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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 378k

HANDBOOK OF STRUCTURAL STABILITY
PART IV - FATLURE OF PIATES AND COMPOSITE ELEMENTS

By George Gerard
SUMMARY

Avellable theories on failure of flat plates are reviewed. In
terms of the results of these theories, avalleble test data on the post-
buckling behevior, effective width, and failure of flat and curved plates
are correlated.

Test data on the crippling strength of various formed and extruded
shapes are reviewed, from which a generalized method of crippling analysis
is formulated. The effects upon the crippling strength of alclad coatings
and the increased properties in the corners of formed sections are inves-
tigated by use of this analysis. '

The generalized crippling analysis was applied to a variety of sec-
tions and materials in common use. It was found that the crippling
strength of all the sections 1s governed in a simple mammer by the devel-
oped length~thickness ratio and number of corners of the section.

INTRODUCTION

The present report is concerned with the fallure of flat and curved
plates and composite elements which are subject to buckling under compres-
sive loads. For composite elements such as Z- or channel sections, the
failure mode considered is that commonly referred to as crippling. Thus,
the effective slenderness ratio of the composite elements is in the neigh-
borhood of 20, a region in which variations in length result in negligible
changes in the crippling strength.

In the section entitled "Basic Principles," the postbuckling behavior
of colums, plates, and cylinders is briefly reviewed in order to deter-
mine those elements for which the fallure load may conslderably exceed
the buckling load. Because of the mathematical complexities inherent in
any theoretical treatment of the failure phenomenon, the available theories
constitute an important contribution to the understanding of the factors
operative at fallure. Therefore, a comprehensive review of results
obtained for hinged flanges is presented in the next section. This anal-
ysis serves as a reference frame from which semiempirical methods can be
devised to treat failure of elements not amensble to theoreticel solution.
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In the next two sections, the postbuckling behavior, effective wildth,
and failure of flat and curved plates are comnsldered. Particular atten-
tion is devoted to the influence of the unloaded-edge boundary conditions
. upon failure of flat plates. The crippling strength of extruded and
formed composite elements such as angle, Z-, chamnel, H-, and square-tube
sections 1ls treated in the following two sections. Various semiempirical
methods are used to correlate the large mass of available test data. In
particular, a generalized crippling analysis is presented which is both
simple and nondimensional in form. By use of this analysis, the effect
of the increased properties in the corners of formed sections has been
Investigated. Further, a method was studied for correcting for the alelad
coating which may be present on formed sections.

In the section "Crippling of Sections of General Shape," the gener-
alized crippling analysis was applied to unequal-flange, Z-, and channel
sections, J-sections, lipped Z- and channel sections, hat sections, and
other formed shapes. It was found that all available test data reported
in the literature on various shapes and materials could be correlsted
according to the developed length-thickness ratio and the number of cor-
ners of the section.

In the sppendix at the end of this report, the various results of
importance in analysis and design are compiled for convenlence. It 1s
to be noted that failure of stiffened panels. is treated in Part V of this
Handbook (ref. 1). A discussion of failure of flat and curved tension-
field m§mbers has been presented previously by Kuhn, Peterson, and Levin

ref. 2).

This survey was conducted under the sponsorship and with the finan-
cial assistance of the National Advisory Committee for Aeronautics.

SYMBOLS
A area, 8q in.
Ay, area of rib cross section, sg in.
a length of plate, in.; also coefficient in equation (29)
b width of plste, in.; also coefficient in equation (30)
b developed width or length of cross section, in.
be effective width per edge, in.

be width of flange, in.
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By

Kc ’ kc

width of web, in.

coefficients
number of corners .

elestic modulus, psi or ksi

secant modulus, psi

number of flanges; also ratio of total cladding thickness to
total plate thickness

modified buckling coefficient, =n2k/12(1 - v2)

buckling coefficients of curved plate, K, = 2k, /12(1 - v2)

buckling coefficient

effective length of column, in.

exponents in stress equations

load, 1b

redius, in.

thickness, in.

displacements, in.

coordinates

curved plate parameter, (b2/Rt)(L - va)l/ 2
coefflcients

crippling coefficient for multicorner sections
axial strain

cladding reduction factor

Poisson's ratio

radius of gyration, in.




o axial stress, ksl ‘
Oa1 cladding yieid stress, ksi

Ocy campressive yleld stress, ksi

acy averasge compressive yield stress in cormer of formed section, ksi
Op failure or crippling stress, ksi

Oxs Oys Txy membrane stresses

Subscripts:

av average

er critical

e edge

T flange

o . initial

D £lat plate

r reduced value

W web

BASIC PRINCIPLES

In Part I of this Handbook (ref. 3), the elastic and plastic buckling
of flat plates was considered, in Part II (ref. 4) buckling of composite
elements was summarized, and in Part III (ref. 5) buckling of curved
plates and shells was treated. In certain cases, buckling terminates the
gbility of the element to carry additional loads and, therefore, buckling
and failure are essentially colncident. In other cases, primarily in flat
and slightly curved plates which buckle elastlcally, failure occurs at
loads considerably in excess of the buckling load. It is the purpose here
to delineate the physicel principles involved in the postbuckling behavior
of various elements in order to exemine in detail those elements for which
the failure load may considerably exceed the buckling load.
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Except for those cases in which the buckle form itself is unstable
as discussed in reference 5, fallure is generally a combination of large-
deflection effects initiated at buckling and plasticity effects. Because
of the nonlinearities associated with both large deflections and plastic-
ity, the problem of determining the theoretical failing load of any
buckled element is mathematically complex, if not intractable. However,
since buckling initiates the processes leading to eventual failure, it
is of utmost importance that anslyses should exist for accurately pre-
dicting buckling stresses. Analyses presented in references 3 to 5 pro-
vide a key role in constructing a theory of failure, which, because of
mathematical camplexities, is often semiempirical in nature. ’

Failure in individual cases is colncident with, or occurs consider-
ably after, buckling. Hence, it is important to examine the postbuckling
behavior of various elements to determine the conditions under which the
failure load can exceed. the buckling load. For this purpose, figure 1
has been prepared. In figure 1l(a) the schematic postbuckling behavior
of flat plates, columns, and cylinders under exial compression is shown
when elastic buckling occurs. Figure 1(b) indicates » schematically, the
behavior of flat plates and columns after plastic buckling.

It can be observed from figure-l(a) that, for flat plates and columns,
fallure occurs at values of w/t" well removed from the region where
buckling initistes. Thus, small initial imperfections are unimportant.
After buckling, the lateral deflection of the column is not restrained in
any manner. Therefore, no transverse membrane stresses exist and the post-
buckling behavior is represented by a horizontal line. Beyond a certain
¥elue of w/t, plasticity effects become important and the 0/0cr line

decreases. Thus, fallure occurs at the onset of significant plasticity
effects.

For flat plates, the boundary constraints et the unloaded edges per-
mit significant tension membrane stresses to develop after buckling which
act to restrain lateral deflection. Thus, flat plates can support loads
considerably in excess of the elastic buckling load. As for columns,
fallure occurs at the onset of significant plasticity effects.

By contrast with flat plates and columns, axially compressed cylin-
ders develop transverse compressive membrane stresses after buckling and
thus the buckle form itself is unsteble. As discussed in some detail in
reference 5, small initial imperfections are important in this case with
the result that failure and buckling are essentially coinclident. Tt is
important to note that fallure is due primarily to the instability of the
buckle form rether than to the initiation of plasticity effects, which
occurs at considerably larger values of w/t.

The postbuckling behavior of flat plates and columns which buckle
plastically is shown schematically in figure 1(b). The genersl effect of
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plasticity is to displace the large deflection curves of the elastic
case downward. The nature of the transverse membrane stresses is rela-
tively unimportant with the result that the failing load is very close
to the buckling load in both casges.

FATIURE OF FIANGES

A hinged flange is the simplest element, from the standpoint of
anelysis, which can carry loads considerably in excess of the elastic
buckling load. As campared with a column which is unsupported along the
unloaded edges and thus deflects appreciably at buckling, the flange is
supported along one unloaded edge. This boundary constraint tends to
stiffen the flange during postbuckling rotation and permits supercritical
loads to be carried.

Although the posteritical (nonlinear, large-deflection) behavior of
various types of plates and shells has been investigated in considerable
detall, such studies have been based on the assumption that the element
followed Hooke's law. As such, the fallure phenomenon cannot be observed,
since failure is intimately associated with plasticity effects. Because
of the nonlinearity of the posteritical behavior and the additionael non-
linearities of plaesticity, failure analyses of buckled elements are
complex.

. Fortunsately, Stowell succeeded in conducting a fallure analysis of
a flange with a simply supported, straight, unloaded edge (ref. 6). The
results of thls investigation are of considerasble importance because they
supply quantitative data as to the failure mechanism. Furthermore, the
analysis provides a reference frame from which semiempirical methods can
be devised to treat other cases of failure for which camplete analyses
do not exist.

The method of analysis used by Stowell (ref. 6) which results in
excellent agreement with test data (shown in fig. 2) is as follows:

(a) The strain distribution across the flange at any angle of twilst
is determined by means of a nonlinesr finite~deflection analysis.

(b) This elastic strain distribution is assumed to persist into the
plastic region. (Test data shown in fig. 3 tend to substantiate, this
assumption.) :

(c) By use of deformstion~type plasticity theory, the strain dis-
tribution is transformed into a stress distribution across the width of

the flange.
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(d) The loasd carried at successive increments of twist is obtained
by graphical integration to determine when a meximm load is reached.
Certain of the.results of this analysis are presented in some detall in
the following discussion.

Postbuckling Behavior

The large-deflection behavior of buckled elements is often conven-
lently represented by = relationship among the average 6 and critiecal

0., Stresses and the stress at the unloaded supported edge Oy For

the hinged flange with the supported edge constrained to remain straight
in the plane of the flange, such a relstion is given by

20 B

For a material which follows Hooke's law, equation (1) can be writ-
ten in terms of the strain ratios &fe,, and egfecr. Stowell (ref. 6)

assumed that equation (1) in terms of strain ratios could be extended to
plastic strains., This assumption is justified by the data shown in
figure 3.

After the flange has buckled, there are shear strains in the flange
due to twisting in addition to the axial strains. By suitable combina-
tion of these strains, the pertinent value of the secant modulus Eg can

be determined for a particular materlisl. The compressive stress in the
flange is then simply Eg; times the compressive strain at that point.

The average stress acting on the flange is finally obtained by integra-
tion of the stresses across the flange width.

Fallure of Flanges

Failure occurs when the average stress reaches s maximum and beglins
to decrease with & further increase 1n strein. This is graphically
depicted in figure 4. Up to the critical stress and strain, the distri-
butions are uniform. Beyond critical, the distributions become succes-
sively less uniform as the twisting increases. Although the edge strain
is continually increasing, the edge stress increases more slowly because
of plasticity effects. Eventually, the edge stress ceases to increase
and decreases with further straining. The maximum load, or fallure, occurs
Just as the edge stress reaches a maximum.

"The very significant physical fact which is brought out by this
enslysis ls that the edge stress is intimately assoclated with failure.
Apparently, failure occurs when the stress intensity at the edge reaches
a value approximately equal to the compressive yleld strength. This is
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indicated by Stowell's analysis (ref. 6) where it is shown that for !
eight widely different hinged flanges the edge stress intensity is a :
constant within 1 percent and approximately equal to the compressive -~
yield strength.

The results of the analysis which are important from a design stand-
point are shown in figure 2. It can be cbserved that Stowell's theoreti-
cal curve is in good agreement with test data on 2024-T4 aluminum-alloy
cruciform extrusions. In such sections, the opposed flanges constrain
the simply supported unloaded edge to remain straight. For equal flange
angles, however, the simply supported unloaded edges warp in the plane
of the flange after buckling. Consequently, the test data of Needham on
202473 formed angles (ref. T7) lie somewhat below Stowell's theoretical
line which pertains to an undistorted edge. 'The significance of warping
is discussed at some length in the section entitled "Failure of Compressed
Flat Plates."

