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SUMMARY

Nonlinear elements are sometimes added to linear control systems
in order to improve the response of the system to an arbitrary input.
This can be done in different ways, one of them being the variation of
the coefficients of the differential equation describing the system
before the nonlinear elements are added. This variation of the coeffi-
cients may be done in a continuous or in a discontinuous way. In the
present paper a discontinuous variation of the coefficients is studied
in detail and investigated for practical use.

The nonlinear feedback is applied to a second-order system. From
former analytical considerations the process of control is visualized
as establishing an ensemble of linear second-order differential equations
(some with stable and some with unstable homogenecus solutions) and
switching from one equation to another so as to maintain small instanta~
neous error for relatively arbitrary inputs. Physically, this control
process is realized with a linear second-order control system to which
have been added possible discrete combinations of proportional and deriv-
ative feedback. The particular combination of feedback employed at any
instant is determined by a feedback switching circuit which is in turn
operated by sensed binary information obtained from the output, output
derivative, error, and error derivative (namely, the signs of these vari-
ables). Techniques that are common to the digital computer field are
used to implement this switching circuit.

Once physical realization is completed, simulation techniques are
used to study and evaluate the performance of the nonlinear control system
and to compare it with a linear system for a wide variety of inputs. In
addition, the effects of physical imperfections that are likely to be
encountered in any application of the control theory are considered (e.g.,
switching delays and acceleration limits).

An analysis of the experimental results shows thet this type of non-
linear control system performs better than a linear control system having
a natural frequency 15 times greater. TFor this comparison, performance
is evaluated in terms of the average value of the magnitude of the instan-
taneous error for band-limited inputs. Further, in contrast with the
linear system, the nonlinear system performance is virtually independent
of variation in the damping factor of the system.
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A preliminary extension of this type of nonlinear control concept
to higher order systems is presented. Experimental results are given
for a third-order system. These results show that Just as in the second-
order case the nonlinear system performance is better than that of a
comparable linear system.

INTRODUCTION

With the demand for more exacting performance, more emphasis has
been placed on nonlinear aspects of control systems. The term '"control
systems'" can be interpreted to include active networks and feedback
amplifiers as well as servomechanisms. From the standpoint of analysis,
unintentional nonlinearities have to be taken into account to explain
performance. From the standpoint of synthesis, intentional nonlinearities
have been introduced to improve performance. However, up to this date
only in special cases have advancements been obtained in the field of
nonlinear control systems.

The designs of nonlinear control systems have inherent advantages.
One advantage is that the response of a nonlinear system at a certain
time can be made less dependent upon past response than can a linear

system of comparable power-handling capability.l This means that the
nonlinear system can be made to follow more arbitrary classes of inputs
with less dynamic error than the comparable linear system. Another
advantage is that the mathematical difficulties encountered may actually
be conducive to consideration of more realistic criteria of performance.
In the nonlinear realm it is essentially as easy to invoke a criterion
such as the minimization of instantaneous error for nonstationary random
inputs as it is to invoke the largest possible flat amplitude response
for sinusoidal inputs.

In the present paper a control system of second order, which was
first suggested by Fligge-Lotz and Wunch on the basis of analytical
studies (ref. 1), is investigated. The physical realization of this
system and its performance are studied in great detail.

This investigation was conducted at Stanford University under the
sponsorship and with the financial assistance of the National Advisory
Committee for Aeronautics. The authors wish to thank Dr. A. M. Peterson
of the Electrical Engineering Department of Stanford University for his
continued interest and his most helpful advice on the electronic problems
which were encountered during this investigation. They also wish to
thank Mr. G. S. Bahrs for his useful suggestions for a special transistor
switching circuit.

lIn linear theory, the impulse response or the autocorrelation func-
tion of the system gives an indication of how past response is weighted.
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SYMBOLS

A peak-to~peak amplitude of input

a,b,c parameters defining a system

a,b,c parameters in differential equation for control servo

B viscous damping of motor and reflected load referred to motor
shaft

D linear damping factor

e instantaneous error

e! = de/ar

H(p) transfer function, 1/(ap + 1)

d inertia of motor rotor, gears, and reflected load

J= V-1

K1,Ko gain constants

km constant of proportionality between output velocity and back
electromotive force

M constant depending on initial conditions

D operator, d/dt

T repetition rate or period

T time

tmd maximum allowable switching delay

Vv input voltage

o'¢ input into system

y output from system

5 approximation of output

(o? symbol used to denote different constants

Bm = ~1B sen (y'e) - oB sen (y'e')




(Bm’7n>min

lB}26)l7)27

’n

Subscripts:

d

(0]

)

lin

m,n = 0,1,2,3

= -17 sen
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smallest values of parameters giving good nonlinear system
performance

positive constants
(ye) - o7 sen (ye')

positive constant

small positive quantity

coordinates introduced in appendix D

radius of curvature

real part of complex frequency variable o + jw

nondimensional -time variable normalized with respect to
Wy, Wyt

nondimensional frequency, w}wv

frequency

natural frequency of undamped linear system

time average

d( )/d'r
dg( )/d'r2

equality sign in equations which describe operations (see
egs. (2) and (3))

ideal or desirable

Eerrer
image
limit

linear
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max maximum or upper bound
min minimum or lower bound
nonlin nonlinear

o optimum

REVIEW OF LINEAR CONTROL THEORY

It is desirable to obtain from linear control theory some useful
concepts that can be generalized to the nonlinear case. These concepts
are:

(1) Operational notation
(a) Transfer functions
(b) Block-diasgram representations
(2) Control criteria
(3) Control through parameters
At the onset second-order systems are considered. However, there is no
difficulty in extending these concepts to higher order systems.

Operational Notation, Transfer Functions, and Block Diagrams

Consider a physical process or situation in which the output is
described in terms of the input as

2
dy SN =
a ”: +b e x(t) (1)

where a, b, and c are constants, y = y(t) is the output, and
x = x(t) 1is the input.

Utilizing the operator p = d/dt, equation (1) may be written
(ap2 + bp + c)y 2 x (2)

(Eq. (2) reads "(ap® + bp + c¢) operating on ¥ equals operationally x.")
Formal solution of equation (2) for the ratio of output over input yields
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by definition the operational transfer function for the system. Thus

Yy e
= =

It

(3)

ap2 + bp + c

The operational block diagram for the system is obtained by placing
inside a box the transfer function, equation (5). Coming into the box
is the input; going out of the box is the output (see sketch a).

1

Input

ap2 +bp e

Output

Sketch a.

Here transfer functions and block diagrams are utilized merely as
shorthand operational notations for differential equations. This is
opposed to the Laplace transformation viewpoint where transfer functions
(and thus block diagrams) have the properties of functions of the complex

frequency variable, p =0 + Jw.

The reason for stressing this inter-
pretation is that shorthand (operational) notation has proven useful in

the transition to nonlinear control whereas the Laplace transformation
viewpoint (e.g., synthesis in the complex frequency plane in terms of

poles and zeros) has not.

Control Criteria

To gage the performance of an actual system an ideal or desirable
system is usually established as a straight through connection (Le.),
yqg = X as denoted in sketch b, a block diagram of an ideal system).

X

e

Input

%

Output

Sketch b.

Comparison between the desired output vq and actual output y is
accomplished by utilizing the instantaneous error:

e=(yq-Vvy)~= (x - vy)




NACA TN 3826 7

A control criterion or criterion of performance is defined as the mini-
mization of some property of the instantaneous error e for a given
class of inputs. The minimizing process can be exact (i.e., resulting
from a variational formulation of the problem) or approximate.

Control Through Parameters

In linear systems the process of control is usually physically
obtained by applying feedback and/or compensation to the system that is
to be controlled. A control criterion is realized (as closely as possi-
ble) by adjustment of these applied quantities. The concept of control
through parameters is an interpretation of this control process in terms
of the differential equation describing the process. A simple example
illustrates this concept.

Consider the position control servo shown in figure 1. The uncon-
trolled (open-loop) system consists of an amplifier, armature-controlled
motor, gear train, and load. Closed-loop operation is obtained by uti-
lizing proportional and derivative feedback. The gain constants Ky

and K2 are adjustable. Armature inductance has been neglected. From

the block diagram the differential equation for the open-loop system may
be written:

2
L LR ) (1)
Kk, th Kk, /dt
Similarly, the closed-loop differential equation is
2 B +
J)dh( Kﬁ‘k"*)%h(l)yw(t) (5)
Kikn at2 Kikp, /dt
In either case the differential equation is of the form
% | - dy
- A oy = x(t) (6)
di2 dt

where a set of three parameters &, b, and C completely characterizes
the system. It is possible, then, to view the process of control in

terms of these parameters. One starts with a parameter set (a,b,c)
defining the uncontrolled system. A control criterion yields an optimum
parameter set (a,b,c)y,. Control (feedback and/or compensation) is intro-
duced ideally making it possible to adjust (a,b,c) to (a,b,c),. In the
above example the gain constants K; and K, afford this adjustment.
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This adjustment of the coefficients may be done in a continuous or
a discontinuous way. In reference 2 Schmid and Triplett have described
an interesting and efficient way to vary the coefficients of a basically
linear system continuously.

NONLINEAR CONTROL

Transition To Nonlinear Control

In the preceding section it has been mentioned that the process of
linear control of second-order systems may be visualized as the adjust-
ment of the parameter set (a,b,c) to the set (a,b,c),. The term optimum
was used in the sense that some criterion of performance was approached
as closely as possible.

