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HAND600K OF STRUCTURAL STABILL’J?X

PART IV - FAILURE OF PIATES AND COMPOSITE

Available theories
terms of the results of

By George Gerard

SUMMARY

ExEMENTs

on failure of flat plates are reviewed. In
these theories, available test data on the post-

buckling behavior, effective width, and failure of flat and curved plates
are correlated.

Test data on the crippling strength of various formed and extruded
shapes are reviewed, from which a generalized method of crippling analysis
is formikted. The effects upon the crippling strength of alclad coathgs
and the increased properties in the corners of formed sections are inves-
tigated by use of this analysis.

The generalized crippling analysis was applied to a variety of sec-
tions and materials in common use. It was found that the crippling
strength of all the sections is governed in a s~le
oped length-thiclmessratio and mniber of corners of

INTRODUCTION

manner by the
the section.

devel-

The present report is concerned with the failure of flat and curved
plates an~ composit= elements which are subject to buckling under compres-
sive loads. For composite elements such as 2- or channel sections, the
failure mode considered is that commonly referred to as crippling. Thus,
the effective slenderness ratio of the composite elements is in the neigh-
borhood of 20, a region in which variations in length result in negligible
chmges in the crippling strength.

In the section entitled “Basic Principles,! the postbuckling behavim -
of columus, plates, and cylinders is briefly reviewed in order to deter-
mine those elements for which the failure lead may considerably exceed
the buckling load. Because of the mathematical ccuuplexitiesinherent in
any theoretical treatment of the failure phenomenon, the available theories
constitute an important contribution to the understanding of the factors
operative at failure. Therefore, a comprehensive review of results
obtained for hinged ilanges is presented in the next section. This anal-
ysis serves as a reference frme frum yhich semiempiricalmethods can be
devised to treat failure of elements not amenable to theoretical solution.

.-— _ ...—. —.— _. _. — — —--- —



2 NAcAl?N 3784 ,

In the next two sections, the postbuckling behavior, effective width, .’}
<

and failure of flat and curved plates are considered. Particular atten- ~
tion is devoted to the influence of the unloaded-edge boundary conditions ~‘.
upon failure of flat plates. The crippling strength of extruded and
formed composite elements such as angle, Z-, channel, H-, and square-tube
sections is treated in the following two sections. various Semiempirical
methods are used to correlate the large mass of available test data. In
particular, a genera33zed crippling analysis is presented which is buth
simple and nondimensional in form. By use of this analysis, the effect
of the increased properties in the corners of formed sections has been

.

investigated. Further, a method was studied for correcting for the alclad
coating which may be present on formed sections.

b the section “Cripp13ng of Sections of General Shape,” the gener-
alized crippling analysis was applied to uneqpal-flange, Z-, and channel
sections, J-sections, lipped Z- and chsnnel sections, hat sections, and
other formed shapes. It was found that all ayailable test data reported
in the literature on various shspes and materials could be correlated
according to the developed length-thicknessratio and the number of cor-
ners of the section.

In the appendix at the end of this report, the various results of ‘
importance in analysis and design are compiled for convenience. It is
to be noted that failure of stdffened panels,is treated in Part V of this

.

Handbook (ref. 1). A discussion of failure of f1st and curved tension-
field mdbers has been presented previously by Kuhn, Peterson, and Levin
(ref. 2).

This survey was conducted under the sponsorship and with the finan-
cial assistar.iceof the National Advisory Ccmunitteefor Aeronautics.

SYMBOIS

A area, sq in.

Ar area of rib cross section, sq in.

a length of plate, in.; also coefficient in equation (29)

b width of plate, in.; also coefficient fi equation (30)

6 developed width or length of cross section, in.

be effective width per edge, in.

bf width of flange, in.

—.



NACA .!CN37a4,. 3

width of web, in.

coefficients

number of corners. .

elastic modulus, psi or ksi

secant modulus, psi

nmiber of flanges; also ratio of total cladding thickness to
total plate thickness

modified buckling coefficient, #k/12(1 - VP)

buclilingcoefficients of curved plate, K& = 3&k#2(l - VP)

buckling coefficient

effective length of column, in.

exponents in stress equations

load, lb

radius, in.

thickness, in.

displacements, in.

coordinates

curved plate parameter, (b2/Rt)(~ - v2)1/2

coefficients

crippling coefficient for multicorner sections

axial strain

cladding reduction factor

Poisson’s ratio

radius of gyration, in.

.- -... —-. — .—— — —-———.-—— ——.. .—
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.

a axial stress, ksi

‘cl
cldding yield stress, ksi

-,

~cy compressive yield stress, ksi .

Zcy average compressive yield stress in corner of formed section, ksi

iif failure or crippling stress, ksi

UX} Uy>Tw membrane stresses

Subscripts:

av average

cr critical

e edge

f fIange

o. initial

P flit plate

r reduced value

w web

EASIC PRINCIPLES .

InP@ I of this Handbook (ref. 3), the elastic and plastic buckling
of flat plates was considered, in Part II (ref. 4) bucli13ngof composite
elements was summarized, and in Part III (ref. 5) buckling of curved
plates and shelh was treated. In certain cases, buckling terminates the
ability of the element to carry additional loads and, therefore, buckling
and failure are essentially coincident. In uther cases, primarily in flat
and slightly curved plates which buckle elastically, failure occurs at
loads considerably in excess of the buckling load. It is the purpose here
to delineate the physical principles involved in the postbuckling behavior -
of various elements in order to examine in detail those elements for which
the failure load may considerably exceed the buckling load.

—. —..-. ..—.



I!llcllm 3784 5

Except for those cases in which the buckle form itself is unstable
●. as discussed in reference 5} failure is generally a combination of large-

../ deflection effects initiated at buckling and plasticity effects. Because
of the non13nearities associated with bath large deflections and plastic-
ity, the problem of determining the theoretical failing load of any
buckled element is mathematically complex, if not intractable. However,
since buckling initiates the processes leading to eventual failure, it
is of utmost importance that analyses should exist for accurately pre-
dicting buckling stresses. _ses presented in references 3t05 pro-
vide a key role in constructing a theory of failure, which, because of
mathematical complexities, is ofien semiempirical in nature.

Failure in individual cases is coincident with, or occurs consider-
ably after, buckling. Hence, it is important to.examine the postbuckling
behavior of various elements to determine the conditions under which the
failure load can exceed.the buckling load. For this purpose, figure 1
has been prepared. In figure l(a) the schematic postbuckling behavior
of flat plates, columns, and cylinders under axial compression is shown
when elastic buckling occurs. Figure l(b) indicates, schematically,the
behavior of flat plates and columus after plastic buclding.

It canbe observed from figure”l(a) that, for flat plates and columns,
failure occurs at values of w/t’ well remuved from the region Where
buckling initiates. Thus, small initial imperfections are unimportant.
After buckling, the lateral deflection of the column is nti restrained in
any manner. Therefore, no transverse membrane stresses exist and the post-
buckling behavior is representedby a horizontal line. aeyond a certain
+alue of w/t, plasticity effects become important and the ~/ucr Mne

decreases. Thus, fdlure occurs at the onset of significant plasticity
effects.

For flat plates, the boundary constraints at the unloaded edges per-
mit significant tension menibranestresses to develap after bucli13ngwhich
act to restrain lateral deflection. Thus, flat plates can support loads
considerably in excess of the ebstic buckling load. As for columns,
failure occurs at the onset of significant plasticity effects.

.

By contrast with flat plates and columus, axially compressed cylin-
ders develop transverse compressive menibranestresses ef%er buckling and
thus the buckle form itself is unstable. As discussed in some detail in
reference 5, small initial imperfections are imp&tant in this case with
the rasult that failure and buclilingare essentially coincident. It is
important to note that failure is due primsrily to the instability of the
buckle form rather than to the initiation of plasticity effects, which
occurs at considerably larger values of w/t.

The postbuckling behaviw of flat plates and columns which bubkle
plastically is shown schematically in figure l(b). The general effect of

— . . ... .... ..-—
l— ---—.—.—.—— ------—



6 NACA TN 37’04 -

plasticity is to displace the large deflection curves
case downward. The nature of the transverse menibrane

,.
of the elastic

.c,

stresses is rela- s
tively
to the

A

UJX@ortti tith the result that the failing load is very close
bucld.ingload in both cases.

FAILURE OF FIAMGES
.

hinged flange is the simplest element, from the standpoint of
-is, W* cm CSJ%Y bade considerab~- in excess of t= elastic
buckling load. As ccuuparedwith a column which is unsupported along the
uuloaded edges and thus deflects appreciably at buckling, the flahge is
supported along one unloaded edge. This boundary constraint tends to
stiffen the flange during postbuckldng rotation and permits supercritical
loads to be carried.

Although “thepostcritical (nonlinear,large-deflection)behavior of
various types of plates and shells has been investigated in considerable
detail, such studies have been based on the assumption that the element “
followed Hooke’s law. As such, the failure phenmenon cannot be observed,
stice failure is intimately associated with plasticity effects. Because
of the nonlinearity of the postcritical behavior and the additional non-
l.inearitiesof plasticity, failure analyses of buckled elements are
complex.

Fortunately, Stcmell succeeded in conducting a failure analysis of

. a-flange with a sh@y s~orted, straight, unloaded edge (ref. 6). !l?he
results of this investigation are of considerable importance because they
supply quantitative data as to the failure mechanism. Furthermore, the
analYsis provides a reference frame from which semiemPtiicalmethods can
be d&ise~ to treat other cases of failure for which
do not exist.

The methd of analysis used by !3hwell (ref. 6)
excellent agreemeti with test data (shown in fig. 2)

&mplete analyses

which results in
is as f03X3ws:

(a) The strain distribution across the flange at any angle of twist
is determined by means of a nonlinear finite-deflection analysis.

(b) This ebsti~ strdn distribution is assumed to persist into the
plastic region. (Test data shown in fig. 3 tend to substantiate.this
assumption.)

(c) By use of deformation-typeplasticity theory, the strain dis-
tribution is transformed into a stress distribution across the width of
the flange.

.

—. .——-— — -. .—. -——
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(d) The
w by graphical

7

lcaa csrried at successive increments of twist is obtained
integration to determine when a maxhum load is reached.

Certain of the.results of this analysis are presented in some detail in
the following discussion.

Postbuckling Behavior

The large-clefl.ection behavior of buckled elements is ofien conven-
iently represented by a relationship among the average 6 and critical

acr stresses and the stress at the unloaded su~orted edge ae. For

the hinged flange with the supported edge constrained to remain straight
in the plane of the flange, such a relation is

For a material which follows Hooke3s law,
ten in terms of the strain ratios =le~ and

given by

(1)

equation (1) can be writ-
Ge/ecr. SIXW&LL (ref. 6)

assumed that equation (1) in terms of strain ratios could be extended to
plastic strains. This assumption is justified by the data shown in
figure 3.

After the flange has buckled, there are shear strains in the flange
due to twisting in addition to the axial strains. By suitable connat-
ion of these strains, the pertinent value of the secant modulus Es can

be determined for a particular material. The compressive stress in the
flange is then simply Es times the ccnnpressivestrain at that point.

The average stress acting on the flange is finaUy obtained by integra-
tion of the stresses across the flange width.

Failure of Flanges
.

Failure occur”swhen the average stress reaches a maximum and begins
to decrease with a further increase in strain. This is graphically
depicted in figure 4. Up to the critical stress and strain, the distri-
butions are uniform. Beyond critical, the distributionsbecome succes-
sively less uniform as the twisting increases. Although the edge strain
is continually increasing, the edge stress increases more slowly because
of plasticity effects. Eventua13.y,the edge stress ceases to increase
and decreases with further straining. l!hemaximum load, or failure, occurs
just as the edge stress reaches a maximum.

“The very signMicant physical fact which is brought out by this
analysis is that the edge stress is intbstely associated with failure.
Apparently, failure occurs when the stress intensity at the edge reaches
a value approximately eqti to the compressive yield strength. This is

-.. .-— . .._ ... ___ ..—— .— -.. _ — — -.. .——-



8 NACA TN 3784 .

indicated by Stowell’s analysis (ref. 6) where it is shown that for
.I

eight widely different hinged flanges the edge stress intensity is a
constant within 1 percent and apprmdmately egyal to the compressive -.
yield strength.