In order to have a convenlent anslytical representation of the theo-
retical and experimental data, the following semiempiricel relationship
is shown in figure 2. For simply supported flanges with straight unloaded
edges, such as cruciforms,

5 5 080 , h

£ - <y Ge <
- (2)
J

The second equation is used to represent the fact that beyond approxi-
mately (B/h)ocy failure and buckling are essentially coincident.

For the formed equal flange angles,

3 - 0.58 A
= o.95(3-<:-;) (of < 0.92ch)

[ (3)
8 = 0y (5 > 0.920,)

-

The fact that the second equation applies at a higher fraction of Ocy

for formed angles as compared with that for extruded cruciforms is :
attributed to the increased stress-strain characteristics in the corner

of the formed engle. This factor is discussed further in the section

entitled "Crippling of Formed Angle, Z-, and Channel Sections." ¥
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FAILURE OF COMPRESSED FIAT PIATES

It is well known that flat plates subject to compression (as well
as to other types of loading) can carry loads considerably in excess of
the elastic buckling load. A relatlvely large number of theoretlcal
anslyses, therefore, have been concerned with the postbuckling load-
carrying ebility of such plates. Such analyses, with one recent exception,
are based on purely elastic considerations and while they yleld valusble
information on a limited range of postbuckling behavior, the important
problem of fallure requires the incorporation of pla.sticity theory into
the large-deflection analysis.

As indicated previously, large-deflection analysis of buckled plates
is mathematically complex because of nonlineerities in the strain-
displacement relationships. The introduction of plastlicity effects intro-
duces ancther nonlinearity in the stress-strain relatjionships. By use of
variational principles in conjunction with calculations performed on an
electronic camputer, Mayers and Budlansky were &ble to attack this dif-
:Eicultax)aroblem and obtained results related to failure of buckled plates

ref. . .

Because of thelr importance in certain problems, the results of
elastic analyses of postcritical behavior are reviewed. Certain of the
results are consldered in terms of effective width. The termination of
load-carrying ability, or failure, is then discussed in terms of theory
and avallable test data.

Postbuckling Behavior of Flat Plates

A bibliography of significant large-deflection analyses of buckled
elastic plates under compressive loads is given by Mayers and Budiansky
(ref. 8). The important results of these analyses have been summarized
by Argyris and Dunne (ref. 9).

As discussed in the section "Failure of Flanges," the large-deflection
behavior of buckled elements is conveniently represented by a relationship
among the average &, critical Oop» 8nd edge o, stresses. The various

factors influencing this relationship inelude:

a) length of plate

b) Edge rotational restraints

c) Restraint of lateral expansion of plate

(@) Restraint of warping of unlosded edges in the plane of the plate

The first three of these factors affect the buckling stress as discussed
in reference 3. The fourth factor hecomes operative after buckling has
occurred.
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For values of 0g/0,, less than approximately 3, the postcritical
behavior of campressed flat plates can be given in the following form:

'ga— =1l-8+ (Bae/ccr> (%)

cr

The values in table 1 for P were cbtained from the book of Argyris
and Dunne for long flat plates (a/b > 3, approximately) with simply sup-
ported edges (ref. 9). The restraint against lateral expansion is given
by the ratio Ar/a:l: as discussed In reference 3. In addition to the
values of table 1, B = 0.583 <for a long plate clamped along unloaded
edges which are held straight.

One limiting case of restraint of the unloaded edges considered in
table 1 1s for stralght unloaded edges such as would be cbtained with
flexurally rigid members along the unloaded edges of an infinite array
of panels. The other case covers a stress-free unloaded edge in which
in-plane warping is permitted as in a plate test with V-groove supports.
The two limiting types of behavior are lllustrated in figure 5.

For values of 0g/0cr greater than approximately 3, significant
changes in the buckle waveform occur and it is necessdry to replace equa-
tion (4) by the following more accurate relations. For a square plate
simply s orted with unloaded edges held straight and free to move
laterally (Ap/at = 0)

= 0.19 + o.81(§°—1‘)l/2 (5)

e

sas

For long plates with rotationally restrained unloaded edges held straight
and free to move laterally (Ap/at = 0)

= a 2/ 2 (+] ,'l'/ 2 (1] 6/ 2

g - cxr - er <cr

== 1.2(6 ) 0.65(qre ) + o.hs(de ) (6)
Effective Width

The results of large-~deflection analyses are often éonveniently glven

in terms of the effective width of the plate acting at the edge stress.
The average stress on the plate was defined as

§ = Pfot (1)

- —- - = ———— e - - ———— e — .- . e ————— e
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For the same load P, 1t 1s desired to find an effective width at each
edge be acting at the edge stress:

P = Og2bet (8)
By substituting equation (8) into equation (T),
- 2b
g "€

By resrrenging equation (4) and by use of equation (9) the following
effective width relation can be obtained for values of 0g/0cy less than
bH

Bopomforoted o

For values of 0g/0,. greater than 3, equations (5) and (6) may be used
directly in conjunction with equation (9).

The effective width discussed in the foregoing comments is concerned
with the load-carrying ability of the plate after buckling. A second
type of effective width is associated with the stiffness of the plate
against further compression. The reduced effective width is defined es

(ﬁg) -85 ‘ (11)
® /. dog
From equation (4), therefore

2b

(5e) -+ (12)

r

For values of 0g/0., greater than 3, the reduced effective width can

be found from equations (5) and (6) in the following forms: For the
squere plate:

e\ O 1/2
(T) = 0.19 + o.ho5(a.e—)

r

(13)
snd for the long plate:

(%)r ) 0_72(%1-_)2/5 - 0.13(;:_1-_)4/5 - o.o9(g:—r)6/5 (14)
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As indicated in figure 1, the effects of small initial imperfections
are confined primerily to the region of the theoretical buckling stress
for flat plates. Thus, small initial imperfections lower somewhat the
values of effective width as compared with those for a perfect plate up
to approximately og /“cr = 2. Beyond this, the effects are negligible.

Since the reduced effective wildth depends upon the derivative as
indicated by equation (11), the effect of small initial imperfections is
to lower significantly the values of reduced effective width as campared
with those of perfect plates below the theoretical buckling stress.
Beyond this, the effects are negligible and the values for a perfect
plate may be safely used.

All the foregoing results on effective width are based on analyses
which assume the plate to be elastic in behavior after buckling. Mayers
and Budiansky introduced plasticity effects in the postbuckling analysis
and computed the effective width of flat plates of 2024~T3 aluminum alloy
1(:ha.t 'bu;:kled at 0.3, 0.4, 0.5, and 0.6 of the compressive yield strength

ref. 8).

The results of this analysis indicate that the effect of plasticity
is to reduce the effective width as compared with that derived from elastic
theory for values of g, /cscr (edge s;brain/critica.l strain) up to approxi-

metely 3. Beyond this, elastic theory ylelds somewhat conservatlve
values.

Failure of Flat Plates

The terminstion of load-carrying ebility of flat plates appears to
be dependent upon the boundary conditions along the unloaded edges. As
discussed in the section "Failure of Flanges," failure of a flange is
intimately associated with the highest attalinsble value of edge stress
which in turn is a function of the edge-stress intensity. Thus, varia-
tions in edge~stress intensities due to differing boundary conditions
mey be expected to result in vaeriations in the fallure behavior.

In discussing the failure of flat plates, it 1s necessary, there-
fore, to identify carefully small differences in boundary conditions
which by themselves may not cause & difference in dbuckling stress. For
this purpose, the discussion will be concerned with the failure of flat

plates for which:

(a) The unloaded edges do not warp and thus remain straight in the
plane of the plate (v = Constant) (fig. 5(a)).

(b) The unloasded edges are free to warp in the.plane of the plate
(ory = 0)(sig. 5(b)).
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(c¢) The unloaded edges are supported by columms of solld cross
section.

The load-carrying capacities of flat plates with straight edges con-
strained to remain straight have been computed by Mayers and Budiansky
for 2024-T3 plates that buckle elastically at 0.3, O.4t, 0.5, and 0.6 of
the compressive yield strength (ref. 8). Although the average compressive
stress did not have & maximm value in the range of end shortening con-
sidered (up to 0.010) the curves were very flat from a strain of approxi-
mately 0.006 on. Thus, the average compressive stress at a strain of
0.010 was taken as an indication of failure.

The results of this analysis, together with experimental data on
failure of flat plates with various boundery conditions of Anderson
and Anderson (ref. 10), Botman (ref. 11), and Besseling (ref. 12), are
shown by the lower curve and test points in figure 6. A very significant
fact brought out by the theoretical analysis is that the load-carrying
abllity of plates with straight unloaded edges may be significantly
higher than that of plates with unloaded edges which are free to warp.

Plates tested in V-groove supporting fixtures are free to warp.
In addition, out-of-plane displacements at the unloaded edges are not
entirely prevented after buckling beceuse of lateral -shortening in the
central region of the plates as shown in figure 5. Similarly, the post-
buckling behavior of compressed square tubes closely follows that of
plates tested in V-groove supports. For the tubes, both warping and
out-of-plane displacements of the corners are evident after failure.

The importance of the boundary conditions in relation to failure
is further supported by experimental data of Botman (ref. 11) and Besseling
(ref. 12) on wide plates divided into three bays by a series of opposed
knife edges running longitudinelly. It can be observed in figure 6 that
these dats lie between experimental data on plates with warped edges and
theoretical results on plates with straight edges. Since the outside
edges 1n the three-bay tests are free to warp, it is possible that higher
strengths would be achleved in tests of plates with a greater number of

bays.

It is convenient to use a semlempirical relationship in order to
unify the theoretical results of Mayers and Budiansky (ref. 8) and the
experimental date. For this purpose, the following equations are assumed

to apply:

-

(°'cr < (a) =4 nccy)

Op = Ogp (Ucr > (a.)l/nccy)

o

- (35)
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This is the same equation used in the section "Failure of Fla.nges" to £it
the data for hinged flanges.

From the logarithmic plots shown in figure 6, the values of a

and n were determined and are given in table 2. It is to be noted that
the theoretical results cover a small although sufficient range to permit
a reasonably precise estimate of the o and n values. The data for
square tubes presented in figure 6 cluster for the most part in a narrow
region. However, the line drawn for the V-groove test data fits the
square~tube data well. The square-tube data are discussed at some length
in the section "Crippling of Formed Angle, Z-, and Channel Sections."

It is interesting to note that the slope of the lines drawn through
all of the test data has a value of 0.58 as compared with the theoretical
value of 0.80. Apparently, in the three-bay plate tests, the effects of
the outside edges, which are free to warp, are still sufficilently pro-
nounced to cause the plate to act more in the manner of the V-groove plate
than in that of the theoretical straight-edge plate.

These results serve to indicate that although V-groove and square-
tube tests may be representative of complex wing structures as far as
buckling is concerned, they may or mey not yield conservative deta on
failure depending upon the compression cover-supporting structure. For
example, in a multiweb wing design, the continuity of adjacent panels
tends to prevent warping of the unloaded panel edges. In such cases, it
is possible that the failure relation will lie between the theoretical
rela.tionship as an upper bound and the three-bay plate data as a lower

bound.

The test data for V-groove plates and square tubes are also shown
in an alternate form in the upper curve of figure 6. This form of pre=-
sentation is used extensively throughout the remainder of this report
and therefore it is convenient to have the flat-plate failure date in
this form. The buckling stress of a long, flat, simply supported plate
is given by .

