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A THEORETICAL ANALYSIS OF HEAT TRANSFER

IN REGIONS OF SEPARATED FLOW

By Dean R. Chapman

SUMMARY

The flow field analyzed consists of a thin_ constant pressure,

viscous mixing layer separated from a solid surface by an enclosed region

of low-velocity air ("dead air"). The law of conservation of energy is

employed to relate calculated conditions within the separated mixing

layer to the rate of heat transfer at the solid surface. This physical

model is applied to laminar separations in compressible flow for various

Prandtl numbers, including consideration of the case where air is injected

into the separated region. Application to turbulent separations is made

for a Prandtl number of unity in low-speed flow without injection. All

calculations are for the case of zero boundary-layer thickness at the

position of separation.

For laminar separations the differential equations for viscous flow

at arbitrary Mach number are solved for the enthalpy and velocity profiles

within the thin layer where mixing with dead air takes place. Results

are presented in tabular form for Prandtl numbers between 0.i and i0.
The rate of heat transfer to a separated laminar region in air (Pr = 0.72)

is calculated to be 0.56 of that to a corresponding attached laminar

boundary layer having the same constant pressure. Injection of gas into

the separated region is calculated to have a powerful effect in reducing

the rate of heat transfer to the wall. It is calculated that a moderate

quantity of gas injection reduces to zero the heat transfer in a laminar

separated flow. •

INTRODUCTION

Separated laminar layers (sometimes called "free layers") have long

been known to be quite unstable in subsonic flow. A rule of thumb based

on experiments of von Doenhoff (ref. i) is that a separated laminar layer

in subsonic flow will remain laminar downstream of separation only for a

run of about 50,000 in Reynolds number (based on length along separated

layer),_ after which transition occurs. Because of this low stability
relative to attached laminar flows (which remain laminar to Reynolds num-

bers the order of 106), the special type of separated flow wherein a

viscous layer remains laminar not only downstream of separation but also
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for a short distance downstreamof reattachment has occurred only rather
rarely in the past. As a result, the "pure laminar" type of separated
flow, which is the main subject for analysis in this report, formerly has
been regarded primarily as a laboratory curiosity rather than a practical
phenomenon°

Someinterest recently has been stimulated in the pure laminar type
of separated flow, inasmdch as free laminar layers appear to be surpris-
ingly stable at hypersonic Machnumbers. It was observed in reference 2
that the stability of separated laminar layers increases markedly with an
increase in Machnumberuntil, at Machnumbersnear 4, they can become
for certain configurations almost as stable as an attached laminar bound-
ary layer (laminar to about i million Reynolds number). This strong
increase in stability makes separated laminar flows of practical interest,
especially at hypersonic Machnumbers. The actual extent of _this pract i-
cality, however, is not knownat present inasmuch as the available data
are meagerabove Machnumbers of about 4. The effect of cold-wall condi-
tions on the stability of separated laminar flows is not known_nor is
the effect of gas injection on stability known.

In view of the trend of increasing stability with increasing Mach
numbers, it is pertinent to inquire into the heat-transfer characteristics
of separated flows. It might beexpected intuitively that the rate of
heat transfer from a region of separated laminar flow would be smaller
than that from a comparable attached laminar boundary layer. This expec-
tation, in fact, led Stalder and Nielsen (ref. 3) to conduct experiments
with separated flow induced by a probe in front of a blunt-nosed object.
Instead of finding a lower heat-transfer rate when separation was induced,
they observed a doubling in the heat-transfer rate. In retrospect, how-
ever_ it has been concluded from a detailed examination of their original
shadowgraphsthat the separated flow induced by the probe was of the
"transitional" type (transition between separation and reattachment),
whereas the attached flow to which they madecomparison was that of a
completely laminar boundary layer. They compareda partly turbulent
separated flow with a fully laminar attached flow. Hence, the question
remains open as to whether a pure laminar separated flow has a higher or
lower rate of heat transfer than a comparable attached laminar flow.

The main object of the present paper is to compareby meansof theo-
retical calculation the heat-transfer rate in a separated laminar region
with that of a corresponding attached laminar boundary layer. Secondary
objectives are to consider the case of gas injection, and to apply the
theoretical ideas also to turbulent separation. In a previous paper
(ref. 4), the velocity profiles within a separated laminar mixing layer
were calculatedunder the assumption that the specific heat was constant.
In the present paper, calculations are madeof the enthalpy profiles as
well as the rate of heat transfer. The theory of referenqe 4 is extended
to include the case where the specific heat is a function of temperature,
since this case correspondsto conditions encountered in hypersonic
flight.
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width of two-dimensional flow
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mass flux (density × velocity X area)

Mach number

static pressure

total heat flux to wall between separation and reattachment points

Qw
average heat flux to wall per unit area,

surface area

recovery factor based on enthalpy (see eq. (42))

radius of base of cone

Reynolds number based on conditions at outer edge of mixing layer

and on length

gas constant

Prandtl number

_static temperature

local velocity components in x and y directions_ respectively
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x,y

P

V
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q

ql,q2

a

d

e

int

i

O
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b_

coordinates parallel and perpendicular, respectively, to direction

of flow along dividing streamline (@ = 0) within mixing layer

mass density

viscosity

stre,_n function defined by equation (4)

kinematic viscosity,

coefficient of heat conductivity

ratio of specific heats

dimensionless mass-flow variable defined by equation (i0)

function defined by equation (15)

functions defined by equation (32)

Subscripts

active degrees of freedom of molecule (translational and rotational)

dead-air region

outer edge of viscous layer

internal degrees of freedom within molecule

injected mass flow into separated region _-

dividing stream line_

total conditions

wall

dimensionless quantities defined by equation (7)

boundary layer

Superscript

' ordinary differentiation
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ANALYSIS

Physical Model

The type of separated flow analyzed is depicted schematically in
figure 1. The pressure is regarded as essentially constant over the
length Z of the two-dimensional laminar mixing layer. Also, in accord-
ance with the theoretical description advanced in reference 2, the region
of recompression through the reattachment zone is assumedto be of small
dimensions comparedto Z. This physical picture yields results consist-
ent with the experiments of reference 2, in the sense that the dead-air
pressure calculated according to such a physical picture agrees well with
measurementsfor the case when reattachment occurs on an inclined plate.
This establishes someconfidence in the mechanismpostulated, at least as
a reasonable approximation.