The results of the analysis which are important from a design stand-
point are shown in figure 2. It can be observed that Stowell’s theoreti-
cal curve is in good agreement with test data on XX?4-T4 aluminum-alloy
cruciform extrusions. In such sections, the opposed flanges constrain
the simply supported unloaded edge to remain straight. For egyal f-e
-s, hmm, the s@l-Y supported uuloaded edges warp in the plane
of the fLange after buckling. Consequently, the test data of Needham on
2024-T3 formed angles (ref. 7) He somewhat below Stowell~s theoretical
line which pertains to an undistorted edge. ‘me significance of warping
is discussed at some length in the section entitled “Failure of Compressed
Flat Plates.“

In order to have a convenient analytical representation of the theo-
retical and experimental data, the following semiempirical relationship
is shown in figure 2. For simply supported flanges with straight unloaded
edges, such as cruciform ~

?if ()
0.80

=Cy
— = 0.81 —
‘cr acr

1

(af s o.77UCY)

(2)

J(Gf> 0.77UCY)

The second equation is used to represent the fact that beyond approxi-
mately (3/4)acy failure and bucklAng are essentially coincident.

For the formed’equal flange angles,

i?f 0.58

()

*cy
—=o. %—
acr ~cr

(Zf s o ● 92UCY)

1

(3)

3f = am (~f > 0.926CY)

The fact that the second ecymationapplies at a higher fraction of Ucy

for formed angles as compared with that for extruded cruciform is
attributed to the increased stress-strain characteristics in the corner

.

of the formed angle. This factor is discussed further in the section
entitled “Crippling of Formed Angle, 2-, and Channel Sections.” J

.

. ___—-—.. ...—- .
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FAILURE OF COMPRESSED FIAT PIATES
.

,.

.

.

.

It is well lmown that flat plates subject to compression (as well
as to other types of loading) can carry lcds considerably in excess of
the elastic buckling lead. A relatively large nuuiberof theoretical.
analyses, therefore, have been concerned with the postbuckling load-
carrying abiMty of such plstes. Such analyses, with one recent exception,
are based on purely elastic considerationsand while they yield valuable
information on a -ted range of postbuckling behavior, the Important
problem of failure requires the incorporation of plasticity theory into
the large-deflectionanalysis. .

As indicated previously, large-deflectionanalysis of buckled plates
is mathematically complex because of nonlinearities in the strain-
displacement relationships. The introduction of plasticity effects intro-
duces anuther nonlinearity in the stress-strainrelationships. By use of
variational principles in conjunction with calculationsperformed on an
electronic emptier, Mayers and Budiansky were able to attack this dif-
ficult problem and obtained results related to failure of buckled plates
(ref. 8).

Because of their importance in certain problems,.the results of
elastic analyses of postcritical behavior are reviewed. Certain of the
results are considered in terms of effective width. The termination of
load-carrying ability, or failure, is then discussed in terms of theory
and avdlable test data.

Postbuckling Behavior of Flat Plates

A biblio~aphy of significant large-deflectionanalyses of %uclsled
elastic plates under compressive loads is given by Mayers and Budiansky
(ref. 8). The ~ortant results of these analyses have been summerized
by hgyriS and k (ref. 9).

As discussed in the section “Fail&e of Flanges,” the large-deflection
behavior of buckled elements is conveniently represented by a relationship
among the average 6, critical Ucr, and edge Ue stresses. The various

factors influencing this relationship include:

1a) Iength of plate
b) Edge rotational restraints
c) Restraint of lateral expansion of plate
(d) Restraint of warping of unloaded edges in the plane of the plate

The first three of these factors effect the buckling stress as discussed
in reference 3. The fourth factor becomes operative after buckling has
occurred.

------ -.. — .-—. _—— -’.- ———. —
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For values of se/au

behavior of compressed flat

less than apprmdmatel.y 3,

plates can be given ~ the

NA6A TN 3784 .

.
the postcritical “

fOllowing fOrm: -,

(4)
–= ‘ - ‘+ (’”J+iJ

~cr

The values in table 1 for f3 were obtained frcm the book of Armris
and Dunne for long flat plates (ah > 3j approximately)with s@$ly sup-
ported edges (ref. 9). The restraint against lateral expansion is given
by the ratio -Ar/at as discussed in reference 3. In addition to the

values of table 1, 13= 0.583 for a long plate clamped along unloaded
edges which sre held straight.

One limiting case & restraint of the unloaded edges considered in
table 1 is for straight unloaded edges such as would be obtained with
flexurdly rigid menibersalong the unloaded edges of an infinite array
of panels. The other case covers a stress-free unloaded edge in which
in-plane warping is permitted as in a plate test with V-groove supports.
The two limiting types of behavior are illustrated in figure 5.

For V8hES of Ue/dcr greater than a~roximately 3, significant
changes in the buckle waveform occur and it is necesmiry to replace eaya- ‘
tion (4) by the following more accurate relations.
simply s

7

orted with unloaded edges held straight
laterally Ar/at = O)

; ()u
1/2

~ = 0.19 + 0.81 ~
ae

For a square plate—
and free”

For long plates with rtiationally restrained
and free to move laterally (Ar/at = O)

unloaded edges

:= ’”2(%Y’-0”’5(*r’’+0”45(*r

to move

(5)

held straight

(6)

Effective Width

The results of large-deflection analyses are often conveniently given
in terms of the effectiw width of the plate acting at the edge stress.
The average stress on the plate was defined as

.

3= P/bt (7)

.

. —. ——— .—-. —.—. . . . .— - ------ .- ..-.. -— .=__
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For the same load P, it is desired to find an effective width at each
. edge be acting at the edge stress:~,

P = Ue2bet (8)

By substituting equation (8) into equation (7),

:. ae

~e ~ (9)

By rearranging eqyation (4) and by use of equation (9) the following
effective width rehtion can be obtained for values of ae/Ucr less t~
3:

(10)

For vdlES Of ue/Ccr greater than 3} equations (~) and (6) may be used

directly in conjunction with equation (9).

The effective width discussed in the foregoing ccmments is concerned
with the load-carrying ability of the plate after buckling. A second
tvne of effective width is associated with the stiffness of the plate

.

.

“...
against further compression. The reduced effective width is

From equation

For values of

be found from
square plate:

()2be = dd
Tr ~

(4), therefore

()

~
br=P

‘e/Ucr greater than 3, the

eqpations (5) and (6) in the

reduced effective

fo12mwing forms:

and for the long plate:

()2be
cm 1/2

T. ()
=0.19+ o.405q-

def-=d as

(U)

.

(12)

width C=

For the

(13)

(+)r:oe7+#5-o.13 (&y5-o.09(&f’5 (,4]

.-. — . . .. —.. —— .— .—— ——. .—-— .—-—--—--- -— —-
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As indicated in figure 1, the effects of small initial imperfections “
.

confined primarily to the region of the theoretical buckling stress ‘
fI.atplates. Thus, small initial hnperfections lower’somewhat the -,0

values of effective width as compared with those for a perfect plate up
to approximately ~e/~~ = 2. Beyond this, the effects are negligible.

Since the reduced effective width depends upon the derivative as
indicated by equation (U), the effect of small initial imperfections is
to lower significantlythe values of reduced effective width as ccmpared
with those of perfect plates below the theor~ical buckling stress.
Beyond this, the effects are negligible and the values for a perfect
plate may be safely used.

All the foregoing results on effective width are based on analyses
which assume the plate to be elastic in behstior after buckling. Mayers
and Budiansky introduced plasticity effects in the postbuckling saalysis
and computed the effective width of flat plates of 2024-T3 aluminum alloy
that buckled at 0.3} 0.4, O.~} and O.6 of the compressive @eld strength
(ref. 8).

The results of this analysis indicate that the effect of plasticity
is to reduce the effective width as compmed with that derived from elastic
theory for values of ~e/em (edge s$rain/critical strain) up to approxi- ,

mately 3. Beyond this, elastic theory yields smewhat consemative
values●

Failure of Flat Plates

The termination of load-carrybg ability of flat plates appears to
be dependent upon the boundary conditions along the unloaded edges. As
discussed in the section “Failure of Flanges,” failure of a flange is
intimately associated with the highest attainable value of edge stress
which in turn is a function of the edge-stress intensity. Thus, varia-
tions in edge-stress intensities due to cliffering boundary conditions
may be expected to result in variations in the failure behavim.

ti discussing the failure of flat plates, it is necessary, there-
fore, to identify carefully small dHferences in boundary conditions
which by themselves may not cause a difference h buckling stress. For
this purpose, the discussion will be concerned with the failure of flat
plates for which:

(a)

(b)

The unloaded edges do not warp and thus remain strai@t in the
plane & the plate (v = Constant) (fig. 5(a)).

The unloaded edges are free to warp in the -plane of the plate
(ay = O)(fig. s(b)).

...-
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.

(c) The unloaded edges are supported by columns of solid cross
. section.

The load-carrying capacities of flat plates with straight edges con-
strained to remain straight have been ccmputed by Mayers and Budiansky
for 202&T3 plates that buckle elastically at 0.3, 0.4, 0.5} and 0.6 of
the compressive yield strength (ref. 8). Although the average compressive
stress did not have a maximum value in the range of -end shortening con-
sidered (up to O.010) the curves were very flat from a strain of approxi-
mately 0.006 on. Thus, the average compressive stress at a strain of
0.010 was taken as an tidication of failure. .

The results of this analysis, together with experimental data on
failure of flat plates with various boundary conditions of Anderson
and Anderson (ref. 10), Botman (ref. 11), and Besseling (ref. 12), are
shown by the lower curve and test points in figure 6.c A very significant
fact brought uut by the theoretical analysis is that the load-carrying
ability of plates with straight unloaded edges may be sigdi’icantly
higher than that of plates with umloaded edges which are free to warp.

Plates tested in V-groove supporting fixlmres are free to warp.
In addition, out-of-plane disp~cements at the unloaded edges are not
entirely prevented after buckling because of lateral-shorteningin the
central region of the plates as shomi in figure 5. Similarly, the post-
buckling behavior of compressed square tties closely follows that of
plates tested in Y-grouve supports. For the tubes, both warping and
out-of-plane displacements of the corners are evident after failure.

The hportance of the boundary conditions in relation to failure
is further supported by ~erimental data of Botman (ref. 11) and Besseling
(ref. 12) on wide plates divided into three bays by a series of opposed
knife edges running longitudinally. It can be observed in figure 6 that
these data Me between experimental data on plates with warped edges and
theoretical results on plates with straight edges. Since the outside
e~s in the three-bay tests are free to warp, it is yossible that higher
strengths would be achieved in tests of plates with a greater number of
bays.

It is convenient to use a semieqirical relationship in order to
unify the theoretical results of Mayers and Budians@ (ref. 8) and the
experimental data. For this purpose, the following egyations are assumed
to apply:

1%=&j (’c-(J’nucY)

(’
(15)

Gf = u- u= > (a)l/nacy)

. . .. . .—— _. . .-— ————... ..__ .—
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This is the same eqpation used tithe section “Failure of Flanges” to fit ~ ‘-
the dqta for hinged flanges.

From the logarithmic plots shown in figure 6, the values of a
-.

and n were determined and sre given in table 2. It is to be noted that
the theoretical results cover a small although sufficient range to permit
a reasonably precise esttite of the a and n values. The data for
squsxe tubes presented in figure 6 cluster for the most part in a narrow
region. However, the line drawn for the V-groove test data fits the
square-tube dhta well. The square-tube data are discussed at sane length
in the section ‘!Cripplingof Formed Angle, Z-, and Channel Sections.”

It is interesting to ntie that the slope of the lines drawn through
all of the test data has a value of 0.58 as compared with the theoretical
value of 0.80. Apparently, in the three-bay plate tests, the effects of
the outside edges, which are free to warp, are stild.sufficientlypro-
nounced to cause the plate to act more in the manner of the V-groove plate
than in that of the theoretical straight-edgeplate.

These results serve to indicate that although V-groove and squaxe-
ttie tests may be representative of complex wing structures as far as
buckling is concerned, they may or may not yield conservative data on
failure depending upon the compression cover-supporting structure. For
example, in a multiweb wing design, the continuity of adjacent panels .

tends to prevent warping af the unloaded panel edges. In such cases, it
is possible that the failure relation wi~ Me between the theoretical
relationship as an upper bound and the three-bay plate data as a lower
bound.

