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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE 3781

HANDBOOK OF STRUCTURAL STABILITY
PART I - BUCKLING OF FLAT PIATES

By George Gerard and Herbert Becker

SUMMARY

The various factors governing buckling of flat plates are critically
reviewed and the results are summarized in a comprehensive series of charts
and tables. Numerical values are presented for buckling coefficients of
flat plates with various boundary conditions and applied loadings. The
effects of plasticity are incorporated in nondimensional buckling charts
utilizing the three-parameter description of stress-strain curves.

INTRODUCTION

This "Handbook of Structural Stability" presents a rather comprehen-
sive review and compilation of theories and experimental data relating to
the buckling and failure of plate elements encountered in the airframe.
To meet the anticipated needs of those who would use this review and com-
pilation, it appeared best to adopt a handbook style of presentation.

The material is not intended as a textbook in which the emphasis is often
on the mathematical development of different types of related problems.
Neither is it intended to compete with the familiar aircraft-company
structures manuals which generally present design information, empirical
data, and methods of extending results beyond the scope of the original
report.

This handbook attempts to cover the generally neglected area between
the textbook and the structures manual. No attempt is made to present an
exhaustive coverage of mathematical techniques which are of great impor-
tance in the solution of buckling problems. This material has been well
presented in several excellent books and papers which are included in the
reference list. The subject of columns is comprehensively treated in
several books and, therefore, the inclusion of such material in this
review did not appear to be warranted.

This presentation primarily constitutes a critical review of devel-
opments concerning buckling and failure of plate elements since the
early 1940's. This date has been selected since the last comprehensive
review of this nature (ref. 1) appeared at that time.
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In order to meet the varying needs of airframe designers and
analysts, structures methods, and research engineers, it appears best
to organize this handbook as follows: The main text discusses assump-
tions, limitations, and background of the available literature; the
appendix contains a summary of this material and indicates the manner
in which this information is to be used in analysis and design. It is
anticipated that, after the material in the main text has been reviewed,
reference to only the appendix will be made in a majority of routine
applications. The duplication in these two main parts has been held to
a minimum consistent with completeness and intelligibility.

In the main text of this report, the various factors appearing in

the general buckling-stress equation

2
12 (?—Evee )(@2 (2)

=1

are critically examined from the standpoint of their theoretical develop-
ment and the agreement of theory with test data.

In the section entitled "Basic Principles" a brief review of the
Lasic mathematical principles involved in solution of  buckling problems
is given. The primary objective in presenting this material is to
acquaint the reader with the approximate methods used in order to be
able to indicate the accuracy of the results of particular solutions
discussed in subsequent sections.

In the section entitled "Boundary Conditions" the influence of the
geometric boundary conditions upon the buckling stress is discussed at
some length. It is indicated that the use of a free unloaded edge in a
plate involves Poisson's ratio in the compressive buckling coefficient.
As an example, the buckling coefficients for plate columms, flanges, and
simply supported plates are determined from theory to demonstrate the
effect of various boundery conditions upon the behavior of such elements.

Also, the three-parameter method of mathematically describing stress-
strain relations is presented in an introductory manner in the section
entitled "Stress-Strain Relations in the Yield Region." Use of this
method affords a considerable simplification in the presentation of
results of inelastic buckling theories.

The effects of exceeding the proportional limit of a material are
incorporated in a plasticity-reduction factor mn. Because of the vari-
ous theories that have been recently advanced together with the fact
that no one publication has reviewed the conflicting assumptions of
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these theories from the standpoint of engineering results, a rather com-
prehensive treatment of this subject is presented in the section entitled
"Plasticity-Reduction Factors."

~ The effect of cladding upon the buckling stress of flat plates has
been treated by an extension of inelastic-buckling theory. In the sec-
tion entitled "Cladding Reduction Factors" a simplified treatment of
buckling of clad plates is presented in which values for the cladding
correction factor 1 are derived.

The background for determining the elastic-buckling coefficient k
has been well documented. Therefore, the last sections are concerned
with the buckling coefficients for a large number of cases. The presen-
tation consists, for the most part, of a straightforward cataloging of
results in the form of buckling-coefficient charts.

The appendix has been organized for unimpeded use in analysis and
design and for this reason no references appear in this portion of the
report. The references are examined in detail in the pertinent part of
the main text. The literature is reviewed and discussed both as to con-
tent and application to the particular problem. Experimental evidence
is presented where it tends to substantiate one theory among several
which may have been advanced on a particular phase of the buckling prob-
lem; plasticity-reduction factors are perhaps the most conspicuous exam-
ple of this. Thus, the recommendation for a particular theory is gen-
erally supported by experimental data.

The main text also contains some new material developed during the
course of this compilation. Although such material is important to the
unification of prior results, it has not been considered of sufficient
consequence to merit separate publication. Therefore, when such mate-
rial does appear in this handbook it is in a detailed form.

This survey was conducted under the sponsorship and with the finan-
cial assistance of the National Advisory Committee for Aeronautics.

SYMBOLS
An area of rib cross section, sq in.
a long dimension of plate, usually unloaded edge in uniaxial

compression, in.

b short dimension of plate, usually loaded edge in uniaxial
compression, in.
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Ci . . C5 coefficients in general inelastic-plate-buckling equation
(see section entitled "Basic Principles")

SEET el coefficients in elastic-plate-buckling equation to be
determined by geometrical boundary conditions along
unloaded edges of plate

D plate cross-section rigidity, Em?/lE(l - v2), 1b-in.

1D plastic plate cross-section rigidity, Est5/9, 1b-in.

E Young's modulus, psi

Eg secant modulus, o/e

E¢ tangent modulus, do/de

Es,fk secant and tangent modulus for clad plates, respectively

5 iy ratio of total cladding thickness to total plate thickness

G shear modulus

g = loge B

15 moment of inertia

3= (ES/E)(J_ i ve2) (1 - v2)

X modified buckling coefficient, kx2[12(1 - v2)

k buckling coefficient

L length of plate, in.

M bending moment applied in plane of plate, in-1b

N axial load, 1lb/in.

n number of longitudinal half waves in buckled plate; also,
shape parameter for stress-strain curve

P normal load applied in plane of plate, otb, 1b

normal pressure, psi
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o
|

G2 - vg(mb/A)e

shear loading, 1b/in.

BC + ve(nb/)\)2

stress ratio

thickness of plate, in.

<k5+ - ks_) / <k5+ + ks_>

X,Y,2

H
I

1
|

!
1]

1+ 3pf

potential energy, in-lb
displacement normal to plane of plate, in.

coordinates

edge angle, deg; also, 12M/(Pb + 6EM)

- x(o/n)1/2 &b/)\) tr kcl/2:| 1/2

ratio of cladding yileld stress to core stress, °c1/°core5

also, loading ratic for plate with varying axial load,
Maximum loed/Minimum load

x(/n)1/2 [—(b/)\) 4 kcl/zj i

shear strain

normel strain; also, ratio of rotational rigidity of plate
edge stiffener to rotational rigidity of plate

plasticity-reduction factor
cladding reduction factor

total-reduction factor, 17

buckle half wave length, in.

inelastic Poisson's ratio; v = vy - (vp - Ve)(Es ) for
orthotropic solids



<

p

g
§=(1-17)o,
Sy

9.72%.85

T
P

Subscripts:
A,B
av

b

cl

cr
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elastic Poisson's ratio

plastic Poisson's ratio

normal stress, psi

+ fccl

: 2
stress intensity, <°x2 + cy?- - OxOy + §T2> / , psi
stress at secant modulus, 0.7E and 0.85E, respectively, psi

shear stress, psi

angle of diagonal support to plate width, radians or deg

values at station A and station B; see fig. 30
average

bending

compression

cladding proportional limit
critical or buckling

elastic

plastic

proportional limit

in traverse rib of compressed plate
shear |

shear on infinitely long plate

directions of loading

loadings producing tension

loadings producing compression
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Edge conditions:

C clamped
F free
8s simply supported (hinged)

In sketches accompanying figures, supported edges with elastic rota-
tional restraint are shown shaded. Unshaded loaded edges are simply
supported. Unshaded unloaded edges are free.

BASIC PRINCIPLES

General Remarks

The theoretical buckling stress of a flat structural element is the
stress at which an exchange of stable equilibrium configurations occurs
between the straight and the slightly bent form. It marks the region in
which continued application of load results in accelerated growth of
deflections perpendicular to the plane of the plate. Its importance lies
in the fact that buckling initiates the physical processes which lead to
eventual failure of the plate.

The mathematical solution of particular buckling problems requires
that equilibrium and boundary conditions be satisfied. This can be
accomplished by integration of the equilibrium partial differential equa-
tion of the flat plate or by use of mathematical methods which may not
completely satisfy the boundary or equilibrium conditions. The former
solutions are exact whereas the methods based generally on energy inte-
grals are approximate although usually very accurate. The need for
approximate methods arises from the fact that exact solutions can be
found for only a limited number of buckling problems of practical
importance.

In this section, a brief outline of the methods of analysis of
buckling problems is presented. For extensive discussions of the vari-
ous methods of analysis and their application to a wide variety of prob-
lems, reference to the books of Timoshenko, Sokolnikoff, and Bleich
(refs. 2 to 4) is suggested.

Equilibrium Differential Equation
The general form of the differential equation describing the slightly

bent equilibrium configuration of an initially flat plate was derived by
Stowell in the following form (ref. 5):
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clﬁ-cgﬁ-‘.zc Shw g Dy

o S W R
L

Cs g % Ox B FEPAN. 2 e oy 25w (2)
ayh P ox dy dy?

in which the constants are defined as:

Cy= 1~ (3/1*‘)(%;/01)2[1 4 (Et/ES]
Cp = (Ecx'f/ﬁz)[ ® (Et/Esﬂ
Cs = 1 - (3 "Uzi 2)[ - (Bo/m) | )

These definitions of the constants are based on the assumption that no
elastic unloading occurs during the buckling process. Furthermore, a
value of Poisson's ratio equal to 1/2 was assumed for both the elastic
and inelastic ranges.

In the elastic range, Et/ES = 1, and, therefore, for all loadings
CL=C3=C5=1 and Cp=Cy = 0, and equation (2) reduces to the
familiar equilibrium equation for the elastic case:

_ oy dthy
T oxk Ao Ax2dy2 3 oy

t Q2w % 2y
_ﬁ<cx-a;§+2Tm+Uyg;-2-) (ll»)

't
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It should be noted that the value of D 1s not the same in the inelas-
tic range as in the elastic range because of the change of Poisson's
ratio with stress. TFor the fully plastic plate, v = 1/2, which yilelds

a bending rigidity of D' = Et3/9, whereas the elastic value is
D = 5t3[12(1 - ve2)-

The solution of individual buckling problems can be most readily
handled by selection of appropriate solutions of equation (2), insertion
of proper boundary conditions, and minimization to obtain the buckling
stress. In this connection, the buckling stresses for simply supported
plate columns, compressed flanges, and plates are considered in some
detail in the section entitled "Boundary Conditions" to illustrate the
differences in buckling behavior of these structural elements.

Energy Integrals

Since exact solutions to equations (2) and (4) can be found for
only a limited number of buckling problems of practical importance,
approximate solutions generally utilizing energy integrals have found
wide application.

The potential energy of the plate and its loading system is repre-
sented by the difference of two integrals. The first integral of equa-
tion (5) represents the increase in strain energy due to bending and
twisting of the plate during the buckling process, whereas the second
integral represents energy associated with membrane stresses resulting
from lateral deflection. If the plate edges are fixed during buckling,
the latter represents the membrane energy. If the edges experience a
relative shift, the second integral represents the work of the external
loading system.