The differential equations of momentum,continuity, and energy for
viscous flow within the relatively thin, constant-pressure, laminar
mixing layer are as follows:

pU-_x + pv -- = --- _y _y
(l)

+ aP-le != o (2)
_x _y

g)pu 8__h+ pv 8-_h= _ 8h + _Syj8x , 5y _y
(3)

The conditions at the outer edge ofthe mixing layer provide two

boundary conditions: u(x,_) = ue and h(x,_) = he, where Ue and he are

constants since the pressure is constant. The condition that dead air

borders the low-velocity portion of the mixing layer p_ovides two more

boundary conditions: u(x,-_) = 0 and h(x,-_) = hw. These latter two

boundary conditions require some explanation since the mixing layer

cannot extend to -_ due to the presence of the wall. Actually_ the use

of -_ in the boundary conditions means that the mixing-layer character-

istics are determined as though the wall were an infinite distance away.

It is assumed, in effect, then, that the presence of the wall distorts

the mixing-layer profiles only to a minor degree in the region where the

velocity is low. This will be a good assumption if the dimensions of

the dead-air region are large compared to the mixing'layer thickness.

z
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The above system of differential equations and boundary conditions

is to be solved subject to the following additional assumptions:

(i) Pr = constant

(ii) p =

(iii) _l_e : cml_e

(iv) mixing-layer thickness at separation is 0 (or negligible

compared to _)

Assumption (i) is a common one. Assumption (ii), taken together with

thermodynamics theory, implies that the enthalpy is a function of tempera-

ture only. This allows the specific heat Cp to vary with-the tempera-
ture as would be the case in hypersonic flight. Assumption (iii)_

introduced in reference 4, involves a constant C which is selected so

that _re___f= CTref. If Tre f is selected as the wall temperature, and

_e Te _T_if Sutherland's equation for viscosity is employed, then C = Tw Te + S.
- Tw + S

Assumption (iv) is made to simplify the n_thematical computations, since

it implies that the profiles of velocity and enthalpy are similar at every

station within the thin mixing layer. Brief discussion is presented later

of how the analysis would be modified to consider the case of finite thick-

ness of boundary layer at separation.

Transformation of Equations

The solution of equations (i) to (3) proceeds exactly the same as in

references 4 and 5 by slightly modifying the yon Mises transformation

(ref. 6) as generalized to compressible flow by yon Y_rm_n and Tsien

(ref. 7)- The first step is to employ the stream function _ as an

independent variable, where

(4)
pu = Pe _yy pv = -Pe _)x

since this variable automatically satisfies the continuity equation (2).

Transformation is made to (x.,_.) coordinates through the transformation

formulae

(_y_x = P_U<_-_xPe

(6)



NACA TN 3792 _ 7

The following dimensionless variables are introduced:

u. E u/u e h. m h/h e

x@ m xl_ @. m _l_eue_C (7)

_.- _l_e _._ _l_e = cmlme = cm.

When substituted into equations (i) and (3), the transformation formulae

and dimensionless variables yield two basic equations

(8)

• (9)

It is noted that neither the Mach number nor the ratio of specific heats

7 appears in these equations. 0nly the ratio Ue2/he appears. In the

special case where Te is low enough (less than about 700 ° R for air)

so that no vibrational energy is excited within molecules, then

Ue2/he = (7e - 1)Me a. In the following, however, the form containing

Ue2/he is retained throughout.

A relatively simple solution of equations (8) and (9) is made pos-

sible since the momentum equation (eq. (8)) is independent of the energy

equation (eq. (9))- The energy equation, however, is not independent of

the momentum equation and; hence_ the momentum equation must be solved

first.

Solution of Momentum Equation

A solution of the momentum equation already has been obtained in

reference 4. This solution corresponds to similar velocity profiles at

each station along the mixing layer. The solution of reference 4 is

given in terms of a single variable

- ,i,./d-x-;. (lO)

which reduces equation (8) to the ordinary differential equation

du. : c_(" du._ (ll )
2 d_ d_ k.-* d_ J



8 NACA TN 3792

Solution of this nonlinear differential equation_ subject to the boundary

conditions u.(_) = i and u.(-_) = O, was obtained through the numerical

procedure described in reference 4. The function u.(_) is tabulated in

table I.

A relation between _ and the geometric coordinates (x,y) is

required later in order to convert the u.(_) function into physical

velocity profiles u.(x_y). The appropriate relationship is derived

from the stream-function differential

p._u.udy - p__v dx = d_ = /" \_I(,--_.[]d_ + /\_I_-) dx

Pe Pe \0_/x \Ox/E

by considering a fixed value of x

pu dy : Pe_ _* dE : peJVeUeXCdE
oh

(12)

andthen integrating

y_ /Ue 1 f'E dE _o E dE
(13)

It is seen that even though the momentum equation is completely solved' by

the function u.(_), actual velocity profiles cannot be calculated until

the temperature function T.(_) is calculated_ as this function together

with the u.(_) function determines the relation between _ and y.

The variable E is clearly a dimensionless mass-flow variable

(see eq. (12)). Inasmuch as the mass flux m drawn out from the dead

air by the scavenging action of the mixing layer up to station x must

be finite_

o m f_=opu dy = _ = _PeUe_eXC d_ = finite

-_ _:_d

= - _dJPeUePexC (14)

where _'d is the value of _ at u. = O. Table I shows that _d =-1.233o

i[:. " s ins_ _:.i.ve, though not necessary to subsequent analysis_to

digz'e_ ._m_,o:,:_,.:. in order i:o illustrate the relation between the



2H 9NACA TN 3792

mass-flow variable _ and the more familiar Blasius variable q

where

i I _ d_
o

(15)

If a function f(B) is employed as the dependent variable instead of the

function u.(_), a different differential equation is obtained in place

of equation (ll). By setting

f(u) _-_ (16)

so that

i f'(u) i d_ (17)
= 2 dq - u.

the differentialequation becomes

f'"+ ff" = o (i8)

which is the familiar Blasius equation for incompressible, viscous3

laminar flow over a flat plate. The boundary conditions to which equa-

tion (18) is subjected, however, are not the same as the familiar Blasius

boundary conditions.• The boundary conditions for a separated laminar

mixing layer are

f,(-): 2 f(o): o f,(--)--o

The third of these boundary conditions differs from the corresponding

boundary conditions in Blasius' problem, which would be f'(O) = 0. The

relation between the function f(_) and the function u.(_) is given by

equations (16), (17), and the relationship f"(B) : 4u.du./d_.

Solution of Energy Equation

Inasmuch as the variable _ is pertinent to the solution of the

momentum equation, th e •energy equation (9) also is transformed to (_,x.)

coordinates.
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(19)

This equation will be solved subject to the boundary condition

h(-_) m hw = constant, which implies that the temperature of the dead air

is constant just before it is drawn into the mixing layer. It is not

known whethera constant temperature of this dead air can be realized in

practice, inasmuch as appropriate experiments have not yet been conducted.