Tt seems logical in the transition to nonlinear control still to
hypothesize control through parameters. The transition is obtained by
allowing the parameters to become functions of the output y(t) and the
input x(t); that is,

a—>a(x,y)
b—>b(x,y)

e—>ecl(x,7)

The mathematical description of the system is now

alx,) 2F + vy) F+ eloyly = x(2) (7) |

Without knowing the specific nature of the functions a(x,y), b(x,y),
and c(x,y) it may be seen that equation (7) is a nonlinear, inhomoge-
neous, and/or nonautonomous differential equation. Mathematically,
little in general can be said about the solution of equation (7) given
the function set a(x,y), b(x,y), and c(x,y). It seems, then, even
more hopeless to attempt a synthesis problem which involves both finding
the function set [é(x,y), b(x,y), c(x,yi]o for a specified control

criterion and then physically realizing the system described
mathematically.
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Nonlinear Control Theory

One analytical attack on the nonlinear control-system-synthesis
problem has been made by Fliigge-Lotz and Wunch (refs. 1 and 3 to 5).
They suggested varying the coefficients a, b, and c, not continuously,
but discontinuously. That means that for t] <t < t, there is one set

of coefficients, for th <t < t3 there is another set of coefficients,

and so on. The different sets of coefficients are chosen in advance, but
the times t; for change from one set to another are determined by the

value and the decrease or increase of the deviation (x - y). In other
words, the system is linear in any interval t; <t < ti4y, but is non-

linear in the whole. The transition at any switching time +t;i occurs
with continuous values of y(t) and dy/dt, but discontinuous values

of (a2y/at2).

Phase-plane techniques were used for studying appropriate sets of
coefficients and the appropriate dependence of the switching times on the

deviations.2 The authors succeeded in finding a switching rule which
assures good performance in a multitude of cases. Their control system
is mathematically described in the following way:

%wn(lwm)gp Bl ) (8)
where
x(T) input
y(T) output
D linear damping factor (when Bm = 7n = O)
T nondimensional time variable normalized with respect to Wy5

that is, T = w,t

2For details the reader is referred to references 1 and 3 to 5.
Reference 1 contains the ideas but is so condensed that the inquisitive
reader will find it useful to read references 3 to 5, of which refer-
ence 5 is probably the most accessible. Figure 3, p. 12, and figure 505
p- 70, of reference 5 will help in getting acquainted with the phase=-
plane trajectory of an output. Some of the original studies are described
again later in the present paper when the performance of the system is
discussed.
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Wy natural frequency of undamped linear system,
Bn = -1B sen (y'e) - B sen (y'e')

m=0,1, 2, 3

Tn = =17 sen (ye) - 57 sen (ye')

NE=NEOCI 2 N5

1Bs5Bs175,7 PoOsitive constants

( )= T +1 for £ >0
sgn (f) === y.1 for £<O0

[£]
e instantaneous error, e = (yd - y) =(x - y)
() =0( )/or

D
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=Bm=7n=o

Actually, equation (8) is a normalized form of the control equation
derived by Flugge-Lotz and Wunch. However, the notation has been some-
what changed. See appendix A for a comparison of notations and the

normalization involved.

The subscript convention is

Pz = 1B + P 7z =17 T oF
Bo = 9B = 2B 7o = 10 = o)
By = —1B + 0B = -8y 6 Wl VARNE-A0e

BO = —lB = 25

Properties of Equation (8)

L (9)

The following properties of equation (8) are noteworthy:

(1) Equation (8) is a piecewise linear but overall nonlinear differ-

ential equation.

(2) The parameters Bn @and 7, are stepwise switching functions

of time (their implicit variable). This property is illustrated in fig-

ure 2.
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(3) The time of switching and the particular combination of the
parameters B, and 7, employed at any instant are explicit functions

of the output y and the input x. Specifically, they are determined
by quantized information derived from the output, output derivative,
error, and error derivative, namely, the sign of the products sgn (y'e),

segn (y'e'), sgn (ye), and sgn (ye').

(4) There are basically 16 m,n subscript combinations and thus
16 Bms?n Parameter combinations. However, a detailed study of property

(3) shows that only 8 are allowed. The allowed combinations may be
mi=n =0, 1, 2, 3
or
m#n
m+n=3
The reason for the "exclusion principle" on coefficient combinations
stems from a desire to obtain mirrored-image outputs for mirrored-image

inputs; that is,

-y ()

yhm(T)

is desired when
x; (1) = x(7)

(5) The control criterion that was employed in obtaining the func-
tional dependence of B, and 7y, was

|va = v| = |x -] = |e|] <e

where € 1is a small positive quantity. This criterion of maintenance
of small instantaneous error between desired output and actual output
enabled reduction of equation (8) to the approximate autonomous differ-
ential equation (see refs. 1 and 3 to 5)

y' +2D(1 + Bp)y' + 7y = (x - )
~ O (10)

Thus phase-plane techniques could be employed to find the functional
dependence of B, and 7,.
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(6) Once the linear damping factor D is fixed the process of con-
trol is obtained by switching parameters Bn and Yn- Equation (8)

consists of an ensemble of eight (see property (4)) linear differential
equations with constant coefficients. The process of control may be
visualized as the switching from one member of the ensemble to another.
This switching is determined by quantized information derived from the
input and output (see property (3)). From another point of view (con-
sistent with the approximation described in property (5)), the output y
is to be forced to satisfy two conditions simultaneously, that is, both
sides of equation (10). This is approximately possible by switching to
various B and 7y, Dparameter combinations and can be visualized as

the process of switching to various phase trajectories of equation (lO)
in the phase plane of y' against y.

Discussion of Nonlinear Control

In the section entitled "Transition to Nonlinear Control" a logical
transition to nonlinear control systems utilizing the concept of control
through parameters is suggested. However, mathematical difficulty hampers
the development of this approach. In the next two sections a particular
nonlinear control theory is presented. This theory constitutes the first
step in the synthesis of a nonlinear control system which obtains control
through parameters. Since the functional dependence of the parameters
has been established, the problem is reduced to finding a set of five
(constant) parameters (D’lB’EB’l7’27)O' It should be appreciated, how-

ever, that even the optimization of this five-parameter set cannot in
general be accomplished analytically because of the overall nonlinear
nature of the problem.

Aside from questions on the analytical optimization of parameters
in equation (8), there are equally important practical questions such as:

(1) Can a useful control system that is described by the nonlinear
differential equation (eq. (8)) be realized?

(2) If the system is realizable, what is its physical nature?

(3) If the system is realizable, how does it compare in performance
and complexity with a "good" second-order linear control system?

There are then mathematical difficulties on the one hand and physical
difficulties on the other. The mathematical difficulties could be handled
by numerical methods of integration of the differential equation (e.g.,
utilizing a digital computer). However, this would give little insight
into the nature of a system that is controlled through discontinuous
variation of the parameters @, and 7,. It has been found advantageous
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to investigate the physical questions first and then to utilize simulation
techniques (analog computer) to investigate the analytical properties of
this type of control.

PHYSICAL REALIZATION

Physical Model

It is desirable to study the nature of a physical control system
that is described by an ensemble of eight linear differential equations
with control being accomplished by switching from one member of the
ensemble to another. To do this equation (8) is rearranged as shown
below:

QEX +20 & 4 y = x(t) - (2Dg, dy . 7.3 (11)
dT2 dr SN dT
or in operational notation
(p2 + 2Dp + 1)y 2 x - (EDBmp e (12)

Forgetting for the time being that the parameters By and y, are

actually functions, one interpretation of this operational equation and
thus of equation (8) is shown in figure 3.

Figure 3 can be modified to take into account the fact that B
and 7n are stepwise switching functions of time, their implicit variable
(i.e., By, and 7n ¢can each take on four discrete values). This ds

shown symbolically in figure 4. The explicit functional dependence of
the parameters Bpn and 7y, has not yet been given and is thus indicated

as a switching logic of undefined character.

Utilizing the block diagram of figure 4, the physical interpretation
of the nonlinear control system described by equation (8) is quite
straightforward. This system consists of:

(1) A linear feedforward portion. This portion could be a linear
control system in itself (e.g., the simple position control servo of
figure 1 and equation (5)).

(2) A feedback switching circuit comprised of:
(a) Four discrete values of proportional feedback 7

(two positive and two negative as shown in fig. 2)
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(b) Four discrete values of derivative feedback 2DB,
(two positive and two negative as shown in fig. 2) .

(c) A switching logic which at any instant determines the
particular combination of derivative and proportional feedback
EDBm,yn employed

Switching Logic

In this section it is shown that digital-computer techniques can
be utilized to establish the switching logic for the feedback switching
circuit mentioned in the previous section.

Recall that the parameters B, and y, have been defined as func-

tions; that is,

By = -1B sen (y'e) - B sen (y'e')
= (@ 1k 2l L
(13)
7, = -17 sea (ve) - o7 sen (vye')
n=0,1,2;5 J A
where the subscript convention has been given by equations (9). Equa- -

tions (13) determine the switching logic. Thus, for example, 53 is
chosen when (y'e) <0 and (y'e') < O and 7o 1s chosen when
(ye) >0 and (ye') > O, so that the combination Bz7q 1s chosen when

(y'e) <0, (y'e') <0, (ye)>0, and (ye') > O. At this point it
appears necessary to form the products ye, ye', y'e, and y'e' and
then to find the sign of these products in order to establish the
switching logic. Physically, however, the process of multiplication is
to be avoided if possible. That there is a possibility of avoiding
multiplication may be gleaned by realizing that

_en (ab) = sgn (a) sgn (b)
since

gbi T la i b
|abl Ja| |b]
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Thus equations (13) may be rewritten as

Bn = -sen (y')[lB sgn (e) + 5B sgn (e'ﬂ *
me=Ng, 1, 2y 3
(1)
7n = -sen (y)[17 sen (e) + 57 sen (e'):l
108 = OJ l} 2} 5 J

Again the subscript convention is defined by equations (9).

Thus, utilizing equations (13), for example, B5 1s chosen when

y'>0, e<0, e'<0
or when
y' <0, e>0, e'>0
70 is chosen when
y>0, e>0, e'>0
or when

Yy<0, e<0, e' <0

so that the combination (65,70) is chosen when

¥>0, ' <0, e>0, e' >0
or when

y<0, y">0, e<0, e'<0
From this example it can be seen that it is not necessary to find the
signs of products but rather that it is sufficient to find separately
the signs of y, y', e, and e'.