The general energy integral for plates with simply supported edges
was derived by Stowell (ref. 5) for the inelastic case:

D Pv P I TN
e 2~17P Cl(§x2> Ca 3x2 Ox dy sk (éx ‘> & N
2w 2w 32y t |, (ow)2

Cy o 8y2 + C5<§y ) dx dy - ELXY Ux(g;)

oT oV Su o+ 0y<aw>2 dx dy (5)

ox Oy dy
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The coefficients C; to Cs are defined by equations (3). It is to

be noted that equation (2) is the Euler equation that results from mini-
mization of the energy integral, equation (5). If there are elastic
restraints of magnitude ¢ &along the edges of the plate, then the strain
energy in these restraints is added to equation (5). These terms have

the form
2
62/’\(@)3' dx .
2D dy —

where y, 1s the edge coordinate.

For the elastic case, equation (5) can be simplified to

ff(ﬁ*‘ ﬁ>2 - 21 - vy | P (aew )2 A
2 dy2@ %2 dy2 ox

2
\/]P Ex<§§> + 27 %¥ %3 + °y<§§>2 dx dy (6)

Solutions

AW =

(v e}

|+

In principle, of all the deflection functions satisfying the geo-
metric boundary conditions of the problem, the potential energy AW will
be zero for that function which also satisfies the equilibrium differen-
tial equation. This function would be an exact solution of the problem.
Since exact solutions can be found in only a limited number of cases,
the energy integrals are of great usefulness in finding approximate solu-
tions which satisfy the geometric boundary conditions exactly and the
differential equation approximately. Thus, of the several functions
satisfying the geometric boundary conditions but not necessarily the dif-
ferential equation, the function for which the energy integral is a mini-
mum constitutes the best approximate solution of the differential equation.

Probably the best known energy method for determining the buckling
stress of thin plates is the Rayleigh-Ritz procedure. The method con-
sists of the following steps:

(1) The deflection surface of the buckled plate is expressed in
expanded form as the sum of an infinite set of functions having undeter-
‘mined coefficients. In general, each term of the expansion must satisfy
the geometrical boundary conditions of the problem.
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(2) The potential energy difference of the load-plate system is
computed for this deflection surface by use of equation (5) and is then
minimized with respect to the undetermined coefficients.

(5) This minimizing procedure leads to a set of linear homogeneous
equations in the undetermined coefficients. These equations have non-
vanishing solutions only if the determinant of their coefficient vanishes.
The vanishing of this stability determinant provides the equation that
may be solved for the buckling stress.

When the set of functions used 1s a complete set capable of repre-
senting the deflection, slope, and curvature of any possible plate defor-
mation, the solution obtained is, in principle, exact. Since, however,
the exact stabllity determinant is usually infinite, a finite determinant
yielding approximate results is used instead.

The buckling stresses obtained by the approximate method are always
higher than the exact solution although they may be very accurate. This
is a result of the fact that the deflection function approximates the
true buckle shape and therefore the potential energy resulting from use
of the approximating function is greater than zero. If the deflection
function is the true one, then an exact solution to the differential
equation is obtained.

If a deflection function is chosen which satisfies the geometrical
boundary conditions approximately, it is possible to obtain buckling
stresses which approach the exact solution from the lower side. This
can be accomplished by a revision of the Rayleigh-Ritz procedure known
as the lLagrangian multiplier method.

The Lagrangian multiplier method follows the general procedure out-
lined for the Rayleigh-Ritz method with but one significant change. The
restriction in step (1) that the boundary conditions be satisfied by
every term of the expansion is discarded and is replaced by the condition
that the expansion as a whole satisfies the boundary conditions. This
condition is mathematically satisfied in step (2), during the minimization
process, by the use of Lagrangian multipliers.

The advantage of the Lagrangian multiplier method lies in the fact
that, with the rejection of the necessity of the fulfillment of boundary
conditions term by term, the choice of an expansion is much less restricted.
For example, in the clamped-plate compression problem, a simple Fouriler
expansion may be used instead of the complicated functions usually assumed
in the Rayleigh-Ritz analyses of this problem. Furthermore, the orthogo-
nality properties of the simple Fourier expansion lead to energy expres-
sions of a simplicity that is instrumental in permitting accurate
computations.
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This method and its application to specific problems is described
by Budiansky and Hu (ref. 6). They have treated the Lagrangian multi-
plier method in a manner in which it is possible to obtain approximate
solutions for both upper and lower bounds. As determinants of higher
order are used to obtain better approximetions, both the upper and lower
bounds approach the true buckling stress. Thus, the Lagrangian multi-
plier method may be used to obtain results within any desired degree of
accuracy.

In addition to the above procedures which are based on energy inte-
grals, other methods of obtaining approximate solutions of buckling prob-
lems have been used which involve the equilibrium differential equation.
Functions which satisfy the geometrical boundary conditions exactly are
used to satisfy the governing differential equation approximately by
processes that lead to integration of these functions. Galerkin's method,
finite-difference equations, relaxation techniques, and iteration are some
of the numerical methods that can be used.

BOUNDARY CONDITIONS

The nature of the buckle pattern in a plate depends not only upon
the type of applied loading but also upon the manner in which the edges
are supported. This is illustrated in figure 1 in which the same axial
compressive loading is seen to generate three types of buckle patterns
on a long rectangular plate with different geometrical boundary condi-
tions. The single wave is representative of column behavior, the twisted
wave is representative of flange behavior, and the multiple-buckle pattern
is representative of plate behavior.

To indicate the manner in which the geometric boundary conditions
mathematically influence the buckling behavior and also to demonstrate
the solution of the equilibrium differential equation (eq. (4)) for some
particular cases, the plates shown in figure 1 are analyzed. Boundary
conditions which characterize simply supported wide columms, flanges,
and plates are considered.

Mathematical Analysis

The equilibrium differential equation for elastic buckling of a
uniaxially compressed plate can be obtained from equation (4) in the
form

Dby, o w | dw, ot 2B, 1)

ax m2yy2  ayt D o2
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It is assumed that the loaded edges of the plate are simply supported
and therefore an appropriate solution of equation (7) is

- gy &y By BY)eos
w <°l cosh 2= + cp sinh = + c3 cos = + c) sin ==|cos = (8)

where
1/2
g = x(%l/ 2% + (kc)l/ 2] (9)
1/2
- n(g)l/e[. 2. (x4 (20)
k- 12 ll -K;;2>Gcr<%)2 (11)

The coefficients c¢j; to c) are to be determined by the geometrical
boundary conditions along the unloaded edges of the plate.

For the wide column, the unloaded edges located at y = tb/2 are
free, and consequently the edge moments and reduced shears must be zero.

Therefore,
dy OX< Jy=tb /2
> (12)
a"’+2(1-Ve Gl =0
3y %20y |yt /2

For the flange, the unloaded edge at y = O 1s assumed to be simply
supported and that at y = b 1is free:



1k NACA TN 3781
(w ) y=o =0 N
(ézw 82w> -0
2 € NP L
o %% /y=0,1 (13)
>
Fiﬁi-+ 2(1 - ve) et =0
ay5 axaay y=b

The plete is assumed to be simply supported along the unloaded edges

located at y = *b/2:

(Wy=tp/2 = ©

-

3% 2w

2
oy ox y=tb/2

Incorporation of these boundary conditions into

(1k)

the solution given

by equation (8) leads to the following implicit expressions for kg .

For the column,
5%F tan(f/2) + 3°a tanh(&/2) = O
for the flange,

25 cosh & sin B

izﬁ sinh & cos B - G
and for the plate

[a tann(a/2) + B tan(B/ai]'l =0

where

(15)

=0 (16)

(17)
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and

3 = BZ + vg(ub/N)2

The buckling coefficient for wide columms and flanges is shown as a
function of ve and a/b in figure 2. The solutions for wide columms

were given by Houbolt and Stowell by use of the differential equation

for simply supported loaded edges and the energy method for clamped
loaded edges (ref. 7).

The buckling coefficient for a simply supported flange was derived
by Lundquist and Stowell (ref. 8) in the form

k, = (6/x2) {(1 - ve) + [(xb/x)2/6] (18)
When the unloaded edge is clamped,
ko = 0.83 - 0.93vg + 1.34(A\/xb)2 + 0.10(xb/A)2 (19)
For the simply supported plate

ke = [V/o) + (b/A]]° (20)

Anticlastic Curvature

As may be seen from the solutions in the preceding section, the
buckling coefficient for the simply supported plate depends upon only
b/A and is independent of Poisson's ratio, while the coefficients for
the wide column and flange are functions of both ve and b/A. This

situation is not limited to the case of simple support alone but per-
tains to any degree of rotational restraint along the unloaded edges of
a plate. The influence of ve upon Xk, 1s traceable to the reduced-
shear terms at the free edges of flanges and columns. Boundary condi-
tions such as simple support do not impose the requirement of zero
reduced shear along the unloaded edges, which eliminates the v, influ-
ence from the relationship for k.

The value of the compressive buckling coefficient for an element
containing a free unloaded edge depends upon the degree of anticlastic
curvature developed. For a very narrow element such as a beam, complete
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anticlastic curvature occurs and the bending rigidity is simply EI. For
a relatively wide strip, the anticlastic curvature is suppressed so that
the cross section remeins relatively flat except for & highly localized
curling at the free edges where the stress distribution rearranges itself
to satisfy the geometrical boundary conditions. The restraint of anti-
clastic curvature results in an increase in bending stiffness. For a
very wide element, the bending stiffness approaches EI/(1 - v2); this
"limiting condition 1is known as cylindrical bending.

Plate columns and flanges may often be relatively narrow, in which
case the bending stiffness lies between the limiting values discussed.
This effect can be accounted for by use of figure 2.

STRESS-STRAIN RELATIONS IN YIELD REGION

Three-Parameter Description of Stress-Strain Curves

Stress-strain curves are of fundemental importance in the computa-
tion of inelastic buckling stresses. The number of design charts required
for the meny materials available and the various allowable stresses for
these materials at normal and elevated temperatures can be tremendously
reduced by use of a nondimensional mathematical description of stress-
strain relations.

Ramberg and Osgood (ref. 9) have proposed a three-parameter repre-
sentation of stress-strain relations in the yield region which has found
wide application. Their equation specifies the stress-strain curve by
the use of three parameters: The modulus of elasticity E, the secant
yield stress og,7 corresponding to the intersection of the stress-
strain curve and a secant of O0.7E, and the shape parameter n which
describes the curvature of the knee of the stress-strain curve. The
shape parameter is a function of 90.7 and 90.85s the latter stress

corresponding to & secant of 0.85E as shown in figure 3(a). The shape
parameter n is presented in figure 3(b) as & function of the ratio

00.7/00.85'

The three-parameter method is based on the experimental observation
that for many materials a simple power law describes the relation between
the plastic and elastic components of strain. By use of this fact, the
following nondimensional equation can be derived:

B +2(U° )n (21)

%.7 %.7 T1\90.7
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The quantities Ee/co.7 and 0/60.7 are nondimensional and consequently

the nondimensional stress-strain curves shown in figure 4 can be plotted.
Therefore, the stress-strain curves of many materials may be found with
the aid of figure 4 providing E, n, and Op,7 &re known for the spe-

cific materials.

Inelastic Moduli

For inelastic-buckling problems, the modulus ratios Eg/E, Et/E,

and Et/ES appear. These ratios can be computed in nondimensional form
by use of equation (21). Since Eg = o/e, it follows directly from equa-

tion (21) that
B/Es = 1 + (3/7) (o/00.7)"" (22)

Since E; = do/de, differentiation of equation (21) leads to the
expression

E/Ey = 1 + (3/7)n(c/co.7)n‘l (23)
From equations (22) and (23) it follows that

(2/5s) [(2/20)

_ 1+ (3/T)(9/%.7
1+ (3/7)n(0/00_7)n-l

Et/Eg

n-1
) (24)

These quantities are used in subsequent sections concerned with
inelastic buckling.