The case hw = constant, though, is relatively simple since theterm

involving 8/8x. can be dropped from equation (19). If subsequent experi-

ments show a variable "wall" enthalpy hw to be essential, then equa-

tion (19) with the 8/8x. term included would have to be solved in a

manner analogous to the solution of reference 5. In the present analysis,

however, it is assumed that 8h./8x. = O, so that

 .u.h ,.,e (20)

This is a linear, second-order, ordinary differential equation, and is

amenable to general solution. By noting from equation (ll) that

u.u." + (u.') a + _u.'/2 _ 0, the general solution to equation (20) can
be written as

h.(_) 1 + Cj._ (b-u.u.') Pr d_2u.
Pr,._# (b-u.u.,)_ a(_;) &--.-j.

b.h e
(21)

where C l is an arbitrary constant to be evaluated from boundary condi-

tions, and where

_ , )___ d_a(_;) -= (b-u.u., _-..-._
0

(22)

Actually, the lower limit could, with equal generality, be an arbitrary

number; zero is a convenient limit for reasons which will later appear.

For convenience, the following two functions are introduced which will

appear often in subsequent equations:

FI(_) m f (ll'u*u*')Pr 2u.d"_

F2(_) -= (b-u.u.') G(_) _-

(23)
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The constant CI can now be written as

hw Ue a

- i - _ee;_(_d)

Prandtlwhere Fl(_d) and Fe(_d) depend only on the number. Their values

have been calculated from equations (23) and the known solution for u.(_)

as follows:

0.i ii.73 -0.2o2

•25 5.61 -.19_

•5 3.40 - .176

•72 2.58 -.17_

1.0 2.00 - .173

1.5 1.425 -.17_

2.0 1.089 -.176

[0.o .079 -.2o4

The solution for enthalpy distribution becomes:

h =l+ w
h. =--he - gl(_) + _ ge(_)

where the normalized functions gl(_) and ge(_) are defined as

(25)

g1(_)- FI(_)/F_(_d)

g2(_)m F2(_) _ gl(_)Fa(_d)
(26)

in order to have the following boundary values

g_(-): o

g2(-): o

The functions gl(_) and g2(_) have been calculated from equations (23)

and (26) using the numerical solution for u.(_). These functions have

been determined for Prandtl numbers of O.1, 0.25, 0.5, 0.72, 1.O, 1.5_

2.0, an d lO.O. Results are presented in table II. This table enables

the enthalpy distribution to be calculated readily as _ function of _.

The Pr range of interest for gas flows is between about 0.25 and 1.0;

the other values would correspond to liquids (when the density is constant
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the present solution corresponds to the assumption of "constant
properties").

For the special case of Pr = i, equations (26) reduce merely to

(gl)Pr=1 = i - u. (g2)Pr=z = u.(l - u.)

Equation (25) reduces to

(h*)pr=l = i + _e " I)(i- u.)+ Ue--_22heu.(l - u.)

u _ hw 1 - Ue2_ - Uea (27)hw
: _e - *khe - 2he/ u*e 2h--_

which is the well-known Crocco integral for viscous flow of a gas _JLth

Prandtl number of unity.

Velocity, Enthalpy, and Temperature Profiles

in Physical Coordinates

As noted previously, the relation between _ and y is determined

by the equation

2JVeXc
o

(13)

This equation involves

tial equation involves

the equation of state

T._ whereas the solution to the energy differen-

h.. The h(T) relationship for any gas obeying

p = pRT is

h : cpaT + hin t (28)

T

where hintm/" CPintdT is the enthalpy for internal motion within the

vo

molecules, CPa = YaR/(Ya - l) is the constant specific heat for the active

degrees of freedom (translation and rotation), and Cpint is the

temperature-dependent specific-heat contribution for the internal degrees

of freedom (vibration and electronic excitation). A diatomic gas, or a

gas with linear molecules, corresponds to Ya = 7/5; a pclyatomic gas

corresponds to Ya = 4/3. The total specific heat Cp is obtained by

differentiating equation (28).
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7a

Cp =_R +
7a- i CPint

7a

Ya_i R + _CPvib + CPelec) (29)

For a given gas, hin t is a known function of T, which, in turn, is a

known function of h. The hint(T ) relationship is different for each

gas having internal energy within a molecule. In terms-of the function

(hint_ m hint/h e the dimensionless temperature can be expressed as

T. _ _ee CpaT e

(30)

which can be combined with equations (13) and (15) to yield

y_TUe (Ta-1) he If _ d_ f_ d_ ]
24VexC = 7: _e h. _ - (h.) int

0 0

(Ya-1)he [_ + (h_ -l)_l + Ue2"__a f_(h*)int _]d_
YaRTe o

(31)

where the Prandtl number independent function q(_) is the same as pre-

viously defined by equation (15) (tabulated in table I), and the supple-

mentary Prandtl number dependent functions _l(_ ) and _m(_) are defined

by the equations

=
0

(32)

¢ d¢
2u.

0 3

Values of _l and me are tabulated in table III. Equation (31) enables
the velocity and enthalpy profiles in _ coordinates to be converted

into the (x_y) physical coordinates. The enthalpy profiles together with

the h(T) function for a given gas enable the temperature profile to be

determined. The velocity and temperature profiles, of course, determine

the Mach number profiles.
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For the special case of gases having a constant specific heat (which
would be the case of gases having no vibration within molecules, or of
gases over the special temperature range where the vibrational energy is
fully excited) the equations relating y and _ simplify considerably.
The integral term in equation (31) vanishes since hin t is O. Moreover_
h = [7/(7 - 1)]RT for this special case. Consequently

and the Machnumber profile is determined by

(33)

u. = Meu . (34)

+ - gl + _ Meaga

The total enthalpy profile

Ue 2

h t = h. + _ u. 2

me 2
hte 1 +2h--j

becomes for this special case

(_e - l) 7®1
i + Tw gl+--_e 2(u.2 + g2)

Tt ht 2
(35)

Tte hte 7 - 1

1 +-7- Me2

Heat Transfer and Recovery Factor at Wall

Inasmuch as the solution to the differential equations of viscous

flow pertain to the motion only within the thin mixing layerj which is

located a considerable distance from the wall surface, it is necessary

to relate the rate of heat transfer at the wall to the properties of the

mixing layer. This is done by means_of the law of energy conservation.
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Within any closed control surface A, the conservation of energy requires
that

heat
input

across A

increase in + work done + work done
internal by gas by gas
energy through through
and normal tangential

kinetic pressures stresses
energy on A on A

\.