Since the sign of a variable is quantized binary information of the

variable, it is convenient to utilize digital-computer techniques to

further the switching logic. This may be done as follows:

Let the convention be adopted that y > O be represented by O
(binary zero), y < O be represented by 1 (binary one), and similarly
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for y', e, and e'. If the ordered sequence is now established as

(Y; y': €, e’)

four-diglt binary logic may be employed to encode equation (lh). In
particular, a binary coded decimal may be used (see table i)

It was mentioned in property (4) of the section "Properties of
Equation (8)" that not all of the 16 possible B,y, Dparameter combina-

tions were allowed under their definition. This was termed an exclusion
principle on the allowed coefficient combinations. One of the advantages
of the suggested binary coding scheme of table 1 is that this exclusion
principle is built into the code. To understand this, consider the
example of the combination 8370 given previously. In the code language

3370 is chosen when the binary number 0100 or 101l occurs. What is

implied by this example is that a binary number and its complement must

be identical (i.e., 0000 = 1111, 0111 = 1000) as far as the switching
logic is concerned. Thus out of the 16 possible four-digit binary numbers
only the first 8 are unique. That is, in counting from O to 7 in a binary
coded decimal, if complements are included then so are the other 8 possi-
bilities, 8 to 15 (see table 1).

The allowed B,,7, Pparameter combinations along with the encoded

logic of table 1 are summarized in matrix form in table 2. Examples are
given to illustrate the meaning of the table. In general the allowed
subscript combinations are

B
il
s
1l

0, 1, 2,5

or

Realization Completed

Now that equation (14) has been successfully interpreted (encoded)
in binary-logic form (table 2), the realization of a feedback switching
circuit utilizing this encoded logic is a typical digital-computer
switching-circuit problem. As is characteristic of any synthesis process
there will, in general, be many ways to design this feedback switching
circuit. The block diagram of figure 5 shows one design that completes
the physical interpretation of equation (8) along the lines started in
figures 3 and L.




NACA TN 3826 17

In figure 5 the feedback switching circuit consists of:

(l) The four discrete values of both derivative and proportional
feedback 2DBp,7n

(2) A relay switching circuit that connects the proper feedback
combination

(3) Zero-coincidence detectors CD that drive the banks of relays
to one position or the other depending upon the signs of the sensed
variables

It should be noted that, depending upon the epplication, other forms
of sign-sensing devices and other switching devices such as diodes, tran-
sistors, electronic switches, and/or magnetic amplifiers could be employed
to obtain other realizations of equation (8). In any case the following
properties are basic to any realization:

(1) The signs of the four variables y, y', e, and e' are
sensed. This may be thought of as the process of "reading in" the four-
digit binary logic of table 1.

(2) On the basis of the 2LL possible binary decisions the required
feedback combinations 2DBp,7, as defined in table 2 are connected around

a linear second-order member.

It is important to stress that the only type of nonlinear operations
required in the realization of this nonlinear control system are switching-
type operations. In addition, all the switching is to be performed in
feedback paths, which means that the switching can be done at low elec-
tronic power levels. These practical features are definite design advan-
tages. Thus, in summary, it can be said that this type of nonlinear
control system is not only physically realizable but also practical from
an instrumentation standpoint.

EXPERIMENTAL VERIFICATION OF NONLINEAR CONTROL THEORY

Discussion of Simulation Techniques

Simulation techniques were chosen as an experimental mode of inves-
tigation of performance of the nonlinear control system realized from
equation (8). These techniques offer the following advantages:
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(1) Proximity to the actual control system. This means that the
same practical features with regard to instrumentation (see the section
entitled "Realization Completed") are exploited to fullest advantage.
Thus, just as in the actual system, the only nonlinear device required
for the simulated model is a binary logic feedback switching circuit
(see appendix B for details). The linear portion of the system is simu-
lated on an analog computer. Here the only operations required are sum-
mations, two integrations, and one differentiation. These are all
operations which an analog computer does well. It can be said then that
the accuracy to which the simulated model simulates equation (8) depends
primarily upon the realized feedback switching circuit. The most essen=-
tial type of imperfection to be expected in this switching circuit 1is
time delay in switching. Exactly the same type of imperfection will be
met in the physical control system. Thus there will be more nearly a
one-to-one correspondence between the simulated model and the actual
system than between either and equation (8).

(2) Convenience in experimental investigation. In order to charac-
terize the output y of the nonlinear system completely, a set of five
parameters

(D, 185 By 175 ,7)

and the input x must be specified. In the performance evaluatlion of
the system it 1s necessary to be able to vary these characterizing
quantities conveniently. Simulation techniques allow this.

Presentation of Experimental Results

Figures 6 to 17 present experimental results obtained from the simu-
lation studies of equation (8). Briefly, the results are presented as
follows:

Figures 6 to 12 compare the responses (output y and error e) of
the nonlinear system with that of a linear system for various classes of
inputs x. (In comparing the linear and nonlinear responses it will be
noted that there is not exact synchronism of events because, with the
available experimental facilities, it was necessary to obtain the two
responses separateLy.) The linear system utilized is that which consti-
tutes the feedforward member of the nonlinear system corresponding to
the case where B, = 7y, = O. The nonlinear system for figures 6 to 15 is

Bz = =Bp = 2
Bo = -p1 = 0.5
73 = "0 = 2

I

/xS Sl 0.5
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Figure 6 compares the system responses to sinusoidal inputs and
figure 7 shows the responses to triangular-wave inputs. A partially
integrated square wave x(T) is defined as the output of a first-order
linear system characterized by the transfer function H(p) = l/(qp + l),
when the input Xl(T) is a square wave. The responses of linear and
nonlinear systems to this type of input are given in figure 8. The
responses of the systems to small sinusoidal inputs are given in fig-
ure 9. Figure 10 gives the responses to clipped sinusoidal inputs. Fig-
ure 11 shows the response of the nonlinear system to sinusoidal inputs

that have been displaced with a direct-current component. Figure 12
shows the responses of linear and nonlinear systems to a triangular-wave

input whose periods and amplitudes are randomly modulated.

Figures 13 to 15 deal with the effects of imperfections that are
likely to be encountered in the actual control system. Figure lB(a) gives
the results and data of an experimental investigation on the effects of
switching delays due to threshold in sensing the sign of the error,
sgn (e) foi a triangular-wave input. The experimental results for a
constant 9-volt input (see fig. 13(b)) are given below:

Mhreghold; MV e o & » o = o o & <« = . - 1 26 36 Ly
Peak-to-peak error, mv . . . . . . . . . . L4b 124 220 290

Figure 14 shows the effects of placing progressively smaller limits on
the acceleration of the nonlinear control system. For each value of y"
limit considered, the output, output derivative, output acceleration,

and instantaneous error are shown. The effects of a velocity limit on
performance of the nonlinear and linear systems are compared in figure 15.

Figure 16 presents the responses of some special cases of the non-
linear system (special with respect to the choice of the Bp and 7,
parameter values). In this figure the system responses to a triangular-

wave input are given for four different parameter sets. The parameters
pertinent to these results are listed in table 3 for easy reference.

Figure 17 glves the response of the nonlinear system possessing a
low linear damping factor D = O.l. The responses are for a triangular-
wave input whose frequency was varied in the same manner as that of fig-

ures T(a) and T(c).

Detailed discussions of these results are given in the section
entitled "Discussion of Results."
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DISCUSSION OF RESULTS

Performance Evaluation of Sinusoidal Inputs

To complete the synthesis of the nonlinear control system that has
been derived from equation (8), it is necessary to choose the magnitudes
of the parameters that characterize the system, that is, (D,lB,EB,ly,zy)

or (D,B5,Be,73,72). It is expected that the performance of the system

depends on the choice of these parameters. For studying their influence,
simulation techniques proved to be very convenient. Experimental results
were given in figures 6 to 12 where the response (output y and error e)
of the nonlinear system was compared with the response of a linear system
for a variety of inputs. This gives the possibility of establishing the
properties of the nonlinear system not only by itself but also with respect
to a linear standard. The linear system employed for this purpose was

that which constitutes the feedforward member of the nonlinear system

(i.e., Pm = 7p = O).

These experiments allow parameter values for good performance of the
nonlinear system to be found. Analytical and practical considerations
that aid in the optimization are treated later in the section entitled
"Choice of Parameter Values.'

The sinusoildal responses of the nonlinear and linear systems are
compared in figure 6. Here, the frequency range considered was
0.15Q = w/ww S 2. The peak-to-peak input amplitude was 20 volts. These

results show that the nonlinear system reproduced the sinusoidal inputs

up to the frequency & = 1.4 with virtually no instantaneous error when
compared with that of the linear system. For higher frequencies the error
for the nonlinear system increased rapidly to the same order of magnitude
as that of the linear system.

Substantially the same comparative performance was displayed by the
two systems when the input was a smaller (L-volt peak-to-peak) sinusoid
as is shown in figure 9.

Figure 11 gives the response of the nonlinear system to a 20-volt
peak-to-peak osculating sinusoid over the frequency range 0.1 = Q £ 0.8.
This is a severe type of input for the nonlinear system since both x
and x' simultaneously go to zero. This implies that y and y' are
also small so that in equation (8) the discontinuous variations of the
parameters fy,yn cannot be so effective in determining the acceleration

y", since

¥y =x - [%D(l + Qm)y' + (l + 7n)%] (15)
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From the figures it is seen that the nonlinear system did hawve some dif-
ficulties near the osculating regions; further, the peak error increased
as the frequency was increased (see appendix C). As might be expected
from equation (15) this error for small values of y and y' can be
reduced by increasing the magnitudes of the parameters (this will be
discussed in more detail in the section entitled "Choice of Parameters').
At any rate, by comparison, the error for the present system is always
less than that of the linear system of figure 6. (In the linear realm,
error is independent of a shift in the direct-current level of the input.)

Taken collectively, the 20-volt, the L-volt, and the osculating
20-volt sinusoidal inputs tend to form a more realistic appraisal of the
nonlinear system performance than a single input amplitude. There is
still much that can be learned from a detailed study of these three
responses, but first it is desirable to obtain some sort of a quantitative
comparison between the nonlinear and the linear system performance. One
such comparison can be made as follows:

(1) Assume that the input to both systems x(T) is, and has been
for a long time, a 4-volt peak-to~-peak sinusoid of frequency

Q = w/wv = 0.1

so that as far as the linear system is concerned this is a steady-state
alternating-current input.