Inelastic Poisson's Ratio

Poisson's ratio for engineering materials usually has a value in
the elastic region of between l/h and 1/5 and, on the assumption of a
plastically incompressible isotropic solid, assumes a value of 1/2 in
the plastic region. The transition from the elastic to the plastic value
is most pronounced in the yield region of the stress-strain curve. Since

-
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Poisson's ratio appears in the buckling-stress equation, this transition
is of some importance in inelastic-buckling problems.

Gerard and Wildhorn, among others, have studied this problem on
several aluminum alloys and have shown that Poisson's ratio is seriously
affected by anisotropy of the materiel (ref. 10). For materials which
can be considered to be orthotropic (e.g., having the same properties
elong the y- and z-axes if loaded along the x-axis) the following relation
describes the transition in the yield region:

V= vy - (ESIE) (vp - Ve) (25)

In this relation, Vp is the fully plastic value of Poisson's ratio.
For isotropic materials vp = 1/2, whereas for orthotropic materials Vp
is generaelly different from a value of 1/2.

It is evident from the buckling stress expression that two materials
which differ only in their values of Poisson's ratio should have different
buckling stresses. As a rule, however, the value of ve 1s virtually

constant for a material whose properties may change as a result of heat
treatment, details of composition, or amount of cold-work.

The usual range of v, for most technically important structural

materials is between 0.25 and 0.35. There are exceptions, however. One
of the most extreme materials is beryllium, for which Udy, Shaw, and
Boulger report a value of 0.02 (ref. 11).

In the inelastic range, presumably because of anisotropy, numerical
values of v have been found which are considerably in excess of the
theoretical upper limit of 0.5, which is derived on the assumption of
incompressibility of an isotropic material. For example, Gerard and
Wildhorn obtained values of v as large as 0.70 for several high-strength
aluminum alloys (ref. 10), while Goodman and Russell reported a value
of 0.77 for commercially pure titanium sheet and 0.62 for FS-1h maegnesium
ealloy (ref. 12). Stang, Greenspan, and Newman also obtained data at var-
isnce with the theoretical value of 0.5 for plastic strains (ref. 13).
These three reports cover a large variety of alloys, deformed by various
total strains in both bar and sheet stock, and should be consulted for
more complete data.
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PLASTICITY-REDUCTION FACTORS

Inelastic-Buckling-Stress Equation

The elastic buckling stress of a flat rectangular plate can be
expressed in the form

Y. B - (26)
0'c:I'e 12 (l g Ve2)( )

When the buckling stress exceeds the proportional 1limit of the plate
material, the terms in equation (26) which are influenced are k, E,

and v. The buckling coefficient k depends upon the type of loading,
the buckle wave length as affected by the geometrical features of hound-
ary conditions and aspect ratio, the stress level, and Poisson's ratio

in the case of plates with free edges. The elastic modulus E 1is altered
by the reduction in bending stiffness associated with inelastic behavior.
Poisson's ratio in the yield region exhibits a gradual transition from
the elastic value ve to a value of 1/2 for a plastically incompressible
isotropic material.

For simplicity of calculation all effects of exceeding the propor-
tional limit are generally incorporated in a single coefficlent referred
to as the plasticity-reduction factor n. By definition

Ui Ucrp/ccre (27)

Substituting equation (27) into equation (26),

2 2
Gop = 1 _k“_E_@ (28)
12(1 - v2)

Since n =1 in the elastic range, equation (28) is perfectly general
and it is not necessary to distinguish between elastic and plastic
buckling. The values of k and ve are always the elastic values
since the coefficient 1 contains all changes in those terms resulting
from inelastic behavior.



20 NACA TN 3781

Comparison of Theories and Experimental Data

The theoretical and experimental determinations of the values of 1
appropriate to various types of loadings and boundary conditions have
resulted in extensive literature. The assumptions underlying the various
theories differ with respect to plasticity laws, stress-strain relatioms,
- and -buckling models used. In order to avoid possible confusion in dis-
cussing the various theories, it appears desirable to resort to the
expedient of comparing theories with test data first.

Rather precise experimental data exist for plastic buckling of
colums, simply supported flanges and plates under compressive loads,
and elastically supported plates under shear loads. For practical
aluminum-alloy columns under compression, it is a well-known fact that
the experimental failing stress 1s closely approximated by the Euler
formula with the tangent modulus substituted for the elastic modulus.

In figure 5, test data for buckling of simply supported flanges
under compression are shown in comparison with the theoretical wvalues
as derived by Stowell (ref. 1k4) according to the method of Gerard
(ref. 15). Excellent agreement is obtained.

In figure 6, test data of Pride and Heimerl (ref. 16) end Peters
(ref. 17) for plastic buckling of simply supported plates under compres-
sion are shown in comparison with the theories of Bijlaard (ref. 18),
Hendelmesn and Prager (ref. 19), Ilyushin (ref. 20), and Stowell (ref. 5),
and the method of Gerard (ref. 15). Poor agreement is obtained between
the test data and the flow theory of Handelman and Prager, whereas rela-
tively good agreement is obtained for the deformation theories of the
others with Stowell's theory in best agreemert.

In figure 7, test data for plastic buckling of elastically supported
plates under shear are shown in comparison with the theories of Bijlaard
(ref. 18), Gerard (ref. 21), and Stowell (ref. 5). It can be observed
that the method of Gerard, which is based on the maximum-shear plasticity
law to transform an axial stress-strain curve into & shear stress-strain
curve, is in good agreement with test data on aluminum alloys.

On the basis of the agreement with test data, the values of 7
recommended for use with equation (28) appear in the appendix. Also,
nondimensional buckling charts derived through the use of these reduc-
tion factors appear in figures 8, 9, and 10 for axially compressed
flanges and plates and for shear-loaded plates.

Assumptions of Inelastic-Buckling Theories

The state of knowledge up to 1936 concerning inelastic buckling of
plates and shells has been summarized by Timoshenko (ref. 2). The main
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efforts reported therein were concerned with attempts to modify the vari-
ous bending-moment terms of the equilibrium differential equations by the
use of suitable plasticity coefficients determined from experimental data
on columns. Although such semiempirical efforts met with a reasonable
degree of success, the theoretical determination of plasticity-reduction
factors for flat plates has been achieved within recent years as the
result of the development of a satisfactory inelastic-buckling theory.
Because such developments are recent and because the various theories have
not been, as yet, adequately treated in text books, the following dis-
cussion concerning the assumptions and results of the various theories is
presented in some detail.

Mathematical theories of plasticity are phenomenological in nature
since such theories generally proceed from the experimentally determined
stress-strain relations for simple uniaxial loadings. In the elastic
range, stress and strain are linearly related by the elastic modulus.

At strains beyond the proportional 1limit, a finite stress-strain rela-
tion can be used in the form

o = Ege (29)
or an incremental relation can be used
do = Ey de (30)

In either relation the secant modulus Eg or the tangent modulus Eg

varies with stress and applies as long as the loading continues to
increase. Unloading usually occurs along an elastic line parallel to
the initial elastic portion of the stress-strain curve.

In the buckling précess, for example, the stress state is considera-
bly more complex than simple uniaxial loading. Therefore, formulation of
suitable stress-strain laws for three-dimensional stress states beyond
the proportional limit forms one of the basic assumptions of the various
plasticity theories. Based on generalizations of equation (29) which
involve finite relations, deformation types of stress-strain laws have
been advanced. Similar generalizations of equation (30) involving incre-
mental relations are referred to as flow-type theories. In both theories,
unloading occurs elastically.

The use of the various plasticity theories is greatly facilitated
by the introduction of rotationally invariant functions to define the
three-dimensional stress and strain states; such functions are termed
stress and strain intensities. The assumption that the stress intensity
is a uniquely defined, single-valued function of the strain intensity
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for a given material when the stress intensity increases (loading) and
is elastic when it decreases (unloading) is a second of the fundamental
hypotheses of plasticity theory.

The definitions of the stress and strain intensities theoretically
can be chosen from a family of rotationally invariant functions. Two
such functions referred to as the maximum-shear law and octahedral-shear
law have been found to be of considerable usefulness for correlating
stress data on ductile materials. Thus, both of these laws have been
assumed to apply in various solutions for inelastic buckling.

In order to obtain solutions to various plasticity problems, addi-
tional assumptions are generally employed. These ordinarily include the
assumption that the principal axes of stress and strein coincide and the
assumption of plastic isotropy. Furthermore, the variation of Poisson's
ratio from the elastic value to the value of 0.5 for a plastically incom-
pressible, isotropic solid is most pronounced in the yield region. Some
solutions account for the instantaneous value of Poisson's ratio whereas
others assume a value of 0.5 for both the elastic and plastic region.
The latter assumption serves to simplify the analysis considerably.
Corrections for the use of the fully plastic value of Poisson's ratio
can generally be incorporated in the final results.

A1l the foregoing assumptions form the basis for solution of plas-
ticity problems in general. For the specific problem of inelastic
buckling, it is necessary to make an additional assumption concerning
the stress distribution at the instant of buckling.

From the standpoint of classical stability theory, the buckling load
is the load at which an exchange of stable equilibrium configurations
occurs between the straight form and the bent form. Since the load remains
constant during this exchange, a strain reversal must occur on the convex
side and, therefore, the buckling model leading’ to the reduced-modulus
concept for columms is correct theoretically.

Practical plates and columns invariably contain initial imperfec-
tions of some sort, and, therefore, axial loading and bending proceed
similtaneously. In this case, the bent form is the only stable config-
uration. Since in the presence of relatively large axial compressive
stresses the bending stresses are small, no strain reversal occurs and
the incremental bending stresses in the inelastic range are given by
equation (30).

Since failing loads obtained from tests on aluminum-alloy columms
are closely approximated by the Euler buckling equation with the tangent
modulus substituted for the elastic modulus, certain of the inelastic-
buckling theories assume the no-strain-reversal, or tangent-modulus,
model as the basic buckling process and then proceed to solutions by use
of equilibrium equations based on classical stability concepts.
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Inelastic-Buckling Theories

Different investigators have used various ones of those assumptions
discussed above. In order to indicate the major assumptions underlying
each of the theories, a summary is presented in table 1. .

Historically, Bijlaard appears to have been the first to arrive
at satisfactory theoretical solutions for inelastic-buckling theories
(ref. 18). His work is the most comprehensive of all those considered
in that he considers both incremental and deformation theories and con-
cludes that the deformation type is correct since it leads to lower ine-
lastic buckling loads than are obtained from incremental theories. His
work was first published in 1937. This paper and later publications
include solutions to many important inelastic-buckling problems. How-
ever, this work appears to have remained unknown to most of the later
investigators.

Tlyushin briefly referred to Bijlaard's work and then proceeded to
derive the basic differential equation for inelastic buckling of flat
plates according to the strain-reversal model (ref. 20). The derivation
of this equation is rather elegant and was used by Stowell, who, however,
used the no-strain-reversal model (ref. 5). The differential equation
obtained by Bijlaard reduces to that derived by Stowell by setting
v = 1/2 in the former. Handelman and Prager, during this time, obtained
solutions to several inelastic-buckling problems by use of incremental
theory (ref. 19). Test data, such as shown in figure 6, indicate that
the results of incremental theories, regardless of the buckling model,
are definitely unconservative, whereas deformation-type theories are in
relatively good agreement.

A1l the foregoing theories were based on the use of the octahedral-
shear law. However, test data on the inelastic buckling of aluminum-alloy
plates in shear indicated that the results of the above theories were
unconservative. Gerard used the maximum-shear law in place of the
octahedral-shear law to transform axial stress-strain curves to shear
stress and found good agreement with the aluminum-alloy-plate shear-
buckling data (ref. 21).