The work contribution of tangential stresses often is not considered

in integral formulations of the energy conservation law, but it must be

"included here because of the type of contour selected subsequently. For

steady flow, the energy law can be converted to the form

ffh 8T_n dA =ff( e + _) PVndA +ffPVndA +ffTVt dA

A A A A

where the various symbols are:

(36)

n coordinate normal to the surface A (positive if directed outward)

h coefficient of heat conduction (Cp_/Pr)

e internal energy per unit mass (h - p/p)

Vn velocity component normal to A (positive if directed outward)

vt

T

velocity component tangential to A (positive if shear

stress represents work done by gas within A)

shear stress tangential to A (I_ 8u/Syl)

Along a streamline Vn is 0, and along a wall Vt is O; hence by

applying this conservation theorem to the closed contour formed by the

dividing streamline SR (designated by subscript o, as sketched in

fig. i) together with the wall boundary RS, there results

b 8T dx - Qw = 0 + 0 + b (-uo)dx (36a)

O

where b is the width of the two-dimensional flow, and where Qw is

the rate of heat addition to the wall (-Qw is the rate-of heat addition

to the gas). The tangential velocity u o has a negative sign prefixed

inasmuch as the shear stress w does work on the gas. By solving
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for Qw, substituting k = Cp_/Pr, and employing [ as an independent

variable, there results

According to equation (22), G(0) = O, hence differentiation of equa-

tion (21) yields

ah_,___ CI (4u*°u*°')Pr= - (38)

2u. o

Also, from equation (12)

(_j)o = PoU° (39)
PeV,_eu_xC

so that the integrals in equation (37) become (since p._. = C = p.o_.o )

[ (4u*°u*°')PrQW = hejpeUe_eZ c _C z
b Pr Ue2 ]+ 2 U.o U.o' (4o)

This is a relatively simple equation inasmuch as U.o (_ Uo/Ue) and
I

U.o (_ du./d_ at _ = 0) are constants independeht of Pr, having the

values 0.587 and 0.341, respectively.

Under adiabatic conditions at the wall Qw = 0_ and the value of the

enthalpy at the wall is haw, so that by substituting C I from equa-

tion (24) into equation (40)

2, F1([d) ]
Ue2 [ 4Pru*o U*o

haw * - ha--_w= i +- [F2(_ d) + _---
he 2he (4U.oU.o,) Pr

(4l)

from which it is clear that the recovery factor r is as follows:

haw.- he haw - he

(u,_2/2 _ ht - he

4Pru_JU.o'-
r = Fa(_d) + _--- Fz(_d) (42)

(_U.oU.o')Pr
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The dimensionless_ average, heat-transfer rate per unit area

becomes

PeUe(haw -h w)

/_-- (4U.oU.o,)Pr

=-Qw/bZ

(43)

Numerical computations of r from equation (42) are tabulated in

column (a) of table IV. Values of qw _ computed from

PeUe (haw - h_)

equation (43) are tabulated in column (c) of table IV.

Heat Transfer When Gas Is Injected

Into Separated Region

It is surprisingly easy to generalize the preceding analysis in

order to consider conditions where gas is injected into the dead-air

region. When a mass flow m i is injected, there no longer is an equality

between the mass flux drawn out along the mixing layer and the mass flux

reversed near the reattachment zone. Instead, in a steady flow, the same

amount of mass flow m i as is injected into the dead-air region also

would pass downstream near reattachment between the dividing streamline

and some streamline displaced at a distance Yi below the dividing
streamline.

S

¥i

mi

As indicated in the sketch, where only those streamlines below the dividing

streamline are drawn, the mass-flow parameter corresponding to the par-

ticular streamline displaced a distance Yi from the dividing streamline

is designated as _i" The equation for the balance between mass flow

injected (near B) and mass flow escaping (near R) is

mi _
b pudy= JPeUe_eZC dE = -_iJpeUe_e_C (44)
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The law of conservation of energy for the contour RBSAR in the sketch
is (see eq. (36))

b_o _)o _o _udy+ ZZZ (h 8T dx - Qw himi + b (h+ 2") b <_ _)o(-Uo)dX
O

which becomes, after dimensionless variables are introduced and the

assumption is made that the enthalpy of the injected gas (hi ) is a con-

stant equal to the enthalpy at the wall,

b - hw. 2he= * "1- _ U.X-

he#PeUege_C d

This equation perhaps could have b@en written down directly by considering

the conservation of energy for a contour comprising the streamline BR

and the wall RB. It also can be expressed in terms of _wmQw/bZ as

he_PeUeP e _C _d

(46)

or, by using equations (21); (23), and (24)

_w _

h_eUe_e _C

Ue 2

= -c_F_(_)z_(_i) + _ z_(_i)
(47)

where the functions I l and I2 are defined as

z_({:)- 1 d__ [1 - g_(_)]d_
_d F_(_d)

(_8)

f_

z2({)---/ [F_({_)-
{d

F_({d)+ u.,=]dr_----Z_({)F_({d) +_ [g_({)+u._]d{
d

(49)
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By substituting into equation (46) the expression for C l from equa-

tion (24) and dividing by the rate of heat transfer without injection,

there results

_W = % = Ue--_a[Fe(_d)II(_i)2he + Ie(_i)l - hw- II(_i) (50)

": i_ + - -

The value for the recovery factor is

Im( i)
r = Fm( d)+ (}l)

A( i)

These equations depend only on the mass flow injected into the dead-air

region, as determined by the dimensionless variable _i" The calculation
of the recovery factor and heat transfer in a given case requires a

knowledge of the functions I l and Ia which are tabulated in table V,

and the constant Fa(_d)which depends only on the Prandtl number as
tabulated earlier.

Skin Friction

By applying the momentum conservation law to the same closed contour

as that to which the energy conservation law was applied (contour composed

of dividing streamline SR in fig. 1 together with wall boundary RS),

the effective skin friction can be estimated. Inasmuch as there is no

mass flux in or out of this contour, momentum conservation requires that

force on wall -=Fx = b + (Pe -plcos(n,x dx (Se)
in x direction

O

where (n,x) is the angle between the x direction and the outward normal

direction, and xR is the distance to the reattachment point. It is

seen that the term involving pressure does not vanish as it did in the

energy conservation integral. This is because p in the momentum inte-

gral is multiplied by the nonzero term cos(n,x), whereas p in the

energy integral is multiplied by the normal velocity component Vn which

vanishes for the particular contour selected. The term involving cos(n,x)

depends on the exact shape of streamlines near reattachment, and would be

different for each flow. ConsequeDtly, it does not seem possible to make

any more than a rough estimate of the skin friction for the general case.

