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NATIONAL ADVISORY COMMITI'EE FOR AERONAUTICS 

TECHNICAL NOTE 3781 

HANDBOOK OF STRUCTURAL STABTI..ITY 

PART I - BUCKLmG OF FLAT PLATES 

~ George Gerard and Herbert Becker 

SUMMARY 

The various factors governing buckling of flat plates are critically 
reviewed and the results are summarized in a comprehensive series of charts 
and tables. Numerical values are presented for buckling coefficients of 
flat plates with various boundary conditions and applied loadings . The 
effects of plasticity are incorporated in nondimensional buckling charts 
utilizing the three-parameter description of stress-strain curves. 

INTRODUCTION 

This "Handbook of Structural Stability" presents a rather comprehen­
sive review and compilation of theories and experimental data relating to 
the buckling and failure of plate elements encountered in the airframe. 
To meet the anticipated needs of those who would use this review and com­
pi lation, it appeared best to adopt a handbook style of presentation. 
The material is not intended as a textbook in which the emphasis is often 
on the mathematical development of different types of related problems. 
Neither is it intended to compete with the familiar aircraft-company 
structurea manuals which generally present design information, empirical 
data, and methods of extending results beyond the scope of the original 
report. 

This handbook attempts to cover the generally neglected area between 
the textbook and the structures manual. No attempt is made to present an 
exhaustive coverage of mathematical techniques which are of great impor­
tance in the solution of buckling problems. This material has been well 
presented in several excellent books and papers which are included in the 
reference list . The subject of columns is comprehensively treated in 
several books and, therefore, the incl usion of such material in this 
review did not appear to be warranted. 

This presentation primarily constitutes a critical review of devel­
opments concerning buckling and failure of plate elements since the 
early 1940 's . This date has been selected since the last comprehensive 
review of t his nature (ref . 1) appeared at t hat time. 
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In order to meet the varying needs of airframe designers and 
analysts, structures methods, and research engineers, it appears best 
to organize this handbook as follows: The main text discusses assump­
tions, limitations, and background of the available literature; the 
appendix contains a summary of this material and indicates the manner 
in which this information is to be used in analysis and design. It is 
anticipated that, after the material in the main text has been reviewed, 
reference to only the appendix will be made in a majority of routine 
applications. The duplication in these two main parts has been held to 
a minimum consistent with completeness and intelligibility. 

In the main text of this report, the various factors appearing in 
the general buckling-stress equation 

(1) 

are critically examined from the standpoint of their theoretical develop­
ment and the agreement of theory with test data. 

In the section entitled "Basic Principles" a brief review of the 
uasic mathematical principles involved in solution of- buckling problems 
is given. The primary objective in presenting this material is to 
acquaint the reader with the approximate methods used in order to be 
able to indicate the accuracy of the results of particular solutions 
discussed in subsequent sections. 

In the section entitled "Boundary Conditions" the influence of the 
geometric boundary conditions upon the buckling stress is discussed at 
some length. It is indicated that the use of a free unloaded edge in a 
plate involves Poisson's ratio in the compressive buckling coefficient. 
As an example, the buckling coefficients for plate columns, flanges, and 
simply supported plates are determined from theory to demonstrate the 
effect of various boundary conditions upon the behavior of such elements. 

Also, the three-parameter method of mathematically describing stress­
strain relations is presented in an introductory manner in the section 
entitled "Stress-Strain Relations in the Yield Region," Use of this 
method affords a considerable simplification in the presentation of 
results of inelastic buckling theories. 

The effects of exceeding the proportional limit of a material are 
incorporated in a plasticity-reduction factor ~. Because of the vari­
ous theories that have been recently advanced together with the fact 
that no one publication has reviewed the conflicting assumptions of 
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these theories from the standpoint of engineering results, a rather com­
prehensive treatment of this subject i s presented in the section entitled 
"Plas ticity-Reduction Fact ors . " 

The eff ect of cladding upon the buckling stress of flat plat es has 
been treated by an extension of inelastic-buckling theory. In the sec­
tion entitled "Cladding Reduction Factors" a simplified treatment of 
buckling of clad plates is presented in which values for the cladding 
correction factor ~ are derived. 

The background for determining the elastic-buckling coefficient k 
has been well documented. Therefore, the last sections are concerned 
with the buckling coefficients for a large number of cases. The presen­
tation consists, for the most part, of a straightforward cataloging of 
results in the form of buckling-coefficient charts. 

The appendix has been organized for unimpeded use in analysis and 
design and for this reason no references appear in this portion of the 
report. The r eferences are examined in detail in the pertinent part of 
the main text. The literature is reviewed and discussed both as to con­
tent and application to the particular problem. Experimental evidence 
is presented where it tends to substantiate one theory among several 
which may have been advanced on a particular phase of the buckling prob­
lem; plasticity-reduction factors are perhaps the most conspicuous exam­
ple of this . Thus, the recommendation f or a particular theory is gen­
erally supported by experimental dat a. 

The main t ext also contains some new material developed during the 
course of this compilation . Although such material is important to the 
unification of prior results, it has not been considered of sufficient 
consequence to merit separate publication. Therefore, when such mate­
rial does appear in thi s handbook it is in a detailed form . 

This survey was conducted under the sponsorship and with the finan­
cial assistance of the National Advisory Committee for Aeronautics. 

a 

b 

SYMBOLS 

area of rib cross section, sq in. 

long dimenSion of plate, usually unloaded edge in uniaxial 
compress ion, in. 

short dimension of plate, usually loaded edge in uniaxial 
compression, in . 
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coefficients in general inelastic-plate-buckling equation 
(see section entitled "Basic Principles") 

coefficients i n elastic-plate-buckling equation to be 
determined by geometrical boundary conditions along 
unloaded edges of plate 

plate cross-section rigidity, Et3/12(1 - y2), lb-in. 

plastic plate cross-section rigidity, Est 3/9, lb-in. 

Young's modulus, psi 

secant modulus, O/E 

tangent modulus, dO/dE 

secant and tangent modulus for clad plates, respectively 

ratio of total cladding thickness to total plate thickness 

shear modulus 

I moment of inertia 

K 

k 

L 

M 

N 

n 

P 

p 

modified buckling coefficient, k~2/12(1 - y2) 

buckling coefficient 

length of plate, in. 

bending moment applied in plane of plate, in-lb 

axial load, l b/in. 

number of longitudinal half waves in buckled plate; also, 
shape parameter for stress-strain curve 

normal load applied in plane of plate, otb, lb 

normal pressure, psi 
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q shear loading, lb/in. 

q = ~2 + Ve (1!b/A)2 

R stress ratio 

t thickness of plate, in. 

u = (ks+ - ks_);I(ks+ + ks_) 

w potential energy, in-Ib 

w displacement normal to plane of plate, in. 

x,y,z coordinates 

Y = 1 + 3i3f 

0.= 

edge angle, deg; also, l2M/(Pb + 6M) 

1!(b/A) 1/2 ~b/A) + kcl/~ 1/2 

5 

ratio of cladding yield stress to core stress, crcl/crcore; 
also, loading ratio for plate with varying axial load, 
Maximum load/Minimum load 

r shear strain 

€ normal strain; also, ratio of rotational rigidity of plate 
eige stiffener to rotational rigidity of plate 

~ plasticity-reduction factor 

~ cladding reduction factor 

~T 

v 

total-reduction factor, ~~ 

buckle half wave length, i n . 

inelastic Poisson t s ratiO; v = vp - (Vp - V e) (Es jE) for 
orthotropic solids 
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ve elastic Poisson's ratio 

vp plastic Poisson's ratio 

0' normal stress, psi 

cr = (1 - f)O'c + fO'cl 

stress at secant modulus, 0.7E and 0.85E, respectively, psi 

T shear stress, psi 

angle of diagonal support to plate width, radians or deg 

Subscripts: 

A,B values at station .A and station B; see fig. 30 

av average 

b bending 

c compression 

cl cladding proportional limit 

cr critical or 'buckling 

e elastic 

p plastic 

pl proportional limit 

r in traverse rib of compressed plate 

s shear 

shear on infinitely long plate 

x, y directions of loading 

+ loadings producing tension 

loadings producing compression 
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Edge conditions: 

C clamped 

F free 

88 simply supported (hinged) 

In sketches accompanying figures, supported edges with elastic rota­
tional restraint are shown shaded. Unshaded loaded edges are simply 
supported. Unshaded unloaded edges are free. 

BASIC PRINCIPLES 

General Remarks 

The theoretical buckling stress of a flat structural element is the 
s t ress at which an exchange of stable equilibrium configurations occurs 
between the straight and the slightly bent form. It marks the region in 
which continued application of load results in accelerated growth of 
defl ections perpendicular to the plane of the plate. Its importance lies 
in the fact that buckling initiates the physical processes which lead to 
eventual failure of the plate. 

The mathematical solution of particular buckling problems requires 
that equilibrium and boundary conditions be satisfied. Thi s can be 
accomplished by i ntegrat ion of t he equilibrium partial diff erential equa­
t ion of t he f l at plate or by use of mathematical methods which may not 
completely sati sfy t he boundary or equil ibrium condit ions. The f ormer 
sol ut i ons are exact whereas the methods based generally on energy inte­
grals are approximate although usually very accurate. The need for 
approxi mate methods arises from the fact that exact soluti ons can be 
found for only a limited number of buckling problems of pract ical 
import ance. 

I n this section, a brief outline of t he methods of analysis of 
buckling problems is presented. For extensive discussions of the vari­
ous methods of analysis and their application to a wide variety of prob­
lems, reference to the books of Timoshenko, 8okolnikoff, and Bleich 
( refs. 2 t o 4) is suggested. 

Equilibrium Differential Equation 

The general form of the different ial equat i on describing the slightly 
bent equilibrium configuration of an i nitial l y fla t plate was derived by 
Stowell in the f ollowing f orm (ref . 5) : 

I 
I 

~ 
I 

___ --1 
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in which the constants are defined as: 

C1 = 1 - (3/4) (C5X / C5i)2 ~ - (Et/Es~ 

C2= (3C5xTIC5i2)~ - (Et/ES] 

C3 = 1 -(3/4) (axa:
i
: 2T2)~ - (EtfEs~ 

C4 = ~cryT /cri2) ~ - (Et/Es~ 

C5 = 1 - (3/4) (cry JC5i) 2 E - (Et/Es~ 

NACA TN 3781 

(2) 

These definitions of the constants are based on the assumption that no 
elastic unloading occurs during the buckling process. Furthermore, a 
value of Poisson's ratio equal to 1/2 was assumed for both the elastic 
and inelastic ranges. 

In the elastic range, Et/Es = 1, and, therefore, for all loadings 
Cl = C3 = C5 = 1 and C2 = C4 = 0, and equation (2) reduces to the 
familiar equilibrium equation for the elastic case: 

= _ l' o2w + 2T o2w + cr o2w) 
D,X ox2 Ox Oy Y oy2 

(4) 
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It should be noted that the value of D is not the same III the inelas­
tic range as in the elastic range because of the change of Poiss~n's 
ratio with stress. For the fully plastic plate, v = 1/2, which yields 

a bending rigidity of D' = Et3/9, whereas the elastic value is 

D = Et3/l2(1 - Ve2). 

The solution of individual buckling problems can be most readily 
handled by selection of appropriate solutions of equation (2), insertion 
of proper boundary conditions, and minimization to obtain the buckling 
stress. In this connection, the buckling stresses for simply supported 
plate columns, compressed flanges, and plates are considered in some 
detail in the ' section entitled "Boundary Conditions" t o illustrate the 
differences in buckling behavior of these structural elements. 