(2) Determine how much the band width or the natural frequency wy

of the linear system must be increased in order that the time average of
the magnitude of the instantaneous error

A 27
|ﬂ=§f |ear
0

for the linear system be reduced to that value given by the nonlinear
system.

Here 1t is easy to show that for the low-frequency steady-state
alternating-current case

o L 4D
leliin = == x| pay (16)
For an input x = |x|maxejQT the steady-state error is given by

/AN 1 0
e =X -y = |X]|pa (1 - geJT
1 + 502D - @
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For small values of § this equation yilelds
e ~ |Xlpax |l - (1 - 302D + . . .)]ed

~ | %] oy (392D)edT

or
le lnax = 2D2% Ipax
but
[Vl
e'lin = %‘]gﬂ |e|max sin QT dQT = %Ielmax
therefore

For the given system and input
|e|lin ~ 0.15

For the nonlinear system and the same input (epproximate calculation
from fig. 9(a))

A

lel 001

nonlin

Thus,

SN

~1M
Ielnonlin - iglellin

Now from equation (17), since Q = w/wv, it is seen that in order to

reduce IeIlin by this factor of 15 that w, must be increased by the
same factor.

In the example of the linear control system of figure 1 and equa-
tion (5) this increase in w, by a factor of 15 would mean that both

the inner and outer loop gains must be increased by the order of magni-
tude of (15)2 since




NACA TN 3826 25

S

- 2
LD = (av)

This is true assuming that the damping factor remains constant. Such

an increase in the loop gains 1s frequently not at all physically possible.

Up to this point little attention has been given to the detailed
nature of the nonlinear system response. Closer inspection of, for
example, figures 6(a) and 6(c) shows that the output y is a function
that links serpentine fashion (oscillates) at a very high rate about the
input x, but still the magnitude of the error is small. In fact, it
is necessary to inspect the error at a scale 20 times larger than that
of the output even to notice this phenomenon. Mathematically this means
that the functions x and y approach one another closely but that
their derivatives differ appreciably. Physically, however, this is not
at all undesirable as long as the magnitude of the error is small.
(Actually for mechanical systems this property would be useful in pre-
venting static friction.) This fine-grained oscillating character of v
is the very essence of the nonlinear control theory. Every time the
error or error derivative goes through zero the parameter set Bms7n ©f

equation (8) changes discretely as defined in equations (13) or by the
binary logic of table 2. The discrete changes in the parameters cause
discontinuities in the second derivative y'", which when integrated twice
give y 1its serpentine character. To illustrate this point, the sketch
of figure 18 shows samples of the superposed input and output of the
nonlinear system. The input in this case could be that of figure 6(a)

or 9(a).

Circle (a) in figure 18 is a typical cycle of the oscillating char-
acter of the output y. Commencing at To, the error changes sign at

Tg, the binary number 001l is "read into" the feedback switching circuit

of figure 5, and using the notation of table 2 the parameter cambination
3573 is switched into the circuit. This causes an immediate reversal

in the sign of the output acceleration y", so that at time Tiy the

error derivative changes sign, the binary number 0010 is read in, and
the parameter combination 3272 is switched into the circuit; acceler-
ation is still in the same direction but weaker. At time T the error
again changes sign, the binary number OOOO occurs, and the combination

Bo7o 1s switched into the circuit; acceleration is in the opposite
direction. At time T3 the error derivative changes sign, the binary
number OO0l occurs, and B171 1s switched in; this reduces the acceler-
ation until at time Ty the error again changes sign, 00ll occurs, 3573
is again switched in; the cycle is complete. Although it was not
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mentioned at the time, figure 2 shows this sequence of B.,7, combina-

tions. The nature of the acceleration resulting from the switching can
be seen in figure 14(a).

The comparable switching cycle for y >0 and y' < O as shown
in circle (b) of figure 18 is:

Logic Parameters
0lll 8075
0110 B17o
0100 3370
0101 Bo71
0111 5075

Similarly, for y< O and y'< O as shown in circle (c) of figure 18:

Logic Parameters
1100 8575
., 1101 Bo7o
1A BO7O
1110 Bl7l
1100 8575

This is the mirror-image switching cycle for circle (a) (see property (4)
in the section "Properties of Equation (8)" and also the discussion in
the section "Switching Logic").

Finally, for y< O and y'> 0 as in circle (d) of figure 18:

Logic Parameters
1000 8075
1001 B17o
JUoRLIL 5570
1010 8271
1000 8075

This is the mirror-image switching cycle for circle (b).

With this insight into the detailed behavior of the nonlinear system
more information can be obtained from the experimental sinusoidal responses
of figures 6, 9, and 11 that have up until now been treated from a macro-
scopic rather than microscopic viewpoint. Along these lines, the following
experimentally observed facts are noteworthy:
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(1) In comparing the errors for the L-volt and the 20-volt peak-
to-peak sinusoidal inputs in the frequency range of good reproduction
0.1 £0 £0.8, it is seen that:

(a) The magnitudes of the errors are nearly the seme (see
figs. 6(a) and 6(e) and 9(a) and 9(c).

(b) The period of the error is generally smaller in the larger
amplitude case. This is even more pronounced if the L4-volt peak-to-peak
case is compared with figure 11 for y 1in the region of -20 volts.

(2) Good reproduction is cheracterized by many e and e' switchings
(see fig. 18) per cycle of the input. As input frequency is increased
and the upper limit of small error is reached (figs. 6(e) and 9(e)) the
e and e' switchings become more infrequent until there are finally
only two of each per cycle of the input.

The fact that the period of the error is smaller for larger inputs
can be gleaned from equation (8) when it is rearranged as

y' o= -[?D(l + By’ + 7ny] +(x -y)
or roughly
y" ~ —l:QD(]_ + Bm)x' + 7nX] (18)

For a system with specified Bms»?n Parameter values, the larger input

and input derivatives will give stronger discontinuities in y" as the
Bms”n combinations change. This implies that Bms?n Will change more

often making the period of the error smaller. See figure 14(a) for the

Justification of the approximations in equation (18) since Y, ¥, 1,
and x are shown in this figure. (The input x was sketched in by hand.)

In the frequency range of good reproduction the reason that the
magnitude of the error is virtually independent of the input amplitude
cannot be explained from equation (8) since this fact is intimately tied
in with the imperfections in the feedback switching circuit (see section
entitled "Effects of Switching Imperfections" for details). As measured
from the experimental sinusoidal responses, |e|y ., is of the order of

15 to 20 millivolts. It might be noted that earlier in this section the
smaller 4-volt peak-to-peak input sinusoid was employed in the compari-
son when it was determined that w, should be increased by a factor

of 15 in order to obtain the same r;]lin' This choice of the smaller

input was decidedly in favor of the linear system since the linear error
increases linearly with input emplitude. Thus, if the 20-volt peak-to-
peak input were used, an increase in w, by a factor of 5 X 15 = 75 would

be required to obtain the same Téilin'
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The fact that there is a correlation between good reproduction
(small error) and the existence of many error and error-derivative
switchings is very important since it i1s the key to understanding the
upper limits of good performance of the nonlinear system. One approxi-
mate way to investigate this matter is to establish a deficiency between
the output acceleration required for good reproduction (meny switchings)
and the availlable output acceleration. Equation (19) gives an approxi-
mation to the output acceleration when the system is functioning well:

y' o~ -[:213(1 + Bp)x' + 7nXJ (19)

As an example of this approach consider the input x to be a sinusoid
of frequency Q (fig. 6 or 9). Since
| x"|

2
max Q lx‘max

it is to be expected that the nonlinear system will have the greatest
difficulty in the vicinity of |xX|pe, where, from equation (19),

ly"'ma.x ~ |7nxlmax

Thus, if in this region the output y 1is golng to interweave the
input x (as is characteristic of good reproduction), then

| ynlmax > Ixn'max

This inequality then places an upper limit on good performance of the
system in response to sinusoids

s u '7n|max

For the system used in obtaining the experimental results of figures 6

and 9, |7n|max = 2; therefore,

a<\2

Inspection of both figures 6(e) and 9(e) tends to substantiate the above
result. For example, in figure 9(e) it is seen for Q = 1.2 (after the
transient caused by turning on the input has been absorbed) that as the
input goes through its meximum, frequent e and e' switchings stop
and do not occur again as the frequency is increased.
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Performance Evaluation of Inputs Other than Sinusoidal

In the preceding section only the sinusoidal response of the non-
linear control system was discussed in studying performance. However,
it is easy to see that the nonlinear system will cope with any input in
the same manner as it does with sinusoids. Thus, as long as the magni-
tude of input acceleration does not continuously exceed the available
magnitude of the output acceleration the switching process will commence
and excellent reproduction will result. This type includes inputs with
discontinuous derivatives and discontinuous inputs. The experimental
sinusoidal responses of figures 6, 9, and 11 themselves give some indi-
cation of these facts. For example, in figure 6(a) there was an initial
discontinuity in the input and there were discontinuities in the input
derivative when the frequency was changed. The results in figures Ts '8,
10, and 12 prove further that the nonlinear system response is not
dependent upon any specific type of input. Given in these figures are
triangular-wave, partially integrated square-wave (including square-wave),

clipped sinusoidal, and rando.m5 inputs, respectively.

It should be noted that in the literature (refs. 1 and 3 to 5) a
marginal-type input that would present a case of indecision to the
switching circuit of the nonlinear system is discussed. This case has
never been encountered experimentally even when the attempt was to pro-
duce this case. Thus the marginal-type input is not considered practi-
cally important.