To summarize, then, the assumptions which lead to the best agreement
between theory and test data on inelastic buckling of aluminum-alloy flat
plates under compression and shear loadings include deformation-type
stress-strain laws, stress and strain intensities defined by the octahedral-
shear law, and the no-strain-reversal model of inelastic buckling. Although
there may be theoretical objections to deformation theories as a class and
the use of a no-strain-reversal model in conjunction with classical sta-
bility concepts, test data do suggest the use of results obtained from a
theory based on these assumptions in engineering applications. The choice
of laws to transform axial stress-strain data to shear stress-strain data
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depends upon the degree of correlation obtained between each of these
laws with polyaxial test data for individual materials.

Factors Used in Computations

As already indicated, the inelastic-buckling stress may be com-
puted by use of plasticity-reduction factors appropriate to the bound-
ary and loading conditions. The factors incorporate all effects of
exceeding the proportional limit upon k, E, and v. For convenience
in preparing design charts for inelastic buckling, the critical elastic
strain can be used:

Ceor = —ﬂg—-e—)@e (31)

From equations (28) and (31)
Oor = NEeqp (32)

The recommended values of 1n are given in table 2. For compressive
loads, the values of 1 derived by Stowell for infinitely long plates
except in the case of plate colums (see refs. 5 and 22) have been cor-
rected to account for the instantaneous value of Poisson's ratio according
to a method suggested by Stowell and Pride (ref. 23). Thus,

b o)

n="g ??-:—:Ej- (33)

where 14 1s the original value given by Stowell. Equation (33) 1is the
form of the plasticity-reduction factors that appears in table 2 and has

been used to construct the nondimensional buckling charts of figures 8,
9, and 10.

For long simply supported plates under combined axial compression
and bending Bijlaard found theoretically, by a finite-difference approach -
(ref. 24), that

n = <%‘:;_2>[%(ES/E> + (l ® %)nc] (34)
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where a is found from equation (56) and [Kl - VEQ)/Ql - vzi]qc is

the plasticity-reduction factor for axial compression. Equation (34)
reduces to this value for axial load alone, since o = O for this case.
For pure bending « = 2 and equation (34) is equal to the plasticity-
reduction factor for a hinged flange.

To determine the instantaneous value of Poisson's ratio, equation (25)
can be used. For the nondimensional buckling charts the theoretical fully
plastic value of 0.5 was assumed for Poisson's ratio, as was assumed by
Stowell in his determinations of the plasticity-reduction factors. Stowell
and Pride reported on computations made using equation (34) instead of
v = 0.5 and showed that there was little difference between the two curves
for flanges and simply supported plates (ref. 23). Bijlaard took exception
to this report (ref. 25); however, the differences were slight, as was
pointed out by Stowell and Pride, and it can be assumed for practical pur-
poses that the plasticity-reduction factors shown in the appendix are sat- -
isfactory for general design and analysis.

Construction -of Nondimensional Buckling Charts

The nondimensional buckling-stress charts of figures 8, 9, and 10
were constructed from the basic nondimensional stress-strain curves of
figure 4 and the plasticity-reduction factors shown in the appendix,
incorporating the method of critical strains as depicted through equa-
tions (31) and (32). Since there is little difference among the numeri-
cal values of the buckling stresses that would be obtained for the
plasticity-reduction factors applicable to a long clamped flange and to
a long plate with any amount of edge rotational restraint, these cases
were grouped into one employing the reduction factor for the simply sup-
ported plate, which is the average of the three factors.

CLADDING REDUCTION FACTORS

Basic Principles

The presence of cladding on the faces of plates may have an appreci-
able effect on the buckling stress since the cladding material, which
usually has lower mechanical strength than the plate core, is located at
the extreme fibers of the plate cross section (fig. 11) where the bending
strains during buckling attain their highest values.

Buchert determined buckling-stress-reduction factors for clad plates
which include plasticity effects as well as reduction due to cladding
(ref. 26). However, it is possible to determine a reduction factor for
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cladding alone that may be multiplied by the inelastic buckling stress
to yield a final buckling stress for the clad plate that agrees quite
closely with the test data. The cladding reduction factors may then be
used with the existing inelastic-buckling curves of figures 8, 9, and 10.

The form of buckling equation commonly used for determining the
buckling stress of a bare flat plate with any type of loading and bound-
ary supports is given as equation (28). For clad plates this expression
is used to find a nominal buckling stress, where the thickness is that
of the total plate and the material properties are those of the core.
The actual buckling stress of a clad plate then may be found by applying
a simple numerical multiplier 7 to this stress. This multiplier,
termed the cladding reduction factor because it reduces the ratio of the
nominal core stress to the buckling stress of the clad plate, is a func-
tion of the relative core and cladding stress levels and the respective
moduli of the core and cladding materials. The clad-plate buckling stress
can be found from

c-’cr = ﬁccr (%5)

If the nominal buckling stress exceeds the proportional limit of
the core material, then the nominal buckling stress for the clad plate
may be found by using the appropriate value of 1, the plasticity-
reduction factor of the core material. Values of 1 may be obtained
from the clad-plate stress-strain curve shown in figure 12, the deri-
vation of which is discussed below.

It should be noted that the plasticity-reduction factor depends
upon the stress level and consequently requires an estimate of the final
buckling stress of the plate before equation (28) can be used to find
Ocr. The cladding reduction factor has been found to be of such a nature,
however, that little error is involved in first finding the nominal buck-
ling stress and then multiplying it directly by the cladding reduction
factor to find the actual buckling stress of the clad plate. The prod-
uct 7% is 7np, which was determined by Buchert.

Table 3 contains a listing of the various cladding reduction fac-
tors determined in subsequent portions of this section. In the table,
all plates are long and simply supported. In all cases for which the
cladding proportional-limit stress o,; exceeds the nominal buckling

stress 0., the cladding reduction factor is equal to unity. The quan-
tity B is defined as B = Ucl/ccr: and f dis the ratio of the total
cladding thickness to the clad-plate total thickness.
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Derivation of Core Stress-Strain Curve

The core stress=-strain curve may be derived from a stress-strain
curve for the entire clad plate as shown in figure 12. Using the nota-
tion of figure 11, in which a section of a clad plate is shown, the total
axial load acting on the section is determinable from

N = 43 = (1 = £)0,0pe + t0,7 (36)

Dividing this expression by to,,p.e yields

G/0core =1 - £ + Bf (37)

where B = Ucl/gcore'

Thus, the core stress-strain curve can be constructed by plotting
the core stress determined from equation (37) at each value of strain
for which the corresponding clad~plate stress was found. (See fig. 12.)
The initial slope of the core curve, which is the same as the initial
slope of the clad-plate curve, is the elastic modulus to be used in the
nominal-buckling-stress equation. Since the buckling stress refers to

the core material, Oaore V¥as replaced by its counterpart 0., in the

succeeding derivations.

Typical values of f for alclad plate appear in table 4 for sev-
eral aluminum alloys. Buchert showed a value of o,; = 10,000 psi for

1100-H14 alloy (ref. 26). However, the cladding stress will vary with
the cladding material, of which different types are used on different
alloy cores.

Comparison of Theory and Experiment

The total-reduction factor, defined as the product of the plasticity-
and cladding-reduction factors, has been plotted in figure 13 as a func-
tion of stress for both the test data and the theory in the case of axially
compressed plates. Two materials are represented, each with a different
percentage of cladding thickness. Furthermore, the first (2024-T84 sheet)
is a simply supported plate whereas the second (2024-T3 sheet) is a long
column. Plasticity-reduction factors for these two cases were obtained
from table 2. It is instructive to notice the close correlation for the
column case, for which the tangent modulus is the applicable plasticity-
reduction modulus. This follows the prediction of the simplified theory,
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which stipulates that the cladding reduction factor is independent of
stress level when the nominal core stress exceeds the cladding propor-
tional limit. Thus, the theory and test data agree in the sharp drop
in the total-reduction factor at the cladding proportional limit.

Derivations of Simplified Cladding Reduction Factors

Buchert derived expressions for the total-reduction factor for flat
simply supported rectangular plates subjected to several types of loadings.
In the following sections are presented derivations of simplified cladding
reduction factors that yield buckling stresses at all stress levels merely
by multiplying the nominal stress (elastic or inelastic) by the cladding
reduction factor at that stress. This is done by separating the cladding
effect from the total-reduction factor by using the relationship 7 = np/n.

Case 1. Iong simply supported plates in compression.- Buchert derived
the expression for 7y &t 0. > op (of the core) (ref. 26):

T = 5(—?—1—%—) ‘EL+ <3fES/ES>jl + {[1 - (BfES/ES)] [(1/&) +

1/2
(3/4) (Et/Es) + W:l} (38)
where

W= (3f'E's/Es) El/u) + (3/&)(@/@)]
For a bare plate f = 0 and np = 7, which give
1= (Esf2E)i2 + El/h) ¥ (3/u)(Et/ES>] 1/2 5.

(ef. table 2). Then

- /fl + <5f'}§s/Es):l + {[1 + (Bfﬁs/Esﬂ [(1/&) + (5/’*)<Et/ES) . w]}l/e
1+ 31"\ 1 % [(l/h) + (3/4) (Et/Es>:| 1/2

(ko)




5Z

NACA TN 3781 29

(a) When ouop< Ogl, Eg = Bt = Bg = By = E, and therefore 7 = 1.

(b) When 0c) < Ocr < 0p1, Eg = By = E, and for the cladding stress-

strain curve of figure 12 §£ = 0. Then with EE T e = —— =
- 1 1 1/2}
= —(1 £ =|(1 L
Bl e {( + 3Bf) + QE + 362) (& + 3p¢)] (k1)

which may be written

1= i—:;ﬁ(%)(l . %{h - [9Bf/(1 + 3Bf)]}l/2>.

If it is assumed that 9Bf/(1 + 3Bf) << 4, the following simple expres-
sion is obtained for the cladding reduction factor:

- e IR (42)
1+ 3¢f -

(¢) For large stresses, B-—>0 and therefore

i (43)
1l + 3f

Equations (42) and (43) appear in figure 13 in the form of fnp = 17,

where they may be seen to agree closely with the total-reduction factor
and the test data.

Case 2. Plate colums.- The derivations of 17 for short and long
plate columns follow the form used in case 1 for the supported plate
without any simplifying assumptions. The results are shown in table 3. .
The column curve is plotted in figure 13 in the form nq = nM, where it

is seen to agree closely with the data and with Buchert's theory.

Case 3. Long simply supported plates in shear.- Buchert (ref. 26)
shows that Np for shear on a long simply supported plate is
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| (Es /E)

e Al P ol v 1]1/2 X

where the nodal-line slope of the shear buckles is obtained from'the
implicit equation

P + 2&2(037/059 + 1:\1/2 = (1°-ab [3(1.2 - (CBT/C5T)]

and

Czr = (1/2){1 + (Et/Es) + 5Bf|:1 + (Et/fsm

Csr = 1 + 3Bf

The minimum-energy state occurs for unclad elastic plates when

a——>l/V§; and there is little reason to expect & significantly different
velue for clad plates. Consequently, this value of o is assumed in
the following development:

3 /4

(3/2) - <C3T/C5T) .

(a) When Oop < O3, M =1 = np = 1.

(b) The plasticity-reduction factor for Oop > 0oy 1is derivable
from the total-reduction factor in the form

1 = (ES/BE) b+ (Et/ES> i 2 (46)

By 5 )



NACA TN 3781 Hik

from which, using 17 = nT/n,

3

oz | ) +off - ]
oy (5e 5a) + 3 [2 - (Et/Esﬂ

(&T)

' J
where Y = 1 4 3pf.