Energy Integrals 

Since exact solutions to equations (2) and (4) can be found for 
only a limited number of buckling problems of practical importance, 
approximate solutions generally utilizing energy integrals have found 
wide application. 

The potential energy of the plate and its loadi ng system is repre­
sented by the difference of two integrals . The first integral of equa­
tion (5) represents the increase in strain energy due to bending and 
twisting of the plate during the buckling process, whereas the second 
integral represents energy associated with membrane stresses resulting 
from l ateral deflection. If the plate edges are fixed during buckling, 
the latter represents the membrane energy . If the edges experience a 
relative shift, the second integral represents the work of t he external 
loading system. 

The general energy integral for plat'es with simply supported edges 
was derived by Stowell (ref. 5) for the inelastic case: 

&< = ~ If tCl(~~r -C2 ~; o:~ + C3 ~ax02woir + ~~ ~1J 
C4 ~\ ~1 + C5(~1t}dx dy - t 11 tx(;l + 

2T : t + aY(;)Jdx dy (5) 
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The coefficients Cl to C5 are defined by equations (3). It is to 
be noted that equation (2) is the Euler equation that results from mini­
mization of the energy integral, equation (5). If there are elastic 
restraints of magnitude E along the edges of the plate, then the strain 
energy in these restraints is added to equation (5). These terms have 
the form 

where Yo is the edge coordinate. 

For the elastic case, equation (5) can be simplified to 

b.W = ¥ II {(02w + o2wf - 2(1 -
ox2 oy2 vel ~~ ~~ - (~~~)J}dx dy -

~IIH:)2 + 27 
Ow Ow + 
Ox Oy crY(~)J dx dy (6) 

Solutions 

In principle, of all the deflection functions satisfying the geo­
metric boundary conditions of the problem, the potential energy 6W will 
be zero for that function which also satisfies the equilibrium differen­
tial equation. This function would be an exact solution of the problem. 
Since exact solutions can be found in only 8· limited number of cases, 
the energy integrals are of great usefulness in finding approximate solu­
tions which satisfy the geometric boundary conditions exactly and the 
differential equation approximately. Thus, of the several functions 
satisfying the geometric boundary conditions but not necessarily the dif­
ferential equation, the function for which the energy integral is a mini­
mum constitutes the best approximate solution of the differential equation. 

Probably the best known energy method for determining the buckling 
stress of thin plates is the Rayleigh-Ritz procedure. The method con­
sists of the following steps: 

(1) The deflection surface of the buckled plate is expressed in 
expanded form as the sum of an infinite set of functions having undeter­
·mined coefficients. In general, each term of the expansion must satisfy 
the geometrical boundary conditions of the problem. 
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(2) The potential energy difference of the load-plate system is 
computed for this deflection surface by use of equation (5) and i s then 
minimized with respect to the undetermined coefficients. 

(3) This minimizing procedure leads to 
equations in the undetermined coefficients. 
vanishing solutions only if the determinant 
The vanishing of this stability determinant 
may be solved for the buckling stress. 

a set of linear homogeneous 
These equations have non-

of their coefficient vanishes. 
provides the equation that 

When the set of functions used is a complete set capabl e of r epre­
senting the deflection, slope, and curvature of any possible plate defor­
mation, the solution obtained is, in principle, exact. Since, however, 
the exact stability determinant is usually infinite, a finit e determinant 
yielding approximate results is used instead. 

The buckling stresses obtained by the appr oximate method are always 
higher than the exact solution although they may be very accurate. This 
is a result of the fact that the deflecti on function approximates the 
true buckle shape and therefore the potential energy resulting from use 
of the approximating function is greater than zero. If the deflection 
function is the true one, then an exact solution to the diff erential 
equation i s obtained. 

If a deflection function is chosen which satisfies the geometrical 
boundary conditions approximately, it i s possible to obtain buckling 
stresses which approach the exact solution from the lower s i de. This 
can be accomplished by a revision of the Rayleigh-Ritz procedure known 
as the Lagrangian multiplier method. 

The Lagrangian multiplier method follows the general procedure out ­
lined for the Rayleigh-Ritz method with but one signifi cant change. The 
restriction in step (1) that the boundary conditions be satisfied by 
every term of the expansion is discarded and is replaced by the condition 
t hat the expansion as a whole satisfies the boundary conditions. This 
condition is mathematically satisfied in step (2) , during the minimization 
process, by the use of Lagrangian multipliers. 

The advantage of the Lagrangian multiplier method lies in the fact 
that, with the rejection of the necessity of the fulfillment of boundary 
conditions term by term, the choice of an expans i on is much less restricted. 
For example, in the clamped-plate compression problem, a simpl e Fourier . 
expansion may be used i ns t ead of the complicated functions usually assumed 
in the Rayleigh-Ritz analyses of this problem. Furthermore, the orthogo­
nality properties of the simple Fourier expansion lead to energy expres­
sions of a simplicity that is instrumental in permitting accurate 
computations. 
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This method and its application to specific problems is described 
by Budiansky and Hu (ref. 6). They have treated the Lagrangian multi­
plier method in a manner in which it is possible to obtain approximate 
solutions for both upper and lower bounds. As determinants of higher 
order are used to obtain better approximations, both the upper and lower 
bounds approach the true buckling stress. Thus, the Lagrangian multi­
plier method may _be used to obtain results within any desired degree of 
accuracy . 

In addition to the above procedures which are based on energy inte­
grals, other methods of obtaining approximate solutions of buckling prob­
lems have been used which invdlve the equilibrium differential equation. 
Functions which satisfy the geometrical boundary conditions exactly are 
used to satisfy the governing differential equation approximately by 
processes that lead to integration of these functions. Galerkin's method, 
finite-difference equations, relaxation techniques, and iteration are some 
of the numerical methods that can be used. 

BOUNDARY CONDITIONS 

The nature of the buckle pattern in a plate depends not only upon 
the type of applied loading but also upon the manner in which the edges 
are supported. This is illustrated in figure 1 in which the same axial 
compressive loading is seen to generate three types of buckle patterns 
on a long rectangular plate with different geometrical boundary condi­
tions. The single wave is representative of column behavior, the twisted 
wave is representative of flange behavior, and the multiple-buckle pattern 
is representative of plate behavior. 

To indicate the manner in which the geometric boundary conditions 
mathematically influence the buckling behavior and also to demonstrate 
the solution of the equilibrium differential equation (eq. (4)) for some 
particular cases, the plates shown in figure 1 are analyzed. Boundary 
conditions which characterize simply supported wide columns, flanges, 
and plates are considered. 

Mathematical Analysis 

The equilibrium differential equation for elastic buckling of a 
uniaxially compressed plate can be obtained from equation (4) in the 
form 
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It is assumed that the loaded edges of the plate are simply support ed 
and therefore an appropriate solution of equation (7) is 

where 

13 

(10) 

(11) 

The coefficients cl to c4 are to be determined by the geometrical 
boundary conditions along the unloaded edges of the plate. 

For the wide column, the unloaded edges l ocated at y = tb/2 are 
free , and consequently the edge moment s and reduced shears must be zero. 
Therefore, 

(12) 

For the flange, the unloaded edge at y = 0 is assumed to be simply 
supported and that at y = b is free: 
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(
d

2W + v d
2W) = 0 

dy2 e dx2 y=O,b 

The plate is assumed to be simply supported along the unloaded edges 
located at y = ±b/2: 

(14) 

Incorporation of these boundary conditions into the solution given 
by equation (8) leads to the following implicit expressions for kc • 

For the column, 

for the flange, 

p2~ sinh a cos ~ _ q2a cosh ~ sin ~ = 0 (16) 

and for the plate 

[0, tanh(a/2) + ~ tan(~/2D -1 = 0 

where 
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and 

The buckling coefficient for wide columns and flanges is shown as a 
function of ve and alb ·in figure 2. The solutions for wide columns 

were given by Houbolt and Stowell by use of the differential equation 
for simply supported loaded edges and the energy method for clamped 
loaded edges (ref. 7). 

The buckling coefficient for a simply supported flange was derived 
by Lundquist and Stowell (ref. 8) in the form 

(18) 

When the unloaded edge is clamped, 

For the simply supported plate 

(20) 

Anticlastic CUrvature 

As may be seen from the solutions in the preceding section, the 
buckling coefficient for the simply supported plate depends upon only 
b/~ and is independent of Poisson's ratio, while the coefficients for 
the wide column and flange are fUnctions of both ve and b/~. This 
situation is not limited to the case of simple support alone but per­
tains to any degree of rotational restraint along the unloaded edges of 
a plate. The influence of ve upon kc is traceable to the reduced-
shear terms at the free edges of flanges and columns. Boundary condi­
tions such as simple support do not impose the requirement of zero 
reduced shear along the unloaded edges, which eliminates the ve influ­
ence from the relationship for kc . 

The value of t he compressive buckling coefficient for an element 
containing a free unloaded edge depends upon the degree of anticl asti c 
curvature developed. For a very narrow element such as a beam, complete 
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anticlastic curvature occurs and the bending rigidity is simply EI. For 
a relatively wide strip , the anticlastic curvature is suppressed so that 
the cross section remains relatively flat except for a highly localized 
curling at the free edges where the stress distribution rearranges itself 
to satisfy the geometrical boundary conditions. The restraint of anti­
clastic curvature results in an increase in bending stiffness. For a 
very wide element, the bending stiffness approaches EI/(l - v2 ); this 

- limiting condition is known as cylindrical bending. 

Plate columns and flanges may often be relatively narrow, in which 
case the bending stiffness lies between the limiting values discussed. 
This effect can be accounted for by use of figure 2. 

STRESS-STRAIN RELATIONS IN YIELD RIDlON 

Three-Parameter Description of Stress-Strain Curves 

Stress-strain curves are of fundamental importance in the computa­
tion of inelastic buckling stresses. The number of design charts required 
for the many materials available and the various allowable stresses for 
these materials at normal and elevated temperatures can be tremendously 
reduced by use of a nondimensional mathematical description of stress­
strain relations. 

Ramberg and Osgood (ref. 9) have proposed a three-parameter repre­
sentation of stress-strain relations in the yield region which has found 
wide application . Their equation specifies the stress-strain curve by 
the use of three parameters: The modulus of elasticity E, the secant 
yield stress 00.7 corresponding to the intersection of the stress­
strain curve and a secant of 0.7E, and the shape parameter n which 
describes the curvature of the knee of the stress-strain curve. The 
shape parameter is a function of 00.7 and 00.85' the latter stress 
corresponding to a secant of 0.85E as shown in figure 3(a). The shape 
parameter n is presented in figure 3(b) as a function of the ratio 

°0.7/°0 •85" 

The three-parameter method is based on the experimental observation 
that for many materials a simple power law describes the relation between 
the plastic and elastic components of strain. ~ use of this fact, the 
following nondimensional equation can be derived: 

(21) 
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The quantities EE/crO.7 and cr/crO.7 are nondimensional and consequently 
the nondimensional stress-strain curves shown in figure 4 can be plotted. 
Therefore, the stress-strain curves of many materials may be found with 
the aid of figure 4 providing E, n, and crO.7 are known for the spe-
cific materials. 

Inelastic Moduli 

For inelastic-buckling problems, the modulus ratios Es/E, Et/E, 
and Et/Es appear. These ratios can be computed in nondimensional form 
by use of equation (21). Since Es = cr/E, it follows directly from equa­
tion (21) that 

Since Et = dcr/dE, differentiation of equation (21) leads to the 
expression 

From equations (22) and (23) it follows that 

Et/Es = (E/Es)~(E/Et) 

1+ (3/7) \cr/crO.7)n-l 
= --------~--~~-, 

(3/7)n(cr/crO.7)n-l 1 + 

These quantities are used in subsequent sections concerned with 
inelastic buckling • . 