The test data for V-groove plates end square tubes are also shown
in an alternate form in the u~er curve of figure 6. This form of pre-
sentation is used extensively throughout the remainder of this report
and therefore it is convenient to have the flat-plate failure data in
this form. !J!hebuckling stress of a long, flat, simply supported plate
is given by

aCr = KE(t/b)2 (16)

By substituting eq-tion (16) into equation (15) and rearranging terms,

In a simplified form

~f =

[()]

~t E l/2m
TCy b acy

(17)

.

(18) ,
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The test data in the upper curve of figure 6 are pltited according
o to the parameters of equation (18) and it can be observed that for

??f/acy< 0.9

of~andm
obtained frmn

From the

the data correlate within *1O percent limits. The values

in equation (18) were computed from the a and n valtis
table 2

section
load of the flange is

as follows:

p = a(3.12)‘*425s 1.42
1

J (19)
m= 2(1 - n) = 0.85

“Failure of F-s” it is lamwn that the failure
directly related to the stress intensity at the—

supported uuloaded edge. It is reasonable to assume, therefo~e, that
failure of the flat plate is related to the edge stress tite~ity.

A qualitative esthete of the edge stress intensity in the post-
buck.1.edphte can be obtained from figure 5. For the plate with straight
unloaded edges, the value of the membrane stress ax at the edge is

approximately the same at the center as at the ends, with the value of
the mcnibranestress cry varying along the length. For the plate with

distorted unloaded edges, however, the value of ax at the edge increases

appreciably toward the center as compared Wiih that at the ends.

The value of the edge stress intensity depends primarily upon the
value of Ux and only secondarily upon ~ and T= which arise afber

buckling has occurred.,,Therefore, it appears that the edge stress inten-
sity at the center of the plate with distorted unloaded edges may be-
appreciabl.yhigher for a given value of average compressive stress ax

than in the correspondingplate with straight edges. In conjunction with
the fact that in the V-groove and square-tube tests some lateral bending
of the edges may occur, the dtiferences in e6ge stress intensities between
the two types of plates could account for the data presented in figure 6.

If the unloaded edges of the phtes are suppofied by columuE which
fail at a value of edge stress below that associated with failure of the
plate in a V-groove or three-bay test, for example, then the data pre-
sented in figure 6 cannotbe used. In its place, the lead-carrying abili-
ty of the plate may be estimated by use of equtions (4) to (6)in which
Ue now represents the strength of the column.

The probla of failure of stiffened panels under compressive loads
is treated at length in reference 1. The failure of stiffened panels
under shear loads has been thoroughly presented by Kuhn, Peterson,
and Lain in their development of tension-field theory (ref. 2).

—-—.. —-...—-.—. — . — .—— — . . ——.. .
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POSTSUC~G BEHAVIOR AND FAILURE

compressed CURVED PIATES

OF

.

As discussed in reference 5, the buckling behavior of curved plates
under axial compressive loads is governed by the curvature parameter ~.

At values of Zb less than 10, approximately,the buckling stress of

curved plates is essentially the same as that of flat plates with ccan-
parable boundary conditions. In the region at ~ between 10 and

roughly 1,000, the transition between flat-plate and ccmplete-cylinder
behavior occurs. In this region, the boundary conditions along both
the loaded and unloaded edges exert significant influences upon the
buckling stresses. Beyond values of ~ of roughly 1,000, long-cylinder

behawior predominates, in which boundary conditions are insignificant.

Curved plates which are characterizedby ~ values beyond the

flat-plate region exhibit discontizmities after buckling such as shown
in figure l(a) for cylinders. This behavior is typical of curved ele-
ments under compressive loadings. At values of Zb in the neighbor-

hood of 10, this discontinuityy is relatively small and such plates can
carry loads considerably in excess of the buckling load. As ~

increases, the discontinuitybecomes so large that the postbuckling loads
are always below the buckling load. In such cases, buckling and failure
are coincident. Experimental evidence indicates this to be true for com-
pressed cylinders and curved plates of large values of ~.

In this section, the postbuclding behavior of curved plates which
fall in the transition region is reviewed. Experimental data on effec-
tive width and failure are presented from which generalized empirical
formulas

Cox
clamped,
Based on

are derived.

Postbuckling Behavior

and Pribram have considered the postbuckling behavior of long,
curved plates with negligible lateral restraint (ref. 13).
a semiempirical approach, the data shown in figure T(a) were

presented for cur%d plates-(~ <-60) with relatively small initial

imperfections. Somewhat larger initial imperfections alter the shapes
of the curves in the region of buclding although they cause insignif-
icant changes in the postbuckling behavior.

In figure T(a), the dashed lines =e used to indicate schematically .
the behavior of the curved plate at buckling in an ideal controlled-
deformation-typetesting machine. This region is most sensitive to
initial hperfections as .welJ-as to the elasticity of the testing machine. “’
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Furthermore, various interpretations can be used to define the buckling
load under different loading systems. As a consequence, the dashed lines
are to be viewed as an indication of the behawior of the curved plate at
buckling and not as an attempt to define the buckling load itself.

Since it is somewhat difficult to define the buckling load precisely,

the data displayed in figure 7 are in terms of E(t/b)2 instead of Ucr

as used for flat plates.
the buckling coefficient

directly in terms of E
Thus,

A further advantage

This has the advantage of avoiding the use of
~ and permits presentation of the results
and the geometric parameters of the curved plate.

c7c#2(l=v2)=Et2

Yc?lsc ()F

of this method of presentation lies in the

(20)

experimental fact that the buckling load tends to decrease significantly
under successive loadings. Test data of Cox and Clenshaw (ref. 14) and
of Jackson and Hall (r&. 15) indicate that the buckling region is sig-
nificantly affected won reloading although the postbuckling region
appears to undergo negligible change.

The ssme data also indicate that in the postbuckling region plas-
ticity effects become important soon after buckling with the result that
the postbuck~ng curves generally have concave-downward characteristics.

.
In

culated

Effective Width

figure y(b), the effective width of curved plates has been cal-
from the data of figure y(a). These curves are intended to indi-

cate schematicallythat the effective-widthbehavior of slightly curved
plates is not significantly different from that of flat plates. The only
important difference is that a discontinuity may appear in the effective-
width data for curved plates at values of Zb greater than 30, a~r~-
mately. The magnitude of the discontinuity is associated with the jump
which occurs at buckling and is significantly affected by the magnitude
of the initial imperfections.

A theoretical analysis of the effective width of long, simply sup-
ported plates of slight curvature (~ less than 10) has been conducted
by Levy (ref. 16). It was concluded that when the bucliledepth beccmes
comparable with the sheet thickness, the effect of initial curvature on
the load carried in adal compression becomes negligible. The results
indicate that when the edge stress is approximately twice the buckling
stress of the corresponding flat plate, the effective widths are sti-
stantieXly the sane. These results are in agreement with figure y(b)
for values of ~ less than 10.

. .. .— —.. ___ _ _ .—. —— — ——— —. —..
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Because of the limited range of this theoretical investigationboth - -
from the standpoint of the low values of Zb (O, 5, and 10) and the

relatively smdll range of 2be/b considered (1 to O.5),it is necessary --
to adopt-an empirical apprcach to this probla.

The available test data are for long, clamped, curved plates.
Ramberg, Ievy, and Fienup (ref. 17) tested multiple-bay curved panels of
2024-T3 aluminum alloy stiffened by sturdy limed Z-extrusions which pro-
vided clamped boundary conditions along the unloaded edges of the plates.
The data for which the edge strain was below the proportional limit fall
into two Zb groups of O to 8 and 24 to 31 and are shown in figure 8.

Additional test data on 2017-T3 aluminum-alloy plates clamped along
the unloaded edges were presented by Jackson and Hall.(ref. 15). The
data shown in figure 8 zme from the qecond series of tests and include
fkt pktes (Zb = O) =d curved plates with ~ values ranging from 4
to 125.

A study of the data presented in f@ure 8 reveals that an apparent
discontinuity occurs in the region of ~/Ue (= 2be/b) between O.5

and 0.4. The data of RaMberg, Levy, and Fienup (ref. 17) indicate that,
for the ~ ranges of O to 10 and 24 to 32, the effective-width range
from 1 to 0.45 can be represented by the following equation within “

*1O percent lJmits:

for 2be/b >0.45. The buckling coefficient

plate and may be determined from reference 5:

Yc~
%=

12(1 - V2)

Equation (21) also represents the Jackson and
flat and curved plates.

(a)

& is that of the curved .

(22)

Hall data (ref. 15) on

Below effective-widthvalues of approximately 0.45, the test data
of Jackson and Hall (ref. 15) appear to follow the trend of the failure
lines for flat and curved plates. The failure lines me obtained from
figure 9 as discussed in the next midsection. The equation for the line
passing through the effective-widthtest data for both flat and curved
plates (O ~ Zb ~ ~) as shown in figure 8 is

.

(23)
.
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for ~e/b<ook5. The buckling coefficient ~ is for the flat plate.
u In this case, for a long clamped flat plate, ~ = 6.3 as indicated in

r figure 8.

Since equations (21) and (23) are based on test data which cover a
rather limited range of Zb values, they should be used with some

caution beyond ~ values of a~roximately 30. It does appear, however,
that the,effective width of flat plates tends to act as a lower limit
for curved plates. ‘l?hisis substantiated not only by the experimental
data for figure 8 but also by figure 7(b) and the failure data of
figure 9.

Beyond ~ values of n, figure 7(b) @dicates that large discon-

tinuities may appear in the effective width curves immediately after
buckling. For values of ~ large enough for the curved plate to act
as a ccnnpletecylinder, the discontinuity can be expected to drop directly
to the failure line, since in this case buckling and failure are coincident.

Failure of Curved Plates

The only reliable data on failure of curved plates with well-defined
boundary conditions are from Jackson and Hall’s second series of tests
(ref. 15). The jigs used for these tests not only clamped the unloaded
edges but also tended to restrain any in-plane warping of the curved
plates after buckling.

As mentioned previously in this section, it is nti advantageous to
present test results for curved plates in terms of the buckling stress,
as used in the sections “Failure of Flanges” and “Failure of Compressed
Flat Plates” for flat plates. !lhisis due to the difficulty of precisely
defining the buckling stress because of sensitivity to initial imperfec-
tions. Furthermore, ~ is not constant but is a function of ~ and

may change appreciably upon successive loadings. Thus, it is desirable
to use the alternate form of presentation given in the section““Failure
of Compressed Flat Plates” and used for the V-groove-plate test data.

As shown in the preceding sections, the failure strength of flat
plates which buckle elastically can be expressed in the following form:

.

.

~f .a~

n

‘cr-() Ccr

Multiplying both sides of equation (24) by

Zf
l-n

()

Ccr—=a —uCy uCy

%l=cy

.

(24)

(25)

- .—. - .-. . — . . . .. —— -- — — — -.— —.. - .. .
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The buckling stress of a curved panel is given by

NACA TN 3784 .

..

(26) -

By substituting equation (26) into equation (25)

Ina

more

~ = %’-”&#~2(1-n)(27)
simplified form this becomes equation (18).

Equation (18) is equivalent to equatian (24), although it is in a
convenient form for correlating Jackson and Hall’s test data on

failure of curved plates (ref. 15). These test data are shown in fig-
ure 9 according to the parameters of equation (18). It is to be nuted
that the values of Ucy were taken as 85 percent of the tension yield

strengths since only the latter were given. The data were divided into.
several ~ ranges and are shown in figure 9.

Within approxhnately t10-percent limits, eqyation (18) fits the
test data in

The range of
df/ucy less

test data on

the fOlhiig form:

‘ [()]
0.85

zf
— = 2.01:* 1’2

Zf

—<;fa acy (28)
‘Cy

validity of equation (28) probab3y applies for values of
than 3/4, a value obtained in the preceding sections. No

curved plates are available to establish this limit.

Equation (28) apparently gives a reasonable fit to all the test data
for values of Zb between 10 and 125. The tits for the Zb range between

O and 10 consiste?rtlyfall on the lower lo-percent Mmit. For this range,
it is suggested that a value of

CRITPLING OF EXTRUDED

The failure following local
vaxiously referred to as ~

fl= 1;79 be used in eqyation (28).

Z-, CHANNEL, AND H-SECTIONS

bucltLingof stiffening elements is
average strength, ultimate strength,

crushing-strength, or crip@ing stre&h. The last term is in common
use in the aircraft industry and is associated with the short-columu .
region (L’/p less than approximately 20) where the strength does not
vary significantly with the length of the stiffener. The term cri@ling
strength is used in this sense herein. .