0,y = KE(t/0)2 (16)
By substituting equation (16) into equation (15) and rearranging terms,

% _ = % (_E; >1/2 (1-n)

o (17)

In & simplified form

e o (1
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The test date in the upper curve of figure 6 are plotted according
to the parameters of equation (18) and it can be observed that for
op /o’cy < 0.9 the data correlate within ¥10 percent limits. The values

of B and m in equation (18) were computed from the o and n values
obtained from table 2 as follows:

a(3.12)°%% 1.1

B
(19)

m=2(1 - n) = 0.85

From the section "Failure of Flanges" it is known that the failure
load of the flange is directly related to the stress intensity at the
supported unloaded edge. It is reasonable to assume, therefore, that
fallure of the flat plate is related to the edge stress intensity.

A qualitative estimate of the edge stress intensity in the post-
buckled plate can be obtained from figure 5. For the plate with straight
unloaded edges, the velue of the membrane stress o, at the edge is
approximately the same at the center as at the ends, with the value of
the membrane stress Oy varying along the length. For the plate with

distorted unloaded edges, however, the value of o, at the edge increases
appreciably towerd the center as compared with that at the ends.

The value of the edge stress intensity depends primarily upon the

value of oy and only secondarily upon Oy and Txy which arise after

buckling has occurred. , Therefore, it appears that the edge stress inten-
sity at the center of the plate with distorted unloaded edges may be_
appreciably higher for a given value of average compressive stress oy

than in the corresponding plate with straight edges. In conjunction with
the fact that in the V-groove and square-tube tests some lateral bending
of the edges may occur, the differences in edge stress intensities between
the two types of plates could account for the data presented in figure 6.

If the unloaded edges of the plates are supported by columms which
fail at a value of edge stress below that associated with failure of the
plate in a V-groove or three-bay test, for example, then the data pre-
sented in figure 6 camnnot be used. In its place, the load-carrying sbil-
ity of the plate may be estimated by use of equations (&) to (6) in which
0o now represents the strength of the column.

The problem of failure of stiffened panels under campressive loads
is treated at length in reference 1. The failure of stiffened panels
under shear loads has been thoroughly presented by Kuhn, Peterson,
and Ievin in their development of tension-field theory (ref. 2).
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POSTBUCKLING BEHAVIOR AND FATLURE OF

COMPRESSED CURVED PIATES

As discussed in reference 5, the buckling behavior of curved plates
under axial compressive loads is governed by the curvature parameter Z%.
At values of Z, less than 10, approximately, the buckling stress of
curved plates is essentially the same as that of flat plates with com-~
parable boundary conditions. In the region of Z;, between 10 and
roughly 1,000, the transition between flat-plate and complete-cylinder
behavior occurs. In this region, the boundary conditions along both
the loaded and unloaded edges exert significant influences upon the
buckling stresses. Beyond values of Z, of roughly 1,000, long-cylinder
behavior predominates, in which boundary conditions are insignificant.

Curved plates which are characterized by Z,, values beyond the
flat-plate region exhibit discontinuities after buckling such as shown
in figure 1(a) for cylinders. This behavior is typical of curved ele-
ments under compressive loadings. At values of Zp in the neighbor-
hood of 10, this discontinuity is relatively small end such plates can
carry loads considerably in excess of the buckling locad. As Z,

increases, the discontinuity becomes so large that the postbuckling loads
are always below the buckling load. In such cases, buckling and failure

are coincident. Experimental evidence indlicetes this to be true for com-
pressed cylinders and curved plates of large values of Z,.

In this section, the postbuckling behavior of curved plates which
fall in the transition region is reviewed. Experimental data on effec-
tive width and failure are presented fraom which generalized empirical
formulas are derived.

Postbuckling Behavior

Cox and Pribrem have considered the postbuckling behavior of long,
clamped, curved plates with negligible lateral restraint (ref. 13).
Based on a semiempirical approach, the data shown in figure T7(a) were
presented for curved plates (Z, < 60) with relatively small initial

imperfections. Somewhat larger initial imperfections alter the shapes
of the curves in the region of buckling although they cause insignif-
icant changes in the postbuckling behavior.

In figure 7(a.), the dashed lines are used to indicate schematically
the behavior of the curved plate at buckling in an ideal controlled-
deformation~type testing machine. This region is most sensitive to
initial imperfections as well as to the elasticity of the testing machine.
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Furthermore, varlous interpretations can be used to define the buckling
load under different loading systems. As a consequence, the dashed lines
are to be viewed as an indication of the behavior of the curved plate at
buckling and not as an attempt to define the buckling load itself.

Since it is somewhat difficult to define the buckling load precisely,
the data displayed in figure T are in terms of E(t/b)2 instead of oy

as used for flat plates. This has the advantage of avoiding the use of
the buckling coefficient k., and permits presentation of the results

directly in terms of E and the geametric parameters of the curved plate.
Thus,

(1 -+2) 2
Ucrl:ch = E(%)

A further advantage of this method of presentation lies in the
experimental fact that the buckling load tends to decrease significantly
under successlive loadings. Test data of Cox and Clenshaw (ref. 14) and
of Jackson and Hall (ref. 15) indicate that the buckling region is sig-
nificently affected upon reloading although the postbuckling region
appears to undergo negligible change.

(20)

The seme data also indicate that in the postbuckling region plas-
ticity effects become important soon after buckling with the result that
the postbuckling curves generally have concave-downward cheracteristics.

Effective Width

In figure 7(b), the effective width of curved plates has been cal-
culated from the data of figure 7(a.). These curves are intended to indi-
cate schematically that the effective-width behavior of slightly curved
plates is not significantly different from that of flat plates. The only
important difference is that a discontinuity may appear in the effective-~
width data for curved plates at values of Z;, greater than 30, approxi-

mately. The magnitude of the discontinuity is associated with the jump
vhich occurs at buckling and is significantly affected by the magnitude
of the initial imperfections.

A theoretical analysis of the effective width of long, simply sup-
ported plates of slight curvature (Zb less than 10) has been conducted
by Levy (ref. 16). It was concluded that when the buckle depth becomes
comparable with the sheet thickness, the effect of initial curveture on
the load carried in axial compression becomes negligible. The results
indicate that when the edge stress is approximetely twice the buckling
stress of the corresponding flat plate, the effective widths are sub-
stantially the same. These results are in agreement with figure T(b)
for velues of Z, Iless than 10.
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Because of the limited range of this theoretical investigation both
from the standpoint of the low values of Z, (0, 5, and 10) and the

relatively small range of 2bg/b considered (1 to 0.5), it is necessary

to adopt ‘an empirical approach to this problem.

The avalleble test date are for long, clemped, curved plates.
Ramberg, levy, and Fienup (ref. 17) ‘tested multiple-bay curved panels of

2024-T73 gluminum alloy stiffened by sturdy lipped Z-extrusions which pro-
vided clamped boundary conditions along the unloaded edges of the plates.

The date for which the edge strain was below the proportional limit fall

into two Z, groups of O to 8 and 24 to 31 and are shown in figure 8.

Additional test data on 2017-T5 aluminum-alloy plates clamped along
the unloaded edges were presented by Jackson and Hall (ref. 15). The
deta shown in figure 8 are from the gsecond series of tests and include
flat plates (Zp = O) and curved plates with %, values ranging from 4

to 125.

A study of the data presented in figure 8 reveels that an apparent
discontinuity occurs in the region of o/ge (= 2bg/b) between 0.5

and O.4. The data of Ramberg, Levy, and Fienup (ref. 17) indicate that,
for the Z, ranges of O to 10 and 2k to 52, the effective-~wlidth range

from 1 to 0.45 can be represented by the following equation within
+10 percent limits:

b b \ge

g _ Kc1/2 " (E_ )1/2 (21)

for Zbe/b > 0.45. The buckling coefficient Ko 1is that of the curved
plete and may be determined from reference 5:

ke

) 12(1 - v2)

Equation (21) also represents the Jackson and Hall data (ref. 15) on
flat and curved plates.

(22)

Below effective-~width values of approximetely 0.45, the test data
of Jackson and Hall (ref. 15) appear to follow the trend of the failure
lines for flat and curved plates. The failure lines are obtained from
figure 9 as dlscussed in the next subsection. The equation for the line
passing through the effective-width test data for both flat and curved
plates (O S % S 125) as shown in figure 8 is

0.85
2bg . 1/2
) ”5[%(%) ] (23)
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for 2be/b < 0.45. The buckling coefficient Kp 1is for the flat plate.
In this case, for a long clamped flat plate, K, = 6.3 as indicated in
figure 8.

Since equations (21) and (23) are based on test date which cover a
rather limited range of Z; values, they should be used with some
caution beyond %, values of approximately 30. It does appear, however,
that the.effective wldth of flat plates tends to act as a lower limit
for curved plates. This is substantiated not only by the experimentel
date for figure 8 but also by figure T(b) and the failure data of

figure 9.

Beyond Z, values of 30, figure T(b) indicates that large discon-
tinuities may appear in the effective width curves immediately after
buckling. For values of Z; large enough for the curved plate to act
as a camplete cylinder, the discontinuity can be expected to drop directly
to the failure line, since in this case buckling and failure are colncident.

Faillure of Curved Plates

The only reliable data on failure of curved plates with well-defined
boundary conditions are from Jackson and Hall's second series of tests
(ref. 15). The jigs used for these tests not only clamped the unloaded
edges but also tended to restrain any in-plane warpling of the curved
plates after buckling.

As mentioned previously in this section, it is not adventageous to
present test results for curved plates in terms of the buckling stress,
as used in the sections "Failure of Flanges" and "Failure of Compressed
Flat Plates" for flat plates. This is due to the difficulty of precisely
defining the buckling stress because of sensitivity to initial imperfec-
tions. Furthermore, K, is not constent but is a function of %, and

may change appreclebly upon successive loadings. Thus, it is desirable
to use the alternate form of presentation given in the section "Failure
of Compressed Flat Plates" and used for the V-groove-plate test data.

As shown in the preceding sections, the failure strength of flat
plates which buckle elastically can be expressed in the following form:

n

o o]
SN o) 5
Oor (“cr) (2%)

Multiplying both sides of equation (24) by Oer/Tey

l-n

e _ m(ﬁ:z) (25)
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The buckling stress of a curved panel is given by

2
Oer = KcE(%) (26)
By substituting equation (26) into equation (25)
- 2(1-n)
& 1'nt(_E_l/2 (27)
Tey b ccy)

In a simplified form this becomes equation (18).

Equation (18) is equivalent to equation (24), although it is in a
more convenient form for correlating Jackson and Hall's test data on
Tailure of curved plates (rerf. 15). These test data are shown in fig-
ure 9 according to the parameters of equation (18). It is to be noted

that the wvalues of Ucy were taken as 85 percent of the tension yleld
strengths since only the latter were given. The data were divided into-

several Z, vranges and are shown in figure 9.

Within approximately +10-percent limits, equation (18) fits the
test data in the following form:

- 0.85 -
3L=2.01E—E—1/2 for Lo< 2 (28)
oy b \Oey Ocy In

The range of validity of equation (28) probably applies for values of
B'f/ccy less than 3/4, a value obtained in the preceding sections. No

test data on curved plates are availsble to esteblish this limit.

Equation (28) spparently gives a ressonable fit to all the test data
for values of Z between 10 and 125. The data for the Z, range between
0 and 10 consistently fall on the lower 10-percent limit. Xor this range,
it is suggested that a value of $ = 1.79 be used in equation (28).