Inelastic Poisson's Ratio 

(22) 

(23) 

(24) 

Poisson's ratio for engineering materials usually has a value in 
the elastic region of between 1/4 and 1/3 and, on the assumption of a 
plastically incompressible isotropic solid, assumes a value of 1/2 in 
the plastic region. The transition from the elastic to the plastic value 
is most pronounced in the yield region of the stress-strain curve. Since 

J 
I 
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Poissonls ratio appears in the buckling-stress equation, this transition 
is of some importance in inelastic-buckling problems. 

Gerard and Wildhorn, among others, have studied this problem on 
several aluminum alloys and have shown that Poissonls ratio is seriously 
affected by anisotropy of the material (ref. 10). For materials which 
can be considered to be orthotropic (e.g., having the same properties 
along the y- and z-axes if loaded along the x-axis) the following relation 
describes the transition in the yield region: 

In this relation, vp is the fully plastic value of Poissonls ratio. 

For isotropic materials vp = 1/2, whereas for orthotropic materials vp 

is generally different from a value of 1/2. 

It is evident from the buckling stress expression that two materials 
which differ only in their values of Poissonls ratio should have different ­
buckling stresses. As a rule, however, the value of ve is virtually 
constant for a material whose properties may change as a result of heat 
treatment, details of composition, or amount of cold-work. 

The usual range of ve for JOC)st technically important structural 
materials is between 0.25 and 0.35. There are exceptions, however. One 
of the most extreme materials is beryllium, for which Udy, Shaw, and 
Boulger report a value of 0.02 (ref. 11). 

In the inelastic range, presumably because of anisotropy, numerical 
values of v have been found which are considerably in excess of the 
theoretical upper limit of 0.5, which is derived on the assumption of 
incompressibility of an isotropic materiaL For example, Gerard and 
Wildhorn obtained values of v as large as 0 .70 for several high-strength 
aluminum alloys (ref. 10), while Goodman and Russell reported a value 
of 0.77 for commercially pure titanium sheet and 0.62 for FS-lh magnesium 
alloy (ref. 12) . Stang, Greenspan , and Newman also obtained data at var­
ia nce with the theoretical value of 0.5 for plastic strains (ref. 13). 
These three reports cover a large variety of alloys, deformed by various 
total strains i n both bar and sheet stock, and should be consulted for 
more complete data. 
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PLASTICITY-REDUCTION FACTORS 

Inelastic-Buckling-Stress Equation 

The elastic buckling stress of a flat rectangular plate can be 
expressed in the form 

19 

When the buckling stress exceeds the proportional limit of the plate 
material, the terms in equation (26) which are i ni'luenced are k, E, 
and v. The buckling coeffici ent k depends upon the type of l oading, 
the buckle wave l ength as affected by the geometrical features of bound­
ary conditi ons and aspect ratio, the stress level , and Poi sson ' s ratio 
in the case of plates with free edges. The elastic modulus E is altered 
by the reduction in bending stiffness associated with inelastic behavior. 
Poisson's ratio in the yield region exhibits a gradual transit ion from 
the elastic value ve to a value of 1/2 for a plastically i ncompressible 
isotropic material. 

For simplicity of calculation all effects of exceeding the propor­
tional limit are generally incorporated in a single coefficient referred 
to as the plasticity-reduction factor ~. Elf definition 

Substituting equation (27) into equation (26), 

(28) 

Since ~ = 1 in the elastie range, equation (28) is perfectly general 
and i t is not necessary to distinguish between elastic and plastic 
buckling. The values of k and Ve are always the elastic values 
since the coefficient ' ~ contains al l changes in those terms resulting 
from inelastic behavior. 
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Comparison of Theories and Experimental Data 

The theoretical and experimental determinations of the values of ~ 

appropriate to various types of loadings and boundary conditions have 
resulted in extensive literature. The assumptions underlying the various 
theories differ with respect to plasticity laws, stress-strain relations, 
and ·buckling models used. In order to avoid possible confusion in dis­
cussing the various theories, it appears desirable to resort to the 
expedient of comparing theories with test data first. 

Rather precise experimental data exist for plastic buckling of 
columns, simply supported flanges and plates under compressive loads, 
and elastically supported plates under shear loads. For practical 
aluminum-alloy .columns under compression, it is a well-known fact that 
the experimental failing stress is closely approximated by the Euler 
formula with the tangent modulus substituted for the elastic modulus. 

In figure 5, test data for buckling of simply supported flanges 
under compression are shown in comparison with the theoretical values 
as derived by Stowell (ref. 14) according to the method of Gerard 
(ref. 15). Excellent agreement is obtained. 

In figure 6, test data of Pride and Heimerl (ref. 16) and Peters 
(ref. 17) for plastic buckling of simply supported plates under compres­
sion are shown in comparison with the theories of Bijlaard (ref. 18), 
Handelman and Prager (ref. 19), Ilyushin (ref. 20), and Stowell (ref. 5), 
and the method of Gerard (ref. 15). Poor agreement is obtained between 
the test data and the flow theory of Handelman and Prager, whereas re~a­
tively good agreement is obtained for the deformation theories of the 
others with Stowell's theory in best agreemer.t. 

In figure 7, test data for plastic buckling of elastically supported 
plates under shear are shown in comparison with the theories of Bijlaard 
(ref. 18), Gerard (ref. 2l), and Stowell (ref. 5). It can be observed 
that the method of Gerard, which is based on the maximum-shear plasticity 
law to transform an axial stress-strain curve into a shear stress-strain 
curve, is in good agreement with test data on aluminum alloys. 

On the basis of the agreement with test data, the values of ~ 
recommended for use with equation (28) appear in the appendix. Also, 
nondimensional buckling charts derived through the use of these reduc­
tion factors appear in figures 8, 9, and 10 for axially compressed 
flanges and plates and for shear-loaded plates. 

Assumptions of Inelastic-Buckling Theories 

The state of knowledge up to 1936 concerning inelastic buckling of 
plates and shells has been summarized by Timoshenk..o (ref. 2). The main 
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efforts reported therein were concerned with attempts t o modify the vari­
ous bending-moment terms of the equilibrium differential equation s by the 
use of suitable plasticity coefficients determined from experimenta l data 
on columns. Althoug~ such semiempirical eff orts met with a r easonable 
degree of success , the t heoretical determination of plasticity-reduction 
factors for flat plates has been achieved within recent years as the 
result of the development of a satisfactory inelastic-buckling theory. 
Because such developments are recent and because the various theories have 
not been, as yet, adequately treated in text books, the follOwing dis­
cussion concerning the assumptions and results of the various theories is 
presented in some detail. 

Mathematical theories of plasticity are phenomenological in nature 
since such theories generally proceed from the experimentally det ermined 
stress-strain relations for simple uniaxial loadings. In the elastic 
range, stress and strain are l inearly related by the elastic modulus. 
At strains beyond the proportional limit, a finite stress-strain rela­
tion can be used in the f orm 

(29) 

or an incremental relation can be used 

dcr = Et d€ 

In either relation t he secant modulus Es or the tangent modulus Et 
varies with stress and applies as l ong as the loading continues t o 
increase. Unloading usually occurs along an elastic line parallel to 
the initial elastic portion of the stress -strain curve. 

In the buckling process, for example, the stress state is considera­
bly more complex than simple uniaxial loading. Therefore, f ormulation of 
suitable stress-strain laws for three-dimensional stress st ates beyond 
the proportional limit forms one of the basic assumptions of the various 
plasti city theories. Based on generalizations of equation (29) which 
involve finite relations, deformation types of stress-strain laws have 
been advanced. Similar generalizations of equation (30 ) involving incre­
mental relations are referred to as flow-type theories . In both theories, 
unloading occurs elastically. 

The use of the var ious plasticity theories is greatly f acilitated 
by the introduction of rotationally invariant functions to define the 
three-dimensional stress and strain states; such functions are termed 
stress and s t rain intensities. The assumption that the stress intens ity 
is a uniquely defined, single-valued function of the str ain intensity 
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for a given material when the stress intensity increases (loading) and 
is elas t ic when it decreases (unloading) is a second of the fundamental 
hypotheses of plasticity theory . 

The definitions of the stress and strain intensities theoretically 
can be chosen from a family of rotationally invariant functions. Two 
such functions referred to as the maximum-shear law and octahedral-shear 
law have been found to be of considerable usefulness for correlating 
stress data on ductile materials. Thus, both of these laws have been 
assumed to apply in various solutions for inelastic buckling. 

In order to obtain solutions to various plasticity problems, addi­
tional assumptions are generally employed. These ordinarily include the 
assumption that the princi~al axes of stress and strain coincide and the 
assumption of plastic isotropy . Furthermore, the variation of Poisson's 
ratio from the elastic value to the value of 0.5 for a plastically incom­
pressible, isotropic solid is most pronounced in the yield region. Some 
solutions account for the instantaneous value of Poisson's ratio whereas 
others assume a value of 0.5 for both the elastic and plastic region. 
The latter assumption serves to simplify the analysis considerably. 
Corrections for the use of the fully plastic value of Poisson's ratio 
can generally be incorporated in the final results. 

All the foregOing assumptions form the basis for solution of plas­
ticity problems in general. For the specific problem of inelastic 
buckling, it is necessary to make an additional assumption concerning 
the stress distribution at the instant of buckling. 

From t he standpoint of classical stability theory, the buckling load 
is the load at which an exchange of stable equilibrium configurations 
occurs between the straight form and the bent form. Since the load remains 
constant during this exchange, a strain reversal must occur on the convex 
side and, therefore, the buckling model leading~ to the reduced-modulus 
concept for columns is correct theoretically . 

Practical plates and columns invariably contain initial imperfec­
tions of some sort, and, therefore, axial loading and bending proceed 
simultaneously . In this case, the bent form is the only stable config­
uration. Since in the presence of relatively large axial compressive 
stresses the bending stresses are small, no strain reversal occurs and 
the incremental bending stresses in the inelast ic range are given by 
equation (30). 

Since failing loads obtained from tests on aluminum-alloy columns 
are closely approximated by the Euler buckling equation with the tangent 
modulus substituted for the elastic modulus, certain of the inelastic­
buckling theories assume the no-strain-reversal, or tangent-modulus, 
model as the basic buckling process and then proceed to solutions by use 
of equilibrium equations based on classical stability concepts. 
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Inelastic-Buckling Theories 

Different investigators have used various ones of those assumptions 
discussed above. In order to indicate the major assumptions underlying 
each of the theories, a summary is presented in table 1. 

Historically, Bijlaard appears to have been the first to arrive 
a t satisfactory theoretical solutions for inelastic-buckling theories 
(ref. 18). His work is the most comprehensive of all those considered 
in that he considers both incremental and deformation theories and con­
cludes that the deformation type is correct since it leads to lower ine­
lastic buckling loads than are obtained from incremental theories. His 
work was first published in 1937. This paper and later publications 
include solutions to many important inelastic-buckling problems. How­
ever, this work appears to have remained unknown to most of the later 
investigators. 

Ilyushin briefly referred to Bijlaard's work and then proceeded to 
derive the basic differential equation for inelastic buckling of flat 
plates according to the strain-reversal model (ref. 20). The derivation 
of this equation is rather elegant and was used by Stowell, who, however, 
used the no-strain-reversal model (ref. 5). The differential equation 
obtained by Bijlaard reduces to that derived by Stowell by setting 
v = 1/2 in the former. Handelman and Prager, during this time, obtained 
solutions to several inelastic-buckling problems by use of incremental 
theory (ref. 19). Test data, such as shown in figure 6, indicate that 
the results of incremental theories, regardless of the buckling model, 
are definitely unconservative, whereas deformation-type theories are in 
relatively good agreement. 