.
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. Fran the standpoint of local buckling (ref. 4), the stiffener cross
section is envisioned as an asseniblageof plate elements. 5e boundary
conditions along the unloaded edges of each of the individual plate ele-
ments at a common junction are associated with rotational restrahts pro-
vided by adjoining plate elements. The junction may be the filleted
corner of an extrusion or the bend line of a formed section.

Early attempts to determine the crippling strength of stiffening
elements were based upon the buckling behavior of the elements. In such
analyses, the crippling load was taken as the sum of the buckling loads
of each of the plate elements ccmpri@ng the stiffener cross section.
Such analyses are typified by methods presented in the book of .Sechler
and Dunn (ref. 18).

Based on the knowledge that the failure load of a flat plate can
appreciably exceed the elastic bucldlingload, later analyses attempted
to refine the method of calculation of stiffener crip@Lng strengths.
Such methods are in wide use in the aircrti indmtry for sections of
general shape and differ possibly only in minor details from that pre-
sented by Crockett (ref. 19).

For equal flange stiffeners such as Z- or H-extrusions, extensive
test data are available for sevez%@ materials. The s-harpcorners and
re@tively uniform stress-strain characteristics in the cross sections
of extrusions has permitted a synthesis d these data in a simple form.
A relationship invohing the buckling stress of the section and the
compressive yield strength of the material is related directly to the
crippling strength.

For formed Z- and channel sections, the relationship smong buckling
stress, compressive @eld strength, and crippling strength appears to be
influenced by additional factors. These include the finite radius of
the rounded corner and the increase in compressive yield properties in
the corner due to the forming process!

These effects have recently led Needham to propose a revised method
of analysis for formed sections of general shape (ref. 7). In this
method, the .crippl.ingload of the stiffener is obtained by sunuuingthe
failure loads of each of the corner elements comprising the stiffener
cross section.

In this section of the report, a semiempirical analysis is presented
based upon the knowledge gained from the preceding sections on failure of
flanges and flet plates. This analysis serves to unify test results on
various types of stiffening elements and also provides some physical
insight as to the factors operative at failure. Available crip@ing test
data on Z-, H-, and channel extrusions are reviewed in this section.
Formed angle, channel, and Z-sections are reviewed in the following

. —----- ...-. _—. .._. ._ —.= .. .. —— —-... . . .
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.
section and methods of analysis for sections of general shape are pre-

.

sented in section after next.

SemiempiricalAnalysis of

From the flat-plate analysis presented
Compressed Flat Plates,” it can be ~ected
will influence the phstbuckling behavior of

.

crippling

in the section “Failure of
that the following factors
stiffened elements:

(a) The de~ee of rotational restraints at the unloaded edges
(b) The degree of warping and lateral bending of the unloaded

In addition, it can be anticipated that the following factors will
ence

such

crippl&g d the stiffener:
—

[

c) The corner Configwxrbion
d) The stress-strain characteristics of the material.
nonuniformity of stress-strain characteristics in the
as occurs in formed sections

Theoretical postbucm analyses of flanges and flat

edges

influ-

and in partic-
cross section

plates indicate—
a definite relationship among the average stress~ the-critical stress,
and the stress at the unloaded edge of the element. The principal effect
of small initial hperfections is to replace the discorrtinuitybetween
prebuckling and postbuckling behavior, which occurs at the critical stress,
with a continuous relation. In such cases, the theoretical relationships
between average, critical, and edge stresses cam be gpite accurately
fitted by an equation of the following type:

(29)

wh-e a and n reflect the large-cleflection behavior of the element
as given by conditions (a) and (b) above for postbuckling behavior.

From the theoretical analysis of failure of fhnges given in the
section “Failure d Flanges,” it was observed that the maximum average
stress ~f is attained when the edge stress reaches a relatively &ge

fraction of the compressive yield strength of the material. Thus, it
appears plausible to assume that failure occurs when

‘e = bucy (3Q)

where b is a function of the stress-strain characteristics of the .

material and the edge stress intensity in the element. The coefficient b
presumably reflects the influence of items (b), (c), and (d).

.- —
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By substituting equation (30) into equation (29),

Zf n

()

n UCy
—=ab —
‘cr ‘cr (31)

Letting a = abn, eqpation (31) becomes equation (24).

Equation (24) has been used in the precedi~ sections to fit the
theoretical data on failure of flanges and flat plates with undistotied
unloaded edges. In both cases, a value of n = 4/5 gave a good fit to
the theory and available test data.

The usefulness of eqmtion (24) has been demonstratedto some extent
in the preceding sections where theoretical data ere available. In sub-
se~ent sections, it will be shown to be of considerable value as a means
of correlating test data on elements of complex cross section for which
theoretical failure analyses do not exist.

The usefulness of equation (24) was demonstratedby Schuette in
correlating an extensive amount of test data on formed and extruded equal
flange stiffeners (ref. ~). The analysis in this section follows in
broad outline that of Schuette in an interpretation of the test data.
The recent publication of theoretical analyses of the failure of flanges
and flat plates, as reviewed herein, has provided data which substantiate
scme of the assumptions and lend confidence in the approach.

-sis of z-, ~1-, and H-Extrusion Data

An extensive smount of test data on equal-flange Z-, ch+nel, and
H-extrusions of various aluminum and magnesium alloys has been correlated
on the basi$ of eqyation (24) by Heimerl (ref. 21) and Schuette (ref. 20).
The extrusions tested were characterizedby sharp fi21eted corners with
relatively uniform stress-strain characteristics over the cross section.

Test data for H-, Z-, and channel extrusions are shown in figure 10
for four aluminum alloys and one magnesium alloy. The data were taken
from the references listed in the reports of Heimerl and Schuette. These
data were fitted according to equation (24) with the values of a and n
given in table 3 for values of ‘crl”cy less than 3/4, approximately.

It is to be noted that, for all extrusions, values of ~/t ranged from
18 to 23.

In prepering the specimens for these tests, the Z- and channel sec-
tions were obtained by removing flanges from the H-extrusions. Conse-
quently these data are from specimens of very similar properties and can
be used to obtain a reliable esthate of the various factors influencing

___ ..-. —.. ..— —. — ——. —. .—-. --..-——— —-..— . - ---
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failure as discussed under items (a) to (d) in the subsection “Semi- .
empirical halysis of Crippling.”

The degree of rotational restraint at the unloaded edge of the flange -
(the element in the cross section which buckled first in these tests) is
influenced by the ccmner configuration and the relative dimensions of the
flange and web. The corner configurationwas substantiallythe same for
all specimens and, therefore, no estimate of this effect can be obtained
frcanthese tests.

The degree of rotational restraint at the unloaded edge, item (a),
varied between simple support and clamped as influenced by the relative
flange and web dbensions bf/t+ A range of values of bf~ between

0.55 and 0.83 was covered in the H-ex&usion tests. An analysis of the
data did not reveal any systematic variation in the a values with this
parameter. Apparently, the influence of the rtiational edge restraints
is accounted for in determinhg the critical stress of the section and
does not have any further effect upon the crippling strength.

The stress-strain characteristics of the material, item (d), do
appear to have a slight effect upon the value of a. This can be
ascribed to the influence af the value of b as given in eqxkion (30).
From the value of a listed in table 3, it can be observed that there
is a consistent trend for all three sections. Aluminum alloy 2014-T4 has
the highest values of u, alloys 7075-T6 and O-lHTA have the lowest, and
alloys 2024-T4 and R303-T have a~rmdmately the ssme values which are F
intermediateto the other values.

The influence of warping and lateral bending of the unloaded edges,
item (b), is clearly evident from the clifference in n values between
the H-sections and the Z- and channel sections. Theval.ueof n=O.8
obtained for the H-sections is the ssme as that for flanges and flat
plates with undistorted unloaded edges. Evidently, the opposed flanges
of the H-section prevent any wa&ping of the flanges at the corner. In
fact, the values of a for the H-section and hinged flange agree closely.

For the Z- and channel sections, the absence of an opposing flange
at the junction to the web permits some warping and possibly some lateral
bending to occur. Thus, the value of n = 0.72 for Z- and channel sec-
tions is less than that for H-sections. This is in agreement with the
trend observed for flat plates in which the value of n for plates with
warped edges was less than for those with undistorted edges. For extruded
Z- and channel sections, apparently the web and fi~eted corner act so as
to prevent scauewarping of the s~orted unloaded edge of the flange. This
can be judged by the value & n = 0.72 for the z- and channel sections
which is intermediate to n = 0.80 for undistorted edges and n = 0.65
obtained for fIat plates with edges free to warp.

.

—. —.
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Design Data for Z-j

For design purposes, it may
cise values of n and a given
following formulas for values of

(a) For H-sections:

Channel, and H-Extrusions

not be necessary to use the

25

rather pri-
ntable 3. He-~rl has suggested the
Ucr leSS than (3/4)acy (ref. 20:

0.20 0.80
tif= O.80LTcr *cy (3U

(b) For Z- and channel sections:

zf
0.80

= o.7’7um%cy (32)

In an analysis of the ssme test data, Schuette has recommended for Z-,
channel, and H-sections (ref. 20)

iff = o.80ucr
0.25 0.T3

~cy (33)

The differences among these formulas is considerably less numerically
than the scatter of all the test data when variations.due to material
properties and section configuration are not considered.

All of the formulas considered thus far, (eqs. (24) and (31) to (33))
apply for values of acr less than a~roximately (3/4)ucy. This gener-

ally corresponds to cases where buckling is elastic. For cases where

‘cr exceeds (3/4)acy2buc~ generally occurs in the plastic range

and failure occurs slightly beyond buckling as shown in figure 11.

From an analysis of test data, Schuette has proposed for values of

‘crlccy greaterthan3/k (ref. 20)

af = l.o+acr (34)

where U= is computed according to methods given in reference 4 using

the appropriate plasticity-reductionfacto?.

From the same test data, Heimerl (ref. 21) suggested an extension
of the secant-modulusmethod of Gerard (ref. 22). In this case, for
values of Ucr/ucy greaterthan3/4,

[)Ir,#%’s tv2
ijf = —

12(1 - F) bw
(35)

. —. ... . .. -—. . ..— .Z _ —.-...——. — .--_.-—_ —___ .. ..-
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Hetierl and Roberts (ref. 23) investigated the short-time behavior
.

of aluminum-alloyH-sections at elevated temperatures up to 6000 F. The
test data are shown in figure 12, frcm which it can be observed that the

.

relationships established at room temperature are satisfactory for short-
time loading at elevated temperatures.

CRETYJ3YG OF FORMED ANGIE, Z-, AND CHANNEL SECTIONS

The various factors influencing crippling of extruded sections, as
discussed in the preceding section, also pertain to formed sections.
Several additional factors such as the rounded corner,and increased stress-
strain characteristics in the corner region as a result of forming indicate
the desirability of discussing formed sections separately from extrusions
in this presentation. Furthermore, stiffening elements are often formed
of alclad sheet and it is necessary to consider the effect of the cladding
upon the crippling strength.

A mass of test data on Z- and channel sections formed of 2017-T3
and 2024-T3 aluminum alloys was analyzed by Schuette (ref. 20) on the
basis aP eqyation (24). It was found that a value of n = 3/4 fitted
the test data well but that there was a systematic variation of the coef-
ficient a with the parameter ~/t which ranged between 18 and 43.

Since a appeared to be constant for extruded Z- and channel sections,
the variation in a for formed sections was attributed to the increased
stress-strainproperties in the corners.

In an analysis of the same test data used by Schuette plus data on
FS-lh formed Z-sectionszGallaher (ref. 24) found that a simple correh-

tion of the form ~f = f(A/t2), where A is the cross-sectionalarea

of the stiffener, gave a good fit with the test data. Recently, Needhsm
(ref. 7) presented test data on formed angles and channels of alclad 2024-T3,
2024-T3, and alclad 70~-T6 aluminum alloys and obtained good correlation
on the basis of

Gf = C(t2/A)m (36)

A value
fact, a
m = 3/4

of m = 3/4 gave a good fit with all of Needhamts test data. In
replot of Gallaher’s data on the basis of equatibn (36) with
resulted in excellent agreement with the test data.