Such an estimate can be made by disregarding the term (Pe - p)cos(n,x)
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which is zero everywhere except near the reattachment zone (where locally

p departs from Pe)" Thus,

CF --

lpeue (b_) PeUe2 _ o

(53)

By using equation (39) and noting that (p.u.) ° = C, the integral becomes

CF ~4U.oU. ° C 0.80 C (54)

It will be seen shortly that this estimate of skin friction is the same

as that which would be obtained by arbitrarily applying Reynolds analogy

to the heat-transfer rate calculated for Pr = i.

If gas is injected into the dead-air region either at low ve±ocity

or in the direction normal to the mixing layer, then only one additional

term

O-b pu2dy

Yi

must be added to equation (52) for skin friction. Conservation of momen-

tumwithin the portion of mixinglayer below the dividing streamline,

however, requires that

/ /o_u dx = pu2dy

0 -_

From equation (12) it is seen that

u2dy = UePe Ve_u_ZCfu.d_ (55)

so that the estimate of skin friction with injection can be written as

2 Co _i

._i

u.d_ (56)
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For the special case of no injection, integration of the
(table I) yields

(CF)_i:o ~ 0.7964_R_

in agreement with equation (54).

u.(_) function

RESULTSANDDISCUSSION

ComparisonWith Results for Laminar Boundary Layers

Recovery factor.- A good way to visualize the results of the pre-

ceding analysis is to compare them with corresponding calculations for

a flat plate over which a constant-pressure laminar boundary layer flows.

The two functions gl and g2, which combine linearly to yield the

enthalpy-velocity relationship for a separated laminar mixing layer

(according to eq. (25)) are shown in figure 2. Also shown for purposes

of comparison are the corresponding two functions for a laminar boundary

layer (according to the analysis of refs. 5 and 8). For Pr = i the

gl and ga functions are equal to i - u. and u.(l- u.), respectively;

these quantities also are shown in figure 2. As might have been antici-

pated for Pr near i; the component functions for enthalpy are much the

same for the two types of viscous layer. Since the recovery factor is

merely a measure of the enthalpy when the velocity is zero, it too should

be nearly the same for the two types of laminar flow_ The recovery factor

for a flat plate in an incompressible stream is very nearly equal to_f-_,

as first calculated by Pohlhausen (ref. 9). In a compressible stream the

recovery factor is unaffected by variation of Mach number within the

framework of assumptions made in the present analysis. A comparison of

_--_ with the values of recovery factor computed herein for separated

laminar flows is made in the following table:

Recovery factor in

separated flow

Pr r

0.i 0.361

•25 .5o4
•5 .712

•72 .850

i .0 1.000

i.5 1.228
2.0 I •423

i0.0 3.27

0.316

.5oo
•707

.849
1.000

1.225
1.414

3.i6
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It is seen that the recovery factor for pure laminar separated regions
is approximately equal to _-_. Consequently the recovery factors for a
separated mixing layer and an attached boundary layer are essentially the
same.

Rate of heat transfer.- A comparison of the corresponding rates of

heat transfer yields different results. For the flow of a compressible

laminar boundary layer over a flat plate under the same framework of

assumptions as employed herein, the average rate of heat transfer (qw)b_

according to references 5 and 8 is

PeUe ('--_w- haw) =
_ 0"664 Pr-_/3 for Pr near 0 (97)

A comparison with the rate of heat transfer for the pure laminar type df

separated flow is made in the following table:

Separated mixing
±ayer Boundary layer

(qW)b_ 4 Re/C
Pr

R4- /C

PeUe(hw - haw)

o.i 0.833

.29 .674
o5 .926

.72 .457

1.o .399

io9 °335

2°0 .293

lO.O .139

PeUe (hw - haw )

2.70 a

i. 97 a

I °03

.820
o664

o5lO
.421

.146

0.31

.43

o5l
.96

.60

°66

°70

•92

aThe calculations of boundary-layer flow for

small Prandtl numbers (e.g., for Pr= 0.i

and 0.29) are based primarily on appro-

priate small Pr expansion formulae developed

by P. Lagerstrom a_d H. Liepmann in some

unpublished research.

In calculating the ratio it is assumed that the values

of Pe, Ue, Re, and hw/h e are the sam_ for the two cases. It is to be

noted that the ratio _w/(_W)b_ of the two heat fluxes is independent

of Me, Re, and hw/h e. For air (Pr = 0.72), the calculated heat transfer

in a separated laminar mixing layer is 0.96 of that for a corresponding

attached laminar boundary layer.
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Attention is called to the fact that the use of the integral form
of the energy conservation law enabled only the average (or over-all)
rate of heat transfer qw to be calculated and not the local rate. In
this respect, the present analysis of separated flows is unlike the
analysis of an attached laminar boundary layer wherein both the local
distribution and the average rate of heat transfer can be calculated.
The local distribution of heat flux along the wall of a separated flow
would depend on the details of the vortex-like motion within the region
of dead air lying between the wall and the thin mixing layer. Without
considerin@ these details together with the particular shape of the wall,
the theory cannot provide information about the local rate of heat
transfer.

(CF)b_ for an attached laminar boundary layerSkin f_iction,- Since

is 1.328_ (see ref. 5), it follows from equation (54)that the esti-
mated value for effective friction of a separated laminar mixing layer is

0.80/1.328 = 0.60 of that for the corresponding attached laminar boundary

layer. At Pr= 1 the heat flux, as tabulated above, also is 0.60 of that

for the corresponding attached laminar boundary. Thus the estimate of

skin friction is the same as that which would be obtained by arbitrarily

applying Reynolds a_logy.

Velocity and temperature profiles.- To illustrate further the rela-

tive characteristics of separated layers and attached boundary layers, a

comparison of both types of layer for Me = lO is presented in figures 3

and 4 showing velocity and temperature profiles, respectively. The two

extreme conditions of Tw/Te = 1 and T_ = Taw are considered, as well as

a third condition representing Tw/T e = 4. These examples illustrate both

some differences and similarities between a separated mixing layer and an

attached boundary layer. For example, mixing layers are several times

thicker than boundary layers, yet the maximum temperature attained within

each layer for cold-wall conditions is essentially the same.