All the foregoing theories were based on the use of the octahedral­
shear law. However, test data on the inelastic buckling of aluminum-alloy 
plates in shear indicated that the results of the above theories were 
unconservative. Gerard used the maximum-shear law in place of the 
octahedral-shear law to transform axial stress-strain curves to shear 
stress and found good agreement with the aluminum-alloy-plate shear­
buckling data (ref. 21). 

To summarize, then, the assumptions which lead to the best agreement 
between theory and test data on inelastic buckling of aluminum-alloy flat 
plates under compression and shear loadings include deformation-type 
stress-strain laws, stress and strain intensities defined by the octahedral­
shear law, and the no-strain-reversal model of inelastic buckling. Although 
there may be theoretical objections to deformation theories as a class and 
the use of a no-strain-reversal model in conjunction with classical sta­
bility concepts, test data do suggest the use of results obtained from a 
theory based on these assumptions in engineering applications. The choice 
of laws to transform axial stress-strain data to shear stress-strain data 
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depends upon the degree of correlation obtained between each of these 
laws with polyaxial test data for individual materials. 

Factors Used in Computations 

As already indicated, the inelastic-buckling stress may be com­
puted by use of plasticity-reduction factors appropriate to the bound­
ary and loading conditions. The factors incorporate all effects of 
exceeding the proportional limit upon k, E, and v. For convenience 
in preparing design charts for inelastic buckling, the critical elastic 
strain can be used: 

Ecr = (31) 

From equations (28) and (31) 

(32) 

The recommended values of ~ are given in table 2. For compressive 
loads, the values of ~ derived by Stowell for infinitely long plates 
except in the case of plate columns (see refs. 5 and 22) have been cor­
rect ed to account for the instantaneous value of Poisson's ratio according 
to a method suggested by Stowell and Pride (ref. 23). Thus, 

~ 

where ~s is the original value given by Stowell. Equation (33) is the 
form of the plasticity-reduction factors that appears in table 2 and has 
been used to construct the nondimensional buckling charts of figures 8, 
9, and 10. 

For long simply supported plates under combined axial compression 
and bending Bijlaard found theoretically, by a finite-difference approach 
(ref. 24 ) , that 

(34) 

/ 
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the plasticity- reduction f actor for axial compression. 
reduces to this value for axial load alone, since a = 
For p~e bending a = 2 and equation (34) is equal to 
reduction factor for a hinged flange. 

25 

Equat ion (34) 
o for thi s case . 
the pl astici t y -

To determine the instantaneous value of Poisson's rat io , equation (25) 
can be used. For the nondimensional buckling charts t he t heoretical fully 
plastic value of 0.5 was assumed for Poisson's ratio, as was assumed by 
Stowell in his determinations of the plasticity-r eduction factors. Stowell 
and Pride reported on computations made using equation (34) i nstead of 
v = 0 . 5 and showed that there was littl e difference between the two curves 
f or f l anges and simply supported plates (ref. 23 ). Bij laard took exception 
to this report (ref. 25); however , t he differences wer e sli ght , as was 
pointed out by Stowell and Pri de, and it can be assumed f or practical pur­
poses t hat t he plasticity-reducti on factors shown i n the appendix are sat­
isfac t ory for general design and analysis. 

Construction ·of Nondimensional Buckling Charts 

The nondimensional buckling-stress charts of figures 8, 9, and 10 
were constructed from the basic nondimensional st reas-strain curves of 
figure 4 and the plasticity-reduction factors shown in the appendix , 
i ncorpor ating the method of critical st rains as depicted through equa­
tions (31) and (32). Since there is l i ttle difference among the numeri­
cal values of the buckling stresses that would be obtained for t he 
plast i city-r eduction factors appl icabl e to a l ong cl amped flange and to 
a l ong plate with any amount of edge r otational r estraint, t hese cases 
wer e grouped into one employi ng the r eduction f actor f or the simply sup­
ported plat e, which is the average of the three factors. 

CIADDING REDUCTION 1"ACTORS 

Basic Principles 

The presence of cladding on t he faces of plates may have an appreci­
able effect on the buckling stress since the cladding material, whi ch 
usually has lower mechani cal st rength t han the plate core, i s located a t . 
the extreme f ibers of the plat e cros s section (fig. 11 ) where t he bending 
s t rains duri ng buckling a t tain their highest values. 

Buchert determined buckling-stress-reduction factors for clad plates 
whi ch include plasticity effects as well as reduct ion due to claddi ng 
(ref. 26) . However, i t is possible t o det ermine a reduction f act or for 
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cladding alone that may be multiplied by the inelastic buckling stress 
to yield a final buckling stress for the clad plate that agrees quite 
closely with the test data. The cladding reduction factors may then be 
used with the existing inelastic-buckling curves of figures 8, 9, and 10. 

The form of buckling equation commonly used for determining the 
buckling stress of a bare flat plate with any type of loading and bound­
ary supports is given as equation (28). For clad plates this expression 
is used to find a nominal buckling stress, where the thickness is that 
of the total plate and the material properties are those of the core. 
The actual buckling stress of a clad plate then may be found by applying 
a simple numerical multiplier ~ to this stress. This multiplier, 
termed the cladding reduction factor because it reduces the ratio of the 
nominal core stress to the buckling stress of the clad plate, is a func­
tion of the relative core and cladding stress levels and the respective 
moduli of the core and cladding materials. The clad-plate buckling stress 
can be found from 

-
O'cr = TjO'cr 

If the nominal buckling stress exceeds the proportional limit of 
the core material, then the nominal buckling stress for the clad plate 
may be found by using the appropriate value of Tj, the plasticity­
reduction factor of the core material. Values of Tj may be obtained 
from the clad-plate stress-strain curve shown in figure 12, the deri­
vation of which is discussed below. 

It should be noted that the plasticity-reduction factor depends 
upon the stress level and consequently requires an estimate of the final 
buckling stress of the plate before equation (28) can be used to find 
O'cr' The cladding reduction factor has been found to be of such a nature, 
however, that little error is involved in first finding the nominal buck­
ling stress and then multiplying it directly by the cladding reduction 
factor to find the actual bu~kling stress of the clad plate. The prod­
uct Tj~ is TJT' which was determined by Buchert. 

Table 3 contains a listing of the various cladding reduction fac­
tors determined in subsequent portions of this section. In the table, 
all plates are long and simply supported. In all cases for which the 
cladding proportional-limit stress O'cl exceeds the nominal buckling 
stress O'cr the cladding reduction factor is equal to unity. The quan-

tity ~ is defined as ~ = O'cl/O'cr' and f is the ratio of the total 
cladding thickness to the clad-plate total thickness. 



NACA TN 3781 27 

Derivation of Core Stress-Strain Curve 

The core stress-strain curve may be derived from a stress -strain 
curve for the entire clad plate as shown in figure 12. Using the nota­
tion of figure 11, in which a section of a clad plate is shown, the total 
axial load acting on the section is determinable from 

t(l - f)Ocore + tfocl (36) 

Dividing this expression by tOcore yields 

cr/Ocore = 1 - f + ~f 

Thus, the core stress-strain curve can be constructed by plotting 
the core stress determined from equation (37) at each value of strain 
for which the corresponding clad-plate stress was found. (See fig. 12.) 
The initial slope of the core curve, which is the same as the initial 
slope of the clad-plate curve, is the elastic modulus t o be used in the 
nominal-buckling-stress equation . Since the buckling stress refers to 
the core material, 0core was replaced by its counterpart ocr in the 

succeeding derivations. 

TYPical values of f for alclad plate appear in table 4 for sev­
eral aluminum alloys. Buchert showed a value of 0cl = 10,000 psi for 

1100-Hl4 alloy (ref. 26). However, the cladding stress will vary with 
the cladding material, of which different types are used on different 
alloy cores. 

Comparison of Theory and Experiment 

The total-reduction factor, defined as the product of the plasticity­
and cladding-reduction factors, has been plotted in figure 13 as a func­
tion of stress for both the test data and the theory in the case ofaxial~y 
compressed plates. Two materials are represented, each with a different 
percentage of cladding thickness. Furthermore, the first (2024-T84 sheet) 
is a simply supported plate whereas the second (2024-T3 sheet ) is a long 
column . Plasticity-reduction factors for these two cases were obtained 
from table 2 . It is instructive to notice the close correlation for the 
column case, for which the tangent modulus is the applicable plasticity­
reduction modulus. This follows the prediction of the simplified theory, 



t-_ ------------ ----------------------------------------------------

28 NACA TN 3781 

which s t ipulates that the cladding reduction factor is independent of 
stress level when the nominal core stress exceeds the cladding propor­
tional limit. Thus, the theory and test data agree in the sharp drop 
in the total-reduction factor at the cladding proportional limit. 

Derivations of Simplified Cladding Reduction Factors 

Buchert derived expressions for the total-reduction factor for flat 
simply supported rectangular plates subjected to several types of loadings. 
In the following sections are presented derivations of simplified cladding 
reduction factors that yield buckling stresses at all stress levels merely 
by multiplying the nominal stress (elastic or inelastic) by the cladding 
reduction factor at that stress. This is done by separating the cladding 
effect from the total-reduction factor by using the relationship ~ = ~T/~. 

Case 1. Lon derived 
the expression for 

where 

For a bare plate f = 0 and ~T = ~, which give 

(cf. table 2). Then 

- 1 
Tj = 1 + 3f (40) 
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(a) When O'cr < O'c1, Es = Et = Es = Et = E, and therefore -11 = 1. 

(b) When O'c1 < O'cr < O'p1' Es = Et = E, and for the cladding stress­

Es O'c1/€ O'c1 strain ·curve of figure 12 Et = o. Then vi th - - - f3, E - O'cr/€ - O'cr -

~ = (1 h1 + 313f) + 1 f(1 + 313f) (4 + 313f)l1/2} (41) 
2 1 + 3f) l 2 L: ~ 

which may be written 

If it is assumed that 913f/(1 + 313f) «4, the following simple expres­
sion is obtained for the cladding reduction factor: 

11 = _1_+--.;;.3.,:..f3f_ (42) 
1 + 3f 

(c) For large. stresses, 13--:)0 and therefore 

- 1 
11 = ---

1 + 3f 

Equations (42) and (43) appear in figure 13 in the form of 
where they may be seen to agree closely vith the total-reduction factor 
and the test data. 

Case 2. Plate co1umns.- The derivations of ~ for short and long 
plate columns follow the form used in case I for the supported plate 
without any simplifying assumptions. The results are shown in table 3. _ 
The column curve is plotted in figure 13 in the form 11T = 11~, where it 
is seen to agree closely vith the data and with Buchert's theory. 

Case 3. Long simply supported plates in shear.- Buchert (ref. 26) 
shows that 11T for shear on a long simply supported plate is 

J 
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where the nodal-line slope of the shear buckles is obtained from the 
~licit equation 

and 

(44) 

The mininrum-energy state occurs for unclad elastic plates when 

~~1/{:2, and there is little reason to expect a significantly different 
value for clad plates. Consequently, this value of ~ is assumed in 
the following development: 

(b) The plasticity-reduction factor for crcr > crcl is derivable 
from the total-reduction factor in the form 

(46) 
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from which, using ~ = ~T/~' 

-
~ = (47) 

where Y = 1 + 3~f. 