The expression in braces deviates about 2 percent from unity for
f = 0.10 and for B—>0.2, which will be in the neighborhood of the
proportional limit for typical structural aluminum alloys. Consequently,
it will not introduce an appreciable error to consider it equal to unity,
in which case equation (42) for the compressed simply supported plate
holds true.

sl
1+ 3F

(¢) For large stresses, B—>0, and therefore 1 =

BUCKLING OF FLAT RECTANGUILAR PLATES UNDER COMPRESSIVE LOADS

In the preceding sections the mathematical and physical background
for the flat-plate buckling problem has been presented. It was shown
that basic equation (1) can be used for the solution of buckling problems
pertaining to flat rectangular plates under various types of loadings in
the elastic and inelastic ranges by suitable choice of reduction factors
and buckling coefficients. Considerations that influence the determina-
tion of k have been analyzed in the sections entitled "Basic Principles”
and "Boundary Conditions." The plasticity-reduction and cladding reduction
factors were discussed in the sections "Plasticity-Reduction Factors' and
"Cladding Reduction Factors." In this section, and in those to follow, the
buckling coefficient k will be discussed and its numerical values for
various loading and boundary conditions will be presented.

Historical Background
Bryan investigated the buckling of a simply supported flat rectangu-
lar plate under axial loading in the elastic range using the energy

method (ref. 27). He obtained the explicit form for k. for this type
of loading and support:

ko = Ka/nb) + (nb/aﬂ 2 (48)
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Timoshenko treated numerous additional cases of loading and boundary
conditions utilizing both the energy approach and the solution of the
differential equation (ref. 2). Hill constructed a chart of ke covering
the complete range of possible boundary conditions for axial loadings:
simply supported, clamped or free edges on one side, and simply supported
or clamped edges on the other, with the loaded edges either clamped or
-simply supported (ref. 28).

Lundquist and Stowell presented the first unified treatment of the
compressive-buckling problem in their analyses, by both the differential-
equation and energy methods, of the cases of supported plates and flanges
with simply supported loaded edges and with varying degrees of elastic
rotational restraint along the supported unloaded edges (refs. 8 and 29).

Stein and Libove, in considering combined longitudinal and transverse
axial loads, covered the effects of clamping along the unloaded edges of
rectangular plates (ref. 30).

Numerical Values of Compressive-Buckling Coefficients
for Plates

Figure 14 is a summary chart depicting the variation of k., as a

function of a/b for various limiting conditions of edge support and
rotational restraint on a rectangular flat plate. It is apparent that
for values of a/b greater than four the effect of rotational restraint
along the loaded edges becomes negligible and that the clamped plate
would buckle at virtually the same compressive load as a plate with
simply supported loaded edges.

Supported Plate, Edges Elastically Restrained
Against Rotation

The behavior of compressed plates with various amounts of elastic
rotational restraint along the unloaded edges can be understood by
examining the relation between buckling coefficient and buckle wave
length. For plates supported along both unloaded edges the curves
appear in figure 15 for rotational restraint from full clamping (e = =)
to hinged supports (e = O). From this figure, which is taken from the
report by Lundquist and Stowell (ref. 29), it is possible to see the man-
ner in which the buckle wave length decreases as rotational restraint
increases, and the value of A\/b for a minimum value of k, can be
seen to increase from 2/5 for clamped edges to 1.00 for hinged edges.

The lower portions of these curves and the portions to the left of the
minimum kc line form the first arms of the curves of k., &as a function
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of a/b, as in figure 16. TFor completeness, several lines denoting the
transitions from 1 to 2, 2to 3, . . . n to n + 1 buckles have been
included in figure 15. The intersections of these lines with the curves
of ks against A/b correspond to the cusps on the curves of figure 16.

Plates With Unequal Edge Rotational Restraint

Figure 15 can also be used when there are unequal rotational
restraints along the unloaded edges of a plate. This can be done by
determining the k. value for the € on each unloaded edge. The effec-
tive value for use in equation (1) can then be found from

B - (kclkce)l/ 3 (49)

The accuracy of this method has been demonstrated by Lundquist and Stowell
who compared results so obtained with the values obtained by solving
directly with the equations used by them for the general case of rota-
tional restraint (ref. 29).

The elastic restraints are mathematically equivalent to a series of
unconnected torsional springs. Since this does not necessarily conform
to the behavior of the usual edge member or stiffener of a flat panel,
it 1s necessary to evaluate the effective single spring stiffness of the
actual stiffener in order to use either figure 15 or figure 16. However,
it is not necessary to determine this stiffness to a high degree of
accuracy since the influence of € wupon k., embraces a large range of
stiffness ratios, as is shown in figure 17 for infinitely long plates.
When the stiffener rotational rigidity has been found; € may be com-
puted by forming the ratio of this rigidity to the rotational rigidity
of the plate.

From test data Gerard was able to construct a chart of ke for
long plates as a function of b/t for strong and weak stiffeners
(ref. 31 and fig. 18). Above b/t = 200 it is seen that most stiff-
eners will effectively clamp the plate edge.

Supported Flanges With Elastic Rotational Restraint

The relationships among Xk, x/b, and e are depicted for flanges

in figure 19. It should be noted that these curves were constructed for
a'Poisson's ratio value of 0.3, which also applies to the curves of kg

as a function of a/b in figure 20. The determination of k., for other
values of v 1is discussed in the section entitled "Boundary Conditions."
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The transition lines for 1 to 2, 2 to 3, . . «. n to n + 1 buckles are

shown in figure 19. However, it should be noted that the minimum line i
does not intersect the curve for a hinged flange (e = 0). For this case

there is only one buckle which extends the full length of the flange.

As in the case of the plate, the theoretical restraint action on the
unloaded supported edge of the flange is assumed to be a series of dis-
connected torsional springs, and it is necessary in this case also to
determine the effective restraint for the edge stiffener in order to use
the curves of figures 19 and 20. However, as in the case of supported
plates, it is not necessary to determine € +too accurately, as figure 17
shows, since ko 1s relatively insensitive to large variations in e.

Effect of Lateral Restraint on Buckling

In the usual buckling-stress computations the plate analyzed is
assumed to be unrestrained against distortion in its plane under the
external loads applied. However, for longitudinal compressive loads on
a rectangular plate, the edges parallel to the loads would tend to move
apart as a result of the Poisson's ratio expansion. If this motion
should be restrained to any extent, forces would be developed transverse
to the applied load which would influence the longitudinal stress that
the plate might withstand before it would buckle. If the interaction
concept is employed, it is apparent that the transverse compression would
lower the permissible longitudinal stress by an amount that could be
found from interaction curves utilizing stress ratios.

If the plate edges are restrained by rigid stiffeners held in place
by transverse ribs each with a section area A,, the balance of transverse
forces requires that

Ophy = oyat (50)

The directions of oy, Oy and 0, &are shown in figure 21. The equiva-

lence of transverse strain requires that

(vcx/E> 2 (cry/E) = 0y /E (51)

assuming that the ribs and plate are of the same material. From equa-
tions (50) and (51), the transverse stress becomes

oy oy = v/[l + (at/Ar>:| (52)
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From this point it is a simple matter to determine the reduced
longitudinal-buckling stress. This may be expressed in terms of the
new velue of the buckling coefficient k., as shown in figure 21, which

is a modification of curves presented by Argyris and Dunne (ref. 32).

BUCKLING OF FLAT RECTANGULAR PLATES UNDER SHEAR LOADS

Historical Background

Southwell and Skan computed the critical shear load for a flat rec=-
tangular plate with simply supported edges and with fixed edges by means
of the buckling differential equation (ref. 33). Timoshenko investigated
shear buckling also (ref. 2); however, he used the energy method and
obtained a critical loading 6.5 percent higher than the exact result of
Southwell and Skan.

Stowell determined shear-buckling coefficients for infinitely long
supported plates with the edges elastically restrained against rotation
(ref. 34). He utilized the differential equation for an exact solution
and the energy integrals for plotting purposes. Stowell presented his
results in the manner of Southwell and Skan, who plotted the buckling
coefficient as a function of A/b for long plates. This is the same
procedure used by Lundquist and Stowell for compressive loading on plates
of any length (refs. 8 and 29).

Symmetric and Antisymmetric Modes

The solutions obtained by Southwell and Skan (ref. 33) and by
Timoshenko (ref. 2) pertained to a buckle form termed the symmetric mode
because of the symmetry of the mode shape with respect to a diagonal
across the plate at the node-line slope. Stein and Neff examined the
antisymmetric buckle mode for simply supported plates and found that it
has a lower buckling stress, within a small range of a/b values, than
does the symmetric mode (ref. 35). Stein and Neff also repeated
Timoshenko's calculations for greater precision and obtained an esti-
mated error of 1 percent.

Budiansky and Connor investigated the short clamped plate for both
symmetric and antisymmetric buckle modes using the Lagrangian multiplier
method (ref. 36). Except for a small range of a/b values, the symmetric
mode was shown to yield the lower buckling stress.
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Numerical Values of Shear-Buckling Coefficient

The plot of kg as a function of a/b appears in figure 22. It

may be seen from the curves how the symmetric and antisymmetric modes
alternate with one another as a/b increases. For long plates the
value of kg may be found from figure 23(a), in which ks, @appears as
a function of €.

Effect of Plate Iength on Buckling Coefficient

When kg is plotted as & function of a/b for infinite and zero
values of € (clamped and hinged edges) as shown in figure 23(b), it
may be seen that there is little difference between the two curves.

This suggests a rapid method of computing the shear-buckling coefficient
for any value of €. The coefficient for the specified € is obtained
from the curve of kg, as & function of e (fig. 23(a)), which is a
replot of the minimum kg line (n = =) of figure 24. Also, the ratio
ks/ksm is found from figure 23(b). Then ks for the specified a/b
and € may be found by computing the product of these two numbers.
Estimation of the correct value of ks/ks°° will be relatively free from

error because of the proximity of the two limiting curves in figure 23(b).

BUCKLING OF FLAT RECTANGULAR PLATES UNDER BENDING LOADS

Historical Background

Timoshenko investigated the buckling stresses for flat rectangular
plates under combined longitudinal and bending loads using energy inte-
grals and obtained values for k; that agree well with later calculations
of higher precision (ref. 2). Schuette and McCulloch analyzed long plates
under pure bending with supported edges and elastic rotational restraint
(ref. 37). Johnson and Noel also investigated the buckling of plates
under longitudinal axial load and bending (ref. 3%8), and Noel analyzed
plates for longitudinal bending plus axial load combined with transverse
axial load (ref. 39).

Numerical Values of Bending-Buckling Coefficient

The relations between buckle wave length and buckling coefficient
for various values of rotational restraint appear in figure 25 together
with the wave-length transition lines. The curves of kp as a function

of a/b are shown in figure 26. It is of interest to note that the
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value of Kky for infinite plates 1s roughly six times as great as the
value for the supported plate Xk, for all values of rotational restraint.

BUCKLING OF FLAT RECTANGULAR PLATES UNDER COMBINED LOADS

General Background

Flat rectangular plates frequently are subjected to combinations of
elementary loadings. It has been common practice to consider elementary
loadings in pairs and to determine an interaction curve or curves for the
combination. However, two recent papers treat triple combinations of the
elementary loads, so that an interaction surface in stress ratios is gen-
erated, and by taking appropriate sections (e.g., letting one of the
stress ratios equal zero) 1t is possible to reproduce the interaction
curves that were derived previously in the literature.

Interaction curves for the combination of bending, shear, and trans-
verse compression on long plates were developed by Johnson and Buchert
(ref. 40), and Noel constructed the two-dimensional sections of the sur-
face for longitudinal bending, longitudinal compression, and transverse
compression (ref. 39). The backgrounds for the various combinations of
loadings are discussed in the following paragraphs. Interaction charts
are shown in figures 27 and 28, in which sections of the triple stress-
ratio surfaces appear.