Use of Phase-Plane Methods to Study Performance

The phase-plane methods that were used in the original analytical
development of equation (8) (refs. 1 and 3 to 5) can also be gainfully

5In the strict statistical sense the probability that the inputs
shown in figures 12(a) and 12(b) are not samples of random stationary
time series is admittedly high because of existing experimental facil-
ities. These inputs were obtained by random manual modulation (both fre-
quency and amplitude) of a triangular-wave input of peak-to-peak amplitude
A and period T where

A
A

0 A 20 volts

ok, &5

2n/T £ 0.8

Random manual modulation means that the operator varied by hand both the
frequency and amplitude controls of the input generator as randomly as
possible. In the present investigation the comparative results of the
linear and nonlinear responses to what appear to be band-limited random
inputs are felt to be more important than the exact statistical proper-
ties of the inputs.
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employed in studying the performance of the nonlinear control system
derived from equation (8) once the B, and 7, parameter values have
been specified. (In this section it is important to distinguish between
B, end 7, parameter values, i.e., Bz = 2, Bp =1, etec., and Byr,
parameter combinations, i.e., Bz7q; etc.)

If in equation (8) the error e = (x - y) 1is assumed small, then
the output y can be approximated by portions of curves that satisfy
the autonomous differential equation

Efi + 2D(l + gm)
d72

&

+ 7.7 =0 (20)

where D, By, and 7, are defined in the section "Nonlinear Control
Theory." Further, if d&VdT = El’ these approximating curves are defined
in the El§ phase plane by

A A

(o - F1) 2= M7 - Fp)

(21)

where M 1s a constant depending on initial conditions and

A= -D(L+ By) t \PP( + Bp)? - 7

Equation (21) comes from integration of the firrt-order differential
equation

ag;  -2D(L + Bp)Ey - 7Y
& 0l
= -2D(L + By) - 7p I (22)
§l

Since the particular B ,7, combination employed in each point of
the phase plane depends upon ?, El’ e, and e', four approximating

curves go through each point (see appendix D). The tangents to these
curves (eq. (22)) indicate four directions which lie in an angular sector
(see #aliels 19). This angular sector is defined by the two extreme direc-

tions which apply if e and e' have the same sign. The two inner

direction values apply if e and e' have opposite signs. By super-

posing the input x'x phase plane on this Ei? plane it can be stated



NACA TN 3826 29

that at any point the tangent to the input phase curve must be included
within the shaded angular sector (discussed sbove) if small error is to
be obtained. Thus, equation (22) can be used to study performance. The
width of the angular sector changes with the ratio i/gl for given B
and 7y, parameter values. It is largest (180°) for E;—0 and smallest
for: J'=.0" 1P (l + Bm) and 7y, have the same sign. However, the width
for El-—90 is not significant since all phase curves (including the
input) have infinite slope there. Thus, along the line Ei = 0 the

curvature of the input phase curve must be used to determine limits on
good performance. The radius of curvature of the input must be smaller
than that of the flattest approximating curve.

In order to illustrate the use of these phase-plane methods in
predicting limits of good performance consider the example of a sinus-
oidal input x = sin Qr. In this case the input is represented by an
ellipse in the phase plane and

1
dx)=_Q2x_
dx Xk

In the superposed xx' and ?El phase planes of figure 20 are shown

three sinusoidal-input phase curves (i.e., three different frequencies)
and the families of phase trajectories of equation (22) for the Bms>7n

combinations where e and e' have the same sign. (In order to avoid

extensive computations, the parameter values indicated in figure 20 are
those of an earlier investigation (see ref. 1).) Thus, the tangents to
two intersecting phase curves define the angular sector at that point,
as has been discussed. By tracing the inputs with different values

of §© it can be understood that good performance for the presented
system can be obtained only for @ < Q, where Qg is the parameter

belcnging to that ellipse which has the same radius of curvature as the
curve through (?,gl) = (1.0). (Note that the radius of curvature of the

approximating curves jumps at El = 0 and is smaller for gl <0.) Imn
the first quadrant (i.e., approaching El =0 from El > 0) this radius
of curvature is given by

pmax = Iel- =Ty
Since at this point the ellipse radius of curvature is Qg/l,

2 —
Q <y
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Therefore, for the first quadrant

o< [rs (23)

Here it should be noted that this is the same result as that obtained
in the section entitled "Performance Evaluation of Sinusoidal Inputs"
even though the parameter values are different. For the system of fig-

ure 20 75 = 0.5; thus Q < 90.5.

Another exsmple is given by the input x = 1 - e™%T with
d(x')/dx = -a. Since the smallest angular sector is at ¥ = O,
a = 2D(l + Bmax) determines the limits on performance. This means that

for the system represented in figure 20 good control can be expected for
a value of a slightly smaller than 0.75.

A step input is represented by x =1 - e™%T with a—>w. The
picture in the phase plane is x = 1 - (l/a)x' with a—®». For very
large values of o this is a straight line which forms a small angle
with x' = 0. For o—>» the curve degenerates to a point (x = 1Ly
x' = 0). There is no doubt that a perfect followup of a step is not
possible because for practical reasons the line for large values of a
does not lie in the allowed angular sector at any point it is passing
through.

Related to the step input is the square-wave input. A portion of
the output phase trajectory for a square-wave input to the system of
figure 8(e) is shown in figure 21. Figure 21 is computed with the help
of the differential equation

ay _ _ !
dtq 2D(l+13m)§l+ (l+7n)y—x

This equation is obtained from equation (8) by replacing day/d'r2 by
gl(dgl/dy). In this example one cannot immediately use approximating

curves for designing the output because the error is too big at the start
of the motion. The computed diagram is in good agreement with the test
run shown in figure 8(e).

Effects of Switching Imperfections

In equation (8) it is assumed that the parameters B, and 7,

change upon exact zero coincidence of any one or more of the variables
¥, ¥', e, and e' as defined in equation (13) or by the logic of




NACA TN 3826 DI

table 2. Physical imperfections, however, preclude this possibility.
Thus, in the simulated model of equation (8), exact zero coincidence
cannot be detected because of threshold effects, and relays are subject
to time lag (both mechanical and electrical), dead zone, and chatter.

In the present section an attempt is made to evaluate the effects
that these switching imperfections had on the experimental result in
order to obtain some practical design criteria for specifying switching
requirements for good performance in other applications of this method
of nonlinear control.

The experimental results of figures 6, 9, and 11 can be used to
demonstrate that relay imperfections were not important in the simulated
model. Comparison of the sinusoidal responses in these figures has shown
that the period of the error became smaller as the magnitude of the input
amplitude was increased. (This was discussed in the section "Performance
Evaluation of Sinusoidal Inputs.") From figure 11(a) in the region of
y =~ 20 volts (the largest magnitude considered in all the experimental
studies) the period of the error T. 1is measured as

T, = wvte ~ 0.2

e

There are four parameter switchings per error cycle (see fig. 18).
Assuming these to be approximately uniformly spaced, the minimum time
between parameter switchings is approximately Te/h. Now assuming that

the relays must be capable of closure in at least 1/5 of this time, the
maximum allowable (real time) switching delay tpg is

Wytng ~ Te/20 = 1072 (25)
In the simulated model w, = 1 radian per second. Therefore,
tpga = 10 millisec

As given in table 4, the relays employed were capable of closure in
3 milliseconds or less so that they were entirely adequate for the experi-
mental studies.

The ability to disregard the relays in the evaluation of the effects
of switching imperfection on performance leaves only threshold effect in
Sensing the sign of the variables y, y'; e, and e' to be considered.
As has been observed and discussed in the section "Performance Evaluation
of Sinusoidal Inputs' the amplitude of the error for the nonlinear system
was relatively independent of the magnitude of the input (i.e., when the
system 1s operating in the rapid e to e' switching sequence so that
this is the minimum-error case). This constancy of the lower limit on
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the error magnitude is caused by switching imperfections and thus thresh-
0ld in sensing the signs of variables. Since under a normal switching
sequence there are many more e and e' switchings than y or y'
switchings and since the error is of an order of magnitude less than the
error derivative, the primary cause of the lower limit on error is local-
ized as threshold in sensing the sign of the error. Figure 13 shows the
results of an investigation of this threshold effect. 1In all system-
response figures except figure 13 the peak-to-peak threshold was approxi-
mately 14 millivolts. In figure 13(a) the peak-to-peak threshold was

44 millivolts so that figures 7(a) and 13 give a good comparison of the
effects of these two threshold values.

Choice of Parameter Values

The performance of a completely specified nonlinear system has been
discussed. The parameter values for this system, that is,

D = 0.6

Bz = =Bg = 2
82 = _Bl = 0.5
73 ==Y = 2

72 = -71 = 0'5

were initially chosen in the following manner: D was first selected
to give good linear system performance; then the smellest values of the
B and 7, parameters giving good nonlinear system performance were

chosen experimentally from a systematic variation of parameters utilizing
the simulated system. This particular set of B and 7n Parameter

values can thus be denoted as (Bm,yn)min since they establish the lower

bound on parameter values for good nonlinear system performance. The
physical significance of (Bm,yn)min is that loop gains and acceleration

requirements of the linear member are minimized since @, and 7y, are
feedback gain constants.

From the discussion in the section "Performance Evaluation of
Sinusoidal Inputs" centering about equation (19) or from the phase-plane
methods of the preceding section it is to be expected that a general
increase in the parameter values over (Bm,yn)min will result in improved

nonlinear system performance by increasing the available acceleration of
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the system or increasing the angular sectors in the phase plane. Inspec-
tion of figures 16(a), system 1, and 16(c), system 5, shows this to be
true. In figure 16(a) the parameter values were (Bm,yn)min as given

above, and in figure 16(c), system 5, they were

Bz = =By = 10
Bg = ‘Bl =

= ...70 = 10
Yo =7y =1

On comparing the performance of these two systems it is noted that the
corners of the input triangular wave are reproduced with less error by
the system of figure 16(c). Thus far then it would seem that there is

no upper bound on the parameter values; that is
(Qm’7n)max—9w

Invariably, however, there will be upper bounds on the values of the
parameters because of acceleration limits in the physical system. Fig-
ure 14 shows the effects of placing progressively smaller acceleration
limits on the system. Here it is seen that for Iy"IL > O.5|y"|max per-
formance is not appreciably affected but for values less than this good
performance is no longer obtained so that acceleration limits definitely
tend to determine (ﬁm’7n>max7 In general, then, there will be a whole

range of values of B, and 7n5> that is,

(%m7ﬂmmc>(&m7d >(ﬁm7@mh1

for which good nonlinear system performance results. The final choice
must depend upon the particular application and can easily be found
experimentally.