The expression in braces deviates about 2 percent from unity for 
f = 0.10 and for ~~0.2, which will be in the neighborhood of the 
proportional limit for typical structural aluminum alloys . Consequently, 
it will not introduce an appreciable error to consider it equal t o unity , 
i n which case equation (42) for the compressed simply supported pl ate 
holds true. 

(c) For large stresses, ~ ~ 0, and therefore ~ = _..;:1::.-_ 
1 + 3f 

BUCKLDm OF FIAT RECTANGULAR PLATES UNDER COMPRESSIVE LOADS 

In the preceding sections the mathematical and physical background 
for the flat-plate buckling problem has been presented. It was shown 
t hat basic equation (1) can be used for the solut i on of buckling problems 
pertaining to f lat rectangular plates under vari ous types of l oadings in 
t he el astic and inelastic ranges by suitable chOi ce of reduction fac t or s 
and buckling coefficients. Considerati ons that i nfluence the determina­
tion of k have been analyzed in the sections entitled "Basic Principles" 
and "Boundary Conditions." The plasticity-reduction and cladding reduction 
factors were discussed in the sections "Plasticity-Reduction Factors" and 
"Cladding Reduction Factors." In this section, and in those to follow, t he 
buckling coefficient k will be discussed and its numerical values for 
various loading and boundary conditions will be presented. 

Historical Background 

Bryan investigated the buckling of a simply supported flat rectangu­
lar pl a t e under axial loading in the elastic r ange using the energy 
method (ref . 27 ) . He obtained the explicit form f or kc for this type 
of loading and support: 

kc = ~a/nb ) + (nb/aTI 2 (48) 
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Timoshenko treated numerous additional cases of loading and boundary 
conditions utilizing both the energy approach and the solution of the 
differential equation (ref. 2). Hill constructed a chart of kc covering 
the complete range of possible boundary conditions for axial loadings: 
simply supported) clamped or free edges on one side) and simply supported 
or clamped edges on the other) with the loaded edges either clamped or 

-simply supported (ref. 28). 

Lundquist and Stowell presented the first unified treatment of the 
compressive-buckling problem in their analyses) by both the differential­
equation and energy methods) of the cases of supported plates and flanges 
with simply supported loaded edges and with varying degrees of elastic 
rotational restraint along the supported unloaded edges (refs. 8 and 29). 

Stein and Libove) in conSidering combined longitudinal and transverse 
axial loads) covered the effects of clamping along the unloaded edges of 
rectangular plates (ref. 30). 

Numerical Values of Compressive-Buckling Coefficients 

for Plates 

Figure 14 is a summary chart depicting the variation of kc as a 
function of alb for various limiting conditions of edge support and 
rotational restraint on a rectangular flat plate. It is apparent that 
for values of alb . greater than four the effect of rotational restraint 
along the loaded edges becomes negligible and that the clamped plate 
would buckle at virtually the same compressive load as a plate with 
simply supported loaded edges. 

Supported Plate) Edges Elastically Restrained 

Against Rotation 

The behavior of compressed plates with various amounts of elastic 
rotational restraint along the unloaded edges can be understood by 
examining the relation between buckling coefficient and buckle wave 
length. For plates supported along both unloaded edges the curves 
appear in figure 15 for rotational restraint from full clamping (€ = 00) 
to hinged supports (€ = 0). From this figure) which is taken from the 
report by Lundquist and Stowell (ref. 29)) it is possible to see the man­
ner in which the buckle wave length decreases as rotational restraint 
increases) and the value of Alb for a minimum value of kc can be 
seen to increase from 2/3 for clamped edges to 1.00 for hinged edges. 
The lower portions of these curves and the portions to the left of the 
minimum kc line form the first arms of the curves of kc as a function 
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of alb, as in figure 16. For completeness, several lines denoting t he 
transitions from 1 to 2, 2 to 3, . . . n to n + 1 buckles have been 
incl uded in figure 15- The intersections of these lines with the curves 
of kc against \/b correspond to the cusps on the curves of figure 16. 

Plates With Unequal Edge Rotational Restraint 

Figure 15 can also be used when there are unequal rotational 
restraints along the unloaded edges of a plate. This can be done by 
determining the kc value for the € on each unloaded edge. The effec­
tive value for use in equation (1) can then be found from 

(49) 

The accuracy of this method has been demonstrated by Lundquist and Stowell 
who compared results so obtained with the values obtained by solving 
directly with the equations used by them for the general case of rota­
tional restraint (ref. 29). 

The elastic restraints are mathematically equivalent to a series of 
unconnected torsional springs. Since this does not necessarily conform 
to the behavior of the usual edge member or stiffener of a flat panel, 
it is necessary to evaluate the effective single spring stiffness of the 
actual stiffener in order to use either figure 15 or figure 16. However, 
it is not necessary to determine this stiffness to a high degree of 
accuracy since the influence of € upon kc embraces a large range of 
stiffness ratiOS, as is shown in figure 17 for infinitely long plates. 
When the stiffener rotational rigidity has been found, € may be com­
puted by forming the ratio of this rigidity to the rotational rigidity 
of the plate. 

From test data Gerard was able to construct a chart of kc for 
long plates as a function of bit for strong and weak stiffeners 
(ref. 31 and fig. 18). Above bit = 200 it is seen that most stiff­
eners will effectively clamp the plate edge. 

Supported Flanges With Elastic Rotational Restraint 

The relationships among kc' \/b, and € are depicted for flanges 
in figure 19. It should be noted that these curves were constructed for 
a "Poisson's ratio value of 0.3, which also applies to the curves of kc 
as a function o~ alb in figure 20. The determination of kc for other 
values of v is discussed in the section entitled "Boundary Conditions." 
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The transition lines for 1 to 2, 2 to 3, . . . n to n + 1 buckles are 
shown in figure 19. However, it should be noted that the minimum line 
does not intersect the curve for a hinged flange (e = 0). For this case 
there is only one buckle which extends the full length of the flange. 

As in the case of the plate, the theoretical restraint action on the 
unloaded supported edge of the flange is assumed to be a series of dis­
connected torsional springs, and it is necessary in this case also to 
determine the effective restraint for the edge stiffener in order to use 
the curves of figures 19 and 20. However, as in the case of supported 
plates, it is not necessary to determine E too accurately, as figure 17 
shows, since kc is relatively insensitive to large variations in E. 

Effect of Lateral Restraint on Buckling 

In the usual buckling-stress computations the plate analyzed is 
assumed to be unrestrained against distortion in its plane under the 
external loads applied. However, for longitudinal compressive loads on 
a rectangular plate, the edges parallel to the loads would tend to move 
apart as a result of the Poisson's ratio expansion. If this motion 
should be restrained to any extent, forces would be developed transverse 
to the applied load which would influence the longitudinal stress that 
the plate might withstand before it would buckle. Ii' the interaction 
concept is employed, it is apparent that the transverse compression would 
lower the permissible longitudinal stress by an amount that could be 
found from interaction curves utilizing stress ratios. 

If the plate edges are restrained by rigid stiffeners held in place 
by transverse ribs each with a section area Ar, the balance of transverse 
forces requires that 

The directions of crx , cry, and crr are shown in figure 21. The equiva­

lence of transverse strain requires that 

assuming that the ribs and plate are of the same material. From equa­
tions (50) and (51), the transverse stress becomes 

---------------- -- ----------
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From this point it is a simple matter t o determine the reduced 
l ongitudinal-buckling stress. This may be expressed in terms of the 
new value of the buckling coefficient kc as shown in figure 21, which 
i s a modification of curves presented by Argyris and Dunne (ref . 32). 

BUCKLING OF FIAT RECTANGULAR PLATES UNDER SHEAR LOADS 

Historical Background 

Southwell and Skan computed the critical shear load for a flat rec­
tangular plate with simply supported edges and with fixed edges by means 
of the buckling differential equation (ref. 33). Timoshenko investigated 
shear buckling also (ref. 2); however, he used the energy method and 
obtained a critical loading 6.5 percent higher than the exact result of 
Southwell and Skan. 

Stowell determined shear-buckling coefficients for infinitely long 
supported plates with the edges elastically restrained against rotati on 
(ref. 34) . He utilized the differential equation for an exact solution 
and the energy integrals for plotting purposes. Stowell presented his 
results in the manner of Southwell and Skan, who plotted the buckling 
coefficient as a function of Alb for long plates. This is the same 
procedure used by Lundquist and Stowell for compressive loading on plates 
of any length (refs. 8 and 29). 

Symmetric and Antisymmetric Modes 

The solutions obtained by Southwell and Skan (ref. 33) and by 
Timoshenko (ref. 2) pertained to a buckle form termed the symmetri C mode 
because of the symmetry of the mode shape with respect to a diagonal 
across the plate at the node-line slope. Stein and Neff examined the 
antisymmetric buckle mode for simply supported plates and found that it 
has a lower buckling stress, wi thin a small range of a/b values, than 
does the symmetric mode (ref. 35). Stein and Neff als0 repeated 
Timoshenko's calculations for greater precision and obtained an esti­
mated error of 1 percent. 

Budiansky and Connor investigated the short clamped plate for both 
symmetric and antisymmetric buckle modes using the Lagrangian multiplier 
method (ref. 36) . Except for a small range of alb values, the symmetric 
mode was shown to yield the lower buckli ng stress. 

I 
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Numerical Values of Shear-Buckling Coefficient 

The plot of ks as a function of alb appears in figure 22. It 
may be seen from the curves how the symmetric and anti symmetric modes 
alternate with one another as alb increases. For long plates the 
value of ks may be found from figure 23(a), in which ksoo appears as 

- a function of E • 

Effect of Plate Length on Buckling Coefficient 

When ks is plotted as a function of alb for infinite and zero 
values of E (clamped and hinged edges) as shown in figure 23(b), it 
may be seen that there is little difference between the two curves. 
This suggests a rapid method of computing the shear-buckling coefficient 
for any value of E. The coefficient for the specified E is obtained 
from the curve of ksoo as a function of E (fig. 23(a)), which is a 
replot of the minimum ks line (n = 00) of figure 24. Also, the ratio 
ks/ksoo is found from figure 23(b). Then ks for the specified alb 
and E may be found by computing the product of these two numbers. 
Estimation of the correct value of ks/ksoo will be relatively free from 

error because of the proximity of the two limiting curves in figure 23(b). 

BUCKLING OF FLAT RECTANGULAR PLATES UNDER BENDING LOADS 

Historical Background 

Timoshenko investigated the buckling stresses for flat rectangular 
plates under combined longitudinal and bending loads using energy inte­
grals and obtained values for kb that agree well with later calculations 
of higher precision (ref. 2). Schuette and McCulloch analyzed long plates 
under pure bending with supported edges and elastic rotational restraint 
(ref. 37). Johnson and Noel also investigated the buckling of plates 
under longitudinal axial load and bending (ref. 38), and Noel analyzed 
plates for longitudinal bending plus axial load combined with transverse 
axial load (ref. 39). 

Numerical Values of Bending-Buckling Coefficient 

The relations between buckle wave length and buckling coefficient 
for various values of rotational restraint appear in figure 25 together 
with the wave-length transition lines. The curves of ~ as a function 
of alb are shown in figure 26. It is of interest to note that the 
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value of kb for infinite plates is roughly six times as great as the 
value for the supported plate kc for all values of rotational restraint. 

BUCKLnfG OF FLAT RECTANGULAR PLATES UNDER COMBINED LOADS 

General Background 

Flat rectangular plates frequently are subj ected to combinati ons of 
elementary loadings. It has been common practice to consider elementary 
loadings in pairs and to determine an interaction curve or curves for the 
combination. However, two recent papers treat triple combinations of the 
elementary loads, so that an interaction surface in stress ratios is gen­
erated, and by taking appropriate sections (e . g . , letting one of the 
stress ratios equal zero) it is possible to reproduce the interaction 
curves that were derived preViously in the l i terature . 