.
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SemiempiricalAnalysis of Angles and Sgyare Tubes

27

The interesting fact evident frcm the foregoing discussion is that
there are apparently two different correlative schemes which are each in
good agreement with test data. The GalJaher-Needhsmmethod is the shplest
since, for a given material, the crippling strength is a simple function-
of the gecmetric properties of the cross section t2/A, or tfi where b
is the developed length of the cross section.. However, it is not directly
evident how to generalize equation (36) in terms of The physical properties
such as E and uCy of the material. Furthermore, equation (36) is valid

/
only for values of df Ucy less than a~roximately 3/4 as in the case of

extrusions. This fact is often disregarded when the data are presented
accordingto eqyation (~).

The Schuette form of correlation involves computation of the buckling
stress, and, therefore, is not so s~le as the above method. Primarily,
the simplicity ts lost for Z- and channel sections because a in equa-
tion (24) is not a constant but is a function of ~/t. The advantages of

the Schuette method, however, include the fact that the results are in a
generalized form for various materials since the values of E (in ucr)

and acy appear in the semiempirical relationship. Furthermore, the

range of validity of the relationship in terms of 6f/ucy “isreadily
evident.

,

In preparing t~s review, it became evident that certain relations
must exist between the two correlative schemes ~hich would permit a gen-
eralized approach. It is desirable to retain the simplicity of the
Gallaher-Nee- method, although in a non-nsionalized form, with the
range of validity of the formula readily evident. The bst two features
are contained in the Schuette method of correlation.

The following analysis presupposes that the available test data for
a particular stiffener shape which buckles elastically have been corre-
lated on the basis of the two methods discussed above. From the Gal.laher-
Needham method eqyation (36)holds and from the Sqhuette method for

~ ~1/n
6f = acy, there is equation (24) or

l-n n . .
Uf =cmcr u -Cy (37)

It is assumed that the values of C, a,
from test data.

At this point, the e~ression am

tion (37). Although this can be done in

m, and n can be established

is to be introduced into eqya-

a generalized manner, it is

..— ....—-— ——... ..— —— _ ....__.--— -.—— .—— --—----
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convenient to consider those cases in
is constant (such as for equal flange
from cases where k is a function of
cross section:

where fi is
substituting

NACA TN 3784 -

“-.
whichthe buckling coefficient k
angles and scj..e tubes) separately
the geometric parameters of-the - --

t)

2
=~KEG (38)“Cr=i i#%j(a2

the claddiw reduction factor discussed in reference 3. By
equation (3~) into equation (37)

.a(~~l-nt 2(1-n)
k)

n
??f Ucy (39)

Also, for equal flange angles and sqme tties> the parameter %2/A Can

be replaced by t/b with the resultant change in equation (36):

af= E(t/b)m

By equating equations (39) and (40)

l-nt 2(1-n) n

()
a(K-~) ~ c1 =

()
&

Cy

(40)

(41)

By rearranging terms and defining a new parameter ~, the following rela-
tionship exists:

2(1-n)-m
$ = d-n~) I= ~ (#nacyn . (42)

By virtue of e@ation (40) and since t/b is proportional.to

()

1/2
a
cr >

m/2
~fa~

cr
(43)

From equation (37), however,

l-n
~f=u

cr
(44)

Therefore, for equal flange angles and sqme tubes the exponents of Ucr

must be related in one of the following ways:
.

.
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1 -n=~
2

1 -n 1—= —
m 2

1

J2(1-n) -m=O

By use of equations (45), equation (42) simplifies to

13=d”n=
u

(~E)m/2acyl-(m/2)

Finally, equations (39) and (40) become

The range of validity of

(45)

(46)

(47)

eqyation (24) is valid for
equation (47) follows from equation (24). Since

ii?f
~ s wn

it follows from equation (46) that in terms of ~

6f<0 l/n

~cy -–() +n

For Val.ueSof ~f/Ucy greater than those given by equation (49)

iff=ucr .

(48)

(49)

(50)

The application of this method of generalized analysis will be demon-
strated by correlating data on squsxe tubes and e@ flange angles.

Crippling of Square Tubes and Equal Flange Angles

A sufficient, although not extensive, amount of available test data
on crippling of extruded square tties of several aluminum alloys has been
sumarized by Needham (ref. 7). .The data for tubes for which 5f/ucy

was less than approximately 3/4 were correlated according to the Gallaher.
Needham methd, Schuette method, and the generaJAzed method presented
herein.

-—.______ -—— . -— —-- —-— ______ _ . _



30 NACA TN 3784

From test data shown in figure 13, it can be observed that m = 0.85 . -
fits the data according to the Gallaher-Needhsmmethod and n = 0.575 fits
the data according to the Schuette methd. According to eqyation (45), the
relation between m and n is satisfied without any adjustment in these ‘-
values. In terms of the generalized correlation for the sqpare tubes

(51)

df
for —~C).7. Also included in figure 13 are some data on rectangular

~cy
tubes of 2024-T3. It canbe observed that the data are in agreement with
eqpation (51) which is the same eqyation obtained for V-grouve plates in
the section “Failure of Compressed Flat Plates.”

Needhsm has conducted tests on crippling of equal flange angles
formed of 2024-T3, alclad 2021t-T3,and alclad 7075-T6 aluminum alloys in
the -T condition toan inside radius approximately eqyalto 3t (ref. 6).
The test data for each material.were correlated by Needham accordingto

rff= m/b)3/4 (52)

As pointed out by Needham, an exponent of m = 3/4 gave a satisfactory
fit,-although not necessarily the best fit, to the test data. !J?hevalues
of C! as well as the physical properties of the materials are tabulated
in table 4.

Although alcald angles were tested by Needham (ref. 6), the buckling
stresses for a large majority of the test points were well below the pro-
portional limit of the cladding. In such cases, no correction for the
cladding, as discussed in reference 3, is required. The few test points
which theoretically do reqplre a correction were not revised because of
the minor nature of the correction in this case.

In order to provide additional data for use with the generalized
crippling formula, Needhsm’s test data for the 2024-T3 equal angles were
plotted according to the Schuette method in figure 2. Although there is
sane scatter in this plot, which also exists in Needham’s data plotted
accading to equation (52), the following relation fits reasonably well
as sh~ in figure 2 and by equation (3):

0.575
Gf

()
= 0.95 - for %s o.g2 (53) -

acr acr ~cy

Thus, avalueof m= 3/4 was used by Needham and a value of
n = 0.575 was obtained from equation (53). According to equation (45), -
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.
however, 2(1 -
The discrepancy

.

31

n) = m, a relationship which is not satisfied in this case.
is apparently due to the fact that the scatter of the data

permitted some latitude impersonal. jud~nt in fitting the data according
to equations (30) and (40).

To resolve this discrepancy, all.of Needhamts test data for angles
were plotted as shown in figure 14, according to equation (k7). The aver-
age generalized crippling formula for formed angles which fits the data
within fro-percent limits is ..

[()(” ) ]

0.85
df 1/2
~Lo.665 ~ ~

b Ucy (54)
Cy

for &f/acyS0.92. This formula is valdd for materials with strain-

hardening characteristics similar to thope of 2024-T3 alloy end with a
bend radius of approximately 3t formed in the -T condition. For mate-
rials such as 7075-T6 alloy which have lower strain-hardening character-
istics than 2024-T3 alloy, the test data appear to be consistently lower
than the average curve in figure 14. ~refore, a.value of P = 0.630
should be used in equation (54) for such materials.

Needham has also conducted tests on elclad 2024-T3 unequal flange
angles (ref. 7). By defining the term t/b as ~/(bl + b2) Were bl
and b2 represent the flange widths, Needham obtaihed satisfactory cor-—
relation with equation (52) using the value of ~ given in table 4 for
alclad 2024-T3 eq@L flange angles. These data are also shown in fig- “
ure 14. Apparently, equation (54) is in reasonably good agreement with
these data.

SemiemptiicalAnalysis of Z- and Channel Sections

As & the cases of angles and square tubes, the analysis for Z-
and channel sections presupposes that the available test data for sec-
tions which buckle elastically have been correlated on the basis of the
two methods. For the Gallaher-Needhammethod equation (36)holds true
and for the Schuette method there is equation (37).

For equal flange, Z-, and channel sections, the buckling stress may
be determined from the following eqution
sented in reference 4:

and buckling coefficients pre-

(55)
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By substituting equation

‘f =

NACA TN 3784 .

“...
(55) into equation (37)

For Z- and channel sections of constant thicknass,

A= (%)[.+ (y)] “
t2

(56) . -”

(57)

where ~ and ~ are the web and flange widths, respectively. By

sutmtittiing equation (57) into equation (36)

(58)

By eqwting equations (56) and (58), rearranging terms, and defining
the parameter ~ in a manner similar to that used for angles and square
tubes,

‘ ‘~1-n[+5)7?rn)-m
Finally, by substituting equation (59) into
crippling formula is obtained

c

(ijE)%cyn
eqyation (36),

(59)

the generalized

(60)

which is valid if eqpstion (48) is satisfied.

Note that, in this case, a direct relation between the exponents m
and n cannot be established theoretically as in the case of equal-
element sections such as angles and square tub-es. For the latter, the
buckling coefficient is a constant and t2/A can be replaced directly
by t/b. For the Z- and channel sections, the buckling coefficient and
the t2/A parameters are different functions Of bf/bw.

Crippling of Z- and Channel Sections

Schuette has analyzed test data on 2017-T3 and 2024-T3 channel and
Z-sections formed in the -T condition to an inside bend radius of 3t
(ref. 20). In all cases the flange buckled elastically. It was quite

.

.
.
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.
conclusively established that a value of n = 3/4 in equation (37) gave
the best fit to the test data. This value is practically the same as
tha~ obtained for extruded Z- and channel sections; The test data for.
the extrusions covered the mow ~/t range from 18 to 23 and there-

fore a fixed value of a = 0.80” (eq. (33)) was used to correlate the
data. The formed sections, however, cuvered a ~/t range between 18

and 43 and, consequently, a variation of a with the parsmeter ~/t

was obtained.

The test data for the 2Q17-T4sections are shown in figure 15(a).
In figures 15(b) and 15(c), the test data for the 2024-T4 sections are
given. Additional test data of Gallaher (ref. 24) on FS-~ magnesium-
alloy Z-sections formed in the -h condition to an inside bend radius of
4.3t are shown @ figure 15(d). M all these cases, n = 3/4 and the
values of a listed in table 5 provided a good fit to the test data.

The same test data w&e correlated according to equation (36)and
are presented in figure 15(e) in terms of ~f and A/t2. It can be

observed that all data for each material Me along a single line of slape
m= 0.75. There is no systematic variation of the data with the param-
eter ~/t as occurs in figures 15(a) to 15(d). Thus, correlation

according to equation (36) is evidently simpler and more direct than
according to equation (37).

Now that the values of the exponents n = 0.75 and m = Q.n have
been estab~shed from figure 15, generalized crippling formula (6o)
becomes

df [()()]tp& 1/3 ‘“m “

—=$ r acy=Cy (61) “

All available test data for formed Z- and channel sections of 2017-T3,
2024-T3, snd FS-lh alloys are plotted in nondimensional form according
to equation (61) in figure 16. It canbe observed that a value ~f
j3= 4.00 in equation (61) fits the 2017-T3 and2024-T3 data withina
U-percent scatter band. The FS-lh data appear te be smewhat lower
with a value of j3= 3.78. The lower value of J3 is attributedto the
lower strain-hardeningcharacteristics ofFS-lh alloy, which result in
a smaller increase in yield properties in the corners as compared with
those of the two aluminum alJoys. This effect”is considered in detail
in a later portion of this section.

For values of m and n equal to 0.75,
a, and C become, from equation (59),

the relations among f3,

.

, :%CL25&+i+f$00m($)0*25 = ,,EIO.; 075 (62)

Ucy “ .

.— .. . ....—..—_ ..._ — -— — ——
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An interesting sidelight on the variation of a with the parameter ~/t 4 “-

can be obtained f?xxrthe calculation presented in table 6. ‘RX?values of
~ as a function of bf~ were obtai~d frcm reference 4. It cm be -

seen that the parameter listed in table 6 is reasonably constant over the
bf~ raage of the majority of the test data. By use of the values

listed in table 6, eqpation (62) simplifies to:

(“9
0.25

P = 2.14a~ (63)

h order to confirm eqyation (63) bytuse of the values of a listed
in table 5, it is convenient to rearrange equation (63) in the form

a= (&)(!Y)-o”= (64)

In figure 17, the data of table 5 are platted and shown in relation to
equation (@). A value of ~ = 4.05 fits the data reasonably well
within a scatter band of +3 percent. 5s value of ~ was determined
independently of that obtained from figure 16. Both values of ~ are
in close agreement.

