
.. 

, 

. 
( 

" 
\ 

COpy 
NATIONAL ADVISORY COMMITTEE 

FOR AERONAUTICS 

TECHNICAL NOTE 3826 

INVESTIGATION OF A NONLINEAR CONTROL SYSTEM 

By I. TI1igge -Lotz and C. F . Taylor 

Stanford University 

Washington 

April 1957 

https://ntrs.nasa.gov/search.jsp?R=19930084536 2020-06-17T18:40:54+00:00Z





NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 3826 

INVESTIGATION OF A NONLINEAR CONTROL SYSTEM 

By I. Flugge-Lotz and C. F. Taylor 

SUMMARY 

Nonlinear elements are sometimes added to linear control systems 
in order to improve the response of the system to an arbitrary input. 
This can be done in different ways) one of them being the variation of 
the coefficients of the differential equation describing the system 
before the nonlinear elements are added. This variation of the coeffi­
cients may be done in a continuous or in a discontinuous way. In the 
present paper a discontinuous variation of the coefficients is studied 
in detail and investigated for practical use. 

The nonlinear feedback is applied to a second-order system. From 
former analytical considerations the process of control is visualized 
as establishing an ensemble of linear second-order differential equations 
(some with stable and some with unstable homogeneous solutions) and 
switching from one equation to another so as to maintain small instanta­
neous error for relative~ arbitrary inputs. Physical~) this control 
process is realized with a linear second-order control system to which 
have been added possible discrete combinations of proportional and deriv­
ative feedback. The particular combination of feedback employed at any 
instant is determined by a feedback switching circuit which is in turn 
operated by sensed binary information obtained from the output) output 
derivative) error) and error derivative (name~) the signs of these vari­
ables). Techniques that are common to the digital computer field are 
used to implement this switching circuit. 

Once physical realization is completed) simulation techniques are 
used to study and evaluate the performance of the nonlinear control system 
and to compare it with a linear system for a wide variety of inputs. In 
addition) the effects of physical imperfections that are like~ to be 
encountered in any application of the control theory are considered (e. g .) 
switching delays and acceleration limits). 

An ana~sis of the experimental results shows that this type of non­
linear control system performs better than a linear control system having 
a natural frequency 15 times greater. For this comparison) performance 
is evaluated in terms of the average value of the magnitude of the instan­
taneous error for band- limited inputs. Further) in contrast with the 
linear system) the nonlinear system performance is virtual~ independent 
of variation in the damping factor of the system. 
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A preliminary extension of this type of nonlinear cont rol concept 
to higher order systems is presented. Experimental results are given 
for a third-order system. These results show that just as in the second­
order case the nonlinear system performance is better than that of a 
comparable linear system. 

INTRODUCTION 

With the demand for more exacting performance, more emphasis has 
been placed on nonlinear aspects of control systems. The term "contrOl 
systems" can be interpreted to include active networks and feedback 
amplifiers as well as servomechanisms. From the standpoint of analySis, 
unintentional nonlinearities have to be taken into account to explain 
performance. From the standpoint of synthesis, intentional nonlinearities 
have been introduced to improve performance. However, up to this date 
only in special caseS have advancements been obtained in the field of 
nonlinear control systems. 

The designs of nonlinear control systems have inherent advantages. 
One advantage is that the response of a nonlinear system at a certain 
time can be made less dependent upon past response than can a linear 

system of comparab le power-handling capability.l This means that the 
nonlinear system can be made to follow more arbitrary classes of inputs 
wi th less dynamic error than the comparable linear system. Another 
advantage is that the mathematical difficulties encountered may actually 
be conducive to consideration of more realistic criteria of performance. 
In the nonlinear realm it is essentially as easy to invoke a criterion 
such as the minimization of instantaneous error for nonstationary random 
inputs as it is to invoke the largest possible flat amplitude response 
for sinusoidal inputs. 

In the present paper a control system of second order, which was 
first suggested by Flugge -Lotz and Wunch on the basis of analytical 
studies (ref. 1), is investigated. The physical realization of this 
system and its performance are studied in great detail. 