Interaction curves for the combination of bending, shear, and trans­
verse compression on long plates were developed by Johnson and Buchert 
(ref. 40), and Noel constructed the two-dimensional sections of the sur­
face f or longitudinal bending, longitudinal compress i on, and transverse 
compression (ref. 39) . The backgrounds for the various combinations of 
loadings are discussed in the f ollOwing paragraphs. Interaction charts 
are shown i n figures 27 and 28, in which sections of the triple stress­
ratio surfaces appear . 

A summary of t he loading conditions discussed in the f ollowing para­
graphs appears in t abl e 5. Interaction equations which exist for a few 
cases are included in the table . 

Biaxial Compression 

Timoshenko derived a relat ion between the l ongitudinal and transverse 
edge stresses acting on a rectangular plate at buckling (ref. 2 ) . This 
relation was evaluated for the lowest possible combination of stresses by 
means of a chart that must be drawn for each a l b value under considera­
tion . As one limiting case of plate proport ion and loading, Timoshenko 
demonstrated that a s quare plate l oaded by equal biaxial s tresses has a 
buckling coefficient of 2, or half of that f or a uniaxially loaded square 
plate. 

Libove and Stein evaluated buckling under biaxial loadings by the 
energy method for rectangular plates supported in several different man­
ners and presented the results in charts of kx as functions of alb 
for various values of ky, where 

I 
I 
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and ax and ay are the two stresses acting on the plate at buckling 

(ref. 30). 

No simple interaction expressions exist for the stress ratios in 
the general case for the loadings and supports investigated by Libove 
and Stein. However, for square panels, or for long panels tha~ buckle 
in square waves, it can be shown, from Timoshenko's results, that 

Rx + Ry = 1 (54) 

Noel considered more complicated loading conditions and presented 
data from which interaction curves may be constructed for biaxial loadings 
for any value of alb (ref. 39). Noel's curves appear in figure 28. 

Shear and Normal Stress 

By application of the energy method, Stowell and Schwartz examined 
the conditions under which buckling will occur on a long, flat, rectan­
gular panel with edges elastically restrained against rotation under the 
simultaneous action of shear and normal stresses (ref. 41). They derived 
the interaction relationship between the stress ratios in the form 

They also derived an expression for the stress combination at 
buckling through use of the differential equation and tested the inter­
action equation for several values of restraint coefficient E. The 
agreement with the interaction equation was found to be excellent, as a 
consequence of which the interaction equation written above may be 
applied to this loading case for all values of restraint coefficient 
and may be used when the axial load is either compression or tension, 
provided the restraint coefficients are the same on both edges and the 
panel is infinitely long. 
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The problem of determining critical loading combinations for shear 
and transverse normal stress was solved by Batdorf and Houbolt by both 
the energy method and the differential equation (ref. 42). The signifi­
cant result of this work is the demonstration that roughly half of the 
cri~ical shear stress may be applied to a transversely compressed panel 
without l owering its permissible compressive-buckling stress. 

This work was done on infinitely long panels with the long edges 
supported and elastically restrained against rotation. The restraint 
coefficient was found to exert an appreciable (although not very large ) 
effect upon the critical loading combination. The results for this type 
of loading, consequently, do not lend themselves to the writing of a 
simple explicit interaction equation between the stress ratios. The 
curves were plotted by Batdorf and Houbolt for both compressive and ten­
s ile t ransverse normal loadings in combination with shear over the entire 
range of r estraint coefficients. 

The two preceding loading conditions were reexamined for simply 
supported plates of finite a/b by Batdorf and Stein with t he use of 
the energy equations (ref. 43). They showed that the parabolic inter­
action expression of Stowell and Schwartz (eq. (55)) agrees with the 
interaction curves for finite values of a/b for shear plus longitudi ­
nal compression (or tension) (ref. 41). However, the curve derived for 
infinitely long panels under shear and transverse loading requires modi­
fication for finite values of a/b. For a square panel the parabola 
agrees with the modified curve, while t he simple-edge-support case of 
Batdorf and Houbolt (ref. 42) may be used for alb = 4 . The transition 
region from the modified curves to those for alb = 00 lies between 
these two values of a/b. 

The large shear stress that may be superimposed upon the critical 
compressive stress without l owering the permissible compressive stress 
for infinitely l ong panels is not possible for square plates. In fact, 
it appears to be possible for infinitely long plates only. 

Bending and Normal Stress 

Timoshenko determined the critical combination of bending and nor­
mal s t resses acting on simply supported flat rectangular plates using 
the energy method (ref. 2). He determined the buckling coefficient as 
a function of ~ for several ratios of moment loading to axial l oading 
for panels with various values of a/b. 

Johnson and Noel broadened the scope of the problem by including 
elastic rotational restraint along the unloaded compression edge (ref. 38). 
Their results were plotted as kb versus A/b for all values of restraint 
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coefficient. One chart is required for each of the loading ratios (lon­
gitudinal loading to moment loading), of which four values were chosen. 
The loading ratio is defined by 

12M 
ex, = 

Ph + 6M 
(56) 

Ph 6(2 - ex,) 
-=----
M ex, 

where P is the longitudinal load, M is the bending moment, and b 
is the panel width. They also plot kb as a function of alb for the 
cases of simple support and clamping of the unloaded compression edge of 
the panel. In addition, the effect of fixity of the unloaded tension 
edge is depicted for various values of ex, in a plot of kb versus alb 
in which the hinged and fixed cases are drawn on the same graph. It is 
apparent that edge fixity does not become important until ex, falls 
below 7/4, which corresponds approximately to a Pb/M of 1 or more. 

Grossman examined bending in combination with transverse compression 
using the energy method (ref. 44). He found that for infinite alb the 
bending stress ratio can be 0.9 at the same time that the transverse com­
pressive stress ratio is 1. He also provides a graph of the stress 
ratios for several values of alb; however, apparently only the infi­
nitely long plat e is capable of withstanding bending stresses without 
buckling while the transverse stress is at its critical value. This is 
similar t o the result found by Batdorf and Stein for shear and transverse 
compression (ref. 43). 

Noel provides interaction curves for simply supported rectangular 
plates loaded in longitudinal bending, longitudinal compression, and 
transverse compression (ref. 39). For the limiting case of no transverse 
loading they agree with the results of Johnson and Noel (ref. 38), and 
when the longitudinal compression vanishes they agree with those of 
Grossman (ref. 44) . Consequently, their charts can be used for both of 
these loading combinations. The curves appear in figure 28 . 

The data of Johnson and Noel and of Noel were obtained from equa­
tions solved for infinit e values of alb and were applied to finite 
values of alb by use of the identity 

Alb = almb 
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This procedure may be questioned for small aspect ratios; however, it 
may be justified by comparison with the work of Timoshenko (longitudi­
nal compression and bending) and with the work of Grossman (transverse 
compression and bending), with which the results of Johnson and Noel 
and of Noel show good agreement. 

Bending and Shear Stress 

41 

Timoshenko reports the result of analyzing a rectangular flat plate 
to determine the critical combination of bending and shear stresses 
(ref. 2). He used the energy method and plotted the buckling coeffi­
cient of the panel as a function of the shear stress ratio. The coeffi­
cient, when divided by that for the bending load alone, becomes the 
bending stress ratiO, and the set of curves provided by Timoshenko for 
various values of alb becomes an interaction chart, from which it may 
be seen that the interaction equation is a unit circle : 

The range of alb for which Timoshenko plotted the curves is from 0.5 
t o 1.0. However, the curves loop back on themselves as alb increases, 
thus indicating that larger values of alb would yield curves falling 
within the plot. The maximum variation of stress ratios about the values 
obtainable from the circular interaction equation is 7 percent, with the 
equation values the lowest (and hence the most conservative) of all. 

Bending, Shear, and Transverse Compression 

Johnson and Buchert utilized the Lagrangian multiplier method to 
determine the critical combinations of bending, shear, and transverse 
compressive loads on rectangular flat plates of infinite alb (ref . 40). 
The results appear as interaction surfaces in the three stress ratios Rb, 
Rs , and Re. The two types of support for the plate are simple support 
along both long edges and simple support along the tension (due to 
bending) edge with clamping along the compression (due to bending ) edge. 

Sections of the interaction surfaces taken perpendicular to any of 
the three stress-ratio axes yield plane stress-ratio curves that agree 
with the results obtained directly for these cases in previous publica­
tions. This is true only of the simply supported plate, of course, since 
nothing has appeared in the literature for shear plus bending of plates 
with the compression edge clamped. The interesting result of a shear 
stress ratio equal to 1. 2 , with Rb equal to 0 . 5, is revealed (fig. 27(b)), 
as well as the combination of Rc = 0. 94, Rb = 0 . 50 , and Rs = 0 . 43 · 

/ 
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Longitudinal Bending, Longitudinal Compression, and 

Transverse Compression 

The work of Noel (ref. 39) on the problem of longitudinal bending, 
longi tudinal compression, and transverse compression has been di·scussed 
in the section on combined bending and normal stress. The pertinent 
interaction curves appear in figure 28. 

Combined Inelastic Stresses 

Stowell utilized the concept of an equivalent stress intensity for 
combined stresses applied in constant ratio during loading in the inelas­
tic range (ref. 45). Be examined the problem of determining the critical 
combination of shear and longitudinal compression in elastically supported 
flat rectangular plat es by using the energy method to determine the 
buckling stresses. From these results, stress ratios were plotted 
directly from the theoretical results and were also corrected for the 
changes in effective modulus. From this, Stowell concluded that with 
little error the following stress-ratio equation is applicable: 

In equation (59), (Es)pc is the secant modulus at 0 = ocr for pure 

compression, (Es)ps is the corresponding secant modulus for pure shear, 

and is the secant modulus for the effective stress of the com-

bined loading at buckling; The 

similarity of this expression to that for the elast ic case is apparent; 
in fact, in the elastic range the expression reduces to the equation for 
elastic loads. 

A recent investigation of Peters on long square tubes loaded in 
torsion and compression (ref. 17) indicates that a stress-ratio equation 
of the form 

(60 ) 
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agrees slightly better with the test data (fig. 29) than does the modified 
parabola of Stowell (ref. 45). Actually, the data yield slightly higher . 
stress-ratio combinations than do either of interaction equations (59) or 
(60), with the discrepancy increasing with decreasing stress levels. For 
stresses wholly in the elastic range the data are as much as 100 percent 
higher (that is , Rs is 0.4 instead of 0.2 for Rc equal to 1 ) . The 
data also agree closely with a theoretical curve obtained by Budlansky, 
Stein, and Gilbert for long square tubes loaded elastically in torsion 
and compression (ref . 46). 

EFFECT OF PRESSURE ON BUCKLING OF RECTANGULAR FLAT PLATES 

Range of Published Results 

The effect of normal pressure on the longitudinal compressive­
buckling stress of a rectangular flat plate has been investigated for 
both simply supported and clamped edges. Levy, Goldenberg, and 
Zibritosky (ref. 47) analyzed the simply supported plate using the 
large-deflection differential equations of Von Kirman. The plate l ength 
was four times the width, which places it in the long-plate category. 
The data reveal a rise in longitudinal compressive-buckling stress for 
this configuration which increases with pressure. However, this rise 
may be realizable only in a plate of such proportions and loading because 
of the significant difference in wave forms of the long plate under com­
pressive and pressure loadings. It may be intuitively evident that when 
there is little difference between these wave forms, such as for a short 
plate under combined longitudinal compression and normal pressure, there 
may be a reduction in the compressive-buckling stress of the plate. No 
data are available in this case, however. 