There are certain special cases of the B, and 7n Perameter values

that lead to simplified feedback switching circuits and thus lead to non-
linear systems that are simpler to realize. In table 3 three of these
are denoted as (1) no derivative feedback, (2) no e' sensing, and

(5) no e sensing in derivative feedback loop and no e' sensing in

proportional feedback loop.

By maeking inoperative the appropriate relays in figure 5 the sim-
plified switching circuits for these cases are easily obtained. It is
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desirable then to inspect the performence of these special cases (in
comparison with that of the complete system) to ascertain whether or not

as good performance can be obtained with less complexity. Figure 16

shows the response of these cases in comparison with that of the complete
system. Figures 16(a) and 16(b) differ from figures 16(c) and 16(d) in
that t?e)general magnitude of the parameters was increased in figures 16(c)
and 16(d).

These results show that case (2) is not worthy of much consideration
since the magnitude of the oscillating error is large. Cases (1) and (3),
however, should be considered for certain applications. For example, if
it were known that the amplitude distribution of the input was relatively
void near zero, then case (1) would serve as well as the case of the
complete system. Case (3) shows nearly constant percentage error so that
it could be useful 1n cases where accuracy was not so important as economy
in components.

To this point the parameter D has received little attention mainly
because its value (within limits) is not particularly important. It has
been observed experimentally that D may be anywhere in the range
0SDES1 even for (Bm’7n)min and performance of the nonlinear system

is not affected. Inspection of the block diagram of the nonlinear system
(fig. 4% or 5) shows that the physical significance of the variation
of D for given values of Bp,7, 1s that the damping factor of the linear

member and the derivative feedback around the linear member change syn-
chronously. A case of more practical importance such as might arise in
aerodynamic applications of this type of control system is the variation
of D for given values of DBp,y,. That is, the damping factor of the

linear member alone varies while the feedback values around this member
remain unaffected. Even in this case it has been found that the nonlinear
system performs well. For example, figure 17 shows the response of the
nonlinear system

D=L
BB = =Bar =12
Bg = —Bl =
73 = =7p = 12
72 = S = 0.5

to triangular-wave inputs, while figure 7 shows the response of the system
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D = 0.6

Bz = =g = 2
Bp = =By = 0.5
73=‘71=2

75 = -70 = 0.5

to the same inputs. Comparing these results it is seen that performance
is nearly the same for both systems.

PRELIMINARY EXTENSION TO HIGHER ORDER SYSTEMS

From a practical standpoint limitations in the applicebility of the
nonlinear control system described by equation (8) do not stem from the
inability to realize the feedback switching circuit but rather from
assuming the linear member to be of second order. In many cases a more
realistic approach is to consider the linear member to be of higher order
but still predominantly second order. Figure 22 shows the block diagram
of a third-order system of this nature. The linear feedforward member
could be, for example, the servo of figure 1 including the effects of.
armature inductance. The same second-order feedback switching circuit
was still employed. However, it could not be expected that the Bpy,n
parameter values remain the same. Figure 23 compares the response of a
third-order linear and nonlinear system. Here it is seen that the non-
linear system still responded with much less error than the linear system.

On the basis of the comparative performance of these two systems it
seems important to further studies toward control of general higher order
systems using techniques similar to those developed in this investigation.

CONCLUDING REMARKS

From control equation (8) a second~order nonlinear control system
that tends to maintain small instantaneous error for relatively arbitrary
inputs has been synthesized using digital-computer techniques. The only
type of nonlinear operations required in the realization are switching-
type operations (zero-coincidence detection and parameter switching).

The switching requirements are severe from the aspect of detector sensi-
tivity and switching time delay but not impractical since all the switching
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is done in feedback paths at low power levels and may thus be performed
electronically.

The system demands sensing of error and error rate of change. Since
general noise in a system of this type has to be expected, both error
and error rate are smoothed. In an extension of this work imperfections
such as a definite noise level, a given threshold or time delay in the
relays, and an overall dead time are being investigated more intensively.
It is expected that they do not seriously impair the working of the system.

It 1s a difficult task to compare the performance of a nonlinear
system with that of a linear system because no general criterion for com-
parison is available. Since for nonlinear systems the law of superposition
does not hold, it is not adequate to choose the response to a certain
input (e.g., the step input) as a criterion for performance comparisons.

A number of different inputs therefore have been chosen for exhibiting
the qualities of the nonlinear system.

Experimental results indicate that this type of nonlinear control
system performs better than a linear control system having a normalized
frequency 15 times greater. Performance is evaluated in terms of the
average value of the magnitude of the instantaneous error for band-limited
inputs. Further, the nonlinear system performance is virtually independent
of variations in the damping factor of the system.

Stanford University,
Stanford, Calif., November 23, 1955.
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APPENDIX A

COMPARISON OF EQUATION (8) AND NONLINEAR CONTROL EQUATION

OF REFERENCES 1 AND 3 TO 5

Comparison of Notations

In original notation the nonlinear control equation was given as

(refs. 1 and 3 to 5)

a4y ay
+ o 0 N
where
vo(t) output
vy (t) input
Ab Ab |
b =DbH1l+ —% sgn (y'E) + —=2 sgn (ylE'
b+ ( O ) b+ ( (0] )J
Ac Ac N
e =ctllt ZIL sgn (yoE) + ;;g sgn (yoEt)
E = (yo - yi)
()" =a( )/at

Abl,Abe,Aﬂl,Acz Cons'tants, Abl > Abe, ACl > ACQ
at,bt,ct constants

In terms of the notation of equation (8) the above equation 1s written

at %%% + b+(l + ﬂm) %% + c+(l + 7n)y = x(t) (A2)
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where

By, = =18 sen (y'e) - B sgn (y'e'); m =0. 1, 2,3
7n = -17 sen (ve) - 57 sen (ye'); n =0, 1, 2, 3
e=(x-y)

lB,2B)17}27 consta.nts, lﬁ > 2[3) 17 > 27
a+,b+,c+ constants

The subscript convention is

Bz = 4P + of 73 = 17 * o7
Bp = 1B - P 7o =17 - o7
B, = =By 7L = 7,
Bo = B3 Yo = =73

Y =Y,
Ab Ab Ac Ac
1L — 2 = il 2
pi= DR = ’ = s U =
it b vt 1 o 2 ot
e = =E

and at, bt, and c* are the same.

In either notation a set of seven (constant) parameters is needed
to characterize the system. For example, in equation (A2) the set

(&t bt et 185 By 17 27) is sufficient.
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Normalization of Nonlinear Control Equation

When considering control systems it is possible to reduce the num-
ber of parameters necessary to specify the nonlinear system. To do this
a form of normalization familiar to linear theory is utilized. First,
it should be realized that if error is to be defined as e = (x - v)

then C§ = 1. Thus, assuming Ct = 1 equation (A2) msy be written

2
1H+2Dl+{3m) + (1 + =
— = )y = x(t) (A3)
wv2 dt2 wv( dt (
where
a._ 1
d)v _;I
2Dt
y

Introducing normalized time T = w,t, equation (A3) becomes

%?% + 2D(1 + gm) %% + 1+ 7n)y = x(71) (AL)

Thus, knowing the natural frequency of the undamped linear system Wy

the number of parameters necessary to specify performance in the nonlinear

case is five, that is,
(D’ lB} eB’ 17) 27)
or alternatively

(D) B}: 32: 75; 72)
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APPENDIX /B
SIMULATION OF SECOND-ORDER NONLINEAR CONTROL SYSTEM

Equipment
Experimental studies were carried out with the following equipment:

(1) General equipment:
(a) Analog computer, Beckman Ease
(v) Low-frequency function generator, hp 202 A (input device)
(c) Pen recorder, Sanborn Twin-Viso (output device)
(d) Vacuum-tube voltmeter, RCA WV-OTA
(e) Oscilloscope, Dumont 304-A

(2) Special equipment:
(a) Binary-logic switching circuit employed in conjunction
with (a), described in detail in section "Binary-Logic
Relsy Switching Circuit."

Computer Setup

The computer diagram for the differential equation

2
d
dT:)?’ + 2D(1 + By) g_?rr + (1 + 7p)y = x(7) L)

is given in figure 24. The correspondence between this simulated system
and the block diagram of figure 4 or 5 is straightforward (see ref. 6).

Operational amplifiers [::>> through [::>> are used in simulating the

linear member of the physical nonlinear system. Resistor R1 provides

adjustment of the linear damping factor D. The input to this simulated
linear member is x - (2DBmy' + 7ny) where x 1is obtained from the input
device, while the values of feedback 2DByy' and yny are obtained with
resistors Ry through Ry (see table 5) connected to y' and y through

a binary-logic relay switching circuit derived in the following section.

Amplifiers l> through are sign changers. The four variables

y, y', e, and e' whose signs are to be sensed are made available as

shown in the lower right of figure 2k.
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Binary-Logic Relay Switching Circuit

To complete the simulation of equation (8) it is necessary to imple-
ment the binary logic of table 2. Figure 5 shows a relay switching cir-
cuit (designed on an "and/or" basis) that realizes the necessary logic.

In order to preclude the possibility of time delay in switching,
"fast" relays have been employed. The average properties of the 14
double-pole single-throw relays comprising the switching circuit are
given in table L.

The necessary synchronism in relays connected by dashed lines
(fig. 5) is obtained by series connection of field coils. Into the four
channels of field coils thus formed is read the four-digit binary logic
of table 2 where now
No coil current

0] Function > O

1l
I

1 = Function < 0 = Coil current

This process of reading in the binary logic may be done by monitoring

the variable (y, v', e, e') with four separate zero-coincidence detectors
or amplitude selectors (denoted CD in fig. 5 and described in detail
in the following section). The output of these coincidence detectors
then drives the respective channels of relay coils.

Sensitive Transistorized Zero-Coincidence Detector

One of the four identical amplitude selectors designed for use with
the switching circuit of figure 5 is shown in figure 25. This circuit
basically consists of a grounded emitter PNP transistor stage T driving a

pentode pulse amplifier T2. (It should be possible to utilize a tran-

sistor in place of the pentode if desired.) Four relay coils connected
in series form the plate load of To. Positive feedback R5 has been

incorporated for regenerative switching.