CRIPPLING OF EXTRUDED Z-, CHANNEL, AND H-SECTIONS

The fallure following local buckling of stiffening elements is
variously referred to as maximum average strength, ultimate strength,
crushing strength, or crippling strength. The last term is in common
use in the ailrcraft industry and is associated with the short-column
region (I.'/p less than approximately 20) where the strength does not
vary significantly with the length of the stiffener. The term crippling
strength is used in this sense herein.
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From the standpoint of local buckling (ref. 4), the stiffener cross
section is envisioned as an assemblage of plate elements. The boundary
conditions along the unloaded edges of each of the individusl plate ele-
ments &t a common junction are associated with rotational restraints pro-
vided by adjoining plate elements. The junction may be the filleted
corner of an extrusion or the bend line of a formed section.

Early attempts to determine the crippling strength of stiffening
elements were based upon the buckling behavior of the elements. In such
analyses, the crippling load was teken as the sum of the buckling loads
of each of the plate elements compriging the stiffener cross section.
Such analyses are typified by methods presented in the book of Sechler
and Dunn (ref. 18).

Based on the knowledge that the failure load of a flat plate can
appreciably exceed the elastic buckling load, later analyses attempted
to refine the method of calculation of stiffener crippling strengths.
Such methods are in wide use in the asircraft industry for sections of
general shape and differ possibly only in minor details from that pre-~
sented by Crockett (ref. 19).

For equal flange stiffeners such as Z- or H-extrusions, extensive
‘test data are available for several materials. The sharp corners and
relatively uniform stress-gstrain characteristics in the cross sections
of extrusions has permitted a synthesis of these data in a simple form.
A relstionship involving the buckling stress of the section and the
compressive yleld strength of the material 1s related directly to the
crippling strength.

For formed Z- and channel sections, the relationship among buckling
stress, compressive yield strength, and crippling strength appears to be
influenced by additional factors. These include the finite radius of
the rounded corner and the increase in compressive yield properties in
the corner due to the forming process,

These effects have recently led Needham to propose a revised method
of anslysis for formed sections of genersl shape (ref. 7). In this
method, the crippling load of the stiffener is obtained by summing the
failure loads of each of the corner elements camprising the stiffener
cross section.

In this section of the report, a semlempirical analysis is presented
based upon the knowledge gained from the preceding sections on fallure of
flanges and flat plates. This analysis serves to unify test results on
various types of stiffening elements and also provides some physical
insight as to the factors operative at failure. Avsilable crippling test
data on Z-, H-, and channel extrusions are reviewed in this section.
Formed angle, channel, and Z-sections are reviewed in the following
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sectlion and methods of analysis for sections of general shape are pre-
sented in section after next.

Semiempirical Analysis of Crippling

From the flat-plate analysis presented in the section "Failure of
Compressed Flat Plates," it can be expected that the following factors
will influence the pbstbuckling behavior of stiffened elements:

(a) The degree of rotational restraints at the unloaded edges
(b) The degree of warping and lateral bending of the unloaded edges

In addition, it can be anticipated that the following factors will influ-
ence crippling of the stiffener:

éc) The corner configuration
d) The stress-strain characteristics of the material and in partic-
ular nonuniformity of stress-stresin characterlistics in the cross sectlion

such as occurs in fqrmed sectlons

Theoretical postbuckling enalyses of flanges and flat plates indicate
a definite relationship among the average stress, the critical stress,
and the stress at the unloaded edge of the element. The principal effect
of small Initial imperfections is to replace the discontinuity between
prebuckling and postbuckling behavior, which occurs at the critical stress,
with & continuous relstion. In such cases, the theoretical relationships
between average, critical, and edge stresses can be quite accurately
fitted by an equation of the following type:

L ee) (29)

where a and n reflect the large-deflectlon behavior of the element
as given by conditions (a) and (b) above for postbuckling behavior.

From the theoretical analysis of failure of flanges given in the
section "Failure of Flanges," it was observed that the maximum average
stress Op is attained when the edge stress reaches a relatively large
fraction of the compressive yleld strength of the material. Thus, it
appears plausible to assume that failure occurs when

O = bo,y (30)

wvhere b 1is a function of the stress-strain characteristics of the
meterial and the edge stress intensity in the element. The coefficlent b
presumsbly reflects the influence of items (b), (c), and (d).
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By substituting equation (30) into equation (29),

- n
ap n Ucy
——— = gb (—%
Ser ("cr) (31)
Letting a = ab”, equation (31) becames equation (24).

Equation (24) has been used in the preceding sections to fit the
theoretical data on failure of flanges and flat plates with undistorted
unloaded edges. In both cases, a value of n = lL/5 gave a good fit to
the theory and availeble test data.

The usefulness of equation (24) has been demonstrated to some extent
in the preceding sections where theoretical date are available. In sub-
sequent sections, it will be shown to be of considerable value as a means
of correlating test data on elements of complex cross section for which
theoretical failure analyses do not exist.

The usefulness of equation (24) was demonstrated by Schuette in
correlating an extensive amount of test data on formed and extruded equal
flenge stiffeners (ref. 20). The analysis in this section follows in
broad outline that of Schuette in an interpretation of the test data.

The recent publication of theoretical analyses of the failure of flanges
and flet plates, as reviewed herein, has provided dabta which substantiate
some of the assumptions and lend confidence in the approach.

Analysis of Z-, Channel-, and H-Extrusion Data

An extensive amount of test data on equal-flange Z-, channel, and
H-extruslons of various aluminum and magnesium alloys has been correlated
on the basis of equation (24) by Heimerl (ref. 21) and Schuette (ref. 20).
The extrusions tested were characterized by sharp filleted corners with
relatively uniform stress-strain characteristics over the cross section.

Test data for H-, Z-, and channel extrusions are shown in figure 10
for four aluminum alloys and one magnesium alloy. The data were taken
from the references listed in the reports of Heimerl and Schuette. These
data were fitted according to equation (24) with the values of o and n
given in table 3 for velues of Ogp/0y less than 3/4, approximately.

It is to be noted that, for all extrusions, values of bw/“b ranged from
18 to 23.

In preparing the specimens for these tests, the Z- and channel sec-
tions were obtained by removing flanges from the H-extrusions. Conse~
quently these data are from specimens of very similar properties and can
be used to obtain a reliable estimate of the various factors influencing
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failure as discussed under items (a) to (d) in the subsection "Semi-
empirical Analysis of Crippling."

The degree of rotational restraint at the unloaded edge of the flange
(the element in the cross section which buckled first in these tests) is
influenced by the corner configuration and the relative dimensions of the
flange and web. The corner configuration was substantially the same for
all specimens and, therefore, no estimate of this effect can be obtained
from these tests.

The degree of rotational restraint at the unloaded edge, item (a),
varied between simple support and clamped as influenced by the relative
flange and web dimensions bg/by. A range of values of be/by; between
0.55 and 0.83 was covered in the H-extrusion tests. An analysis of the
dete did not reveal any systematic variation iIn the o values with this
persmeter. Apparently, the Iinfluence of the rotational edge restraints
is accounted for in determining the critical stress of the section and
does not have any further effect upon the erippling strength.

The stress-strain characteristics of the materisl, item (d), do
appear to have a slight effect upon the value of «. This can be
ascribed to the influence of the value of b as given in equation (30).
From the value of o 1listed in table 3, it can be cbserved that there
is a consistent trend for all three sections. Aluminum alloy 2014-T4 has
the highest values of a, alloys TOT5~T6 and O-1HTA have the lowest, and
alloys 2024-Th and R303~T have approximately the seme values which are
intermediate to the other values.

The influence of warping and lateral bending of the unloaded edges,
item (b), is clearly evident from the difference in n values between
the H-sections and the Z- and channel sections. The value of n = 0.8
obtained for the H-sections is the same as that for flanges and flat
plates with undistorted unloaded edges. Evidently, the opposed flanges
of the H-section prevent any warping of the flanges at the corner. In
fact, the values of o for the H-section and hinged flange agree closely.,

For the Z- and channel sections, the absence of an opposing flange
at the junction to the web permits some warping and possibly some leteral
bending to occur. Thus, the value of n = 0.72 for Z- and channel sec-
tions 1s less than that for H-sections. This is in agreement with the
‘trend observed for flat plates In which the value of n for plates with
warped edges was less than for those with undistorted edges. For extruded
Z- and channel sections, apparently the web and filieted corner act so as
to prevent some werping of the supported unloaded edge of the flange. This
can be judged by the value of n = 0.72 for the Z-~ and channel sections
which is intermediate to n = 0.80 for undistorted edges and n = 0.65
obtained for flat plates with edges free to warp.
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Design Data for Z-, Channel, and H-Extrusions

For design purposes, it may not be necessary to use the rather pre-
cise values of n and o given in teble 3. Heimerl has suggested the
following formulas for values of 0y Jless than (B/h)ucy (ref. 21):

(a) For H-sections:
- 0.20 0.80
Op = 0,800, Oy (31)

(b) For Z~ and channel sections:

a,f - 0.7700'1‘0.20':),cy0.80 (32)

In an analysis of the same test data, Schuette bhas recommended for Z-,
channel, and H-sections (ref. 20)

af = o - 800’01. Ucy

The differences among these formules is considerebly less numerically
than the scatter of all the test data when variations due to material
properties and section configuration are not considered.

All of the formulas considered thus far, (eqs. (24) and (31) to (33))
apply for values of 0,, less than approximately (3/11-)0'cy. This gener-

ally corresponds to cases where buckling is elastic. For cases where
Oop exceeds (3/1I-)0'cy, buckling generally occurs in the plastic range

and fallure occurs slightly beyond buckling as shown in figure 11.

From an analysis of test data, Schuette has proposed for values of
Oor/0cy &rester then 3/4 (ref. 20)

Op = 1.0k, (3k)

where Ooy is computed according to methods given in reference U using
the eppropriate plasticity-reduction factor.

From the same test data, Heimerl (ref. 21) suggested an extension
of the secant-modulus method of Gerard (ref. 22). In this case, for
values of °cr/°cy greater than 3/4,

Bp = 5 (t—"’)a (35)

12(1 - 2) Vu
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Heimerl and Roberts (ref. 23) investigated the short-time behavior
of aluminum-slloy H-sections at elevated temperatures up to 600° F. The
test data are shown in figure 12, from which it can be observed that the
relsetionships established at room temperature are satisfactory for short-
time loading at elevated temperatures.

CRIPPLING OF FORMED ANGLE, Z-, AND CHANNEL SECTIONS

The various factors influencing crippling of extruded sections, as
discussed in the preceding section, also pertain to formed sections.
Several additional factors such as the rounded corner.and increased stress-
strain characteristics in the corner region as a result of forming indicate
the desirability of discussing formed sections separately from extrusions
in this presentation. Furthermore, stiffening elements are often formed
of alclad sheet and it is necessary to consider the effect of the cladding

upon the crippling strength.

A mass of test data on Z- and channel sections formed of 2017-T%
and 2024-T3 aluminum alloys was analyzed by Schuette (ref. 20) on the
besis of equation (24). It was found that a value of n = 3/ fitted
the test data well but that there was a systematic variation of the coef-
ficient o with the parameter bw/'b which ranged between 18 and U43.
Since o appeared to be constant for extruded Z- and channel sections,
the variation in o <for formed sections was attributed to the increased
stress-strain properties in the corners.

In an analysis of the same test data used by Schuette plus data on
FS-1h formed Z-sections, Gallsher (ref. 24) found that a simple correla-

tion of the form Ef = f(A/ta), where A is the cross-sectional ares

of the stiffener, gave a good f£it with the test data. Recently, Needham
(ref. T) presented test data on formed angles and channels of alclad 2024-T3,
202473, and alclad TOT5-T6 aluminum alloys and obtained good correlation

on the basis of

5, = c(t2/a)" (36)

A value of m = 3/11- gave a good f£it with all of Needham's test data. In
fact, a replot of Gallaher's data on the basis of equation (36) with
m = 3/4 resulted in excellent agreement with the test data.
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Semiempirical Analysis of Angles and Square Tubes

The interesting fact evident from the foregoing discussion is that
there are epparently two different correlative schemes which are each in
good agreement with test data. The Gallaher-Needham method is the simplest
since, for a given material, the crippling strength is a simple function_
of the geometric properties of the cross section t2/A, or t/l_) where b
is the developed length of the cross section.. However, it is not directly
evident how to generalize equation (36) in terms of the physical properties
such a8 E and o, of the material. Furthermore, equation (36) is valid

only for values of c'if /o‘ oy less than approximately 3/# as in the case of

extrusions. This fact is often disregarded when the data are presented
according to equation (36).