Longitudinally Compressed Long Simply Supported Plates 

High normal pressure was found to increase the compressive-buckling 
stress considerably for the long simply supported plate tested by Levy, 
Goldenberg, and Zibritosky (ref. 47). For example, when the pressure 
applied to a plate with length four times the width reached 24.03Et4/b4, 
the buckling stress was 3.1 times that for zero normal pressure on the 
plate . Levy, Goldenberg, and Zibritosky also showed that more than one 
equilibrium configuration of the plate was possible when normal pressure 
was applied, with the configuration at any instant depending upon the 
previous loading history. The plate could be either buckled or unbuckled 
under various specific combinations of axial load and normal pressure. 

/ 
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Longitudinally Compressed Long Clamped Plates 

Woolley , Corrick, and Levy analyzed a longitudinally compressed long 
clamped plate (ref. 48) . For this case the effect of pressure was not so 
pronounced as for simply supported edges. The maximum buckling load for 

a pressure of 37. 55Et4/b4 was found to be 1.3 times that for no normal 
pressure. Also, for clamped plates the buckle pattern was found to be 
unique for any particular combination of pressure and axial loading. 

SPECIAL CASES 

Use of Elastic-Buckling-Stress Expression 

It has been shown that the elastic-buckling stress for any flat rec­
tangular plate of constant thickness can be computed using equation (26) 
for various loading and boundary conditions. There are also flat plates 
of interest to aeronautical engineers that are neither rectangular nor 
of constant thickness. By suitable choice of the buckling coefficient 
and definition of the plate thickness and proportions it is possible to 
utilize equation (26) to compute the buckling stresses for these plates 
also. 

Axially Compressed Plate With Variable Loading 

and Thickness 

Pines and Gerard investigated the proportions of a simply supported 
flat rectangular plate under varying axial loading to determine an effi­
cient thickness variation for minimum weight (ref. 49). The plate rigid­
ity was assumed to be proportional to the axial load in order to satisfy 
equation (26) at any spanwise station. The load variation along the 
plate was assumed to be produced by shear stresses small enough to have 
negligible influence upon the buckling characteristics of the plate. 
Furthermore, the airloading on a typical wing develops a cover axial 
loading that closely follows an exponential variation that decays from 
the root outboard. This will dictate maximum axial loading on the cover 
at the root, which is depicted as station A in figure 30) in which a 
sketch of the tapered plate is shown together with the loading and plate 
thickness variations that follow as a result of the assumptions made by 
Pines and Gerard. 

Results presented in the form of the buckling coefficient as a func­
tion of alb for various values of the logarithm of the loading ratio 
(Maximum loading/Minimum loading) reveal little increase of buckling 
coefficient until the loading ratio begins to exceed e (the base of 
natural logarithms) (fig. 30) . 
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In cases in which ~ is large, the buckling- coefficient chart 
r eveals that the number of buckles in a panel of predetermined a/b 
may exceed the number of buckles for ~ = 1. 

Axially Compressed Plate With Variable Loading and 

Constant Thickness 

45 

The problem of determining the buckling stress of an axially com­
pressed flat rectangular plate was investigated by Libove, Ferdman, and 
Reusch f or a simply supported plate with constant thickness and a linear 
axial l oad gradient (ref. 50). They plotted the effective buckling­
stress coefficient as a function of the l oading ratio for various values 
of a/b. For the sake of uniformity of presentation, their curves have 
been replotted here in the form of kcav as a function of a/b for 
various values of the loading ratiO, including negative values (tension 
at one edge) as large as -3. These curves appear in figure 31. 

The buckling coefficient kcav applies to the average axial 

l oading on the plate, which is equal to (crA + crB)/2 with crA assumed 
t o be the larger of the two end loads. The average plate load is 

(crA/2) ~ + (l/~ )J. This permit s rapid comparison with the buckling 

stress of a plate with constant axial load, which is the curve for 
~ = 1 in figure 31. 

Long plates will buckle at the end at which the maximum load is 
applied , for which kc is equal to 4. 

Parallelogram Panels in Compression 

Anderson investigated compressive buckling of a flat sheet sub­
divided into panels by nondeflecting supports that form a parallelogram 
gridwork under the sheet (ref. 51). One set of supports (all equally 
spaced) runs longitudinally, and the other runs at an angle ~ to the 
normal , or transverse, direction. The longitudinal spacing of the diag­
onal supports is a, and the transverse spacing of the longitudinal sup­
ports °is b. Buckling coefficients were plotted as functions of a/b . 
for both longitudinal compression and transverse compression for various 
·values of the angle ~ (figs. 32(a) and 32(b)) . In addition, inter­
action curves were provided for combinations of these two loadings in 
the form of buckling-coefficient combinations for various values of ~ 

( fig. 32 ( c ) ) . 
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For large values of a / b the buckling-coefficient curves approach 
t he curves for simply supported rectangular plates under compression. 
The largest ~ for which Anderson provides curves is 600 • For longi­
tudinal loading the angularity of the supports does not appear to influ­
ence k until ~ exceeds 150

. For small values of a/b the influence 
becomes pronounced at values of a/b in the region of unity, with the 
buckling coefficient reaching a value of over 20 for ~ equal to 600 • 

The transverse-buckling coefficient is not so severely affected by 
~ ,since k increases from 4 to 5 as ~ increases from zero to 300 • 

For ~ equal to 600 , k is 9 at a/b = 1. 

Parallelogram Plates 

Wittrick determined the buckling stress of a parallelogram plate 
with clamped edges under the action of uniform compression in one direc­
tion (ref. 52). His work differs from the work of Anderson (ref. 51) 
in that specified rotational boundary conditions are applied to the 
plate in this case. Both Wittrick and Anderson employed the energy 
approach in oblique coordinates to obtain solutions. Results are pre­
sented in the form of cu-~es of the buckling coefficient kc as a func­
tion of a/b. Wittrick presented data for edge angles of 00 (rectangu­
lar plate), 300 , and 450 as shown in figure 33 (a), in which the plate 
geometry is depicted. 

Guest (ref. 53) and Guest and Silberstein (ref. 54) analyzed simply 
supported parallelogram plates under longitudinal compression and, for a 
rhombic plate of 300 edge angle, determined that kc = 5.60. Wittrick 
also analyzed clamped parallelogram plates in shear and obtained the 
results shown in figure 33(b) (ref. 55). Hasegawa analyzed buckling of 
clamped rhombic plates in shear (ref. 56), for which buckling coefficients 
appear in the table below. The general plate geometry of figure 33(b) 
applies to this case. 

8, deg • . 0 15 20 30 35 

ks . . . . 14·7 21.0 26.6 40.0 51.0 

Triangular Plates 

The buckling of triangular plates under various loads and edge sup­
ports was investigated by Woinowsky-Krieger (ref. 57), Klitchieff (ref. 58) , 
Wittrick (refs. 59 to 61 ) , and Cox and Klein (ref. 62 ) . Woinowsky-Krieger 
computed the buckling stress of a simply supported equilateral triangular 
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plate under uniform compression and found kc to equal 5 when the base 
of the triangle is taken equal to b in equation (26 ). Kli tchieff 
investigated the buckling of right- angle isosceles triangular plates 
with pure shear on the orthogonal sides applied so as t o produce com­
pression along the altitude upon the hypotenuse . Wittrick evaluated the 
buckling coefficient for shear applied so as to produce either compres­
sion or tension along the altitude and also included the effects of nor­
mal stresses applied to the equal legs of the triangle. Cox and Klein 
analyzed buckling in isosceles triangles of any vertex angle for normal 
stress alone and for shear alone. 

The buckling coefficients presented in this section are to be used 
in conjunction with equation (26). The geometry of a triangular plate 
is shown in figure 34. The data of Cox and Klein appear in figure 34(a) 
for uniform compression and in figure 34(b) for shear along the equal 
l egs. Both simply supported and clamped edges were considered. The 
results of Cox and Klein agree with the data of Wittrick for right-angle 
i sosceles triangular plat es, which appear in table 6. The shear buckling 
coefficients ks+ and ks_ refer to pure shear loadings which produce 

tension and compression, respectively, along the altitude upon the hypote­
nuse of the triangle. 

For shear and normal stress on a right-angle isosceles plate the 
interaction equation 

Research DiviSion, College of Engineering, 
New York University, 

New York, N. Y., October 29, 1954. 

1 (61) 
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APPENDIX A 

APPLICATION SECTION 

Introduction 

Procedures for the computation of the elastic and plastic buckling 
stresses of flat plates based on general plate-buckling equation (1) are 
summarized in this section. The factors appearing in this equation are 
briefly discussed and charts are presented from which numerical values 
of these factors may be obtained. 

The elementary loadings such as compression, shear, and bending 
frequently are considered in preliminary design by using the buckling 
coefficients for the limiting cases (infinite values of alb, clamping 
or hinging of the plate edges, and so forth). For convenience table 7 
has been compiled containing the values of the buckling coefficients 
that pertain to some of these limiting cases, while figure 14 displays 
the curves for kc as a function of alb for different combinations 

of limiting edge conditions. 

Physical Properties of Materials 

The buckling stress of a flat plate is determined when the loading, 
plate geometry, and material are specified. The loading dictates the 
particular chart to be used to find the buckling coefficient k, and the 
plate alb and edge restraint locate the numerical value of k to be 
found from that chart. For an unclad plate (~ = 1) which buckles elas­
tically (~ = 1), crcr can be found directly from equation (1) if E is 

known. The effects of cladding and plasticity depend upon the type of 
loading and the stress level and therefore require a more detailed knowl­
edge of the stress-strain characteristics of the material. 

The three-parameter description of stress-strain data can be used 
as a convenient generalized approach in buckling problems. With this 
method figure 3 can be employed to find the shape factor n. Since E, 
crO.7' and n can be readily determined (see table 8 for average values 
of n), nondimensional curves are available from figure 4. It is to be 
noted that, in many cases, plastic-buckling charts have been prepared 
from which the plastic-buckling stress may be determined if one knows 
E, crO.7' and n. 
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Table 9 contains the old and new designations for wrought aluminum 
alloys . The new designations are used throughout this report and the 
table is included for use with the various references. Characteristics 
of the cladding used on several structural aluminum alloys are shown in 
table 4. 

Poisson ' s ratio beyond the proportional limit can be calculated 
using vpl = 0.5 in the expression 

Frequently buckling stresses are computed using the equation 

(Al) 

(A2) 

where K = ~2/12(1 - v2). 
tion of v in figure 35. 

The expression K/k can be found as a func -

Compressive Buckling 

Plates.- For plates, kc appears in figure 16 in terms of alb 
and E and in figure 15 in terms of Alb and E. For an infinitely 
long plate, kc may be found from figure 17 in terms of E alone. 
When E is not the same for both unloaded edges, t he geometric mean 
of the kc values for each edge may be used (eq. (49)). 

The plasticity-reduction factor for a long plate with simply sup­
ported edges is 

while for a long clamped plate 

Inelastic plate-buckling stresses may be calculated using the nondimen­
sional chart of figure 9. 

/ 
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The cladding reduction factor for crcl < crcr < crpl is approximately 

given by equation (42) : 

1 + 3§f 
1 + 3f 

(42) 

For crcr > dpl' as an adequate approximation, equation (40) holds true: 

~= ~1 ~ ___ (_3f_Es_/E_S)_~ _+~{~~_+_(_3f_ES_/E_S)_~ _~1_/_4)_+_(_3/_4)_~_/_Es_)_+_1~} __ 1/2 

1 + 3f 1 + t1/4) + (3/4) (Et!EsTI 1/2 
(40) 

The effect of lateral restraint in reducing kc may be determined 
from figure 21 for values of Ar/at, and the effects of thickness taper 
and axial load variation may be calculated with the aid of figures 30 
and 31. 