Flow with gas injection.- Numerical results illustrating the effect

of mass injection on recovery factor inseparated flow are presented in

figure 5 for the values Pr = 0.5, 0.72, and 1.O. It is evident that

for Pr = 1 the recovery factor is unaffected by mass injection and is the

same for the separated mixing layer as it is for the attached laminar

layer. When Pr < l, however, the recovery factor is lowered substantially

b_ injection, for both mixing layer and boundary layer. The curve repre-

senting the laminar boundary layer with mass injection (dotted line in

fig. 5) is taken from the calculations of Low _ref. lO) which are based on

the same viscosity,temperature relationship as is used herein.

The effect of gas injection on heat-transfer rate can be conveniently

illustrated through consideration of several special cases which simplify

the general equation (50). First, for the special case of hw/h e = i
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(which would imply Tw/T e = 1 if the specific heat were constant), then

equation (50) becomes

F2(_d)I_(_i)* 12(_i)
(58a)

which is independent of Mach number. Also, if the Mach number is very

large so that Me 2 > > (hw/he - l) (or Ue2/2he > > (hw/he - 1)), then

equation (50) again reduces to the same expression

I(Qw-_ _ = Fa(_d)11(_i) + la(_i)i: Me:_ F_(_dlI_(O)+ 12(o1

(58b)

For gases, expressions (58) also are nearly independent of the Prandtl

number, as the curves in figure 6 illustrate for Pr = 0.5, 0.72, and 1.0.

.If a different limiting case is considered, namely, Me-_O, then

Ue2/2he < < (hw/h e - i), and equation (50) becomes

Qw I - Il(_i)qw_i: Me:O I_(O)
(59)

Numerical calculations show this ratio to be only slightly higher than

the ratio given by equation (58). For example, at -_i = 0.4, the ratio

in equation (58) representing Me--->_, or hw= he, is 0.49 (for Pr = 0.72)_

whereas the ratio in equation (59) representing Me--_O is 0.52. For

practical purposes, then, the curves in figure 6 are applicable to a

wide variety of conditions.

As perhaps might be anticipated, the effect of mass injection on the

estimated skin friction is much the same as the effect on heat transfer.

At Pr = i, for example, gl is equal to i - u,, as previously noted_ so
the combination of equations (48) and (56) yields for the ratio of estimated

skin friction with injection to that without injection

I_ -] - I_(_i) (6o)

CF) _ i=oJ pr= l If(O)

This ratio is identical to the corresponding ratio of h@at-transfer rates,

as indicated by e(_uation (59) for low-speed flow. Inasmuch as the ratio
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in equation (59) is practically the same as that in equations (58), it

follows that the effect of mass injection on estimated skin friction is -

for practical purposes - essentially the same as the effect on heat-

transfer rate (as represented by the curves in figure 6).

Computational Checks and Extensions of Analysis

It was found possible to obtain an independent check on the internal

consistency of the numerical calculationsby employing certain integral

considerations other than those used in the main analysis. An example of

such a check already has been observed The quantity CFR_-/C for sepa-

rated flow without injection isequal tothe differential expression
!

4U.oU.o , according to equation (54), yet also should be equal to the

integral expression 2 u_d_, according to equation (56). The table

of u.(_) yields values of 0.801 and 0.796, respectively, for these two
independent expressions. This is considered to be adequate agreement for

present purposes. Similarly, independent integral checks (usually to

within a few-tenths of i percent) of the differential expressions for both

recovery factor and heat-transfer rate were obtained for all Prandtl num-

bers. Details are presented in Appendix A.

Probably the most significant feature of the integral method employed

to check computations is that it yields equations which also can be applied

to turbulent separated flows, provided the velocity profiles in the turbu-

lent mixing layer are known. Details of the application to turbulent

separation are presented in Appendix B. It will suffice here to note that

velocity-profile data for turbulent mixing layers at high Mach numbers are

not yet available, so the numerical calculations are restricted to low

Mach numbers where such data are available. The calculated results for

low-speed flow indicate that the heat-transfer rate to a separated turbu-

lent flow is much higher than that to a comparable attached turbulent

boundary layer. This result for turbulent flows contrasts sharply with

the corresponding result for laminar flows.

Two other extensions can be made to the analysis. One is to axially

symmetric flow, which is a rather simple extension and is presented in

Appendix C. The other is to separated flows wherein the boundary-layer

thickness at separation as is sizable. This is not a simple extension.

Equation (36a) would apply directly to this more general ease, but great

difficulty would be encountered in computing (ST/By)^, (Su/Sy) o, and u o
at various stations along the dividing streamline of_the mixing layer.

In effect, the absence of similar profiles for the case where 8 s is not

zero would require that partial differential equationsbe solved for

u(x,y) and T(x,y), rather than ordinary differential equations.
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SomePractical Aspects of Gas Injection

The practical aspects of gas injection for separated flows are
expected to be quite different than for flows of an attached laminar

boundary layer. It is well known that the injection of gas through a
porous wall unfortunately has a strong destabilizing effect on the lami-
nar boundary-layer flow along that wall. There is no evident reason,
however, to expect that the gas injection into a separated region through
a porous wall, which is displaced a considerable distance from the sepa-
rated laminar mixinglayer, would necessarily have a strong destabilizing
effect on the stability of the mixing layer. Such injection, if properly
done, might have a favorable effect on stability inasmuch as the pressure
rise near reattachment is reduced when gas is injected, and this pressure
rise is important to the stability of the laminar flow. Someexperiments
on the effect of injection on stability clearly are in order.

If a mass flux of gas equal in magnitude to

of pu dy = ffpeUe_eZC
d_

_d JPeUe_e _C (65)

is injected into a separated region, then no air would be reversed near

the reattachment zone. For this particular quantity of injection the

heat transfer (and the estimated skin friction) would be zero. In mathe-

matical terms, for _i = _d, then Iz(_ d) = I2(_ d) = 0 and Qw is there-

fore zero (see eqo (90)). It is interesting to consider an example in

order to obtain a physical feeling for the magnitude which this particular

rate of mass injection would represent in a practical case. Consider

first, as sketched, a cone with 30 ° total included angle, a base radius

Dividing

_Y/A__. _toraae
ml

of 1 foot, flying at a Mach number of 20 at an altitude of lO0,O00 feet,

and containing initially 1/3 of its volume as stored liquid air (or liquid

nitrogen). For the case _i = _d, for which Qw = 0, the cone would
travel in steady flight a distance of approximately 1.4xl0 s body diameters

(or about._O0 miles) before the stored liquid had been completely injected

into the _ep_rated region. Along this length of flight path, the heat

transfer would be zero. After all mass had been expended, the rate of
heat transfer would be 0.96 of that for a cone of 19 ° semiangle (provided

the separated layer remained laminar).
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Inasmuch as the quantities of mass injection required are relatively

low, the scheme of mass injection into separated regions may have practi-

cal application. The degree of practicality depends upon the Reynolds

numbers up to which separated mixing layers can be maintained laminar.