Also shown in figure 17 is the value of a = 0.80. which was obtained
from egyation (33) for extruded Z- and channel sections. since the
extruded sections tested covered only a ~/t rahge from 18 to 23, no

experimental variation of a was observed. However, from the relation
between ~ and a as given by equation (59), it is reasonable to expect
an a variation for extrusions as well as for formed sections. The
dashed line in figure 17 appears to be a reasonable esthate ti this
variation.

It is interesting to nute that the extrusion line falls below that
for formed sections. This is ascribed to the increased stress-strain
characteristics in the corners of the formed sections. Apparently, the
strain-hardening due to forming has little, if any, influence upon the
value of n. Its only effect is to increase the value of a, presumably
by increasing the edge stress at failure as reflected in eqqation (30).

As indicated by eqpation (~), equation (61) is valid below values

of al/n. ~ use of equation (6k), the values of the cutoffs shown in
figure 16 can be readily established. Beyond these cutoffs, extensive
test data correlated by Heherl (ref. 21) Indicate that

fi2%#s t 2Sf =
12(1 ()-.~2) z

where ~ can be determined from reference 4.

“(65)

.

.
.
.

.
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Cladding Correction
L

. The cladding which may be present on formed
the value of the buckling stress as indicated in
buckling load-carrying ability of the section is

sections acts to reduce
equation (55). The post-
adeqwtely accounted for

by use of the pertknt stress-strain data for the CM materials. The
principal effects of the cladding, therefore, include a decrease in the
buckling stress as reflected in the cladding reduction factor ij and a
slight decrease in E and Ucy as compared with those of the core

material.

Needham has presented a considerable amount of test data on channel
sections of alclad 2024-T3 and alclad 7075-T6 formed in the -T condition
with an inside bend radius of 3t. The data of figure 16 on 2024-T3 Z-
and channel sections can thus be used as a standard of cmnnrisonwith
the alclad 2024-T3 data of Needham (ref. 7) to
of correcting for the cladding.

The cladding correction factor ij can be
formula given in reference 3

1+ 3(CC1/UCr)f
:= l+zf

substantiat~ the method

computed from the followlng

(66)

where f %s the ratio of total cladding th$ckness to total thickness
(f =0.10 foralclad2024-T3 and f = 0.08 for aIclad 7075-!r6soys).
Since data for the”individual test points were not given by Needham
(ref. 7), anuverall correction based on a value of acl/acr =1/2 was

used for the alc@d 2024-T3 data and Ccl/acr = 1/3 for the alclad

7075-T6 data. The values of Ucllucr selected were based on an esti-

mated average value of Ca for the range of test data

values of ~ tend to undercorrect at the higher values

correct at the lower values of ~f. However, since the

a minor nature, this approach appears to be acceptable.

Needham’s test data are presented in a generalized

presented. These

of af and wer-

correction is of

form in figure 18.
Equation (54) is compared with the alclad 2024-T3 data by using the value
of ~ = 4.~ obtained from the 2024-T3 data of figure 16. It can be
seen that the data fall within the f10-percent scatter b-and.“Such scatter
was previously obsened also for the data on formed angles, figure 14.
Inasmuch as Needham’s data scattered within *lO-percent llmits when cor-
related according to equation (36), the scatter in figure 18 cannot be
attributed to the generalized correlationmethod in this case. Therefore,
the method of correcting for the alclad coating appears to be satisfactory.

.
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The alclad 7075-T6 data in figure 18 fa31 consistentlybelow the -.

alclad 202h-T3 data.

.

These data are fitted within *lO-percent limits by
eqyation (61) with a value of j3= 3.42. The lower strain-hardening
-acterifiics of alclad 7075-T6 appear to be responsible for the lower ‘ “
value of J3e

Increased Corner Properties of Formed Sections

The increased stress-strainproperties of sections which are formed
in the -T condition have been discussed briefly at various points in this
section? Now that the values of ~ h equation (61) have been established
for formed Z- and channel sections of several different materials, it is
possible to examine quantitativelythe effects of the increased corner
properties on crippling.

The average compressive yield strength 6CY of the corners of Z-

and channel sections as compared with that of the unformed sheet has
been investig@ed by Heim.erland Roy for 2017-T3 (ref. ~), Heimerl and
Woods for 2024-T3 (ref. 26), Woods and Heimerl for alclad 7073-T6 aluminum
alloy (ref. 27), and Gallaher for FS-lh alloy (ref. 24). The ratios of
the average compressive yield strengths of the corner 6CY to the yield

strengths of the unformed sheet Ucy for these materials are presented

in table 7. The data are for sheets formed in the -T condition with the
bend line parallel to the grain direction. .

In order to correlate the crippling strengths with the increased
corne~ properties of formed sections, the pertinent values of ~
and u

ICy ‘Cy are presented in table 8.

The values of B as a function of 6cy/ucy are plotted in fig-

ure 19 from Which a fairly consistent trend is evident. The values In
the last column of table 8 are based on the fact that the crippling stress

o.~
for Z- and channel sections is proportional to ~ and acy . Thus,

in attempting to estimate the value of ~ for sections which do not have
increased corner properties (sections formed in the annealed condition
and subsequentlyheat-treated, e.g.) the values calculated in the last.
columu were averaged and are showp in figure 19. This aver,agevalue is
within &j percent of the computed values of table 8 and is based upon
the assumption that the crippling strength depends primarily upon the
compressive yield strength of the corner. The data except for the
2024-T3 material appear to substmtiate this assumption.

Figure 19 also includes the value of P = 3.64 for extruded Z-
,

and channel sections. When cmpared with the estimated value of ~ = 3.30
.
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at i5c#7cy= 1.00, it appears that the filleted corner of the extrusion

is responsible for approximatel.ya 10-percent increase in crippling
strength. .

CRII?PLINGW SECTIONS (l?GENERAL SHAPE

In the section entitled “Crippling of Extruded Z-, Channel, and
H-Sections” crippling strength data for extruded Z-, channel, and H-sections
were analyzed and in the next section extruded tubes and formed angle, Z-,
and channel sections were considered. Although such sections are in com-
mon use, many other sections such as J-, hat, lipped Z-, and channel sec-
tions are widely used. Furthermore, the included angle between various
elements in the cross section maybe considerably different from 90° and
the flanges of a Z- or channel section, for example, maybe of unequal
dimensions. Thus, it is necessaryto review available test data on sec-
tions not treated previously in order to consider exbension of the semi-
empirical methods of the two preceding sections to more general shapes.

EMPirical methods are in wide use in the aircraft industry for csl-
culating the crippling strength of sections of general shape. Typical
of these methods is that presented by Crockett (re”f.’19)in which the
failing strengths of the various flat and curved plate elements comprising
the cross section are suuunedto determine the crippling load of a section
of general shape. Curves for various materials in which the failing
strength is given as a function of b/t or R/t have been presented for
plates ,withone edge free and those with no edge free.

Recently, Needham proposed’a method of calculating crippling strengths
of formed sections in which the cross section is divided into a series of
equivalent angles with one-edge-free and no-edge-free conditions (ref. 7).
Data for the failing strength as a function of A/t2 of the equivalent
angles were obtained from tests on channel and sqyare-tube sections such .
as discussed in the preceding eection. The crippling load of sections of
ge~ral shape is obtained by summing the failing loads of the various
equivalent-angle elements of the croak section.

Needham stated tkat an advantage of this method is its inclusion of
the influence upon crippling of the increased yield properties in the
corners of sections formed in the heat-treated condition (ref. 7). Fur-
ther, the division of the cross section into angle rather than plate ele-
ments places the “cut” in the least sensitive region of the plate.

Although the last argument appears to be rather abstract, focussing
attention on the corner by considering the equivalent angle does appear
to be of conside=ble significance. As discussed -inthe section “Failure
of Compressed Flat Plates,” failure of an element which buckles elastically

. . ..— .._— —. — —.. . —. ——— . ..—



38 NACA TN 3784

is intimately associated with the stress intensity at the unloaded edge. -
-.

Since the corner provides the suppoti for the unloaded edge, the nuniber
of corners h a section of general shape should have a significant influ- -.
ence upon the crippling strength.

Indeed, the analysis of availsble test data tobe presented in this
section suggests that only two gecauetricparameters are required to deter-
mine the crippling strength of many sections of general shape for a partic-
ular Msterial. One parameter is A/t2, which, for a section of constant
thickness, is the developed length-thicknessratio. The other parameter
is the number of corners c which subdivide the developed length into a
series of plate elements.

In order to indicate the influence of the nmiber of corners upon
crippling strength, the gene- shapes to be considered in this section
are treated according to this parameter. Thqs, one-corner elements
include equal- and unequal-flange-angle,T-, and cruciform sections.
Two-corner elements include eqti- and unequal-flange, Z-, channel, and
J-sections. Sections with a number of cornqrs greater than two include
lipped engles, lipped Z- and channel sections, sndhat and limed hat
sections.

A generalized formula

w

One-Corner Elements

for determining the crippling strength of
equal and unequal fhnge formed angles was obtained in the preceding sec-
tion based on the analysis of a mass of test data. From equation (54),

‘ ~=$f[(%)(#2~8’
(67)

where f is the nuuiberof flanges and the parau&er f%2/A has been
substituted for t/b. Needham first demonstrated that for equal and
uneqpal angles with the same value of the paremeter A/ft2, the crippling
strengths were the same within experimental error (ref. 7).

For alclad 202k-T3 angles formed in the -T condition j3f = 0.665 ~d ‘
for alclad 7075-T6 angles ~f = 0.630. These val~s were established from
a considerable amount of test data and are probably quite reliable. In an
‘attempt to estimate the value of ~f for extruded angles, the data of

Crockett (ref. 19) and of Ramberg and Levy (ref. 28) listed in table 9
were used ad are shown in figure 20. Equation (67) with a value of
$f = 0.565 was used to fit the data. Because of the meager amount of

data, this value of $f can be regarded as only a first apprmimat ion.

In the sections “Failure of Flanges” and “Failure of Compressed Flat
Plates,” it was shown that the degree of warping of the unloaded edge, or -

— ———. —.._._. _
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corner in this case, has a strong
which are relatively free to warp
cruciform which have straight
flanges.

The crippling strength of—
tion (2) is

Multiplying both SideS of

39

influence on failure. Thus, angles
have -lowercripp~ stre&hs t~ .

~oaded

extruded

edges by virtue of their opposed

cruciform accoiding to equa-

\o.80

equation (68)by

(68)

acrlccy~

i?f 0.20

()

acr= 0.81 —
acy ~cy

(69)

The buckling stress of a long simply supported f- for v = 0.3 is

()
2

()

2
(Ycr = 0.388E ~ = o.388E e

A
“ (70)

By substituting equation (70) into equation (69).,the generalized
crippling formula of,extruded cruciform sections becomes

(m

Equation (71.)is shown in comparison with equation (67) in figure 20.

An extruded T-section is a comon shape in the category of one-corner
fMnged elements. It has a pair of opposed flanges such as in a cruciform
and can be considered as one-halP of an H-section. Some of the test data.
of Crockett (ref. 19) and Ranibergand Levy (ref. 28) for T-sections listed
in table 9 are shown in figure 20. (For Crockett’s data in table 9, the
value acy = 43 ksi was obtained from ref. 28.) It can.be observed that

equation (71) is in reasonable agreement with the few available test
points.

. .

Two-Corner Elements

A genezxLld.zedcrippling-strengthformula for equal-flange, Z- and
channel sections was obtained in the.preceding section based on a large
mass of test data. FYOm equation (61~

o.~

(72)

-.. ..— ..——— - . —. ———. — .
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Values of j3‘for extruded and formed sections of several different
---

. aluminum and magnesium alloys are shown in figure 19.

For sections of general shape, the angle between adjacent plate ele- “
ments is often clifferent from w“. Since all of the sections considered
thus far wer-ecomposed of.right-angle elements, it is pertinent to con-
sider available test data of Roy and Schuette on equal-flange Z-sections.
where the bend angle was the only systematicallyvaried parameter (ref. 30).

Test data for a typical Z-section are shown in figure 21 as a function
of the bend angle. It may be concluded that the buckling and crippling
stresses are independent of the bend angle provided that the radius of
gyration of the section is not reduced sufficiently to result in primary
instabilityy.