This investigation was conducted at Stanford University under the 
sponsorship and with the financial assistance of the National Advisory 
Committee for Aeronautics. The authors wish to thank Dr. A. M. Peterson 
of the Electrical Engineering Department of Stanford UniverSity for his 
continued interest and his most helpful advice on the electronic problems 
which were encountered during this investigation. They also wish to 
thank Mr. G. S. Bahrs for his useful suggestions for a special transistor 
switching circuit. 

lIn linear theory, the impulse response or the autocorrelation func­
tion of the system gives an indication of how past response is weighted. 
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A 

a, b ,c 

a,b,c 
B 

D 

e 

SYMBOLS 

peak-to-peak amplitude of input 

parameters defining a system 

parameters in differential equation for control Servo 

viscous damping of motor and reflected load referred to motor 
shaft 

linear damping factor 

instantaneous error 

e~ de/dT 

H(p) transfer function, l/(~p + 1) 

J inertia of motor rotor, gears, and reflected load 

j = J -1 

M 

p 

gain constants 

constant of proportionality between output velocity and back 
electromotive force 

constant depending on initial conditions 

operator, d/dt 

T repetition rate or period 

t time 

"tmd maximum allowable switching delay 

V input voltage 

x input into system 

y output from system 

y approximation of output 

~ symbol used to denote different constants 

~ = -l~ sgn (Y'e) - 2~ sgn (y'e') 

3 
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smallest values of parameters giving good nonlinear system 
performance 

positive constants 

5 posit i ve constant 

€ small positive quantity 

~,v coordinates introduced in appendix D 

p radius of curvature 

cr 

T 

n 

m 

mv 

v ..... ·-...." 

( 

( ) , 

( )" 
0 

Subscripts: 

d 

e 

im 

L 

lin 

m,n = 0,1,2,3 

real part of complex frequency variable cr + jm 

nondimensional time variable normalized with respect to 
ffiv, mvt 

nondimensional frequency, m/mv 

frequency 

natural frequency of undamped linear system 

time average 

equal ity sign in equations which describe operations (see 
e q s. ( 2 ) and ( 3 ) ) 

ideal or desirable 

error 

image 

limit 

linear 
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max maximum or upper bound 

min minimum or lower bound 

nonlin nonlinear 

o optimum 

REVIEW OF LINEAR CONTROL THEDRY 

It is desirable to obtain from linear control theory some useful 
concepts that can be generalized to the nonlinear case. These concepts 
are: 

(1) Operational notation 
(a) Transfer functions 
(b) Block-diagram representations 

(2) Control criteria 

(3) Control through parameters 

At the onset second-order systems are considered. However, there is no 
difficulty in extending these concepts to higher order systems. 

Operational Notation, Transfer Functions, and Block Diagrams 

Consider a physical process or situation in which the output is 
described in terms of the input as 

where a, 
x = x(t) 

2 
a ~ + b ~ + cy = x( t) 

dt2 dt 

b, and c are constants, 
is the input. 

y = y( t) is the output, and 

Utilizing the operator p = d/dt, equation (1) may be written 

(ap2 + bp + c)y 2 x 

( 1) 

(2) 

(Eq. (2) reads "( ap2 + bp + c) operating on y equals operationally x. 11 ) 

Formal solution of equation (2) for the ratio of output over input yields 
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by definition the operational transfer function for the system. Thus 

y"o 
x 

1 
2 ap + bp + C 

The operational block diagram for the system is obtained by placing 
inside a box the transfer function, equation (3) . Coming into the box 
is the input; going out of the box is the output ( see sketch a). 

x 
1 y 

Input ap2 + bp + C Output 

Sketch a. 