The Schuette form of correlation involves computation of the buckling
stress, and, therefore, is not so simple as the above method. Primarily,
the simplicity 1s lost for Z- and channel sectlions because « Iin equa-
tion (24) is not a constant but is a function of by/t. The advantages of

the Schuette method, however, include the fact that the results are in a
generalized form for various materials since the values of B (in °'cr)

and Ocy &ppear in the semiempirical relationship. Furthermore, the

range. of validity of the relationship in terms of Gp /°'cy is readily
evident.

In preparing this review, it became evident that certain relations
must exist between the two correlative schemes which would permit a gen-
eralized approach. It is deslirable to retain the simplicity of the
Gallaher-Needhem method, although in & nondimensionalized form, with the
range of velidity of the formule readily evident. The last two features
are contained in the Schuette method of correlation.

The followlng analysis presupposes that the available test data for
a particuler stiffener shape which buckles elastically have been corre-
lated on the hasis of the two methods discussed above. From the Gallaher-
Needham method equation (36) holds and from the Schuette method for

'6'1, < a,l/ nocy, there is equation (24) or

l=n n

.&f = mcr Ucy (37)

It is assumed that the values of C, a, m, and n can be established
from test data.

At this point, the expression o,, is to be introduced into equa-
tion (37). Although this can be done in a generalized manner, it is
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convenient to consider those cases in which the buckling coefficient k

is constant (such as for equal flange angles and square tubes) separately
from cases where k is a function of the geometric parameters of the

cross section:
G _ =7 7_‘;.(“2@ 2)2 = 7k (t)\? ' (38)
er T VoL - )\P L (E)

where ﬁ is the cledding reduction factor discussed in reference 3. By
substituting equation (38) into equation (37)

—n fx\ 2(1-0)
B = a(xiE) " (Y) gy (39)

Also, for equal flange angles and squsre tubes, the parasmeter t2/A can
be replaced by t/b with the resultant change in equation (36):

gy = 0(t/0)" (40)
By equating equations (39) and (4O)
a(KﬁE)l-n(%)a(l-n) o’cyn = 6(%)“‘ (k1)

By rearranging terms and defining a new parameter B, the following rele-
tionship exists:

2(1-n)-m _ len n
= ~nf] =
B = ak () &/(e) 9y (42)
By virtue of eqistion (40) and since +t/b 1is proportional to
1/2

(Ucr) ?

m/2

Gp Oup (43)
From equation (37), however,

- 1-n

Gp = 0. (4k)

Therefore, for equal flange angles and square tubes the exponents of Oor
must be related in one of the following ways:
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lens= r§n
*5B-3 » (45)
2(1 -n) =m=0
J
By use of equations (45), equation (42) simplifies to
p= o™ m (46)

(RE)™ 2o 1 m/2)
Finally, equations (39) and (40) become

o]

The range of validity of equation (47) follows from equation (24). Since
equation (24) is valid for .

G 1
O'L (o 4] /n (118)
cy
it follows from equation (46) that in terms of B

% < (;{—lﬁ_;)l/n (49)

For values of af/"cy greater than those given by equation (49)

Op = Oy . (50)

The application of this method of generalized analysis will be demon-
strated by correlating data on square tubes and equal flange angles.

Crippling of Square Tubes and Equal Flange Angles

A sufficient, although not extensive, amount of available test data
on crippling of extruded square tubes of several aluminum alloys has been
sumerized by Needhem (ref. 7). . The data for tubes for which af/“cy

was less than approximately 3/1|- were correlated according to the Gallaher-
Needham method, Schuette method, and the generalized method presented
herein.
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From test data shown in figure 13, it can be observed that m = 0.85
fits the data according to the Gallsher-Needhem method and n = 0.5 fits
the data according to the Schuette method. According to equation (45) s the
relation between m and n is satisfied without any adjustment in these
values. In terms of the generalized correlation for the square tubes

1/2 0.85
) (51)

o t\[ E
Scy b ("cy

o
for -61—5_ 0.7. Also included in figure 13 are some date on rectangular
cy
tubes of 2024-T3. It can be observed that the data are in agreement with
equation (51) which is the same equation obtained for V-groove plates in
the section "Failure of Compressed Flat Plates."

Needham has conducted tests on erippling of equal flange angles
formed of 2024-T3, alclad 2024-T3, and alclad TOTH5-T6 aluminum alloys in
the -T condition to an inside radius approximately equal to 3t (ref. 6).
The test data for each material were correlsted by Needham according to

g, = S(e/0)/" (52)

As pointed out by Needhem, an exponent of m = 3/1l- gave a satisfactory
fit,_although not necesserily the best £it, to the test data. The values
of C as well as the physical properties of the materials are tabulated

in table L.

Although alcald angles were tested by Needham (ref. 6), the buckling
stresses for a large majority of the test points were well below the pro-
portional limit of the cladding. In such cases, no correction for the
cladding, as discussed in reference 3, is required. The few test polnts
which theoretically do require a correction were not revised because of
the minor nature of the correction in this case.

In order to provide additional date for use with the generalized
crippling formula, Needham's test data for the 2024-T3 equel angles were
plotted according to the Schuette method in figure 2. Although there is
some scatter in this plot, which also exists in Needham's data plotted
according to equation (52), the following relation fits reasonably well
as shown in figure 2 and by equation (3):

0.5

G 8
glf;_ = o.95(§‘il) for L-<S0.92 (53)
er cr ey

Thus, & value of m = 3/4 was used by Needham and a value of
n = 0.575 was obtained from equation (53). According to equation (L45),
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however, 2(1 - n) =m, a relationship which is not satisfied in this case.
The discrepancy is apparently due to the fact that the scatter of the data
permitted some latitude in personal judgment in fitting the data according
to equations (30) and (40).

To resolve this discrepancy, all of Needham's test data for angles
were plotted as shown in figure 1%, according to equation (47). The aver-
age generallzed crippling formula for formed angles which fits the data
within £10-percent limits is

i L
5._ Z 0.665 ( )(%) (54)

for E')":|_=/o‘cy < 0.92. This formula is valid for materials with strain-

hardening characteristics similar to thoge of 2024-T3 alloy and with a
bend radius of approximately 3t formed in the -T condition. For mate-
rials such as TOT5-T6 alloy which have lower strain-hardening character-
istics than 2024-T3 alloy, the test date asppear to be consistently lower
than the average curve in figure 14%. Therefore, a value of B = 0.630
should be used in equation (54) for such materials.

Needham has also conducted tests on alclad 2024-~T3 unequal flange
angles (ref. 7). By defining the term t/b as 2t/(bl + b2) where by

and b, represent the flange widths, Needham obtained satisfactory cor-

relation with equation (52) using the value of C given in table 4 for
alclad 2024~T3 equal flange angles. These data are also shown in fig-

ure 1%. Apparently, equation (54) is in reasonably good agreement with
these data.

Semiempirical Analysis of Z- and Channel Sections

As in the cases of angles and square tubes, the anslysis for Z-
and channel sections presupposes that the available test data for sec-
tions which buckle elastically have been correlated on the basis of the
two methods. For the Gallaher-Needham method equation (36) holds true
and for the Schuette method there is equation (37).

FPor equal flange, Z-, and channel sections, the buckling stress may

be determined from the following equation and buckling coefficients pre-
sented in reference L:

oy = 1l m(b_v;)z = ﬁKwE(Q) (55)
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By substituting equation (55) into equation (37)

- (56)
For Z- and channel sections of constant thickness,
2b .

4-(3) [1 + (B;i)] (57)

where by, and bp are the web and flange widths, respectively. By
substituting equation (57) into equation (36)

m

5o = o)+ 22) (50

W

By equating equations (56) and (58), rearranging terms, and defining
the parameter B Iin & manner similar to that used for angles and square
tubes,

o = o) (e ?g)m(;_;)a(l'n)'m ¢ (59)

1~
()™ ooy

Finally, by substituting equation (59) into equation (36), the generalized
crippling formula is obtained

By [(%)(@_)l'n’m ) (60)

Ocy Oy
which is valid if equation (48) is satisfied.

Note that, in this case, a direct relation between the exponents m
and n cannot be esteblished theoretically as in the case of equal-
element sections such as angles and square tubes. For the latter, the
buckling coefficient is a constant and t2/A can be replaced directly
by t/b. For the Z- and channel sections, the buckling coefficient and
the t2/A paremeters are different functions of be/b.

Crippling of Z- and Channel Sections
Schuette has analyzed test data on 2017-T3 and 2024-T3 channel and

Z-sections formed in the -T condition to an inside bend radius of 3t
(ref. 20). 1In all cases the flange buckled elastically. It was quite
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conclusively established that a value of n = 3/4 in equation (37) gave
the best fit to the test data. This value is practically the same as
that obtained for extruded Z- and channel sections. The test data for
the extrusions covered the narrow bw/t range from 18 to 25 and there-
fore a fixed value of a = 0.80- (eq. (33)) was used to correlate the
data. The formed sections, however, covered a by/t range between 18

and 43 and, consequently, a variation of « with the perameter 'bw/t
was obtalned.

The test data for the 2017-T4 sections are shown in figure 15(a).
In figures 15(b) and 15(c), the test data for the 2024~Th sections are
given. Additional test date of Gallsher (ref. 24) on FS-1h magnesium-
alloy Z-sections formed in the ~h condition to an inside bend radius of
4.3t are shown in figure 15(d). In all these cases, n = 3/4 and the
values of o listed in table 5 provided a good fit to the test data.

The same test date were correlated according to equation (36) and
are presented in figure 15(e) in terms of &, and A/t2. It can be

observed that all data for each material lie along a single line of slope
m = 0.7>. There is no systematlc variation of the data with the param-
eter by/t as occurs in figures 15(a) to 15(d). Thus, correlation

according to equation (36) is evidently simpler and more direct then
according to equation (37).

Now that the values of the exponents n =0.75 and m = 0.75 have
been established from figure 15, generalized crippling formula (60)

becomes

8 g (:oE) B

Ocy A /\oey (61)
All availsble test data for formed Z- and channel: sections of 2017-T3,
2024-T3, and FS-lh alloys are plotted in nondimensional form according
to equation (61) in figure 16. It can be observed that a value of
B = 4,00 in equation (61) f£its the 2017-T3 end 2024-T3 data within a
+5-percent scatter band. The FS-lh data appear to be somewhat lower
with a value of B = 3.78. The lower value of B is attributed to the
lower strain-hardening characteristics of FS-1h alloy, which result in
8 smeller increase in yleld properties in the corners as compared with
those of the two aluminum alloys. This effect is considered in detail
in a later portion of this sectilon.

For vealues of m and n equal to 0.7, the relations among B,
a, and C become, from equation (59),

' 0.75 1, 10.25
B = °’~Kwo'25(1 + %i) (b"fw) = (ﬁE)o.agccyo.ﬁ (62)
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An interesting sidelight on the variation of o with the parameter bw/t

can be obtained from the calculation presented in table 6. The values of
K, as a function of bp/b, were obtained from reference 4. It can be

seen that the parameter listed in table 6 is reasonably constant over the
bf/bw range of the majority of the test data. By use of the values

listed in table 6, equation (62) simplifies to:

B = 2.1%(%2)0'25 (63)

In order to confirm equation (63) by,use of the values of o« listed
in tsble 5, it is convenient to rearrange equation (63) in the form

o = (—2-%)(1)?“)“025 | (64)

In figure 17, the data of table 5 are plotted and shown in relation to
equation (64). A value of B = 4.05 fits the data reasonably well
wlthin a scatter band of t3 percent. This value of P wes determined
independently of that obtained from figure 16. Both values of B are
in close agreement.

