing-alone field, and the second term is the body distortion due
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to the canceling multipoles. The multipole strengths are determined by
the method of oblique planes as used in the supersonic area rule and
described in references 3 and 8.

The value of the shape amplitude functions, gon(x), can, in prin-
ciple, be determined analytically from equation (C6). The determination
involves first calculating the normal velocity field at the r = 1 cylin-
der due to the wing alone and performing a Fourier analysis to obtain
the fop(x) functions. Then the multipole strength distributions for the
wing alone Apn(E) are obtained by the method of oblique cuts which
includes a Fourier analysis. Finally, to obtain the shape amplitude
functions, the integrals of equation (C6) must be evaluated.
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APPENDIX D

AN ANATYTTCAL DETERMINATION OF MINIMUM~DRAG BODY SHAPE

BY ATTERNATE METHOD

In this appendix the alternate method of Appendix C will be applied
to the swept-wing example used in part II of the text to obtain an ana-
lytical expression for g,(x). This is possible because Fo(x) can be

expressed analytically for this example.

For the purpose of this calculation equstion (C6) can be put into a

more convenient form by choosing the inverse Iaplace transform

-X

LK, (8)] = LYK (s)] = 3 x>1
* ¥ -1
=0 3 x<1 (p1)
Then for n = O the inverse of equation (C4) is
1 =1, X -k
go(x) = -£(x) - Ay () ————=dt (p2)
° " oxv(twfer) Yo Jx-eP-1 -

Where

2n
An(e) = %[ Sy (&,0)a0 (p3)

As shown in sketch (k), 6 is the
polar coordinate defining the line
of intersection of the Mach cone
Se (6,8) With apex at & and a tangent
plane; Sy(t,0) is the projection
y in the (y,zs plane of the wing area
intercepted by the tangent plane to
the Mach cone. An analytic expres-
sion for the interference term,

fo(x), has already been obtained.

Tangent plane
to Mach cone

) The first step is to compute
' Sy(£,0). The same wing alone is
Sketch (k) used as for the quasi-cylindrical
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theory computation. Only the right wing panel need be considered since
SWL(g,e) = SwR(E,rr - ) due to the vertical symmetry of the wing. The

equation for the surface of the right wing panel is
zu=_zz=2tm<x—;x><l-x_::_x>; yZO (Dh.)

The equation for the intercept of the ‘tangent plene with the z = O plane
is

X=§ +y cos 0 (D5)

Then the thickness distribution along this intercept is

2z, = Mty [; - y(;l.c- cos 6)] [l _t -3(1 - cos 9)] (D6)

c

For the winged part of the body (0 < ¢ <e)

1 P2

Sy (£,8) = ——— f 2z,ds
R »Jl + cos®e B8y

i ln-.m[ya I:g - y(lc— cos e)] [1 B - y(.l(;- cos e)] iy
(o7)

where

ds = «(ax)® + (ay)?

Integrating

SO L@{0-070-
D)@ acem o -2(®@) e 0®) oo
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the limit, y,, is a function of ¢ (see sketch (k)) and is given by

e

0<6< cos"1<-s——'-ﬁ->

Yo =8 =

v, = .__5.__ cos"lq(s_:._-&.) <e<=x
l-coso@ 8 -

The next step is to find A,(t) using equation (D3). Use of the
symmetry of the wing and the fact that swL(g,e) = sz(g,ar - @) glves

e

2x /2 T
LA R 2 YR 2 [T
role) = & [ o' (e,0000 = B [ st (e,0000 < L [ o (5,0000

(D9)

This integration must be performed in two parts due to the discontinuity

in y, at 9 = cos"1<

§>. From equetions (D8) and (D9)

-2 ([ D Q- ] =5 -

(-9 =) @)

Differentiation of equation (D10) and use of (D2) gives

c -2 J;s-g_—ga - 28 cos':"(%g-)](x - &)

X=1
go(x) = ~£,(x) - ,tic f [ : ]
° (x-8)%-1

ag

(p11)

This elliptic integral is tabulated in reference 12, The interference term
can be expressed analytically as

-
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£5(x) _ b [1 _2(x - 1)] (D12)
(tm/c) = c
When the integration for the present model (c = 8 = 3) is performed
gdx) =£[1-2(x'1)]- 8 x+l[8x-10K_\
(tm/c) ™ 3 3y 7-xLlx+l
2 8 - 12x
X-X ge30- 12 II(a.z,k)]
] x+ 1 > (p13)
2 - (5 - x)(x - 1)
(7 - x)(x + 1)
2 _(x-1)
T =) J

here K, E, and II(a”,k) are complete elliptic integrals of the first,
econd, and third kinds, respectively.
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APPENDIX E
PRANDTL-GLAUERT TRANSFORMATION FOR WING-BODY COMBINATION

The calculations for the example configuration have all been made
for a Mach number of ~/§, but the results can be generalized to any Mach
number by means of the Prandtl-Glauert rule. Let the configuration at
Mach mumber M be transformed into an equivalent M = N2 configuration
by dividing its longitudinal dimensions by B and leaving its lateral
dimension unchanged. Let the potential at corresponding points be the
same (see fig. 22). The two potential fields are solutions to the dif-
Perential equations given in the figure. Since the potential is the same
in the y end z dimensions, dp/dy and Op/dz are unaltered so that the
slopes of all surfaces in the streamwise direction are unaltered. Under
these conditions the quantities at M and at M =~2 are related as
follows:

Cry = Bcr\,-z— w
th = B'me
BM= S\I_E‘
E
Viy = Bavi-s/'é ? =)
Vi = B Vigz
weny
At corresponding points x,¥,z at M and x/B,¥y,z at M =~2 we have
9
1
Py = EP-\IE
@ @ -
dzy = (9-2'—'9 0 =0,x
(d.x M dx Nz ’ J
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The calculated results at M =2 can be generalized to apply to
all combinations of the family - in our case all combihations with
sonic edges and fixed body radius and combination spemn - by plotting
1-(ry/a
-ﬁ—;‘;—% versus x/Ba for body indentations, BP/(tm/c) versus x/Ba

with r/a. as parameter for wing pressure distributions, BCp/(tm/c)®
versus s/a or pAp with c/pa as parameter for drag, esmd Vi/Viy versus
s/a or BAmr with c/pa as parameter for volume of cut-out.
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