In equal-flange Z- and channel sections, the stress conditions at
each corner are identical because of certain symmetrical.properties of
the sections. For unequal-fIange Z- or channel sections, the buckling
stresses of the flanges are different and consegyently the stress condi-
tier.isat each corner may be different.

In figure 22, two-corner elements tested by Needham (ref. 7) and
Crockett (ref. 19) are shown. The crippl~ data of the unequal-flange
channel and Z-sections and the J-sections which axe considered as two- .

corner elements are given in table 10. The sections were formed in the
heat-treated condition of alclad 202h-’I!3and alclad 2024-T36 aluminum
alloys.

!l?he.testdata for these sections are presented in nondimensional.
form according to equation (72) in figure 23. The cladding-correction
according to equation (66) was based on the estimated buckling stress of
the section. Shuwn for comparison is equation (~) with a value of
~ = 4.00 obtained for 2024-T3 and alclad 2024-T3 equal-flange Z- and
channel sections. The data for the various two-corner sections presented
in figure 23 lie within a ~0-percent scatter band.

Alth@ this relatively simple method of analysis requires sub-
stantiation by considerably more test data than were presented here, the
available test data indicate that two-corner elements tend to behave in
the same manner regardless of their shape. Should the proposed method
be confirmed by additional tests, a considerable simplification in deter-
mirdng the crippling strength of two-corner elements will be achieved
over methods in current use.

.
As a possible explanation for the behavior of two-corner elements

it is suggested that for uneqyal-flange elements the following averaging
process may be operative. Under a uniform-end-shorteningtype of test,
the corner of the wider fhnge reaches a value of edge stress corresponding -

.
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J
to failure of the corner

1 load under the catinued

41

first. This corner does not ca&y any additional “
end shortening required to fail the second corner.

-- The cripp~ng stress is therefore a weighted average of the failure stress
of each corner. For equal-flange sections, the crippling stress is the
failing stress of each corner. Therefore, unequal-flange sections tend to
have an averhge crippling strength equal to the crippling strength of an
equal-flange section having the same value of A/t2.

In accordance with observations of data on equal-flange 2- and chan-
nel sections, equation (72) applies when buckling of the first element”in
the cross section is elastic. The cutoffs given in figure 16 pertain to
figure 23 also. Beyond the cutoffs,

df = acr - (73)

where am can be determined

coefficients for equal-flange

with sufficient’accuracy by use of buckling

Z- and channel sections given in reference 4.

Multicorner Elements

For convenience, all sections with more than two corners are desig-
nated as multicorner elements. Typical sections are shown in figure 24.
For the three-corner elements shown,.calculations indicated that the
flange generally buckled first. For those sections with four or more cor-
ners, a web element in the cross section was always responsible for buck-
ling. Since the behavior of the latter closely resembles that of square
and rectangular tubes, an attempt.was made to correlate available test
data on multicorner elements according to the generalized crippling for-
mula for tubes, equation (51):

(74)

If
be
to

this method of correlation were not successful, the yalue of m would
different from 0.~5 and the exponent of the acy/$ term would tend
differ from 1/2.

Available test data of Needhsm on multicorner sections of alclad
202h-T3 formed in the -T condition (refb 7) and of Crockett on formed
alclad 2024-T3 and alcl.adE024-T36 (ref. 19) were correlated according
to the parameters of equation (74). The shapes of the various sections
are shown in figure 24 and the dimensions and cripplingdata are &ven
in tables 11 and 12. The cladding correction according to equation (66)
was based on the estimated buckling stress of the section.

. The available test data are shown in figure 25. Iines of slope,
m= 0.85,fit the data well according to equation “(74),even for the.

,
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..
three-corner elements in which the flange buckled first. The values of
~ appear to depend only upon the number of cornery c and are shown in
figure 26. It is a remarkable coincidence that the value of ~ is almost ‘-
equal to the nuniberof corners.

This dependence of 13 upon the nuxiberof corners led to the further
generalization of equation. in the following fgrm:

(75)

The test data are shown in the formof equdion (~) in figure 27. A
value of ~ = 1.X fits all the data within ~-percent limits. It is
interesting to note that these limits are one-half those previously used
when correlating I?eedhem’sdata on formed angle and channel sections.

z, as for the two-corner elemetis, a considerable amount of addi-
tional test data are required before.theproposed method of crippling
~is CaU be used with ccmmlete confidence. In the form of equation (75),
the ~thod of analysis

In estimating the
which are stiffened by

for ~ticorner elements is remarkably s@le. ‘--‘-

Lips and Bulbs

nuniberof corners for qections
formed lips or extruded bulbs,

containing flanges
certain anibiguities

may arise. There is little, if any,,test data available on the specific
influence of the Mp and buIb dimensions on failure of a flange. There-
fore, it is advantageous.to consider the influence of such stiffening
elements upon buckling of a fhnge since such data were presented in
reference 4.

From the charts presented in reference 4, it is relatively simple
to determine the necessary lip or flange dimensions Which will cause the
flange to act as a web from the standpoint of buckling. If the stiffened
flange acts as a web, then the lip-flange or bulb-flange junction acts as
an additional corner. If the,lip or bulb are insufficient to stiffen the
flange so that it acts as a web, then the lip flange or bulb flange acts
as a stiffened flange without the addition of a corner.

Although these criteria have theoretical justification from the
standpoint of the buckling behavior of the stiffened flange, test data
on failure of stiffened flanges are required to substantiate the suggested
approach.

Research Division, College
New York University,

New York, N. Y.,

of Engineering

April 7, “1955.
.
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IWENDIX A

APPLICATION SECTION

In this application section, the results which may be of importance
to ~he failure of plates and composite elements from the standpoint of
analysis and design are summarized.

Flat and Curved Plates

Effective width.- For values of ae/ua less than 3, the effective

width of flat plates maybe determined by use of equation (10) in con-
junction with the values listed in table 1. These values were theoreti-
cally derived and are for long, simply supported flat plates with the
following boundary conditions:

(1)

(2)

(3)

For

Unloaded edges held straight

Unloaded edges free to warp in plane of plate

Various degrees of restraint upon the lateral motion
of the plate

values of Ue/U~ greater than 3, the effective width of long

flat plates with rotationally restrained unloaded edges held straight
and free to move laterally maybe determined from eqyation (5).

The effective-width formulas of long curved plates are based on
test data and are, therefore, semiempirical in nature. For effective-
width values greater than 0.45, test data on long, clamped curved plates
for the range of availsble test data, OS ~~ 31, are representedby
equation (21)

(a)

where Kc is the buckling coefficient of the curved plate as determined

from reference 5.

s

.

\

... ..- .—-. ___ . — --- —---



44 NACA TN 3784 .

For effective-widthvalues less than 0.45, test data for the range
● .

of available test data OS ~ ~ 125 are represented by eqpation (23)
.

. 2be [()]43 t * l/20.85
—= Kpo.
b K<

(23)

,

where Kp is the”flat-plate buckling coefficient.

Failure.- Both theoretical results smd test data on the failure
strength of long simply supported flat plates can be represented by the
fouawing formulas:

?if ()
n-

‘%—=u#— for u= ~ ~l/nU
% % w

l/nafor um>a ~

The vehes of a and n depend upon the restraint of
of the unloaded edges as indicated in table 2.

,

&st data on failure of V-grome plates and-long,
and curved plates
alternate form

The
the

values of P

(Al)

(A2)

b-plane wsrping

clamped, flat
in the range ‘OS ~S 125 can be-repres-ated in the

.

‘f [013./20.85—= $g~

‘w
(5)

depend upon the type of edge support and curvature of
plate aa fol.lows:

(1)

(2)

(3)

Although

V-groove flat plates: P = 1.42

Flat clamped plates: ~ = 1.79

Curved clamped platesj loa@25: p=2.ol
.

complete data me not avai~ble, it is believed that equa-
tion (A3) is-valid for am < 0.9Uc~ approximately. For am ~ O.9ucy, “

eqyation (A2) can be expected to apply. .
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.

crippling

The generalized crippling analyses of test data indicate that, for
a given material, the”crippling strength depends upon the developed
length-thicknessratio and the number of corners of the section:

(A4)

(45)

For formed sections, the additional.effects of the al.cladcoating and
the increased properties in the corners require consideration.

As shown in the section entitled “Crippling of Formed Angle, Z-,
and Channel Sections,” the effects of the alclad coating canbe ade-
gpately accounted for by use of the cladding reduction factor, as given
in equation (66): J

~ -1+ 3~C1/”cr)f
l+sf

(66) .

This factor was derived in reference 3 and is bas~d on the buckling
stress of the section Ucr. Since the value of q affects equation (A4)
in a relatively ndnor manner, only a rough estimate of am msybe

required in most applications.

The value of B in equation (A4) depends upon the increased yield
properties 5CY in the corners of formed sections. As discussed in

the above-mentioned section and shown h figure 19, . ~ appears to be

proportional to (6cy,acy)[1-(m/2)J or (5cy,acy)[1-(m/3)]. This fOl-

10WS from equation (A4). Therefore, all values of ~ determined for
one, two, and multicorner ekments are shown in figure 28 as a function
of 5

/Cy =Cy”

One-corner elements.- The available test data on formed angles and
extruded-angle, T-, and cruciform sections are adequately represented
by the following generalized cripplhg formula:

.

. . —-—. —--- —.— . —.—— - . —— .- .
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(A6)

Sections with opposed flanges appear to have greater crippling
strengths than those with supported unloaded edges subjected to in-pl=e
-m. This effect is discussed in the sections “Failure of Flanges,”
“F&~e of Compressed Flat
Chsmnel, and H-Sections.”

Values of m and Bf
table 13 and figure 28.

Equation (A6) is valid

angles for which ?icy/Cw >

that equation (A6) is valid

Plates,” and “Crippling of Ec&uded Z-,-

for use with equation (A6) are given in
,

f‘r ‘-s ‘f ~f/ucy < 0“92 f‘r f‘-d
1.25. Test data on cruciform indicate

f‘r ~f/%y < 3/4” ~ the absence of other

test data, this cutoff should be used for all other cases listed in
table 13. Beyond the cutoff, equation (73) can be expected to apply:

(73)

Two-corner elements.- The availAble test data on formed and extruded
Z-, J-, and channel sections are represented by the following generalized
cripp~ formula (61):

(61)

Values of B are given in table 14 and figure 28. The rsmge of valldity
of equation (61) fo~ows from equations (48) and (64):

(A7)

For an average value of P = 3.6, equation (A7) reduces to

~f <22

()

1/3
—_ (A8)
=Cy %

Beyond this cutoff value, equation (~) applies.

— .— --
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An H-extrusion is a
for H-extrusions for the

\,

special type of two-corner element. Test data
range 18= ~/t ~ 23 are ti good agreement..

. with equation (31) for 6f/Ucr g 3/4:

.
af = omoucro”%cyo”~

Beyond the cutoff, equation (~) a@.ies.

Multicorner elements.- The available test
tubes and formed sections of various shapes as
all representedby

(30

data on extruded sqpare
shown in figure 24 are

$=4!w1’70”8’
Values of Pc are given in table l’jand figure 28. ~

The range of validity of equation (31) for square tubes is
<0.7, as shown in figure 13.~f/ucy = FYomfigure 27, it appesrs that

a suitable cutoff for B= = 1.3 wwuldbe 6f/ucyS 0.9. There ace

insufficient test data to establish cutoff values for other values of

PC* However, for < 3/4, equation (~) probably is of sufficient3f/uw =

accuracy for most cases.

.

. .
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!l?AxLEl.- VALUES OF~FQR

SIMPLY SUPPORTED
f-

mATPLATEs
1

Unloaded edges Uhloaded edges “
blat held straight, free lx?inovein plane

v= constant of plate, Uy=o

o 0.500 0.408

.25 .548 .458

●5 .580 .494
.

1 .621 .540

2 .665 .590

4 .696 .613

w .746 .684

TABLE 2.- VALUESOF a AND n FOR FLAT PLATES

Element a n

Theory for straight unloaded edges 0.78 0.80

V-groove test data .80 .58

Three-bay plate test data .80 .65

.

..-— —— —.. — -— ——..-———- .. -—



52 NACA TN 3784 -

-.
TAmE 3.- VALUESOF a AND n FOR VWOUS

EXTRUDED SECTIOMS AND WWERIUS .

.