Here transfer functions and block diagrams are utilized merely as 
shorthand operational notations for differential equations . This is 
opposed to the Laplace transformation viewpoint where transfer functions 
(and thus b l ock diagrams) have the properties of functions of the complex 
frequency variable, p = cr + jill . The reason for stressing this inter­
pretation is that shorthand (operational) notation has proven useful in 
the transition to nonlinear control whereas the Laplace transformation 
viewpoint ( e . g . , synthesis in the complex frequency plane in terms of 
poles and zer os) has not . 

Control Criteria 

To gage the performance of an actual system an ideal or desirable 
system is usually established as a straight through connection ( i . e . , 
Yd = x as denoted in sketch b, a block diagram of an ideal system ). 

InP~~ ______ l ______ ~~tPut 
Sketch b . 

Comparison between the desired output Yd and actual output y is 

accomplished by utilizing the instantaneous error: 

e = (Yd - y) = (x - y) 
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A control criterion or criterion of performance is defined as the mini­
mization of some property of the instantaneous error e for a given 
class of inputs. The minimizing process can be exact (i.e., resulting 
from a variational formulation of the problem) or approximate. 

Control Through Parameters 

In linear systems the process of control is usually physically 
obtained by applying feedback and/or compensation to the system that is 
to be controlled. A control criterion is realized (as closely as possi­
ble) by adjustment of these applied quantities. The concept of control , 
through parameters is an interpretation of this control process in terms 
of the differential equation describing the process. A simple example 
illustrates this concept. 

Consider the position control servo shown in figure 1. The uncon­
trolled (open-loop) system consists of an amplifier, armature-controlled 
motor, gear train, and load. Closed-loop operation is obtained by uti­
lizing proportional and derivative feedback. The gain constants Kl 
and ~ are adjustable. Armature inductance has been neglected. From 

the block diagram the differential equation for the open-loop system may 
be written: 

(4 ) 

Similarly, the closed-loop differential equation is 

In either case the differential equation is of the form 

2 
a d y + b dy + cy 

dt2 dt 
x(t) (6) 

where a set of three parameters a, b, and c completely characterizes 
the system. It is possible, then, to view the process of control in 
terms of these parameters . One starts with a parameter set (a,b)c) 
defining the uncontrolled system. A control criterion yields an optimum 
parameter set (a,b,c)o· Control (feedback and/or compensation) is intro­
duced ideally making it possible to adjust ( a)b)c ) to (a)b)c)o. In the 
above example the gain constants Kl and K2 afford this adjustment. 
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This adjustment of the coefficients may be done in a continuous or 
a discontinuous way . In reference 2 Schmid and Triplett have described 
an interesting and efficient way to vary the coefficients of a basically 
linear system continuously. 

NONLINEAR CONTROL 

Transition To Nonlinear Control 

In the preceding section it has been mentioned that the process of 
linear control of second- order systems may be visualized as the adjust­
ment of the parameter set ( a,b,c) to the set (a,b,c)o. The term optimum 
was used in the sense that some criterion of performance was approached 
as closely as possible. 

It seems logical in the transition to nonlinear control still to 
hypotheSize control through parameters . The transition is obtained by 
allowing the parameters to become functions of the output y(t) and the 
input x(t); that is, 

a~a(x,y) 

b~b(x,y) 

c~c(x,y) 

The mathematical description of the system is now 

a(x,y) ~ + b(x,y) ~d + c(x,y)y = x(t) 
dt2 t 

Without knowing the specific nature of the functions a(x,y), b(x,y), 
and c(x,y) it may be seen that equation (7) is a nonlinear, inhomoge ­
neous, and/or nonautonomous differential equation. Mathematically, 
little in general can be said about the solution of equation (7) given 
the function set a(x,y), b(x,y), and c(x,y). It seems, then, even 
more hopeless to attempt a synthesis problem which involves both finding 
the function set [a(x,y), b(x,y), c(x,y)] 0 for a specified control 

criterion and then physically realizing the system described 
mathematically . 