The gain in buckling stress with obliquity of the loaded edges is 
shown in figure 33(a) for clamped parallelogram plates, while figure 32 
depicts buckling coefficients for large sheets divided into parallelogram 
panels by nondeflecting supports. For data on triangular plates, fig­
ure 34(a) may be used to find kc. 

The variation in kc with bit for stiffened plates with torsionally 
weak or strong edge stiffeners appears in figure 18. Because of the sparse 
data available, no recommendation can be made concerning the effect of nor­
mal pressure upon buckling. 

Flanges .- For flanges, kc may be found in figure 20 as a function 
of a/b and E and i n figure 19 as a function of Alb and E for 
v = 0 .3. For an infinitely long flange, figure 17 contains kc as a 
function of E alone. The effect of varying v appears in figure 2. 

The plasticity- reduction factor for a long hinged flange is 

(A5) 

For a long clamped flange, 

11 (A6) 

- -- - ----- ----~ 
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For the former case the nondimensional buckling chart of figure 8 may be 
used, while that of figure 9 may be used for the latter case with littl e 
error. 

For flange cladding reduction factors when crcr > crpl' it may be 

permissible to use equation (40). Although this factor was not computed 
in the section entitled "Cladding Reduction Factors," it appears to be 
reasonable by comparison with the factors for plates and columns. 

Plate columns.- For plate columns, the buckling stress may be deter­
mined using figure 2(a). 

For a short plate column (Lib < 1) the plasticity-reduction factor 
is 

For a square plate column (Lib = 1), 

(A8) 

For a long plate column (Lib> 1), the plasticity-reduction factor 
is 

The cladding reduction factor for short plate columns in which 
crcl < crcr < crpl is 

(A9 ) 

(AlO) 

and when crcr > crpl equation (40) holds true which is also applicable . 

to l ong plat e columns a t all s t ress levels above crcl " 

Shear Buckling 

The shear -buckling- stress coefficient as a function of a l b is 
shown i n figure 22 fo r cl amped and hinged plate edges. For long plates, 

/ 

I 

~ 
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which ouckle i n the symmet ric mode, figure 24 may De used to find ks 
as a function of A/b and E. For plates of finite length the procedure 
of the section entitled "Buckling of Flat Rectangular Plates Under Shear 
Loads" may De used in conjunction with figures 22 and 23 . 

The plasticity-reduction factor for long plates in shear is given 
· by equation (A5) . Inelas t ic shear-buckling stresses may be calculated 
with the aid of the nondimensional chart of figure 10. 

The cladding reduction factor for crcl < crcr < crpl is given by 

equation (42), and for crcr > crpl equation (40) holds true. 

For clamped oblique plates figure 32(0) may be used to find ks 

when the plate edge angle is 450 . For triangular-plate shear-buckling 
coefficients figure 34(b) may De used. In addition, the section 
entitled "Special Cases" should be consulted. 

Bending Buckling 

The bending-buckling coefficient appears in figure 26 as a function 
of a/b and E and in figure 25 as a function of A/b. The plasticity­
reduction factor for a simply supported plate is the same as for a hinged 
flange. Little error should be expected in using elastically restrained 
flange plasticity-reduction factors for elastically restrained plates in 
bending. For these cases the plastic-buckling chart of figure 9 may De 
used to find crcr ' which is the maximum compressive stress on the plate 

section. In order to find the corresponding moment it is necessary to 
integrate the stress distribution, for which purpose the curves of fig­
ure 9 may De used. 

Combined Loading 

Interaction equations for various combinations of compression, shear, 
and oending appear in table 5. These expressions are presented in graphi­
cal form i n figures 27 and 28 for elastic Duckling. For longitud.inal com­
pres s ion and shear on a long rectangular plate, with both applied stresses 
in the inelastic range, e quation (60) holds true: 

(60) 

The plasticity-reduction factor for a simply supported plate in com­
bined compr~ssion and axial load varies between that for a hinged flange 
and that for a simply suppor t ed plate under axial compression , depending 
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upon t he ratio of bending stress to axial stress. The value of ~ for 
this case is s hown in equation (34 ) : 

Actually, utilization of the plastic-buckling chart of figure 9 for all 
cases of combined bending and axial load to find <1cr (after which the 
plate loading may be found by integrating the cross-section stress dis ­
tribution) should give conservative results. 

On right-angle isosceles triangular plates loaded under shear and 
compression as shown in the sketches in figures 34(a) and 34(b), equa­
tion (61) applies: 

Tcr_ 
+ ~(l - u2 ) = 1 

<1cr 
(61) 

Table 6 contains numerical values of kc and ks for diff erent types 
of plate edge supports . 
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TABLE 1.- ASSUMPTIONS OF INELASTIC-BUCKLING THEORIES 

Investigator Stress-strain law Plasticity law 

Bijlaard Incremental and defor- Octahedral shear 
(ref. 18) mation types, 

v instantaneous 

Handelman-Prager Incremental type, Octahedral shear 
(ref . 19) v instantaneous 

Ilyushin Deformation type , Octahedral shear 
(ref. 20) v = 0.5 

Stowell (refs. 5 Deformation type, Octahedral shear 
and 34) v = 0.5 

'-------- - -- - ---- ----- ---- - - ----

Buckling model 

No strain reversal 

Strain reversal 

Strain reversal 

No strain reversal 

----

~ 
~ 

~ 
\..N 
--..:J co ...... 

V1 
\0 
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TABLE 2. - PL.A.STICITY -REDUCTION FACTORS 

Loading Structure fljj 

Compression Long flange, one unloaded 1 edge simply supported 

Long flange, one unloaded 
0·330 + 0.335f + (3Et/Es)] 1/2 edge clamped 

Long plate, both unloaded 
0.500 + 0.250~ + (3Et/Es)] 1/2 edges simply supported 

Long plate, both unloaded 
0.352 + 0.324 ~ + (3Et/Es~ 1/2 

edges clamped 

/ 

Short plate loaded as a 
o. 250 ~ + (3Et/Es ~ column (L/b« 1) 

Square plate loaded as a 
0.114 + 0.886 (Et/Es) cohoon (L/b = 1 ) 

Long column (L/b» 1) Et/Es 

Shear Rectangular plate, all edges 0 .83 + 0 .17 (Et/Es) elastically restrained 

--------- - - - -
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TABLE 3. - SUMMARY OF SIMPLIFIED CLADDING REDUCTION FACTORS 

Loading O'cl < (Jcr < O'pl crcr > O'pl 

1 + (3~f/4) 1 Short plate columns 
1 + 3f 1 + 3f 

Long plate columns 
1 1 

1 + 3f 1 + 3f 

Compression and 1 + 3~f 1 
shear panels 1 + 3f 1 + 3f 

TABLE 4. - CLADDING MA.TERIAL AND THICKNESS FOR ALCLAD PLATES 

@ata taken from reference 6g 

Material Cladding Total plate Total cladding 
designation material thickness, in . thickness, f, in. 

Alclad 2014 6053 <0.040 0 . 20 
~.040 .10 

Alclad 2024 1230 <0.064 0 .10 
~.064 .05 

Al cl ad 7075 7072 All thicknesses 0.08 
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TABLE 5. - COMBINED LOADING CONDITIONS FOR WHICH TIJ"TERACTION CURVES EXIST 

Theory Loading combination Interaction equation Figure 

Biaxial compression For plates that buckle in 28 
square waves, Rx + Ry = 1 

Longitudinal com- For long plates, Rc + Rs2 = 1 27 
pression and shear 

Longitudinal com- None 28 
pression and bending 

Elastic 
Bending and shear Rb2 + Rs2 = 1 27 

Bending, shear, and None 27 
transverse compression 

Longitudinal compression None 28 
and bending and trans-
verse compression 

Inelastic Longitudinal compression R 2 + R 2 c s = 1 29 
and shear 
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TABLE 6. - BUCKLING COEFFICIENTS FOR RIGHT-ANGLE I SOSCELES TRIANGULAR 

PLATES LOADED nIDEPENDENTLY IN UNIFORM COMPRESSION, 

POSITIVE SHEAR, AND NIDATIVE SHEAR 

Edge supports 
kc ks+ ks_ (a) 

All edges simply 10 .0 62 .0 23·2 
support ed 

Sides simply supported, 15.6 70.8 34 .0 
hypotenuse clamped 

Sides clamped, hypot- 18.8 80.0 44.0 
enuse simply supported 

aEypotenuse = b in figure 34. 
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TABLE 7. - BUCKLING COEFFI CIENTS FOR INFINITELY LONG PLATES 

UNDER VARIOUS TYPES OF LOADS 

Loading Edge support Coef ficient 

Con:rpres sion SS on a l l edges kc = 4.0 1 
Yl ~ ~ + + 

NACA Rep . 733 
C on all edges kc = 6 .98f (ref. 29) 

I SS on y = 0, Y = a, x = 0 

a I--b- F on x = b kc = 
0 .

43
1 L X C on Y = 0, y = a, x = 0 

NACA Rep. 734 

t 1 t t ,-
(ref. 8) 

F on x = b kc = 1.28 

Shear 

-- SS on a l l edges ks 5 .35 NACA TN 1222 
~ 1 = 

(ref. 35) 

~ , 
C on all edges ks = 8 . 98 NACA TN 1223 

~ 1 (ref . 43) 

~ 1 ---

Bending 

~ 
SS on all edges kb = 23.9}NACA TN 1323 
C on all edges kb = 41.8 (ref . 37) 

~ 
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TABLE 8 . - VALUES OF SHAPE PARAMETER n FOR SEVERAL ENGINEERING MATERIALS 

~ata taken from reference 63J 

n Material 

3 One-fourth hard to full hard 18-8 stainless steel, with grain 
, 

One-fourth hard 18-8 stainless steel, cross grain 

5 One-half hard and three-fourths hard 18-8 stainless steel, 
cross grain 

f 

Full hard 18-8 stainless steel, cross grain 
10 2024-T and 7075-T aluminum-alloy sheet and extrusion 

2024R-T aluminum-alloy sheet 

2024-T80, 2024-T81, and 2024-T86 aluminum-alloy sheet 
20 to 25 2024-T aluminum-alloy extrusions 

SAE 4130 steel heat-treated up to 100,000 psi ultimate stress 

35 t o 50 2014-T aluminum-alloy extrusions 
SAE 4130 steel heat-treated above 125,000 psi ultimate stress 

00 SAE 1025 (mild) steel 
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TABLE 9. - DESIGNATIONS FOR WROUGHT ALUMllruM ALLOYS 

Old New 

14s, R301 2014 
17S 2017 
24s 2024 
61S 6061 
75S 7075 
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COLUMN Mo-_CT 

BUCKLED FORM, 

ORIGINAL tAT STRIP 

FLANGE 

Figure 1 .- Transition from column to plate as suppor ts are added along 
unloaded edges . Note changes in buckle configurations . 

/ 

~ 
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a/b 

(a) Loading in x-direction. 
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(b) Loading in y-direction. 

Figure 32.- Compressive-buckling coefficients for flat sheet on non­
deflecting supports divided into parallelogram-shaped panels. All 

·panel sides are e~ual. 
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/0 12 

(c) Combined axial and transverse loading. 

Figure 32.- Concluded. 
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(a) Compressive loading. 
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(b) Shear loading. 

Figure 33.- Buckling coefficient of clamped oblique flat plates. 
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