Also shown in figure 17 is the value of o = 0.80_ which was obtained
from equation (33) for extruded Z- and channel sections. Since the
extruded sections tested covered only a by/t range from 18 to 23, no

experimental variation of o was observed. However, from the relation
between B and o as given by equation (59), it 1s reasonable to expect
an o variation for extrusions as well as for formed sections. The
dashed line in figure 17 appears to be a reasonable estimate of this
variation.

It is interesting to note that the extrusion line falls below that
for formed sections. This is ascribed to the Increased stress-strain
characteristics in the corners of the formed sections. Apparently, the
strain-hardening due to forming has little, if any, influence upon the
value of n. Its only effect is to increase the value of «, presumably
by increasing the edge stress at failure as reflected in equation (30).

As indicated by equation (48), equation (61) is valid below values

of o/n, By use of equation (6U4), the values of the cutoffs shown in
figure 16 can be readily established. Beyond these cutoffs, extensive
test data correlated by Heimerl (ref. 21) indicate that

C aPiEs 62 -
ol @

where k; can be determinéd from reference L.
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Cladding Correction

The cladding which may be present on formed sections acts to reduce
the value of the buckling stress as indicated In equation (55). The post-
buckling load-carrying abllity of the section is adequately accounted for
by use of the pertinent stress-strain data for the clad materials. The
principal effects of the cladding, therefore, include a decrease in the
buckling stress as reflected in the cladding reduction factor 7 and a
slight decrease in E and Ocy 88 compared with those of the core

material.

Needham has presented a considerable amount of test data on channel
sections of alclad 2024-T3 and alclad TOT5-T6 formed in the -T condition
with an inside bend radius of 3t. The date of figure 16 on 2024-T3 Z-
and channel sections can thus be used as a standard of comparison with
the alclad 2024~T3 data of Needham (ref. T) to substantiate the method
of correcting for the cladding.

The cladding correction factor 1 can be computed from the following
formula glven in reference 3

- 1+ 3(0p1/0cp )T

5= 3( cl/ cr) (66)
14+ 3%

where £ 18 the ratio of total cladding thickness to total thickmess

(£ = 0,10 for alclad 2024-T3 and £ = 0.08 for alclad TOTH-T6 alloys).

Since data for the individual test points were not given by Needham

(ref. T), an overall correction based on a value of 0, [Fer = 1/2 was

used for the alclad 2024-T3 data and 0y [0 = 1/3 for the alclad
T075-T6 data. The values of O /Ucr selected were based on an esti-
meted average value of Oy for the range of test data presented. These

values of ﬁ tend to undercorrect at the higher values of Gp and over-
correct at the lower values of Ef. However, since the correction is of
a minor nature, this approach appears to be acceptable.

Needham's test data are presented in a generalized form in figure 18.
Equation (54%) is compared with the alclad 2024-T3 data by using the value
of B = L4.00 obtained from the 2024-T3 data of figure 16. It can be
seen that the data fall within the t1O-percent scatter band. ' Such scatter
was previously observed also for the data on formed angles, figure 1k,
Inasmich as Needham's data scattered within t1O-percent limits when cor-
related according to equation (56), the scatter in figure 18 cannot be
attributed to the generalized correlation method in this case. Therefore,
the method of correcting for the alclad coating appears to be satisfactory.
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The alcled TOT5-T6 data in figure 18 fall consistently below the
alclad 2024-T3 data. These data are fitted within +10-percent limits by
equation (61) with a value of B = 3.42. The lower strain-hardening
characteristics of alclad TOT5-T6 appear to be responsible for the lower -
value of B.

Increased Corner Properties of Formed Sections

The increased stress-straln properties of sections which are formed
in the T condition have been discussed briefly at various polnts in this
section, Now that the values of B in equation (61) have been estaeblished
for formed Z- and channel sections of several different materisls, it is
possible to examine quantitatively the effects of the increased corner
properties on crippling.

The average compressive yleld strength acy of the corners of Z-

and channel sections as compared with that of the unformed sheet has

been investigated by Heimerl and Roy for 2017-T3 (ref. 25), Heimerl and
Woods for 2024-T3 (ref. 26), Woods and Heimerl for alclad TOT5-T6 aluminum
alloy (ref. 27), and Gellsher for FS-lh alloy (ref. 24). The ratios of
the average compressive yield strengths of the corner 0’ ey to the yield

strengths of the unformed sheet Ocy for these materials are presented

in table 7. The data are for sheets formed in the T condi'b:l.on with the
bend line parallel to the grain direction.

In order to correlate the crippling strengths with the increased
corner properties of formed sections, the pertinent values of 8
and @ y/ ey are presented in table 8.

The values of P as a function of acylacy are plotted in fig-

ure 19 from which a fairly consistent trend 1s evident. The values in
the last column of teble 8 are based on the fact that the crippling stress

for Z- and channel sections is proportional to § and o’cyo'75. Thus,
in attempting to estimate the value of B <for sections which do not have
increased corner properties (sections formed in the anneasled condition
and subsequently hest-treated, e.g.) the values calculated in the last,
column were averaged and are shown in figure 19. This average value is
within &5 percent of the computed values of table 8 and is based upon
the asgumption that the crippling strength depends primarily upon the
compressive yleld strength of the corner. The data except for the
202473 material appear to substantiate this assumption.

Figure 19 also includes the value of B = 3.64 for extruded Z-
and channel sections. When compared with the estimated value of B8 = 3.30
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at acy/ccy = 1.00, it appears that the filleted corner of the extrusion
1s responsible for approximately a l1O-percent lincrease in crippling

strength.
CRIPPLING OF SECTIONS OF GENERAIL SHAPE

In the section entitled "Crippling of Extruded Z-, Channel, and
H-Sections" crippling strength dats for extruded Z-, channel, and H-sections
were analyzed and in the next section extruded tubes and formed angle, Z-,
and channel sections were considered. Although such sections are in com-
mon use, many other sections such as J-, hat, lipped Z-, and channel sec-
tions are wldely used. Furthermore, the included angle between va.r:l.ous
elements 1n the cross sectlion may be considerably different from 90° and
the flanges of a Z- or channel section, for example, may be of unequal
dimensions. Thus, it is necessary to review available test data on sec-
tions not treated previously in order to consider extension of the semi-
empirical methods of the two preceding sections to more general shapes.

Empirical methods are in wide use in the alircraft industry for cal-
culating the crippling strength of sections of general shape. Typical
of these methods is that presented by Crockett (ref. -19) in which the
falling strengths of the various flat and curved plate elements comprising
the cross section are summed to determine the crippling load of a section
of general shape. Curves for various materials in which the failing
strength is given as a function of b/t or R/t have been presented for
plates with one edge free and those with no edge free.

Recently, Needham proposed's method of calculating crippling strengths
of formed sections in which the cross section is divided into a series of
equivalent angles with one-edge-free and no-edge-free conditions (ref. T).
Date for the failing strength as a function of A/t of the equivalent
angles were obtalned from tests on channel and square-tube sections such
as discussed in the preceding section. The crippling load of sections of
general shape is obtained by summing the failing loads of the various
equivalent-angle elements of the cross section.

Needham stated that an advantage of thls method is its inclusion of
the influence upon crippling of the increased yleld properties in the
corners of sections formed in the heat-treated condition (ref. 7). Fur-
ther, the division of the cross section into angle rather than plate ele-
ments places the "cut" in the least sensitive region of the plate.

Although the last argument appears to be rather abstract, focussing
attention on the corner by considering the equivalent angle does appear
to be of considerable significance. As discussed in the section "Failure
of Compressed Flat Plates," failure Of an element which buckles elastically




38 NACA TN 3784

is Intimately associated with the stress intenslty at the unloaded edge.
Since the corner provides the support for the unloaded edge, the number
of corners in a section of general shape should have a significant influ-

ence upon the crippling strength.

Indeed, the analysis of available test date to be presented in this
section suggests that only two geametric parameters are required to deter-
mine the crippling strength of many sections of general shepe for a partic-
ular material. One parsmeter is A/ta, which, for a section of constant
thickness, is the developed length-thickness ratio. The other parameter
is the number of corners c¢ which subdivide the developed length into a
series of plate elements.

In order to indicate the influence of the number of corners upon
crippling strength, the general shapes to be considered in this sectlon
are treated according to this parameter. Thus, one-corner elements
include equal- and unequal-flange-angle, T-, and cruciform sections.
Two-corner elements include equal- and umequal-flange, Z-, channel, and
J-sections. Sections with a number of corners greater than two include
lipped angles, lipped Z- and channel sections, and hat and lipped hat
sections.

One-Corner Elements

A generalized formula for determining the crippling strength of
equal and unequal flange formed angles was obtained in the preceding sec-
tion based on the analysis of a mass of test data. Fram equation (54),

0.85
- 1/2
e _p, (ft__z)(—“'E) (67)
ch A /\Ocy

where f 1is the nmumber of flanges and the parameter ft2/A has been
substituted for +t/b. Needham first demonstrated that for equal and
unequal angles with the same value of the parameter A/ft2, the crippling
strengths were the same within experimental error (ref. 7).

For alclad 2024t-T3 angles formed in the ~T condition PBp = 0.665 and
for alclad TOTH-T6 angles Bp = 0.630. These values were established from
.a considerable amount of test data and are probably quite reliable, In an
attempt to estimate the value of Bp for extruded angles, the data of

Crockett (ref. 19) and of Ramberg and levy (ref. 28) listed in table 9
were used and are shown in figure 20. Equation (67) with a value of
Bp = 0.565 was used to fit the data. Because of the meager amount of

data, this value of Bp can be regarded as only e first approximestion.

In the sections "Failure of Flanges" and "Failure of Compressed Flat
Plates," it was shown that the degree of warping of the unloaded edge, or
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corner in this case, has a strong influence on failure. Thus, angles
which are relatively free to warp have lower crippling strengths than )
cruciforms which have straight unloaded edges by virtue of their opposed
flanges.

The crippling strength of extruded cruciforms according to equa-
tion (2) is i

3 Oy 0.80
= 0081 ——
Ocr (“cr) (68)
Multiplying both sides of equation (68) by acr/crcy,
= 0.20
O'f [0} .
< = 0.81(-x 6
- (ccy) (69)

The buckling stress of a long simply supported flange for v = 0.3 is

612 P2\ :
0oy = 0.388E(E) = 0.588E(T) (70)

By substituting equation (70) into equation (69)., the generalized
crippling formula of, extruded cruciform sections becaomes

?':_ - 0.670 [(.ffa.) (%)1/2 0.k10 -

cy cy
Equation (T1) is shown in comparison with equation (67) in figure 20.

An extruded T-section is & common shape in the category of one-corner
flanged elements. It has a palr of opposed flanges such as in a cruciform
and can be considered as one-half of an H-section. Some of the test data.
of Crockett (ref. 19) and Ramberg and Ievy (ref. 28) for T-sections listed
in table 9 are shown in figure 20. (For Crockett's data in table 9, the
value ch = I3 kei was obtained from ref. 28.) It can be observed that

equation (Tl) is in reasonable agreement with the few available test
points.

Two-Corner Elements

A generalized crippling-strength formula for equal-flange, Z- and
channel sections was obtained in the.preceding section based on a large
mass of test data. From equation (61)

5 Irs2\f5e \1/3 0.
;’Z—y = B[(%—)(ET) ] (72)

Y.