The operation of this circuit is as follows: When the input volt-
age V Dbecomes more negative than -50 millivolts, current starts to flow
in the base-emitter region of Ty. This initiates collector-emitter cur-
rent which effectively grounds the collector and thus the grid of Io.
Plate current flows in Tp so that the relays which form this plate load
are switched to the up position (fig. 5). Positive feedback R5 has been

incorporated to make the switching regenerative. Stages T; and Tp will
continue to conduct until V goes positive by 50 millivolts, at which
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time current is cut off in Ty and thus T,; the relays return to the nor-
mally closed positions (down in fig. 5).

Refinements that have been included in this circuit are:

(1) Adjustable positive feedback R5' This feedback gives control

over the zero-sensing threshold of the detector. The greater the posi-
tive feedback the greater the threshold. This adjustment is desirable
for studying the effects of threshold in sensing discussed in the section
"Effects of Switching Imperfections." The measured peak-to-peak thresh-
0ld values obtainable with this arrangement were a maximum of 400 milli-
volts and a minimum of 60 millivolts. (In the computer setup it was
necessary to amplify error e that formed the input to one of these
detectors five times in order to bring the switching threshold down to

15 millivolts, peak to peak.)

(2) Adjustable bias for emitter of Tl' This is necessary to com-

pensate for the slight positive bias (approximately equal to 100 milli-
volts) given to the base of 'I‘l by the positive feedback R5'

(3) A clamping or clipping diode T5 to protect the transistor Tl

from excessive base-emitter inverse voltages. Thus it can be seen that
the input impedance of this colncidence detector is 15 kilohms since the
base of T; is effectively always grounded.
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APPENDIX C

BEHAVIOR OF OUTPUT IF INPUT AND INPUT DERIVATIVE

ARE, SIMULTANEOUSLY SMALL

Assume that the input is a curve which may be approximated by

x = ar?

for values T <®. Since x' = 2aT, both input and input derivative

vanish with 7T—>0. The input phase curve is

* ha(x )

The output depends on the initial conditions:

I

0 and y'(0) =0

L D
Q‘[_r._-i-._(l_-_:ﬁ—mo—rs.*.. ']

(1) For y(0)

Y13 30
(2) For y(0) =0 and y'(0) = €
y=€l[T—D(l+Bm)72+. : ]
(3) For y(0) = e, and y'(0) =0
1+
y = € Ik < <_—E;229‘T2 ¥ o o

In all cases reproduction of the input is not perfect very close to

T = 0; however, in cases (2) and (3) switch points may occur for rather
small values of T. In case (l) no switch point close to T =0 can

be expected. This case will rarely occur; in most cases neither y(O)
nor y'(0) will be zero. Then the output is a superposition of cases (2)
and (3). In this event the error e =x -y is given by

1L+ 7
g = ~kg % €T +|a + elD(l + gm) - €2<—7?—i9 55 G o Té}'
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It 1s evident that for small values of € and €s the error grows

with «. This can easily be seen in the results of figure 11. The input
was X = A(l - sin QT); that means, near x = O, the input may be approxi-

mated by a parabola with a = 1/2(92)A or the errors near x =0 grow
with 0°.
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APPENDIX D
APPROXIMATING CURVES

The approximating curves which can be used to trace the output for
a given input form a network in the phase plane. It has proved practical
to present the network for e and e' of equal sign in one sheet
(e.g., see fig. 20) and the network for e and e' with opposite sign
on another sheet. Superposition of both sheets allows establishing of
the four approximating curves through each point of the phase plane.

The approximating phase curves are determined by equation (21).
Since the values A1 and Ao change from quadrant to quadrant the curves

are composed of portions of different analytical curves which are patched
at y'=0 and y = 0.

The roots A; and Ao depend on D, Bps, @nd 7,5 they may be

complex or real. If the roots are complex, the approximating curves are
curves of the spiral type which wind around the origin of the phase plane.
In the case of real roots the curves have a quite different character.
This can easily be understood by transforming the equation of the approxi-
mating curves (see refs. 1 and 3 to 5 and ch. V of ref. 7). For real
roots the new coordinates p and v are introduced:

?Al = El = K
?xg = El =¥
Then equation (21) yields
Do

If A, eand %2 are real and of opposite sign, the curves in the

Hv plane have hyperbolic character with (u,v) = (0,0) as saddle point
(see fig. 26(a)). 1If Ay &and A, are of equal sign, the curves have
a nodal point (see figs. 26(b) and 26(c)). In figures 27 and 28 phase
curves with saddle point and steble snd unstable node are shown in the
original ifi plane.

The approximating curves are composed of portions of these different
types (see fig. 29). ; .
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There is no need of avoiding B,7, combinations which lead to

node-type approximating curves because only portions of these curves

are used. In the earlier publications it appeared as if (in either one
of the networks of approximating curves ) one set of curves had to be
formed by curves of spiral character (complex roots A). However, this
has proved to be an unnecessary restriction. There might be some trouble
with node-type curves if large delays in switching should occur (ece;
delays in y' = O switching in fig. 29).
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TABLE 1.- CODING SCHEME FOR SWITCHING LOGIC FORM EQUATION (1k4)

[0, function > 0; 1, function < 0]

Binary coded decimal Decimal

v v e e' 0
0 0 0 0 0
0 0 0 i 1
0 0 . 0 2
0 0 1 1 b
0 il 0 0 L
0 1 0 il 5
0 1 i 0 6
0 1L 1k 1 i
i 0 0 0 8
i 0 0 1 9
1 0 1 0 10
1L, 0 It 1 il
1 1 0 0 12
ik ik 0] 1 15
1 1 1 0 1L
1 i i 1
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TABLE 2.~ MATRIX OF ALIOWED Bp,7, COMBINATIONS AS DETERMINED

BY ENCODED SWITCHING LOGIC OBTAINED FROM EQUATION (14)2

Bo B Bo Pz
5 0000 0100
0 1111 1011
% 0001 0101
1 1110 1010
7 0110 0010
2 1001 1101
7 0111 0011
5 1000 1100
%Examples: 6570 is chosen when 0100

occurs, i.e.,
(y>0, y'<0, e>0, e'>0)
or when 1011 occurs, i.e.,
(y<0,y'">0, e<0, e'<0)
Boyy 1is chosen when 010l occurs, i.e.,
(y >0, y'<0, e>0, e'"<0)
or when 1010 occurs, i.e.,
(y<0,y'>0, e<0, e'>0)

B173 is not possible.
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TABLE 3.- PARAMETERS FOR FIGURE 16
Figs. 16(a) and 16(b) Figs. 16(c) and 16(d)
Complete system
System 1 System 5:

BB=_BO=2 7§=-7O=2 BB:_Bole 73=_7O=lo
Ba = =By = @5 s = =y7 = 0.5 Bo = =B =1 Yol ===
(1) No derivative feedback

System 2: System 6:

85 = -BO =" Zone sl ons 2 85 = -BO =0 73 = =70 T 10
g = LSRG s s D B SIS SO e S
(2) No e' sensing

System 3: System 7:
35=—BO=2 75=-7O=2 B3=_BO=lO 75=_7O=]_O
el R o Be it St =D
(3) No e sensing in derivative feedback loop and
no e' sensing in proportional feedback loop
System 4: System 8:
B5="BO=2 75=—7O=2 B5=-BO=10 75=-7O=]_O
Bal==BaN=a=c o= =7 = 2 Bor==R =R 0NN ==y =10
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TABLE 4.- AVERAGE PROPERTIES OF RELAYS FOR SWITCHING

CIRCUIT OF FIGURE 5

Description: General Electric CR-2791
double-pole single-throw relay mounted
on 5-prong Amphenol base wilth permanent
aluminum dust cover

Connections:
2
3 L 3
5
- 5
N
1 AL
Electrical Properties Values
Coil resistance 2.5 kilohms
Coil current for
positive action 5 to 10 ma
Pull-in time 2 millisec
Drop-out time 3 millisec
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ELEMENTS AND PARAMETERS OF EQUATION (8)

NACA TN 3826

TABLE 5.- CORRESPONDENCE BETWEEN ADJUSTABLE COMPUTER

Element Corresponds to i
Ry (ep)~L 100
R, (2DBy)~* 100
" G 100
Ry, (2pp, )t 100
Ry (2D85) 100
| R¢ (70)-1 100
Ry (n) 100
Rg (72)~ L0
Rg (73)7 100
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iSumming points ——\ Motor, gear train, idly
k

Input ] . p(Jp + B) Output
- Gain -
KQ p
Galn Tachometer

Figure 1.- Block diagram of simple positional servo. J, inertia of motor
rotor, gears, and reflected load; B, viscous damping of motor and
reflected load referred to motor shaf't; kn, constant of proportionality

between output velocity and back electromotive force (it includes arma-
ture resistance and gear ratio from motor shaft to load).

Damping l Gain

Figure 2.- Illustration of stepwise nature of parameters B, and Yne
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Output

Figure 3.- Block diagram of equation (8) assuming that pBp and 7p are
constant (denoted by encircling dotted line).
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Input

55

+ 2Dp + 1

Output

|
|
I
=

2Dp

l_‘_"‘—__!
Switching |

|

| logic l

Figure 4.- Block diagram of equation (8) taking into account stepwise -
switching nature of B, and Tne
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Input p + 2Dp + 1 Output

B.
i:l 2Dp |—

)

,YO L— v - i % y |

‘: " ; r—:fj
] r.

iz J/ I ’dr :
| | 1 E‘

’Y3 i < I % \

|

l L | I

CD CD CD cD

Sensed ‘ l I l
variables ¥y Vi e e!

Figure 5.- Block diagram showing complete physical interpretation of
equation (8). CD, zero-coincidence detectors.
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E1as: 5
i

FiH

T H

1 (a) Nonlinear system; Q = w/w, = 0.1 to 0.4 in 0.1 steps.

(b) Linear system; Q = w/w, = 0.1 to 0.4 in 0.1 steps.