-, 
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Nonlinear Control Theory 

One ana~tical attack on the nonlinear contr ol- system- synthesis 
pr oblem has been made by Fl ugge -Lot z and Wunch (refs . 1 and 3 to 5)· 

9 

They suggested varying the coeffi cients a) b) and c) notcontinuous~) 
but discontinuous~ . That means that for tl < t < t2 there is one set 

of coefficients) for t2 < t < t3 there is another set of coefficients) 

and so on . The different sets of coefficients ar e chosen in advance) but 
the times ti for change from one set to another are determined by the 

value and the decrease or increase of the deviati on (x - y ). I n other 
words) the system is linear i n any interval ti < t < ti+l) but is non-
linear in the whole. The transition at any switching time ti occurs 

with continuous values of y (t ) and dy/ dt ) but discontinuous values 

of ( d2Y/ dt2). 

Phase -plane techniques were used for studying appropriate sets of 
coefficients and the appropriate dependence of the switching times on the 
deviations . 2 The authors succeeded in finding a switching rule which 
assures good performance in a multitude of cases . Thei r control system 
is mathematical~ described in the following way : 

where 

D 

T 

( 8) 

input 

output 

linear damping factor ( when 13m = In = 0) 

nondimensional time variable normalized with respect to illv ; 
that is) T = illvt 

2For details the reader is referred to references 1 and 3 to 5. 
Reference 1 contains the ideas but is so condensed that the inquisitive 
reader will find it useful to read r eferences 3 to 5) o·f which refer-
ence 5 is probab~ the most accessible . Figure 3) p . 12) and figure 30) 
p . 70) of reference 5 will help in getting acquainted with the phase ­
plane trajectory of an output . Some of the original studies are described 
again later in the present paper when the performance of the system is 
discussed . 
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natural frequency of undamped linear system} D = ~m 1n = 0 

~m = -l~ sgn (y'e) - 2~ sgn (y'e' ) 

f {+l sgn (f) = 1fT = - 1 
for 
for 

f > 0 
f < 0 

e instantaneous error} e (x - y) 

Actually} equation (8 ) is a normalized form of the control equation 
derived by Flugge-Lotz and Wunch. However, the notation has been some­
what changed . See appendix A for a comparison of notations and the 
normalization involved . 

The subscript convention is 

~3 l~ + 2~ 13 = 11 + 21 

~2 = l~ - 2~ 12 = 11 - 21 
(9 ) 

~l -l~ + 213 - 13 2 11 -11 + 21 = -12 

130 -113 - 213 - 133 10 = -11 - 21 = -13 

Properties of Equation (8) 

The following properties of equation (8) are noteworthy: 

(1) Equation (8) is a piecewise linear but overall nonlinear differ­
ential equation . 

(2) The parameters ~ and 1n are stepwise switching functions 

of time (their implicit variable). This property is illustrated in fig­
ure 2. 
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(3) The time of switching and the particular combination of the 
parameters ~ and Yn employed at any instant are explicit functions 
of the output y and the input x . Specifically, they are determined 
by quantized information derived from the output, output derivative, 
error, and error derivative, namely, the sign of the products sgn (y' e), 
s gn (y'e'), sgn (ye), and sgn (ye'). 

or 

(4 ) There are basically 16 m,n subscript combinations and thus 
~'Yn parameter combinations . However, a detailed study of property 
shows that only 8 are allowed . The allowed combinations may be 

m f n 

m + n = 3 

The reason for the "exclusion principle" on coefficient combinations 
stems from a desire to obtain mirr or ed- image outputs for mirrored- image 
inputs; that is, 

is desired when 

x. (T) = -X(T) 
un 

(5) The control criterion that was employed in obtaining the func ­
tional dependence of ~m and Yn was 

IYd -yl = Ix -yl = lei < E 

where E is a small positive quantity . This criterion of maintenance 
of small instantaneous error between desired output and actual output 
enabled reduction of equation (8) to the approximate autonomous differ ­
ential equation (see refs. 1 and 3 to 5) 

"'" 0 (10 ) 