Experiments are required to ascertain this under the conditions of hyper-

sonic flight where the wall is cool compared to stagnation conditions and

where gas is injected into the separated region.

CONCLUSIONS

The conclusions which follow have been obtained from an analysis of

separated laminar flows wherein the thickness of the boundary layer is

zero at the separation point:

1. The recovery factor in regions of separated laminar flow is

approximately equal to the square root of the Prandtl number (to within

1 percent over the range of Prandtl numbers between 0.25 and 2.0) and,

hence, is essentially the same as that of an attached laminar boundary-

layer flow.

2. The calculated rate of heat transfer from a separated laminar

mixing layer is less than that from an attached laminar boundary layer at

corresponding values of Mach number, Reynolds number, and wall to stream

temperature ratio; the ratio of the heat flux in the separated flow to

that in the attached flow is a function only of the Prandtl number, and

has the numerical value of 0.56 for Pr = 0.72 (the value for air).

3- Injection of gas into the dead-air region of a separated l_minar

flow is calculated to have a powerful effect in reducing heat-transfer

rates, inasmuch as a moderate quantity of injection can reduce the heat

flux to zero.

4. The effective skin friction for separated laminar flows is

estimated to be about 0.6 of that for an attached laminar boundary-layer

flow, and is affected by gas injection in essentially the same way as

heat transfer is.

Ames Aeronautical Laboratory

National Advisory Committee for Aeronautics

Moffett Field, Calif., June 25, 1956



28 NACATN 3792

APPENDIXA

CONTOURINTEGRALCHECKSONACCURACY

OFNUMERICALCALCULATIONS

A check for internal consistency on the numerical calculation of
u.(_) can be obtained by noting that the conservation law of linear
momentumin the x direction, when applied to a contour enclosing the
mixing layer, requires that

O oo

-co O

In (x,_) coordinate system, this requirement becomes

o
u.d (1 - u.)atO

Numerical evaluation of these two integrals from the

yields-

(A1)

u.(_) solution

and

O

/ u.d{ : 0.398 (A2)

_ (i - u.)d_ = 0.399 (A3)

O

These 'two integrals agree within 0.25 percent. As a further check on

u., it may be noted from the differential equation (ii) that when u. = 0,

(du./d_)_d must be the same as -_d/2. The values in table I show that

(du./d_)_d= +0.620 and -_d/2 = +0.617. These values check within

0.5 percent.

Checks on the calculations of r and Qw can be obtained from the

energy conservation law by considering a contour enclosing only the dead-

air region. The flux of energy fed into the dead-air region near the

reattachment zone is

2ob _ +_pu dy
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O

This energy flux is transported by the mass flux b / pu dy, which
kJ

must be equal to the mass flux reversed by the pressure rise near the
reattachment zone. (This mass flux, in turn, must also be equ_l to the

mass flux re-entering the mixing layer after some heat energy has been

imparted to the wall.) When this mass flux leaves the dead-air region

and enters the mixing layer, it transports an energy flux of

Z

b_o hw@wvwdx

which, from the continuity equation, is equal to

0

bf _w_u dy

Consequently, the rate of heat t_ansfer to the wall must be the difference

between these two energy fluxes.

0 - U2
(A4)

In dimensionless variables,

O

Qw = bhe_PeUe_eZC f (h. - hw.

_d

+ d_ (A_)

By substituting h. from equation (21), and setting Qw/bZ : qw, there

is obtained

0 0

qW Rj'_ = C1 f [Fl(_)_Fl(_d)]d_+ Ue_.._2 _ [Fa(_)_F2(_d)]d_+-- 2h e -
Peuehe _d d

0

ueJf u.2d:
2he _d

(A6)
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Under adiabatic wall conditions

tuting C l from equation (24)

haw Ue _
--=l+
he _

F2({ d) - FI(_ d)

[F_(_)- F_(_d)]d_

qw = O, and hw = haw; hence by substi-

f/<

o }
from which it follows that an expression alternate to equation (42) for

the recovery factor is

0

_ [F2(_) - F2(_d) + u*2]d_ _I2(0) (A7)
r = Fm(_d ) - FI(_ d) _fo ' ' = F2(_d) + --

_d [F_(_)- F_(_dld_ I_(O)

Ia and I l are, as defined previously by equa-where the functions

tions (48) and (49)

I_({)- _ [i - g_({)]_{
- d

_d

- F2(_ d) + u.2]d_

Expression (A7) should be numerically equal to the different expression

of equation (42). The corresponding alternate expression for the rate
of heat transfer is

°= I1 - g_(_)]d_ (A8)
Peue(haw - hw) " _d

which should be equal to the expression of equation (43).

Values of r computed from the alternate equation (A7) are tabulated

in column (b) of table IV. Compared with the values in column (a) origi-

nally computed from equation (42), it is seen that the alternate inde-

pendent calculations agree rather well with the original computations.

The largest discrepancy amounts to 0.2 percent for value_ of Prandtl num_

ber less than 2. For a Prandtl number of 10, the two computations differ

by 3 percent. In this latter case, the values from the integral method

(eq. (A7)) are regarded as less accurate, inasmuch as their evaluation
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involved several quadratures of functions such as u. Pr which, for
Pr = 10, vary so rapidly that high accuracy could not be obtained with
the intervals selected. Nevertheless, the over-all agreement between the
two independent methods of computationis regarded as satisfactory.
Similarly, a satisfactory check on numerical computations of qw by the
two independent methods is obtained, as evidenced by comparison of col-
umns (c) and (d) in table IV. Comparedwith the original calculations
from equation (43) (column (c)), the calculations from the alternate
equation (A8) (column "(d))j agree to within 0.5 percent for all values of
Prandtl number.

i
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APPENDIX B

HEAT TRANSFER IN SEPARATED TURBULENT FLOWS

Although complete calculations cannot at present be made for sepa-

rated, compressible_ turbulent mixing layers_ certain ot the ideas

developed nevertheless can be applied to such cases. For this purpose

it is assumed that the Prandtl number is unity. Equation (A4) was

developed from general energy considerations and is applicable also to

turbulent flows.