A summary of the loading conditions discussed in the following para-
graphs appears in table 5. Interaction equations which exist for a few
cagses are included in the table.

Biaxial Compression

Timoshenko derived a relation between the longitudinal and transverse
edge stresses acting on a rectangular plate at buckling (ref. 2). This
relation was evaluated for the lowest possible combination of stresses by
means of a chart that must be drawn for each a/b value under considera-
tion. As one limiting case of plate proportion and loading, Timoshenko
demonstrated that a square plate loaded by equal biaxial stresses has a
buckling coefficient of 2, or half of that for a uniaxially loaded squar
plate. :

Libove and Stein evaluated buckling under biaxial loadings by the
energy method for rectangular plates supported in several different man-
ners and presented the results in charts of ky as functions of a/b
for various values of ky, where
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()
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4 (53)
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J ky<b2‘b>‘

and oy, and oy are the two stresses acting on the plate at buckling
(ref. 30).

No simple interaction expressions exist for the stress ratios in
the general case for the loadings and supports investigated by Libove
and Stein. However, for square panels, or for long panels that buckle
in square waves, it can be shown, from Timoshenko's results, that

Ry + Ry = 1 (54)

Noel considered more complicated loading conditions and presented
data from which interaction curves may be constructed for biaxiel loadings
for any value of a/b (ref. 39). Noel's curves appear in figure 28.

Shear and Normel Stress

By application of the energy method, Stowell and Schwartz examined
the conditions under which buckling will occur on & long, flat, rectan-
gular panel with edges elastically restrained against rotation under the
simultaneous action of shear and normal stresses (ref. 41). They derived
the interaction relationship between the stress ratios in the form

Re + Rg2 = 1 (55)

They also derived an expression for the stress combination at
buckling through use of the differential equation and tested the inter-
action equation for several values of restraint coefficient €. The
agreement with the interaction equation was found to be excellent, as a
consequence of which the interaction equation written above may be
applied to this loading case for all values of restraint coefficient
and mey be used when the axial load is either compression or tension,
provided the restraint coefficients are the same on both edges and the
panel is infinitely long.
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The problem of determining critical loading combinations for shear
and transverse normel stress was solved by Batdorf and Houbolt by both
the energy method and the differential equation (ref. 42). The signifi-
cant result of this work is the demonstration that roughly half of the
critical shear stress may be applied to a transversely compressed panel
without lowering its permissible compressive-buckling stress.

This work was done on infinitely long panels with the long edges
supported and elastically restrained against rotation. The restraint
coefficient was found to exert an appreciable (although not very large)
effect upon the critical loading combination. The results for this type
of loading, consequently, do not lend themselves to the writing of a
simple explicit interaction equation between the stress ratios. The
curves were plotted by Batdorf and Houbolt for both compressive and ten-
sile transverse normal loadings in combination with shear over the entire
range of restraint coefficients.

The two preceding loading conditions were reexamined for simply
supported plates of finite a/b by Batdorf and Stein with the use of
the energy equations (ref. 43). They showed that the parabolic inter-
action expression of Stowell and Schwartz (eq. (55)) agrees with the
interaction curves for finite values of a/b for shear plus longitudi-
nal compression (or tension) (ref. 41). However, the curve derived for
infinitely long panels under shear and transverse loading requires modi-
fication for finite values of a/b. For a square panel the parabola
agrees with the modified curve, while the simple-edge-support case of
Batdorf and Houbolt (ref. 42) may be used for a/b = 4. The transition
region from the modified curves to those for a/b = » lies between
these two values of a/b.

The large shear stress that may be superimposed upon the critical
compressive stress without lowering the permissible compressive stress
for infinitely long panels is not possible for square plates. In fact,
it appears to be possible for infinitely long plates only.

Bending and Normal Stress

Timoshenko determined the critical combination of bending and nor-
mal stresses acting on simply supported flat rectangular plates using
the energy method (ref. 2). He determined the buckling coefficient as
a function of a for several ratios of moment loading to axial loading
for panels with various values of a/b.

Johnson and Noel broadened the scope of the problem by including
elastic rotational restraint along the unloaded compression edge (ref. 38).
Their results were plotted as ky versus A/b for all values of restraint
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coefficient. One chart is required for each of the loading ratios (lon-
gitudinal loading to moment loading), of which four values were chosen.
The loading ratio is defined by

1oM )
A =  e—
Pb + 6M

( (56)

Po  6(2 - a)
B Bt g -

where P is the longitudinal load, M is the bending moment, and b
is the panel width. They also plot k3, as a function of a/b for the

cases of simple support and clamping of the unloaded compression edge of
the panel. In addition, the effect of fixity of the unloaded tension
edge is depicted for various values of a in a plot of kp versus a/b

in which the hinged and fixed cases are drawn on the same graph. It is
apparent that edge fixity does not become important until o falls
below T/h, which corresponds approximately to a Pb/M of 1 or more.

Grossman examined bending in combination with transverse compression
using the energy method (ref. Lk4). He found that for infinite a/b the
bending stress ratio can be 0.9 at the same time that the transverse com-
pressive stress ratio is 1. He also provides a graph of the stress
ratios for several values of a/b; however, apparently only the infi-
nitely long plate is capable of withstanding bending stresses without
buckling while the transverse stress is at its critical value. This is
similar to the result found by Batdorf and Stein for shear and transverse
compression (ref. 43).

Noel provides interaction curves for simply supported rectangular
plates loaded in longitudinal bending, longitudinal compression, and
transverse compression (ref. %9). For the limiting case of no transverse
loading they agree with the results of Johnson and Noel (ref. 38), and
when the longitudinal compression vanishes they agree with those of
Grossman (ref. Ly, Consequently, their charts can be used for both of
these loading combinations. The curves appear in figure 28.

The data of Johnson and Noel and of Noel were obtained from equa-

tions solved for infinite values of a/b and were applied to finite
values of a/b by use of the identity

Ab = a/mb (57)
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This procedure may be questioned for small aspect ratios; however, it
may be justified by comparison with the work of Timoshenko (longitudi-
nal compression and bending) and with the work of Grossman (transverse
compression and bending), with which the results of Johnson and Noel
and of Noel show good agreement.

Bending and Shear Stress

Timoshenko reports the result of analyzing a rectangular flat plate
to determine the critical combination of bending and shear stresses
(ref. 2). He used the energy method and plotted the buckling coeffi-
cient of the panel as a function of the shear stress ratio. The coeffi-
cient, when divided by that for the bending load alone, becomes the
bending stress ratio, and the set of curves provided by Timoshenko for
various values of a/b becomes an interaction chart, from which it may
be seen that the interaction equation is a unit circle:

R52 + Rb2 = 1 (58)

The range of a/b for which Timoshenko plotted the curves is from 0.5

to 1.0. However, the curves loop back on themselves as a/b increases,
thus indicating that larger values of a/b would yield curves falling
within the plot. The maximum variation of stress ratios about the values
obtainable from the circular interaction equation is 7 percent, with the
equation values the lowest (and hence the most conservative) of all.

Bending, Shear, and Transverse Compression

Johnson and Buchert utilized the Lagrangian multiplier method to
determine the critical combinations of bending, shear, and transverse
compressive loads on rectangular flat plates of infinite a/b (ref. 40).
The results appear as interaction surfaces in the three stress ratios Ry,

Rg, and Re. The two types of support for the plate are simple support

along both long edges and simple support along the tension (due to
bending) edge with clamping along the compression (due to bending) edge.

Sections of the interaction surfaces taken perpendicular to any of
the three stress-ratio axes yield plane stress-ratio curves that agree
with the results obtained directly for these cases in previous publica-
tions. This is true only of the simply supported plate, of course, since
nothing has appeared in the literature for shear plus bending of plates
with the compression edge clamped. The interesting result of a shear
stress ratio equal to 1.2, with Ry equal to 0.5, is revealed (fig. 27(b)),
as well as the combination of R, = 0.9%, Ry = 0.50, and Rg = 0.L3.
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Longitudinal Bending, Longitudinal Compression, and
Transverse Compression

The work of Noel (ref. 39) on the problem of longitudinal bending,
longitudinal compression, and transverse compression has been discussed
in the section on combined bending and normal stress. The pertinent
interaction curves appear in figure 28.

Combined Inelastic Stresses

Stowell utilized the concept of an equivalent stress intensity for
combined stresses applied in constent ratio during loading in the inelas-
tic range (ref. 45). He examined the problem of determining the critical
combination of shear and longitudinal compression in elastically supported
flat rectangular plates by using the energy method to determine the
buckling stresses. From these results, stress ratios were plotted
directly from the theoretical results and were also corrected for the
changes in effective modulus. From this, Stowell concluded that with
little error the following stress-ratio equation is epplicable:

2
E E
Ro E_EEES + |Rg ﬁ_fzgi =1 (59)
(Es)ci (ES>01

In equation (59), (Es)pc is the secant modulus at ¢ = 0,, for pure
compression, (Es)ps is the corresponding secant modulus for pure shear,

and (Es)o- is the secant modulus for the effective stress of the com-
i

1/2
bined loading at buckling; (E = [3(0.2 + 3T2 5€x2 + 9@ « The

similarity of this expression to that for the elastic case is apparent;
in fact, in the elastic range the expression reduces to the equation for
elastic loads.

A recent investigation of Peters on long square tubes loaded in

torsion and compression (ref. 17) indicates that a stress-ratio equation
of the form

Re® + Rg2 = 1 (60)
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agrees slightly better with the test data (fig. 29) than does the modified
parabola of Stowell (ref. 45). Actually, the data yield slightly higher.
stress-ratio combinations than do either of interaction equations (59) or
(60), with the discrepancy increasing with decreasing stress levels. For
stresses wholly in the elastic range the data are as much as 100 percent
higher (that is, Rg is 0.4 instead of 0.2 for Rc equal to 1). The

data also agree closely with a theoretical curve obtained by Budiansky,
Stein, and Gilbert for long square tubes loaded elastically in torsion
and compression (ref. 46).

EFFECT OF PRESSURE ON BUCKLING OF RECTANGULAR FIAT PILATES

Range of Published Results

The effect of normal pressure on the longitudinal compressive-
buckling stress of a rectangular flat plate has been investigated for
both simply supported and clamped edges. Levy, Goldenberg, and
Zibritosky (ref. 47) analyzed the simply supported plate using the
large-deflection differential equations of Von Karman. The plate length
was four times the width, which places it in the long-plate category.
The data reveal a rise in longitudinal compressive-buckling stress for
this configuration which increases with pressure. However, this rise
may be realizable only in a plate of such proportions and loading because
of the significant difference in wave forms of the long plate under com-
pressive and pressure loadings. It may be intuitively evident that when
there is little difference between these wave forms, such as for a short
plate under combined longitudinal compression and normal pressure, there
may be a reduction in the compressive-buckling stress of the plate. No
data are available in this case, however.

Longitudinally Compressed Long Simply Supported Plates

High normal pressure was found to increase the compressive-buckling
stress considerably for the long simply supported plate tested by Levy,
Goldenberg, and Zibritosky (ref. 47). For example, when the pressure
applied to a plate with length four times the width reached 2&.03Eth/bu,
the buckling stress was 3.1 times that for zero normal pressure on the
plate. Levy, Goldenberg, and Zibritosky also showed that more than one
equilibrium configuration of the plate was possible when normal pressure
was applied, with the configuration at any instant depending upon the
previous loading history. The plate could be either buckled or unbuckled
under various specific combinations of axial load and normal pressure.
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Longitudinally Compressed Long Clamped Plates

Woolley, Corrick, and Levy analyzed a longitudinally compressed long
clamped plate (ref. 48). For this case the effect of pressure was not so
pronounced as for simply supported edges. The maximum buckling load for

a pressure of 37.55Eth/bh was found to be 1.3 times that for no normal
pressure. Also, for clamped plates the buckle pattern was found to be
unique for any particular combination of pressure and axial loading.