Thus phase -plane techniques could be employed to find the functional 
dependence of ~m and Yn · 
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(6 ) Once the linear damp i ng factor D is fixed the process of con­
trol is obtained by switching parameters ~m and In . Equation (8 ) 

consists of an ens emble of eight ( see property (4) ) linear differential 
equations with cons tant coeffic i ents . The process of control may be 
visualized as the switching f r om one member of the ensemble to another . 
This switching is determined by quanti zed information derived from the 
input and output ( see property (3) ) . From another point of view ( con­
sis tent wi th the approxi mati on descr i bed in property (5)) ) the output y 
is to be for ced to satisfy t wo conditions simultaneously) that is) both 
sides of equation (10 ). This is appr oximately possible by switching to 
various f3m and In paramet er combinations and can be visualized as 
the proces s of switching to vari ous phase trajector ies of equation (10 ) 
in the phase plane of y ' against y . 

Dis cussion of Nonlinear Control 

I n the section entit l ed "Transition to Nonlinear Control" a l ogical 
trans ition to nonlinear contr ol systems utilizing the concept of control 
through parameters is suggested . However) mathematical difficulty hampers 
the development of thi s approach . I n the next two sections a particular 
nonlinear control theory is pres ented . This theory constitutes the first 
step in the synthesis of a nonlinear control system which obtains control 
through parameters . Since the functional dependence of the parameters 
has been established) the problem i s reduced to finding a set of five 
(constant) parameters ( D ) 1~)2~) 11)21 ) o . I t should be appreciated, how-

ever) that even the optimization of this five -parameter set cannot in 
general be accomplished analytically because of the overall nonlinear 
nature of the prob l em . 

Aside from questions on the analytical optimization of parameters 
in equation (8 ) , there are equally important practical questions such as: 

(1) Can a useful contro l system that is described by the nonlinear 
differential equation (eq . (8 ) ) be realized? 

(2) I f the system is r eali zab l e, what is its physical nature ? 

(3 ) If the system is realizable , how does it compare in performance 
and complexity with a "good " second- order linear contro l system? 

There are then mathematical difficulties on the one hand and physical 
difficulties on the other . The mathematical difficulties could be handled 
by numerical methods of integration of the differential equation ( e . g . ) 
ut ilizing a digital computer) . However, this would give little insight 
into the nature of a system that i s controlled through discontinuous 
variation of the parameter s ~ and In . I t has been found advantageous 



,- - - --

NACA TN 3826 13 

to investigate the physical questions first and then to utilize simulation 
techniques (analog computer) to investigate the ana~tical properties of 
this type of control. 

PHYSICAL REALIZATION 

Physical Model 

It is desirable to study the nature of a physical control system 
that is described by an ensemble of eight linear differential equations 
with control being accomplished by switching from one member of the 
ensemble to another. To do this equation (8) is rearranged as shown 
below: 

(11) 

or in operational notation 

(12) 

Forgetting for the time being that the parameters ~ and Yn are 
actual~ functions, one interpretation of this operational equation and 
thus of equation (8) is shown in figure 3. 

Figure 3 can be modified to take into account the fact that ~ 

and Yn are stepWise swit ching functions of time, their implicit variable 

(i.e., ~ and Yn can each take on four discrete values). This is 

shown symbolically in figure 4. The explicit functional dependence of 
the parameters ~ and Yn has not yet been given and is thus indicated 

as a switching logic of undefined character. 

Utilizing the block diagram of figure 4, the physical interpretation 
of the nonlinear control system described by equation (8) is quite 
straightforward. This system consists of: 

(1) A linear feedforward portion. This portion could be a linear 
control system in itself (e.g., the simple position control servo of 
figure 1 and equation (5)). 

(2) A feedback switching circuit comprised of: 
(a) Four discrete values of proportional feedback Yn 

(two positive and two negative as shown in fig. 2) 
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(b) Four discrete values of derivative feedback 2D0m 
(two positive and two negative as shown in fig. 2 ) 

(c) A switching logic whi ch at any instant determines the 
particular combination of derivative and proportional feedback 
2D0m,ln employed 

Switching Logic 

In this section i t is shown that digital-computer techniQues can 
be utilized to establish the switching logic for the feedback switching 
circuit mentioned in the previous section. 