/ u)Qw = b - hw + 0u dy (BI)

The assumption Pr = i enables the relation between enthalpy and velocity

to be expressed as the Crocco integral,

2h e

_l Ue2 W_) Ue2
hw + u. +--- h -- (B2)

= h-_ 2he - u*2 2he

so that the average rate of heat transfer becomes, after some algebraic

manipulation wherein the relationship haw. = (Uea/2he) + i is used and

the dimensionless variable _ m qy/x is introduced,

f o o u.ad_

_w i i f
Peue(haw hw ) = 7 P*u*2d_ = -- l) (B3)

- Ohw* -oo i + U __aw Ue___2
*\-_7 _ u.2 2hw

where the constant G is inversely proportional to the rate of spread

of the turbulent mixing layer. Clearly, it is necessary to know the

velocity distribution u.(_) within a turbulent mixing layer, and the

rate of spread _ before the average rate of heat transfer can be cal-

culated. Such knowledge_ unfortunately_ is not yet available except for

two cases.

For the limiting case of zero Mach number, the velocity distribution

and rate of spread are known from the paper of Tollmien (ref. ll). By
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substituting Tollmien's velocity distribution (_ = 12 at Re = 2.5Xi0 s

from his experiments) into equation (B3) there results

qw = 0.012

Peue(haw - hw)

which leads to an interesting result when comparison is made to a corre-

sponding attached turbulent boundary layer. At the same Reynolds number

as in Tollmien's experiments, the corresponding heat-transfer parameter

for a turbulent boundary layer of constant pressure would be approximately

Cw ] : (St)b CF O.O019
PeUe (_-'J - hw) bZ : -_- =

which indicates the heat transfer in separated turbulent flow not to be

sm_ller than in a turbulent boundary layer, but to be, in fact,

0.012 = 6.3 times as large. This comparison is in sharp contradistinc-
0.00i9
tion to the analogous comparison for the laminar case where the corre-

sponding ratio is about 0.6 rather than 6.3.

It is to be noted that the data available at present for compressible

turbulent mixing layers indicate the Mach number to have a pronounced

effect on the integral in equation (B3). The data of Gooderum, Wood,

and Brevoort (ref. 12) at a Mach number of 1.6 indicate that the rate of

spread (about 9° angle) of turbulent mixing layer is much less than at

low speed (about 14 ° angle); hence the integral in equation (B3) also

would be proportionately less. Consideration also of the density change

on going from M = 0 to M = 1.6 would then yield a value for this integral

57 percent less than that at low speed, which is equivalent to a heat

flux in turbulent separated flow of about 2.8 times that in a correspond-

ing turbulent boundary layer. The ratio of heat fluxes, amounting to

6.3 at M e = 0, and 2.8 at M e = 1.6, obviously is strongly dependent on

Mach number. Consequently, if the marked trend persists, a separated

turbulent flow might not have a greater heat flux than a turbulent boundary-

layer flow at sufficiently high Mach numbers. Experiments on the rate of

spread and on the velocity distribution within turbulent mixing layers at

high supersonic speeds are required before this can be ascertained.
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APPENDIXC

APPLICATIONTOAXIALLYSYMMETRICFLOW

Although the analysis as developed applies directly to two-
dimensional flow only, it can be easily extended to axially symmetric
flow by employing Mangler's transformation. This transformation for a
constant-pressure, separated, laminar mixing layer is identical to that
for a laminar boundary layer. For a given Reynolds number and Machnum-
ber, the mixing-layer thickness in axially symmetric flow is 1/_times
that in two-dimensional flow. Consequently, the heat-transfer rate, in
place of equation (45), is given by the equation

%

he_peUe_e ZC

2_r b /
: 7 _i Ue2 u.2>d_ (Cl)

i

and hence the average heat-transfer rate per unit area qw =- Qw/_rb _ is

-- hw_

J%eU  eZC
+ u. (c2)

which is seen, by comparison with equation (46) to be 2/_ times as large

as for two-dimensional flow, just as it is in the case of comparison of

an attached boundary layer on a cone with the corresponding laminar bound-

ary layer on a plate. Consequently, the ratio qw/(qw)bZ tabulated pre-

viously for two-dimensional flow also applies directly to axially symmetric

flow. If gas is injected into an axially symmetric region of separated

flow, then for the same fractional reduction in heat-transfer rate (same

(2/4_) (mi/_rbZ)

value of _w/(_w)_i=o) the value of -_i = jPeUe_ee/Z in the axially

mi/b_

symmetric flow would be the same as the value of _PeUe_eC/Z in the

two-dimensional flow.
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Pr

0.i

.25.

.5

.72

1.0
1.5
2.0

i0.0

TABLE IV.- COMPARISON OF INDEPENDENT METHODS OF CALCULATING

RECOVERY FACTOR AND HEAT-TRANSFER RATE

r

Heat Transfer

Recovery Factor

(a)

from eq. (42)

4Pru.oau.o,

(4U.oU.o,) Pr Fl(_d)

(b)

r from eq. (A7)

12(o)
= F2(_d)+

11(0)

PeUe (haw - hw)

from eq. (43)

=

l_Fl(_d)

0.361
.504

.712

.8_9
1.000

1.228

1.42k

3.27

0.360

.5o3

.713

.849
i.ooo

1.227
1.4ee

3.40

0.833
%74
.527
.498
.399
.334

.293

.135

PeUe (haw - hw)

from eq. (A8)

= !i(o)

0.836

.674

.52_

.456
•398
.334
.293
.136

TABLE V.- FUNCTIONS APPEARING IN EQUATIONS FOR GAS INJECTION

E1

-1.233

-1.2

-1.1

-1.O

-'9

-.8

-.7

-.6

-.5

-.4

-'3

-.2

-,1

O

Pr = 0•5

Ii 12

0.000 0.000

.002 .002

•019 .013

.044 .031

•076 .055

.112 .083

.152 •i16

.196 .153

.244 .194

.295 .241

.349 .291

.405 .346

•464 .4o5

•525 .468

Pr = 0.72

11 12

0.000 0.000

.001 .001

.011 .010

•028 .o25

•051 .047

.080 .074

.i13 .106

.i51 •144

•i93 .186

•239 .233
•288 .285

.341 .341
•397 .402

.456 •467

Pr = 1.0

Ii le

0.000 0.000

•000 .000

.oo6 .oo6

•017 .0i9

•o33 .o39

•o55 .o65

•082 •097

•115 .134

.151 .178

•193 •226

.238 .279

.288 .337

•341 .400

•398 .467
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t

2.-Entholpy-velocity functions for separated laminar mixing layer

and for laminar boundary layer; Pr=O.72.
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Figure 5.-Velocity profiles in separated laminar mixing layer and in laminar boundary

layer for various wall temperatures; M,-IO, Pr'0.72.
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Figure 5.-Effect of mass injection on recovery factor.
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Figure 6.--Effect of mass injection on heat transfer for case hw/he=l

(also applies to case Me--=.= for arbitrary hw).
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