Material

2014-T4

202h-Tk

R303-T

7075-~

o-1 HTA

I Values of a for -

H-section,
n= 0.80 “

0.83

.80

.80

Z-section,
n= 0.72

0.85

.81

.83

.80

.82

a.82

Channel section,
n= 0.72

0.85

.81

.81

.79

●79

aAverage.

TABLE4.- CRIPEUNG OF FQRMED EQUAL FLANGE AMGIES

Material. c, Issi acy, ksi E, ksi

2024-T3 225.0 45.1 10,500

Alclad 2024-T3 200.1 “ 42.0 10,000

Alclad 7075-T6 259.0 66.2 10,000
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TAELE 5.- VALUES OF a FOR CKEPLING

FoRMEDz—m~ SECTIONS

.

.

Material.

2017-T3

2024-T3

2024-T3

Fs-lh

Section

Z, channel

z

channel

z

(bw/t) ~v

25.5
31.7

18.8
23.1
26.7
31.9
38.7

24.5
29.5
34.2
43.2

29
35

OF

a

0.85
.82

.89

.87

.85
●77
.74

.87

.84

.80

.74

.81

.77

T4BLE6.- VALUES OF ~ M A FUNCTION (M’ bf~

FOR Z- AND CHANNEL SECTIONS

bf/% % %0”25 ~ + @f/%)]o”75

0.4 3.37 2.13.

.6 2.00 2.14

.8 1.25 2.17

.

.

.

-.. — ___ ___ .— —. — — —. ..-
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-7.- INCREASEDCORNERl?ROl?ERTIES

lKIRIURMED SICTIONS

Sheet material i, in.
/

R/t 5CY acy

. 2017-v 0.I.25 3 1.23

2024-T3 .125 3 1.35

Alclad 7075-T6 .102 6. 1.06

Fs-lh - .102 4.3 1.15

TABLE8.- VARIATIONOF p WITH 6cy/acy ~R

Z- AND CHANNELSECTIONS

Material R[t
/

3CY Ucy B
I

P (zcypcy)314

2017-T3 3“ 1.23 4.00 3.42

2024-T3 3 1.35 4.00 3.19

Alclad 2024-T3 3 1.35 4.00 3.19

Alclad 7075-k 3 al.09 3.42 3.14

FS-lh 4.3 1.15 3.78 3.42

b3.30

All
eXkrusioIls (fi~eted) - l“m

3.64
.

●aEsthtid Vd.lE .

bAverage value.
.

,.-

.
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!r#!aLE9.- TEST DATA ON ~ mwm m T-sEcTIom

LIs shape. em from bt. of Cr.ckett (ref. 19); Ehapes 6 and Y are “
from data of -rg ena L=V (ref. 28).]

()

1/2 “

~pe t, ml. bl, in. bz, in. Alti2 ~~ 3f, ksi
/,

acy, ksi Zf Ucy

(a) , (b)

Chgle sectioris

L9208 0.125 “ 0.875 1.75 21 0.67 32.4 .43 0.754

Ls 209 .051 .~ .625 22 .70 30.7 43 .737

m 210 .125 l.co “ 1.75 22 ●P 32.8 43 .764

6 .064 l.cm 2.00 46.1 1.44 - ---- 42:4 ‘.43

cT-sectione

Ia 236 0.065 1.00 1.50. 38.5 0.82 . 31.0 43

‘LS 247 .040 .75 1.25 p 1.06 29.2 43

% 248 .Om 1.00 1.30 9 1.06 28.0 43

‘M 2@ .064 1,00 l.p s .83 32.2 43

7 .lm . 3.00 2.09 49.6 l..w ---- 40.4

aFor T_~eCtiO~, ~ iS total width d mw=d flues’
. .

0.721

.W

.652

.750

‘.65

%br Crockett‘Sdata (ref. 19), Ucy = 43 k.eiae obtahd ~ k@i.U, “
Hdmann, ad Paul (ref. 2!3).

C= ~wion fimts for ~g~es ~
O <R/t < 1/2; for T-sections,

1/2 < R/t <1.
‘Values of ~ ~- /. correspond to L’/p = 20.

‘eThe bl flange had B l/16-in. -radius bulb at free edge.

I
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.

Shape

(a)

El
E2

:

X785-C

xIs-165

Is-160

Is-1a

. .

TABIE 10. - TEST nM!A ON‘IWO-CORNERImMEm!s
.

t, in.

0.0252
.0253
.o~
.0255

.025

.040

.064

.025

.040

.064

.025

.040

.025

.040

.025

.040

.025

.040

.025

.040
:025
.040

J&2

136.7
87.2
67.6
95.5

103
64.5
40.3
103
64.5
40.3

99.4
62.1
99A
62.1

80.8
5095
80.8
!m.5

93.6
58.5
93.6
58.5

1/3

()

A ‘CY.—
t2 *

22.10
Ih.lo
10.92
~5.45

G.52
10.68
6.93
ti.67
1.1.47
7.45

15.94
10.28
17.U2
1.L02

;.;$

V192
8.98

“15.03
9.68
16.15
10.40

iff, ksi

15.8
22.6
24.7
21.0

19;6
26.2
37.7
22.0

g:;

20.7
26.6
25.6
34.7

23.7
32.4
25.9
35*9

.21.5
@*3
23.2
30.4

Crq, ksi

(b)

42
42
42
42

:;

41
5L

;:

41
41
51
51

41
41
51
51

41
. 41

51
51

Zf/cfcy

0.376
.538
.588
.500

.478

.639

.920
&n
●X3
.853

.505

.648

.502

.680

.578

.~o

.507

.704

.222

.715

.455

.596

%ee figure 22 for dimensions of sections.

bFor Crockett’s data (ref. 19), values of UW were obtained from

Tem-@in, Hartmam, and Paul (ref. 29).

.

.
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TABLE11.- D-IONS OF MUILl?ICORNERSECTIONS

[ 1See figure 24 for explanation of notation

57

.

-------------

Shape a, in. b, in. c, in. d, in. e, in. t, in. A/~2

!@ee-corner elements

Al i.000 1.000 0.434 0.434 ----- 0.0250 107.6
A2 1.568 I.568 .437 .437 ----- .0315 u9.8.
m 1.788 9953 .443 .438 ----- .o~o 67.2
G1 ●977 1.561 .881 .422 ----- .0318 111.2
G2 .936 2.457. .863 .425 ----- .0255 175.7

Four-corner elements .

c1 2.457 0.980 0.980 0:$++ 0.449 0.0200 247.0
C2 2.487 .987 .987 .414 .0315 158.4
C3 2.4I.2 .892 .892 .408 .408 .0382 W*7
C4 2.236 1.262 I.262 .428 .428 .0505 1o4.1
C5 I.813 .862 .862 .425 .425- .0258 157.0
F1 2.331 .856 1.241 .424 .424 .0318 155.5
F2 2.118 .976 I.266 .732 .442 .0318 163.7
D1 1.231 2.260 .853 JA3 .443 .0203 239.0
D2 1.255 2.195 .875 .429 .429 .0382 128.1
D3 .847 1.887 .847 Ag 431 .0258 160.8
D4 1.244 1.950 1.244 .423 .0252 198.5

I.250 1.904 1.250 .415 .415 .0383 1.27.1
X7;;-D .625 I.250 ●7% -.--- ----- .025 167.5
x785-D .625 1.250 “750 ----- ----- .040 1o4.7

Five-corner elements

H 3.668 1.528 0.393 0*943 ----- 0.0318 191.7
B-152 2.500 1.312 .250 .562 ----- .040 126.5
IS-153 3.250 1.437 .187 .562 ----- .051 101.6

Six-corner elements

B1 1.205 1.340 1.236 0.447‘- ----- 0.0255 282.0
B2 L 198 1.610 1.001 .445 ----- .0320 199.5

.,

.-— -... —— . —- -—---- .-—
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TABLE 12.- TESTDAT/lON MULTICORNERSECTIDNS

1/2
Shape ~

()

~ @cy ??f.,ksi
tscy,ksi

—— %lacy
(a)

~2 ~
(b)

. Al 3 7.30 26.2 42 0.624
k 3 8.21 22.9 42 .545
In 4.91 -35.0 .839
G1 ? 7.32 26.2 & .624
G2 3 u.56 17.8 42 .424

c1 6.25 17.3 .412
C2 ; 10.42 24.1 & .574
C3 8.46 27.5 42 .655
C4 ! 7-% 31.4 42 .748
C5 10.32 24.o .571
F1 : 10.35 23.9 E .569
F2 10.78 23.8 ●567
D1 : 15.70 17.4 !: .41k
D2 4 8.78 28.2 42 .671
D3 10.58 23.3 “555
D4 : 13.07 19.0 - & .452

4 “ 8.72 27”7 .659
X7~-D “ 4 10,72 22.0” E
X785-D :

●537
7.03 31.1

X785-D
.760

11.97 24.3 E .477
x785-D 4 7.83 . 36.2 51 .710

H 5 13.00 25.0 42 3!3;“
E-152 5 9*!X 39.5
IS-153 5 7“75 44.1 ;: .864~

B1 6 19.15“ 20.8 42’ .495
B2 6 13.70 27.1 42 .645

%ee figure 24 end tsble 11 for shapes and dimensions.

-..

-.

.

%or Crockett’s data (X78~D, IS-152, IS-153) (ref. 19), values
of uCy were obta$ned from Templin, Hartmnn, and Paul (ref. 29)...

.

-. —.
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TABLE13.- OME-CORNERELIMENTS

Elanent “● m %yl~cy ~f Remarks

Formed sngles o.8~ 1.0 0.59
L 1 s .62
1.2 .65 Estimated

. >1.25 .66

Extruded angles .85 ----- ..57 R/t = l/2 “
----- “ .60 Estimated for

R/t = 1

T-extrusions .40 ----- .67 Based on 13mited’
test data -

CrucifOlmlexlnllsions .40 ----- .67

TABIJI14.- TWO-CORNERELEMENTS

Element ~cy/%y
.

P Remsrks

Formed angles 1.0 3.3 Estimated
1.1 3.5
1.2 3.8

>1.25 4.0

Extruded sngles 3.6. R/t = 1

.

*.— — —.. .--
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.

TABLE15.- MULTICORNEREIEMENIS

Elements %#cy Pc Regwks

Formed angles 1.0 1.1 Estimsted
1.1 1.2 Estimated

>1.25 1.3

Extruded angles ----- 1.2 Estimsted for
R/t = 1

EXruded squsre tubes ----- 1.4

.

.

. .

.
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WAVE DEPTH , E
Th7CKNESS t

(a) Elastic buckling.

Lo

FLAT PLATES

.

- --WTIAL lMmcrloN = W?

o
.

~AVE DEPTH , &
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(b) Plastic buckling.

Figure 1.- Schematic postbuclilingbehavior of various axially compressed
elements.
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Figure 2.- Cmperlscm of theoretical failure analysis with test data on 2(324-9A aluurl.num-al.kw
cruoiform sections and 2024-Tj fcmmed angles.
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TEST DATA
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Figure 3.-

.

Cmparison of experimental data with theory for
behatior of hinged flsnge.
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(a) Stradn distribution.
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(b) Stress distribution.

Figure 4.- Theoretical strain and stress distribution across a hinged
f-e of ~24-T% ~uminuma~oy (~taframstowell, ref. 6).
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.

(a) Straight unloaded edges.

Figure5.-

(b) Stress-free
free to warp

unloaded edges
in plane of

plate.

Stresses smd displacements of flat plates
conditions of uniform end shortening (see

.

after buckling under
ref. 31).
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Figure 6.-Results of theoretical failure analysis of compressed flat
plates with straight unloaded edges and test data on v=ious plate
elements.
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Figure 7.- Data for long,

w~E(f/b)g
(b) Hfective width.

,

clamped, curved plates. Nmibers indicate

of : = %(1 - ,2)-1’2.

values
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(a) H-extrusions.

Figure M. - Crippllng data for varioue extrwlons.
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(c) Channel extrusions.

Figure 10.- Concluded.
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Figure 11. - Relation between buckling crippling of
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extruded sections.
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Figure 13.- Crippling data on extruded tubes accofiing to various corre-
lation methtis. b/h = 0.583; b/t = (b + h)/2t for rectangular tubes.
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Figure 14.- Generalized crippling analysis of formed angles.
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(a) Pomed 2- and channel sections of X)17-93 aluminum alloy.

Figure 15. - Crippling data on fonued sections.
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Figure 22. - Dimensions of two-corner formed sections used for analysis.
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