L0 NACA TN 3784

Values of B  for extruded and formed sections of several different
aluminum and magnesium alloys are shown in figure 19.

For sections of general shape, the angle between adjacent plate ele-
ments is often different from 90°., Since all of the sections considered
thus far were composed of.right-angle elements, it is pertinent to con-
sider avallable test dete of Roy and Schuette on equal-flange Z-sections.
where the bend angle was the only systematically varied parameter (ref. 30).

Test data for a typical Z-section are shown In figure 21 as a function
of the bend angle. It may be concluded that the buckling and crippling
stresses are independent of the bend angle provided that the radius of
gyration of the section is not reduced sufficlently to result in primary
Instability.

In equal-flange Z- and channel sections, the stress conditions at
each corner are identical because of certaln symmetrical properties of
the sections. For unequal-flange Z- or chamnel sections, the buckling
stresses of the flanges are different and consequently the stress condi-
tions at each corner may be different.

In figure 22, two-corner elements tested by Needham (ref. 7) and
Crockett (ref. 19) are shown. The crippling data of the unequal-flange
channel and Z-sections and the J-sections which are considered as two-
corner elements are given in table 10. The sections were formed in the
heat-treated condition of alelad 2024-T3 and alcled 2024-T36 aluminum
alloys.

The' test data for these sections are presented in nondimensional
form according to equation (72) in figure 23. The cladding-correction
according to equation (66) was based on the estimated buckling stress of
the section. Shown for comparison is equation (72) with a value of
B = 4.00 obtained for 2024-T3 and alclad 2024-T3 equal-flange Z- and
channel sections. The data for the various two-corner sections presented
in figure 25 lie within a t10-percent scatter band.

Although this relatlively simple method of analysis requires sub-
stantiation by considerably more test data than were presented here, the
available test data indicate that two-corner elements tend to behave in
the seme manner regerdless of thelr shape. Should the proposed method
be confirmed by additional tests, a considerable simplification in deter-
mining the crippling strength of two-corner elements will be achieved
over methods in current use.

As a possible explanation for the behavior of two~corner elements
it is suggested that for unequal-flange elements the following averaging
process may be operative. Under a uniform-end-sghortening type of test,
the corner of the wider flange reaches a value of edge stress corresponding



NACA TN 3784 : b1

to failure of the corner first. This corner does not carry any additional
load under the cantinued end shortening required to fail the second corner.
The crippling stress is therefore a weighted average of the failure stress
of each corner. For equal-flange sections, the crippling stress is the
failing stress of each corner. Therefore, unequal-flange sections tend to
.have an avertge crippling strength equal to the crippling strength of an
equal-flange section having the seme value of A/t2.

In accordance with observations of data on equel-flange Z- and chan-
nel sections, equation (72) applies when buckling of the first element in
the cross section is elastic. The cutoffs given in figure 16 pertain to
figure 25 also. Beyond the cutoffs, .

af = Gcr' . (75)

where d,, can be determined with sufficient accuracy by use of buckling
coefficients for equal-flange Z- and channel sections given in reference k.

Multicorner Elements

For convenience, all sections with more than two corners are desig-
nated as multicorner elements. Typical sections are shown in figure 2h.
For the three-corner elements shown,  calculations indicated that the
flange generally buckled first. For those sections with four or more cor-
ners, a web element in the cross section was always responsible for buck-
ling. Since the behavior of the latter closely resembles that of square
end rectanguler tubes, an ettempt.was made to correlate available test
deta on multicorner elements according to the generalized crippling for-
mula for tubes, equation (51):

0.85

=86

If this method of correlation were not successful, the value of m would
be different from 0,85 and the exponent of the a, /ﬁE term would tend
to differ from 1/2. ¥y

Available test data of Needham on multicorner sections of alclad
2024~T3 formed in the -T condition (ref. 7) and of Crockett on formed
alclad 2024-T3 and alclad 2024-T36 (ref. 19) were correlasted according
to the perameters of equation (Th). The shapes of the various sections
are shown in figure 24 and the dimensions and crippling data are given
in tables 1l and 12. The cladding correction according to equation (66)
was baesed on the estimated buckling stress of the section.

The availsble test data are shown in figure 25. ILines of slope,
m = 0.85, £it the data well according to equation (TA), even for the
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three-corner elements in which the flange buckled first. The values of

B appear to depend only upon the number of corners c¢ and are shown in
figure 26. It is a remarksble coincidence that the value of B is almost
equal to the number of corners.

This dependence of B wupon the number of corners led to the further
generalization of equation: (‘T4) in the following form:

3 2\[7E \/2 0-%
ct
-6 ®)

The test data are shown in the form of equation (75) in figure 27. A
value of B = 1.30 <£its all the data within t5-percent limits. It is
interesting to note that these limits are one-half those previously used
when correlating Needham's data on formed angle and channel sections.

Again, as for the two-corner elements, a considersble amount of addi-
tional test dats are required before.the proposed method of crippling
analysis can be used with complete confidence. In the form of equation ("{5),
the method of anelysis for multicorner elements 1s remarkebly simple.

Lips and Bulbs

In estimating the nunber of cormers for sectlons containing flanges
which are stiffened by formed lips or extruded bulbs, certain ambiguities
mey arise. There is little, 1f any, test date available on the specific
infiluence of the 1lip and buld dimensions on fallure of a flange. There-
fore, it is advantageous_ to consider the influence of such stiffening
elements upon buckling of a flange since such date were presented in
reference k.

From the charts presented in reference 4, it is relatively simple
to determine the necessary lip or flange dimensions which will ceuse the
flange to act as a web from the standpoint of buckling. If the stiffened
flange acts as a web, then the lip-flange or bulb-flange Jjunction acts as
an additional corner. If the lip or bulb are insufficient to stiffen the
f£lange so that it acts as & web, then the lip flange or bulb flange acts
as a stiffened flange without the addition of a corner.

Although these criteria have theoretical Justification from the
standpoint of the buckling behavior of the stiffened flange, test data
on fallure of stiffened flanges are required to substantiate the suggested
approach.

Research Division, College of Engineering
New York Unlversity,
New York, N. Y., April T, "1655.
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APPENDIX A
APPLICATION SECTION

. In this epplication section, the results which may be of importance
to the failure of plates and composite elements from the standpoint of
analysis and design are summarized.

Flat and Curved Plates

Effective width.- For velues of o0,/0,,. 1less than 3, the effective

width of flat plates may be determined by use of equation (10) in con-
junction with the values listed in teble 1. These values were theoreti-

cally derived and are for long, simply supported flat plates with the
following boundary conditions:

(1) Unloaded edges held straight
(2) Unloaded edges free to warp in plane of plate

(3) Various degrees of restraint upon the lateral motion
of the plate

For values of g, /%cr greater than 3, the effective width of long

flat plates with rotationally restrained unloaded edges held straight
and free to move laterally mey be determined from equetion (5).

The effective-width formulas of long curved pletes are based on
test data and are, therefore, semiempirical in nature. For effective-
width values greater than 0.45, test data on long, clamped curved plates
for the range of available test data, O S Z, < 31, are represented by
equation (21)

2o 1/2 1/2
= = 52 E(E) (21)

where K, 1is the buckling coefficient of the curved plate as determined
from reference 5.
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For effective-width values less than 0.U45, test data for the range
of available test data O S Z, € 125 are represented By equation (23)

2b 1/2 0.85
-2 _ g 0.43|t (E
b P b(ue) (23)

where K, is the flat-plate buckling coefficient.

Failure.- Both theoretical results and test date on the failure
strength of long simply supported flat plates can be represented by the
following formmlas:

6'.u’; Ocy .o < 41/n
-a_; =a -a?c-; for Oop = @ Ucy (Al)
Op = Oop for 0. > oF nccy (a2)

The values of o and n depend upon the restraint of in-plane warping
of the unloaded edges as indicated in table 2.

'fest data on failure of V-groove plates and’ long, clamped, f£lat

and curved plates in the ramge O S Z, $ 125 can be represented in the
elternate form

-

cy ey,

The values of B depend upon the type of edge support and curvature of
the plate as follows:

(1) V-groove flat plates: B = 1l.k2

(2) Flat clemped plates: B = 1.T9

(3) Curved clamped plates; 10 Sz, € 125: B = 2.01

Although complete data are not availasble, it is believed that equa-
tion (A3) is valid for g, < 0.90,; epproximately. For oy > 0.90

equation (A2) can be expected to apply.

cy’
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Crippling

The generalized crippling analyses of test data indicate that, for
a given material, the'crippling strength depends upon the developed
length-thickness ratio and the number of corners of the section:

s 2 fog \(1/3 or 1/2)|m 5
% =_a[%%> } for %};s o2/ (ak)

_ G
dp = 0. for -&-f—-> o/ (85)

ey

For formed sections, the additionsl effects of the alclad coating and
the increased properties in the corners require conslideration.

As shown in the section entitled "Crippling of Formed Angle, Z-,
and Channel Sections," the effects of the alclad coating can be ade-
quately accounted for by use of the cladding reduction factor, as given
in equation (66): .

L1+ 3(°c1/°cr)f
1+ 3f

7 (66)

This factor was derived in reference 5 and is based on the buckling
stress of the section o,,.. Since the value of 7 affects equation (Ak)
in a relatively minor msnner, only & rough estimate of g¢,, may be

required in most applications.

The value of B in equation (AlL) depends upon the increased yield
properties Ecy in the corners of formed sections. As discussed in

the above-mentioned section and shown in' figure 19, . B appears to be

~(m 1-(m/3)
proportional to (ch/acy)[l (n/2)] or (Ecy/ccy)[ (mf ] This fol-

lows from equation (Al). Therefore, all values of B determined for
one, two, and multicorner elements are shown in figure 28 as a function

of ccy/ Ooye

One-corner elements.- The availsble test data on formed angles and
extruded-angle, T-, and cruciform sections are adequately represented
by the following generalized crippling formmla:
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o 2 1/2|m
L@ w

Sections with opposed flanges appear to have greater crippling
strengths than those with supported unloaded edges subjected to in-plane
warping. This effect is discussed in the sections "Failure of Flanges,"
"Failure of Compressed Flat Plates," and "Crippling of Extruded Z-,
Channel, and H-Sections."

Values of m and B, for use with equation (A6) ere given in
table 13 and figure 28.

Equation (A6) is velid for values of a'f/ucy < 0.92 for formed
angles for which acy/“cy > 1.25. Test data on cruciforms indicate
that equation (A6) is valid for %, /Ucy < 3/4. In the absence of other

test data, this cutoff should be used for all other cases listed in
table 13. Beyond the cutoff, equation (73) can be expected to apply:

G =0 (73)

cr

Tyo-corner elements.- The availeble test data on formed and extruded
Z-, J-, and channel sections are represented by the following generalized
crippling formula (61):

. 0.7
e . Bﬁ(nE_) ’ (61)

A “cy

Values of B are given in table 14 end figure 28. The range of validity
of equation (61) follows from equetions (48) and (64):

0254/5
5 B [t \O-
s [oAa)” ()

For an aversge value of B = 3.6, equation (AT) reduces to
Ocy Ly
Beyond this cutoff value, equation (73) applies.

(48)
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Yo

An H-extrusion is a special type of two-corner element. Test data
for H-extrusions for the range 18 < bw/t < 23 are in good agreement

with equation (31) for dp/os, S 3/b:

Op = O.BOocro'eoccyo'Bo (31)
Beyond the cutoff, equation (73) applies.

Multicorner elements.- The available test data on extruded square
tubes and formed sections of various shapes as shown in figure 24 are

all represented by
B _ g [e?(m V20
g c] A \o.

cy Y

Values of B, are given in table 15 and figure 28.