SPECIAL CASES

Use of Elastic-Buckling-Stress Expression

It has been shown that the elastic-buckling stress for any flat rec-
tangular plate of constant thickness can be computed using equation (26)
for various loading and boundary conditions. There are also flat plates
of interest to aeronautical engineers that are neither rectangular nor
of constant thickness. By suitable choice of the buckling coefficient
and definition of the plate thickness and proportions it is possible to
utilize equation (26) to compute the buckling stresses for these plates
also.

Axially Compressed Plate With Variable Loading
and Thickness

Pines and Gerard investigated the proportions of a simply supported
flat rectangular plate under varying axial loading to determine an effi-
cient thickness variation for minimum weight (ref. 49). The plate rigid-
ity was assumed to be proportional to the axial load in order to satisfy
equation (26) at any spanwise station. The load variation along the
plate was assumed to be produced by shear stresses small enough to have
negligible influence upon the buckling characteristics of the plate.
Furthermore, the airloading on a typical wing develops a cover axial
loading that closely follows an exponential variation that decays from
the root outboard. This will dictate maximum axial loading on the cover
at the root, which is depicted as station A in figure 30, in which a
sketch of the tapered plate is shown together with the loading and plate
thickness variations that follow as & result of the assumptions made by
Pines and Gerard.

Results presented in the form of the buckling coefficient as a func-
tion of a/b for various values of the logarithm of the loading ratio
(Meximm loading/Minimum loading) reveal little increase of buckling
coefficient until the loading ratio begins to exceed e (the base of
natural logarithms) (fig. 30).
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In cases in which B 1is large, the buckling-coefficient chart
reveals that the number of buckles in a panel of predetermined a/b
may exceed the number of buckles for B = 1.

Axielly Compressed Plate With Variable Loading and
Constant Thickness

The problem of determining the buckling stress of an axially com-
pressed flat rectangular plate was investigated by Libove, Ferdman, and
Reusch for a simply supported plate with constant thickness and a linear
axial load gradient (ref. 50). They plotted the effective buckling-
stress coefficient as a function of the loading ratio for various values
of a/b. For the sake of uniformity of presentation, their curves have
been replotted here in the form of kg, as a function of a/b for

various values of the loading ratio, including negative values (tension
at one edge) as large as -3. These curves appear in figure 31.

The buckling coefficient kcav applies to the average axial

loading on the plate, which is equal to (cA + UB)/Q with op assumed
to be the larger of the two end loads. The average plate load is
(UA/E) @.+ (l/B)]. This permits rapid comparison with the buckling

stress of a plate with constant axial load, which is the curve for
B =1 in figure 31.

Long plates will buckle at the end at which the maximum load is
applied, for which k. is equal to k.

Parallelogram Panels in Compression

Anderson investigated compressive buckling of a flat sheet sub-
divided into panels by nondeflecting supports that form a parallelogram
gridwork under the sheet (ref. 51). One set of supports (all equally
spaced) runs longitudinally, and the other runs at an angle @ to the
normal, or transverse, direction. The longitudinal spacing of the diag-
onal supports is a, and the transverse spacing of the longitudinal sup-
ports is b. Buckling coefficients were plotted as functions of a/b
for both longitudinal compression and transverse compression for various
values of the angle ¢ (figs. 32(a) and 32(b)). In addition, inter-
action curves were provided for combinations of these two loadings in
the form of buckling-coefficient combinations for various values of @
(fig. 32(c)).
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For large values of a/b the buckling-coefficient curves approach
the curves for simply supported rectangular plates under compression.
The largest ¢ for which Anderson provides curves is 60°. For longi-
tudinal loading the angularity of the supports does not appear to influ-
ence k until ¢ exceeds 15°. For small values of a/b the influence
becomes pronounced at values of a/b in the region of unity, with the
buckling coefficient reaching a value of over 20 for ¢ equal to 60°.

The transverse-buckling coefficient is not so severely affected by
©, since k increases from 4 to 5 as © increases from zero to 30°.
For ¢ equal to 60°, k is 9at a/b = 1.

Parallelogram Plates

Wittrick determined the buckling stress of a parallelogram plate
with clamped edges under the action of uniform compression in one direc-
tion (ref. 52). His work differs from the work of Anderson (ref. 51)
in that specified rotational boundary conditions are applied to the
plate in this case. Both Wittrick and Anderson employed the energy
approach in oblique coordinates to obtain solutions. Results are pre-
sented in the form of curves of the buckling coefficient k., as a func-
tion of a/b. Wittrick presented data for edge angles of 0° (rectangu-
lar plate), 30°, and 45° as shown in figure 33(a), in which the plate
geometry is depicted.

Guest (ref. 53) and Guest and Silberstein (ref. 54) analyzed simply
supported parallelogram plates under longitudinal compression and, for a
rhombic plate of 30° edge angle, determined that ke = 5.60. Wittrick
also analyzed clamped parallelogram plates in shear and obtained the
results shown in figure 33(b) (ref. 55). Hasegawa analyzed buckling of
clamped rhombic plates in shear (ref. 56), for which buckling coefficients
appear in the table below. The general plate geometry of figure 33(b)
applies to this case.

6, deg . . 0 15 20 30 35

Bl | ot 1.7 T 22.0- 1 26.6 | Lo.0 } 50

Triangular Plates

The buckling of triangular plates under various loads and edge sup-
ports was investigated by Woinowsky-Krieger (ref. 57), Klitchieff (ref. 58),
Wittrick (refs. 59 to 61), and Cox and Klein (ref. 62). Woinowsky-Krieger
computed the buckling stress of a simply supported equilateral triangular
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plate under uniform compression and found k. to equal 5 when the base

of the triangle is taken equal to b in equation (26). Klitchieff
investigated the buckling of right-angle isosceles triangular plates
with pure shear on the orthogonal sides applied so as to produce com-
pression along the altitude upon the hypotenuse. Wittrick evaluated the
buckling coefficient for shear applied so as to produce either compres-
sion or tension along the altitude and also included the effects of nor-
mal stresses applied to the equal legs of the triangle. Cox and Klein
analyzed buckling in isosceles triangles of any vertex angle for normal
stress alone and for shear alone.

The buckling coefficients presented in this section are to be used
in conjunction with equation (26). The geometry of a triangular plate
is shown in figure 34. The data of Cox and Klein appear in figure 3k4(a)
for uniform compression and in figure 34(b) for shear along the equal
legs. Both simply supported and clamped edges were considered. The
results of Cox and Klein agree with the data of Wittrick for right-angle
isosceles triangular plates,; which appear in table 6. The shear buckling
coefficients ks+ and kg refer to pure shear loadings which produce

tension and compression; respectively, along the altitude upon the hypote-
nuse of the triangle.

For shear and normal stress on a right-angle isosceles plate the
interaction equation

2
e Y - w8 = 1 (61)
Tery + Ter_ Ocr

applies, in which u = (ks L, - Ks ) /(kS+ + kg )

Research Division, College of Engineering,
New York University,
New York, N. Y., October 29, 195k.
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APPENDIX A

APPLICATION SECTION

Introduction

Procedures for the computation of the elastic and plastic buckling
stresses of flat plates based on general plate-buckling equation (1) are
summarized in this section. The factors appearing in this equation are
briefly discussed and charts are presented from which numerical values
of these factors may be obtained.

The elementary loadings such as compression, shear, and bending
frequently are considered in preliminary design by using the buckling
coefficients for the limiting cases (infinite values of a/b, clamping
or hinging of the plate edges, and so forth). For convenience table 7
has been compiled containing the values of the buckling coefficients
that pertain to some of these limiting cases, while figure 14 displays
the curves for k., as a function of a/b for different combinations

of limiting edge conditions.

Physical Properties of Materials

The buckling stress of a flat plate is determined when the loading,
plate geometry, and materiel are specified. The loading dictates the
particular chart to be used to find the buckling coefficient k, and the
plate a/b and edge restraint locate the numerical value of Xk to be
found from that chart. For an unclad plate (ﬁ = 1) which buckles elas-
tically (n = 1), 0,p can be found directly from equation (1) if E is

known. The effects of cladding and plasticity depend upon the type of
loading and the stress level and therefore require a more detailed knowl-
edge of the stress-strain characteristics of the material.

The three-parameter description of stress-strain data can be used
as a convenient generalized approach in buckling problems. With this
method figure 3 can be employed to find the shape factor n. Since E,
90.7> and n can be readily determined (see table 8 for average values

of n), nondimensional curves are available from figure 4. It is to be
noted that, in many cases, plastic-buckling charts have been prepared
from which the plastic-buckling stress maey be determined if one knows
E, 00.7, and n.
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Table 9 contains the old and new designations for wrought aluminum
alloys. The new designations are used throughout this report and the
table is included for use with the various references. Characteristics
of the cladding used on several structural aluminum alloys are shown in
table L.

Poisson's ratio beyond the proportional limit can be calculated
using L e 0.5 1in the expression

L (?Pl - ve)(Es/E) (A1)

Frequently buckling stresses are computed using the equation
- 2
Oor = TMKE(t/b) (a2)

where K = kxe/lz(l - v2). The expression K/k can be found as a func-
tion of v 1In f£igure 55.
Compressive Buckling

Plates.- For plates, k, appears in figure 16 in terms of a/b

and € and in figure 15 in terms of A/b and €. For an infinitely
long plate, ke may be found from figure 17 in terms of € alone.
When € 1s not the same for both unloaded edges, the geometric mean
of the k. values for each edge may be used (eq. (49)).

The plasticity-reduction factor for a long plate with simply sup-
ported edges is

A &ES/E)@ _ Ve2)/(1 - vzﬂ [0.500 + 0.250 [1 + (BEt/Esﬂll/e (A3)

while for a long clamped plate

n = [:(ES/E) (1 . Ve2>/(l “ VQ{\[O.552 > 0.521.{1 + (3Et/ES):]}l/2 (Ah-)'

Inelastic plate-buckling stresses may be calculated using the nondimen-
sional chart of figure 9.



50 NACA TN 3781

The cladding reduction factor for on) < Opp < 9p1 is approximately
given by equation (42):

7=t 28t (42)
1+ 35fF

For Oup > Op1» as an adequate approximation, equation (40) holds true:

B 4] /fl + <5f§s/Es>] + “:1 - <3fES/ES>:l [(l/l&) + (3/%) <Et/ES> 1 w]}l/g
1 +§\ [t ﬁl/h) - (3/1")<Et/Es>]l/2

The effect of lateral restraint in reducing k., may be determined

from figure 21 for values of Ar/at, and the effects of thickness taper
and axial load variation may be calculated with the aid of figures 30

and 31.

(ko)

The gain in buckling stress with obliquity of the loaded edges is
shown in figure 33(a) for clamped parallelogram plates, while figure 32
depicts buckling coefficients for large sheets divided into parallelogram
panels by nondeflecting supports. For data on triangular plates, fig-
ure 34(a) may be used to find k.

The variation in ke with b/t for stiffened plates with torsionally

weak or strong edge stiffeners appears in figure 18. Because of the sparse
data available, no recommendation can be made concerning the effect of nor-

mal pressure upon buckling.
Flanges.- For flanges, k. may be found in figure 20 as a function

of a/b and € and in figure 19 as a function of A/b and e for
v = 0.3. TFor an infinitely long flange, figure 17 contains k, as a

function of € alone. The effect of varying v appears in figure 2.