. Figure 6.- Linear and nonlinear system responses for 20-volt peak-to-
peak sinusoidal inputs with frequency Q varied. D = 0.6; 2.5 small
divisions on time scale = 1 normalized time unit; tick marks at

Y bottom of figures indicate where frequency was varied.
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(d) Linear system; Q

Figure 6.- Continued.
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(e) Nonlinear system; @ = w/wy = 1.0 to 2.0 in 0.2 steps.

S e
i HHHH 5 HH A HHH HHHH

(f) Linear system; @ = w/wy = 1.0 to 2.0 in 0.2 steps.

Figure 6.- Concluded.
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it i ﬁt:

T,

0.1 to 0.4 in 0.1 steps.
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(b) Linear system; Q = 2x/T = 0.1 to 0.4 in 0.1 steps.

Figure T.- Linear and nonlinear system responses to 20-volt peak-to-peak *

triangular-wave inputs with period T varied. D = 0.6; 2.5 small
divisions on time scale = 1 normalized time unit; tick marks at bottom
of figures indicate when periods were varied.
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5v
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al5e) (0]
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/1 = 0.5 to O,

21

c) Nonlinear system; Q

(
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(d) Linear system; @ = 2x/T = 0.5 to 0.8 in 0.1 steps.
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Figure 7.- Continued.
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s - -
e
i
H
il ] hu_?‘- 1
198 14 a1 -
-10v f
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% ;’Lj_z_ - :
fEE
(e) Nonlinear system; Q = 2x/T = 1.0 to 2.0 1in 0.2 steps.
»
i R
-

(f) Nonlinear system; Q = En/T = 1.0 to 2.0 in 0.2 steps.

Figure 7.- Concluded. .
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i
A
i

(a) Nonlinear system; a = 4 and 2. Tick mark at bottom of figure indicates

where a was varied.

!

J#

In |ap + T |out ! e
- S

(b) Linear system; a = 4 and 2. Tick mark at bottom of figure indicates

where o was varied.

Figure 8.- Linear and nonlinear system responses to 20-volt peak-to-peak
partially integrated square-wave input. D = 0.6; 2.5 small divisions

on time scale =

1 normalized time unit.
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328

indicates when o was varied.

(c) Nonlinear system; o = 1 and 0.5. Tick mark at bottom of figure

(d) Linear system; @ = 1 and 0.5. Tick mark at bottom of figure
when o was varied.

Figure 8.- Continued.

indicates
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OV

(e) Nonlinear and linear systems; a = 0. Tick mark at bottom of figure
indicates demarcation between nonlinear and linear systems.

Figure 8.- Concluded.




66 NACA TN 3826

¥y 1lv

R

(a) Nonlinear system; Q = w/wv = 0.1 to 0.4 in 0.1 steps.
T : T W": -
: %ﬂ i
T

i :tF

(b) Linear system; Q = w/wv = 0.1 to 0.4 in 0.1 steps.

Figure 9.- Linear and nonlinear system responses to L4-volt peak-to-peak
sinusoidal inputs with frequency @ varied. D = 0.6; 2.5 small
divisions on time scale = 1 normalized time unit; tick marks at
bottom of figures indicate where frequency was varied.
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0.4v i 2 i
(c) Nonlinear system; Q = in 0.1 steps.
- T HH
. (d) Linear system; Q = w/wv = 0.5 to 0.8 1in 0.1 steps.

Figure 9.- Continued.
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:

(e) Nonlinear system; Q = a)/mv = 1.0 to 2.0 in 0.2 steps.

(f) Linear system; Q = w/wv = 1.0 to 2.0 in 0.2 steps.

Figure 9.- Concluded.
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(b) Linear system; Q = wfay, = 0.1 to 0.4 in 0.1 steps.

Figure 10.- Linear and nonlinear system responses to 20-volt peak-to-
peak sinusoidal inputs with frequency © varied that are clipped
symmetrically at 6 volts. D = 0.6; 2.5 small divisions on time
scale = 1 normalized time unit; tick marks at bottom of figures indi-
cate where frequency was varied.
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1 steps.
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Figure 10.- Continued.
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(e) Nonlinear system; § = wﬁmv = 1.0 to 2.0 in 0.2 steps.
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(f) Linear system; Q = w/wv = 1.0 to 2.0 1in 0.2 steps.

Figure 10.- Concluded.
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(b) @ = wfw, = 0.5 to 0.8 1in 0.1 steps.

Figure 11.- Nonlinear system responses of 20-volt peak-to-peak sinusoidal
input with frequency § varied that has been displaced by -10 volts
(direct-current component) for obtaining osculation. D = 0.6; 2.5 small
divisions on time scale = 1 normalized time unit; tick marks at bottom
of figures indicate where frequency was varied.
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>

(a) Nonlinear system.

(b) Linear system.

Figure 12.- Linear and nonlinear system responses for triangular-wave
input whose period and amplitude are randomly modulated.
1 small division on time scale = 1 normalized time unit.

D = 0.6;
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(a) Nonlinear system response to triangular-wave input with period varied
as in figure 7(a).. PDE= 0.6; tick marks at bottom of figure indicate
when period was varied. Threshold in sensing sgn e was .44 millivolts.

Magnified 300 times
Peak-to-peak error

Thresholad
X and y )
1 2R
Qv
| d—
T = wvt

(b) Constant input x(t) was 9 volts.

Figure 13.- Effects of switching delays due to threshold in sensing sgn e.
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(a) Nonlinear system; no y" limit.
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(b) Nonlinear system; tl2-volt y" limit.

Figure 14.- Nonlinear system responses to 20-volt peak-to-peak sinusoidal
input with varying acceleration limits. D = 0.6; Q = wfw, = 0.5;

2.5 small divisions on time scale = 1 normalized time unit.
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Figure 1k4.- Continued.

(d) Nonlinear system; *7= -volt y"
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(e) Nonlinear system; t6-volt y" limit.
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(£) Nonlinear system; h%-—volt y"' limit.

Figure 1k4.- Concluded.
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Figure 15.- Linear
peak sinusoidal

Q = 2n/T = 0.5;
time unit.

(b) Linear system.

and nonlinear system responses to 20-volt peak-to-

input with-th%-—volt velocity limit. D = 0.6;

2.5 small divisions on time scale = 1 normalized
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(a) Complete system 1 and system with no derivative feedback 2.
System 1: 65 = -Bp = 25 B = =P = 0.5; 75 = =g 23 o= 0.5.
System 2: 33 = "BO = 0; 32 = "Bl = 0; 73 = '70 = 25 72 = "71 = 0.5.

(b) System with no e sensing 3 and system with no e sensing in deriva-
tive feedback loop and no e' sensing in proportional feedback loop 4.
System 3: 53 = -BO = 2; Bg = _Bl = 2; 73 =<Yoo = 25 Jehi A 2.

SyStem )"': B3 = "BO = 2; 82 = 'Bl = —2}. 73 = -70 = 2; 72 = _71 = 2.

Figure 16.- Responses of nonlinear system with four different parameter
sets to a 20-volt peak-to-peak triangular-wave input with fixed period
T =10r. D = 0.6; 2.5 small divisions on time scale = 1 normalized

time unit; tick marks at bottom of figures indicate demarcation between
systems.
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(c) Complete system 5 and system with no derivative feedback 6.
System 5: 85 = =By = 10; B, = -B; = 1; 73 = <70 = 10; 75 = -y = 1.

System 6: Bz = -By = 05 By = =By = 05 75 = -5 = 10; 7, = -7; = 1.

B

.
.
B

i

H o
i
Y

(d) System with no e' sensing 7 and system with no e sensing in deriva-
tive feedback loop and no e' sensing in proportional feedback loop 8.
System T: 55 = -BO = 1O B2 = -Bl = e 75 = Vg = N Yo = =79 = 10.

System 8: Bs = =By = 10; B, = -B; = -10; 75 = =7 = 10; 7, = -y = 10.

Figure 16.- Concluded.
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(b) Q@ =2q/T = 0.5 to 0.8 1n 0.1 steps.

Figure 17.- Nonlinear system responses to 20-volt peak-to-peak triangular-
wave input with period T varied. D = 015 Bz = =By = 12; Bo = =By = 3;
Yol = -70 = 25 7= =7 = 0.5; 2.5 small divisions on time scale = 1 nor-

malized time unit; tick marks at bottom of figures indicate where period
g was varied.
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Figure 18.- Sketch showing portions of superposed input and output of
nonlinear system magnified approximately 100 times.
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Figure 19.- Phase-plane angular sectors defined by equation (22) for the
given parameter values. lB =i 25 = 0.5; 1= 0.45; B = 0205

2D = 0.25; w, = 2.
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NACA TN 3826

1B = 1.5 17 = 0.45; B = 0.5;
- |7|max = e |B|min =

2; I B lmax

= 0.25; @, =
0.k,

angular sectors for sinusoidal inputs.

oY = 00532

Figure 20.- Superposed input and output phase planes showing available
|7|min
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Figure 21.- Portion of output phase diagram for square-wave input.
By = -By =25 By = -B; = 0.5; 73 = =7y =25 75 = -77 = 0.5; D = 0.6;
w, = 1.
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52 % Y
Tnput (Tp + 1)(p° + 2Dp +1) Output
Bo
B, |—o
| 2Dp
52 [0 |
|
3 |
F—="
Yo : |
|
1 ——o LU |
e |— i
=0 Switching loglc
of Table 2
Sensed | | | |
variables=y y' e e'

Figure 22.- Block diagram of third-order nonlinear control system.
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(b) Linear system.

Figure 23.- Linear and nonlinear third-order system responses to random

input. T = 0.1; D = 0.6; 2.5 small divisions on time scale = 1 nor-
malized time unit.
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Figure 24.- Computer diagram for simulation of equation (8). $
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Figure 25.- Transistorized zero-coincidence detector.
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Figure 26.- Curves in pv plane.
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T, = ay/at

(a) Stable node. (b) Unstable node.

Figure 28.- Phase curves with nodal point.
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Figure 29.- Composition of an approximating curve.
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