The range of validity of equation (31) for square tubes is
Ei'f/o’cy < 0.7, as shown in figure 13. From figure 27, it appears that

a suitable cutoff for B; = 1.3 would be GTp/0,y, S 0.9. There are

insufficient test datea to establish cutoff values for other values of
B,. However, for p/o., < 3/4, equation (73) probably is of sufficient
accuracy for most cases.
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TABLE 1.~ VALUES OF B FOR EFFECTIVE WIDTH OF LONG

SIMPLY SUPPORTED FLAT PLATES

[Data from reference 8]

hefst | beld siraight, | free to move in plens
v = Constant of plate, Oy = o
0 0.500 0.408
25 .548 458
5 .580 Lol
1 .621 540
2 .665 .590
L .696 .613
w .T46 .684

TABLE 2.~ VALUES OF o AND n FOR FLAT PLATES

Element o n
Theory for straight unloaded edges 0.78 0.80
V-groove test data .80 .58
Three-bay plate test data .80 .65
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" TARIE 3.- VALUES OF o AND n FOR VARIOUS

EXTRUDED SECTIONS AND MATERTAIS

Values of o for -
Material H-sectlon, Z-gection, Channel section,
n=0.80" n = 0.72 n = 0.72

2014-Th 0.83 0.85 0.85
2024 Tl .80 81 .81
R303-T .80 .83 .81
7075-T6 -TT .80 19
0-1 HTA .78 .82 .19

a.80 a.82 a.61

aAvera.ge.

TABLE 4.- CRIPPLING OF FORMED EQUAL FLANGE ANGLES

Material T, ksi | ogy, ksi | E, kei
2024-T3 225.0 5.1 10,500
Alclad 2024-T3 | 200.1 | k2.0 10,000

Alclad TO75-T6 259.0 66.2 10,000
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TABLE 5.- VALUES OF a FOR CRIPPLING OF

FORMED Z- AND CHANNEL SECTIONS

Material Section (bw/t) oy a
2017-T3 Z, channel 25.5 0.85
31.7 .82
2024-T73% 18.8 .89
23.1 87
26.7 .85
31.9 TT
38.7 <Th
2024-T3 Channel 24,5 87
29.5 .84
3h.2 .80
3.2 T4
FS-1h 29 81
35 TT

TABLE 6.- VALUES OF K, AS A FUNCTION OF bg/b,,

FOR Z~ AND CHANNEL SECTIONS

by K, Kw°-25[1 + (2bf/bw)]o'75
0.4 3.37 2.11
.6 2.00 2.1k
.8 1.25 2.17

23
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TABLE 7.~ INCREASED CORNER PROPERTIES

FOR FORMED SECTIONS

Sheet material | t, in. | R/t t"r'cy/ccy
2017-T3 0.125 3 1.23
2024-T5 a5 | o3 1.35

Alclad TO75-T6 .102 6 . 1.06

FS-1h - .102 4.3 1.15

TABLE 8.- VARTATION OF B WITH Ggyfo., FOR

Z~- AND CHANNEI. SECTIONS

Material R[t Seyfocy | B B / (3ey /Ucy)5/ 4
2017-T3 3 1.23 k.00 3.42
2024-T3 3 1.35 k.00 3.1§
Alclad 2024-T3 3 1.35 .00 3.19
Alclad '{075-‘1"6 3 8.09 3.42 3.14
FS-lh 4.3 1.15 3.78 3.2
®3.30

extrusions (filieted) 1 .00 | 3.6k

aFstimated value. .
bAverage value.



TABLE Q.- TEST DATA CN EXTRUDED ANGLE AND T-SECTIONS

[18 ghepes are from dete of Crockett (ref. 19); shepes 6 and T are
from data of Ramberg and Ievy (ref. 28).]

ns

o \L2 | _
Shepe |t, in. |by, in. [bp, inm. [ Aft2 —A-(-EI) Gp, kel | opy, ket [ pfogy

HgLE NI VOVN

() 42\ B __(v)
’ CAngle sections
IS 208 |0.125 | 0.875 1.75 21 0.67 32.4 43 6.754
I8 209 | .05 .50 625 |22 .70 30.7 L3 -T37
s210| .25 | 100 |15 |22 .0 32.8 | 43 764
6 064 | 1.00 2.00 |u6.1 T [ bk %43
®r.gections
18 236 |0.065 1.00 1.50 - | 38.5 0.82 51..0 k3 0.721
°Lg 2h7 | .0k .5 1.25 |50 1.06 29.2 43 .680
®13 248 | .050 | 1.00 1.50 |50 1.06 28.0 43 .652
18 249 | . 1.00 1.50 |39 .83 32.2 43 .50
7 100 .1 3.00 2.00 43.6 1.09 ——— Lok d.55

8For T-sections, bo 1is total width of opposed flanges.

PFor Crockett's data (ref. 19), Goy = 43 kai es obtained by Templin,
Hartmann, and Paul (ref. 29).
®In extrusion fillets for angles, 0 < R/t < 1/2; for T-sections,
1/2 < R/t <.
Values of 'c'rf/acy correspond to L'/p = 20.
©Me b, flange hed & 1/16-in.-redius bulb at free edge.

49
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TABLE 10.~ TEST DATA ON TWO-CORNER ELEMENTS

1/3

Shepe | g, in. | A/+? Aa(.;_;l) Ge, kst | Joy’ 5% Tp/00y

(a) t (b)
El 0.0252 | 136.7 22.10 15.8 h2 0.376
E2 .0253 87.2 |. 1:.10 22.6 42 538
E3 050 67.6 10.92 24,7 L2 .588
E4 .0255 95.5 15.45 21.0 L2 .500
X785-C .025 103 16.52 19.6 L1 478
.040 6.5 10.68 26.2 k1 .639
. 064 TN 6.93 37.7 h1 .920
.025 103 16.67 22.0 51 431
.040 64.5 11.h7 29.2 51 573
.06l ho.3 T-45 3.5 51 .853
X1S-165 .025 99.% 15.9% 20.7 41 .505
.040 62.1 10.28 26.6 1 .648
.025 99.4 17.12 25.6 51 .502
040 62.1 11.02 3h.7 51 .680
1S-160 .025 80.8 12.97 23.7 L1 578
.00 50.5 8.36 32.4 b1 .790
.025 80.8 13.92 25.9 51 .507
.040 50.5 8.98 35.9 51 .TOL
1S-161 .025 93.6 15.03 .21.5 N .525
.040 58.5 9.68 29.3 1 .715
2025 93.6 16.15 23.2 51 455
.040 58.5 10.%0 30.% 51 .596

83ee figure 22 for dimensions of sections.
bFor Crockett's data (ref. 19), velues of oy Were cbteined from

Templin, Hartmenn, and Paul (ref. 29).
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TABLE 11.- DIMENSIONS OF MULTICORNER SECTIONS
[see igure 24 for explemstion of notation]
Shepe | &, in. |b, in. | c, in. |d, in. | e, in. | &, in. | A/¢2
Three-corner elements
Al 1.000 1.000 0.434 043 |  ~eeee 0.0250 | 107.6
A2 1.568 1.568 A37 DI A [——— .0315 | 119.8"
3 1.788 .953 443 A38 | e .0500 67.2
GL 97T 1.561 .881 J22 | eeeea .0318 | 111.2
G2 .936 2.457 .863 J425 | weeem .0255 | 175.7
Four-corner elements
Cl 2.457 0.980 0.980 0.449 _ 0.149 | 0.0200 | 247.0
c2 2.487 .987 .987 Lk bk .0315 | 158.4
c3 24112 .892 .892 408 408 .0382 | 129.7
Ch 2.236 1.262 1.262 428 428 .0505 | 104.1
c5 1.813 .862 .862 J2s5 A25 .0258 | 157.0
FL 2.331 .856 1.241 Joh Lo .0318 | 155.5
F2 2.118 .976 1.266 732 Ji2 .0318 | 163.7
DL 1.231 2.260 .853 L43 A3 .0203 | 239.0
D2 1.255 2.195 875 429 429 .0382 | 128.1
D3 847 1.887 847 431 431 .0258 | 160.8
D4 1.24L 1.950 1.2 423 123 .0252 | 198.5
D5 1.250 1.904 1.250 A15 415 .0383 | 127.1
X785-D .625 1.250 .50 .025 167.5
X785-D .625 1.250 .T50 .040 104h.7
Five~corner elements
H 3.668 1.528 0.393 0.943 | ~eeem 0.0318 | 191.7
1S-152 2.500 1.312 .250 5T:7- T I— .040 126.5
1S-153 3.250 1.437 .187 562 | —m——- .051 | 101.6
Six-~corner elements
BL 1.205 1.340 1.236 OMUT"| wmeeem 0.0255 | 282.0
B2 1.198 1.610 1.001 VIS .0320 | 199.5
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TABIE 12.- TEST DATA ON MULTICORNER SECTIONS

o 1/2 kei
I Az(ﬁ%z) B¢, kst | o B /%y
(2) € (b)
Al 3 7.30 26.2 yo 0.62h
A2 3 8.21 22.9 42 545
353 3 k.91 - 35.0 42 .839
Gl 3 T7.32 26.2 4o .62
G2 3 11.56 17.8 b2 TS
Cl 4 16.25 17.3 42 412
c2 4 10.k2 2h.1 k2 S5Th
c3 4 8.46 27.5 ko .655
ch L T-30 31.4 ho .48
c5 L 10.32 24.0 42 571
F1 4 10.35 25.9 Y2 .569
F2 4 10.78 23.8 k2 567
D1 4 15.70 17.4 k2 b1k
D2 )} 8.78 28.2 Yo 671
D3 4 10.58 23.3 ko .555
Dh 4 13.07 19.0 h2 - 452
D5 y |- 8.72 27.7 2 .659
X785-D | 4 10.72 22.0° 1 537
X785-D | 4 7.03 3L.1 51 .T60
X785-D | 4 11.97 24.3 b1 AT
X785-D | L4 7.83 36.2 51 .10
H 5 13.00 25.0 Lo .595 -
Is-152 | 5 9.50 39.5 51 -T2
1S8-153 5 T-75 .1 51 864 .
BL 6 19.15 - 20.8 k2 495
B2 6 13.70 27.1 ho 645

8See figure 2t end tsble 11 for shepes and dimensions.

PFor Crockett's data (X785-D, IS-152, 1S-153) (ref. 19), values

of 0y, were obtained from Templin, Hartmamn, and Paul (ref. 29). .
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TABIE 15.- ONE-CORNER ELEMENTS

Element m Ocy/0cy | Be Remarks
Formed angles 0.85 1.0 0.59
1.1 © .62
1.2 .65 | Estimated
>1.25 .66
Extruded angles B85 | eeme- 57 | R/t = 1/2
R . Estimated for
R/t =1
T-extrusions T J [—— .67 | Besed on limited
test data
Cruciform extrusions B IToJ TS 67
TABLE 14.- TWO-CORNER ELEMENTS
Element Oey/Ocy B Remarks
Formed angles 1.0 3.5 BEstimated
1.1 3.5
1.2 3.8
>1.25 k.0
Extruded angles 36 | RIt=1

29
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TABIE 15.~ MULTICORNER ELEMENTS

Elements Sey /ey Be Remarks
Formed angles 1.0 1.1 Estimated
) 1.1 1.2 Egtimated
>1.25 1.3
Extruded engles @ = | ~eew- 1.2 Estimeted for
R/t =1 .
Extruded square tubes | —===- 1.k
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Figure 5.~ Stresses and displacements of flat plates after buckling under
conditions of uniform end shortening (see ref. 31).
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Figure 11.~ Relation between buckling and crippling of extruded sections.
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(b) Formed Z-sections of 2024-T3 aluminum alloy.
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