The plasticity-reduction factor for a long hinged flange is

N = (ES/E) (1 . ve2>/(l - v2) (A5)

For a long clamped flange,

—_—

o (ES/E)<1 4 v62>/(l 52 {0.330 + 0.335[1 + (3Et/Es)]}l/2 (86)
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For the former case the nondimensional buckling chart of figure 8 may be
used, while that of figure 9 may be used for the latter case with little
error.

For flange cladding reduction factors when oup > Op1s it may be

permissible to use equation (40). Although this factor was not computed
in the section entitled "Cladding Reduction Factors," it appears to be
reasonable by comparison with the factors for plates and columns.

Plate columns.- For plate columns, the buckling stress may be deter-
mined using figure 2(a).

For a short plate column (L/b < 1) the plasticity-reduction factor

is
N = [(ES/LLE) @ - veE)/(l ‘ VE)] [1 + (BEt/ES)] (A7)
For a square plate colum (L/b = 1),
n = IgES/E) @ - veE)/(l . v2ﬂ E}.nu + (O.886E-t/Es)] (a8)
1 For a long plate column (L/b > 1), the plasticity-reduction factor
5

1= (8/E) (1 - ve«?)/(l - 3) (A9)

The cladding reduction factor for short plate columms in which
0ol < Oap < 91 is

fi= [1 s (aef/hﬂ /(1 + 3f) (a10)

and when 0Jpop > O equation (40) holds true which is also applicable

Pl
to long plate columms at all stress levels above 0,j-

Shear Buckling

The shear-buckling-stress coefficient as a function of a/b is
shown in figure 22 for clamped and hinged plate edges. For long plates,
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which buckle in the symmetric mode, figure 24 may be used to find kg

as a function of A/b and €. For plates of finite length the procedure
of the section entitled "Buckling of Flat Rectangular Plates Under Shear
Loads" may be used in conjunction with figures 22 and 23.

The plasticity-reduction factor for long plates in shear is given
"by equation (A5). Inelastic shear-buckling stresses may be calculated
with the aid of the nondimensional chart of figure 10.

The cladding reduction factor for o, < 0op< Op1 1is given by
equation (42), and for ogp > op1 equaetion (40) holds true.

For clamped oblique plates figure 32(b) may be used to find kg

when the plate edge angle is h5°. For triangular-plate shear-buckling
coefficients figure 34(b) mey be used. In addition, the section
entitled "Special Cases" should be consulted.

Bending Buckling

The bending-buckling coefficient appears in figure 26 as a function
of a/b and € and in figure 25 as a function of X/b. The plasticity-
reduction factor for a simply supported plate is the same as for a hinged
flange. Little error should be expected in using elastically restrained
flange plasticity-reduction factors for elastically restrained plates in
bending. For these cases the plastic-buckling chart of figure 9 may be
used to find Oqp, Which is the maximum compressive stress on the plate

section. In order to find the correéponding moment it is necessary to
integrate the stress distribution, for which purpose the curves of fig-
ure 9 may be used.

Combined Loading

Interaction equations for various combinations of compression, shear,
and bending appear in table 5. These expressions are presented in graphi-
cal form in figures 27 and 28 for elastic buckling. For longitudinal com-
pression and shear on a long rectangular plate, with both applied stresses
in the inelastic range, equation (60) holds true:

R.2 + Rg2 = 1 (60)

The plasticity-reduction factor for a simply supported plate in com-
bined compression and axial load varies between that for a hinged flange
and that for a simply supported plate under axial compression, depending
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upon the ratio of bending stress to axial stress. The value of 1 for
this case is shown in equation (34):

S I

Actually, utilization of the plastic-buckling chart of figure 9 for all
cases of combined bending and axial load to find o, (after which the

plate loading may be found by integrating the cross-section stress dis-
tribution) should give conservative results.

On right-angle isosceles triangular plates loaded under shear and
compression as shown in the sketches in figures 34(a) and 34(b), equa-
tion (61) applies:

2
— 2 su) +5(1-w?) =1 (61)
Tcr+ = Vay 2

Table 6 contains numerical values of k., and kg for different types
of plate edge supports.
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TABLE 1.- ASSUMPTIONS OF INELASTIC-BUCKLING THEORIES

Investigator

Stress-strain law

Plasticity law

Buckling model

Bijlaard
(ref. 18)

Handelman-Prager
(ref. 19)

Tlyushin
(ref. 20)

Stowell (refs. 5
and 34)

Incremental and defor-
mation types,
v instantaneous

Incremental type,
v instantaneous

Deformation type,
v = 0.5

Deformation type,
v = 0.5

Octahedral shear

Octahedral shear

Octahedral shear

Octahedral shear

No strain reversal

Strain reversal

Strain reversal

No strain reversal
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TABLE 2.- PLASTICITY-REDUCTION FACTORS

- Gl - i - e

Loading Structure n/3

Compression |Long flange, one unloaded

edge simply supported g

Long flange, one unloaded

1/2
edge clamped Ch 2000 6 0'555{1 * (BE‘t/ES)]

Long plate, both unloaded 1/2

edges simply supported i 0'25OE“ s (BE‘t/ ES)J

Iong plate, both unloaded

i/2
e i 0.352 + 0.32L 1 + (BEt/Es)]

Short plate loaded as a
column (L/b << 1) 0.230 |:l £ (3E‘t/Es)i|

Square plate loaded as &

columm (L5 = 1) 0.114 + 0.886(Ey/Es)

Long column (L/b >> 1) Ey/Eg

Shear Rectangular plate, all edges
elastically restrained

0.8% + 0.17 (Et/Es>
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TABLE 3.- SUMMARY OF SIMPLIFIED CLADDING REDUCTION FACTORS

Loading Ocl < Gep < Op1 Ger > Op1
1+ /b

Short plate columms —-—(BB—/—)- 1
1+ 3f 1 + 3F

Long plate columns z 2
1+ 3f 1+ 3f

Compression and 1+ 3pf 1
shear panels 1+ 3f 1+ 3f

TABLE 4.~ CLADDING MATERIAL AND THICKNESS FOR ALCLAD PLATES

E)ata. taken from reference 6{‘

61

Material Cladding Total plate Total cladding
designation material thickness, in. thickness, £, in.
Alclad 2014 6053 <0.040 0.20 '

2.040 .10
Alclad 2024 1230 <0.064 0.10
2.06k .05
Alclad TOT5 7072 All thicknesses 0.08
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TABLE 5.- COMBINED LOADING CONDITIONS FOR WHICH INTERACTION CURVES EXIST

Theory Loading combination Interaction equation Figure
Biaxial compression For plates that buckle in 28
square waves, Rx + Ry =1
Longitudinal com- For long plates, R, + R52 = Lt 27
pression and shear
Longitudinal com- None 28
pression and bending
Elastic
Bending and shear Rp2 + Rg® = 1 27
Bending, shear, and None 270
transverse compression
Longitudinal compression |None 28
and bending and trans-
verse compression
Inelastic|Longitudinal compression Rc2 + Rs2 =l 29

and shear
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TABLE 6.- BUCKLING COEFFICIENTS FOR RIGHT-ANGLE ISOSCELES TRIANGULAR

PLATES LOADED INDEPENDENTLY IN UNIFORM COMPRESSION,

POSITIVE SHEAR, AND NEGATIVE SHEAR

Edge supports
All edges simply 10.0 62.0 23.2
supported
Sides simply supported, 15.6 T70.8 34.0
hypotenuse clamped
Sides clamped, hypot- 18.8 80.0 4L .0
enuse simply supported

SHypotenuse = b in figure 3.4.
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TABLE T.- BUCKLING COEFFICIENTS FOR INFINITELY LONG PILATES
UNDER VARIOUS TYPES OF LOADS
Loading Edge support Coefficient

Compression SS on all edges ke = 4.0 1
v : 3 NACA Rep. 733
‘ l ‘ 3 ! C on all edges ke = 6.981' (ref. 29)
T SEN on Lyit= O iy=aa N o= N0
L e F on x=1% ke = 0.43
1 X NACA Rep. T34
l ‘ XEWCRSon © yi="0, ¥ =8, xX=.0 (ref. 8)
'111 Fion X=5 Ke = 1.28
Shear
* - SS on all edges ks = 5.35 NACA TN 1222
l ? (ref. 35)
‘ 1 C on all edges ks = 8.98 NACA TN 1223
J T (ref. L43)
Bending
SS on all edges ky = -
a b = 233 yuop T 1323
C on all edges kp = 41.8 gs=- o
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TABLE 8.- VALUES OF SHAPE PARAMETER n FOR SEVERAL ENGINEERING MATERIALS

@ata taken from reference 65]

n Material

3 One-fourth hard to full hard 18-8 stainless steel, with grain
One-fourth hard 18-8 stainless steel, cross grain

5 One-half hard and three-fourths hard 18-8 stainless steel,
cross grain

1

Full hard 18-8 stainless steel, cross grain
10 2024-T and 7075-T aluminum-alloy sheet and extrusion
2024R-T aluminum-alloy sheet

2024-T80, 2024-T81, and 2024-T86 aluminum-alloy sheet
20 to 25 | 2024-T aluminum-alloy extrusions
SAE 4130 steel heat-treated up to 100,000 psi ultimate stress

2014-T aluminum-alloy extrusions

to
o2 = SAE 4130 steel heat-treated above 125,000 psi ultimate stress

P SAE 1025 (mild) steel
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TABLE 9.- DESIGNATIONS FOR WROUGHT ATUMINUM ALLOYS

0lad New
th, R301 201k
17S 2017
24s 2024
61S 6061
758 7075
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Figure 1.- Transition from column to plate as supports are added along
unloaded edges. Note changes in buckle configurations.
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Figure 3.- Characteristics of stress-strain curves for structural alloys depicting quantities
used in three-parameter method.
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Figure 4.- Nondimensional stress-strain curves for various values of n
for three-parameter method.
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Figure 5.- Comparison of theory and experiment for compressed simply
supported flanges.
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Figure T.- Comparison of shear buckling theories and test data for plastic
buckling of compressed elastically supported plates.
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Figure 8.- Chart of nondimensional compressive buckling stress for long

hinged flanges. 1 = (ES/E)(l - vez)/(l - v2).
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Figure 9.- Chart of nondimensional compressive buckling stress for long

clamped flanges and for supported plates with edge rotational restraint.
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Figure 11.- Cross section of clad plate.
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tion of a/b for various amounts of edge rotational restraint.
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tion of a/b for various amounts of edge rotational restraint.
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Figure 27.- Interaction curves for long flat plates under various com-
binations of compression, bending, and shear.
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Figure 30.- Compressive-buckling-stress coefficient for a simply supported

rectangular flat plate of minimum weight.

Thickness and loading vary

exponentially along length. B = NA/NB; g = log, B; Nx/NA = e—gx/a;
a/Np = (gb/2a)e'gx/a; and ty/tp = e-ex/3a,
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Figure 31.- Average compressive-buckling-stress coefficient for rectan-
gular flat plate of constant thickness with linearly varying axial
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(b) Loading in y-direction.

Figure 32.- Compressive-buckling coefficients for flat sheet on non-
deflecting supports divided into parallelogram-shaped panels. All
panel sides are equal.
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(c) Combined axial and transverse loading.

Figure 32.- Concluded.
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Figure 33.- Buckling coefficient of clamped oblique flat plates.
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Figure 34.- Buckling coeffiCients for isosceles triangular plates.

VA

TLE NI VOVN

TOT



‘PA ‘P1atd 4Aa3ueT - YOVN

K7k

15 7

4 6

13 / { 5

12 / 4
£ O<v< 65\ O<yc 93

L/ //// 3

0 ¥ / 2
T S

3 NN NN l [ I I l l I l [ 0

o 2 J 4 6 7 8 9 L0
y

Figure 35.- K/k as a function of Poisson's ratio.

K/k = n2/12(1 - v2).
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