Recall that the parameters 0m and 1n have been defined as func­

tions; that is, 

0m == - 10 s gn (y ' e) - 20 sgn (y ' e ') 

m == 0, 1, 2, 3 
(13 ) 

where the subscript convention has been given by eQuations (9). EQua­
tions (13) determine the switching logic. Thus, for example, 03 is 

chosen when (y ' e) < 0 and (y ' e') < 0 and 10 is chosen when 

(ye) > 0 and (ye ' ) > 0, so that the combination 0310 is chosen when 

(y'e) < 0, (y'e') < 0, (ye) > 0, and (ye') > O. At this point it 
appears necessary to form the products ye, ye ', y I e, and y I e I and 
then to find the sign of these products in order to establish the 
switching logic. Physical~, however, the process of multiplication is 
to be avoided if possible . That there is a possibility of avoiding 
multiplication m~ be gleaned by realizing that 

since 

..,gn (ab) == sgn ( a) sgn (b) 

ab 
l ab I 

.. 
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Thus equations (13 ) m8iY b e rewri t ten as 

~ == - sgn (y ' ) ~f3 s gn (e) + 2f3 s gn (e' ~ 

m == O) l} 2 } 3 

'Yn == -sgn (Y)G.'Y s gn (e) + 2'Y s gn (e')] 
(14) 

Agai n the subs cript convention is defined by equat i ons (9). 

Thus ) utilizing equations (13 ), for example} f33 is chos en when 

y' > O} e < O} e' < 0 

or when 

y' < O} e > O} e' > 0 

'YO i s .chosen when 

y > 0 , e > OJ e ' > 0 

or when 

y < 0) e < OJ e' < 0 

so that the combination (f33 J'Y0) is chosen when 

y > 0, y' < OJ e > 0) e' > 0 

or when 

y < 0, y' > 0, e < 0, e' < 0 

From this example it can be seen that it is not necessary to find the 
signs of products but rather that it is sufficient to find s eparately 
the signs of y) y') e, and e' . 

Since the sign of a variable is quantized binary information of the 
variable, it is convenient to utilize digital- computer techniques to 
further the switching logic. This may be done as follows: 

Let the convention be adopted that y > 0 be represented by 0 
(binary zero)J y < 0 be represented by 1 (binary one} J and similarly 

- -I 
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for 
, 

y , e, and e' . If the ordered sequence is now established as 

four-digit binary logic may be employed to encode equation (14). In 
particular, a binary coded decimal may be used (see table 1). 

It was mentioned in property (4) of the section "Properties of 
Equation (8)" that not all of the 16 possible l3m'/n parameter combina-
tions were allowed under their definition. This was termed an exclusion 
principle on the allowed coefficient combinations . One of the advantages 
of the suggested binary coding scheme of table 1 is that this exclusion 
principle is built into the code. To understand this, consider the 
example of the combination ~310 given previously. In the code language 

~310 is chosen when the binary number 0100 or 1011 occurs. What is 

implied by this example is that a binary number and its complement must 
be identical (i.e., 0000 = 1111, 0111 = 1000) as far as the switching 
logic is concerned. Thus out of the 16 possible four-digit binary numbers 
only the first 8 are unique. That is, in counting from 0 to 7 in a binary 
coded decimal, if complements are included then so are the other 8 possi­
bilities, 8 to 15 (see table 1). 

The allowed l3m,/n parameter combinations along with the encoded 

logic of table 1 are summarized in matrix form in table 2. Examples are 
given to illustrate the meaning of the table. In general the allowed 
subscript combinations are 

or 

m t- n 

m + n = 3 

Realization Completed 

Now that equation (14) has been successfully interpreted (encoded) 
in binary-logic form (table 2), the realization of a feedback switching 
circuit utilizing this encoded logic is a typical digital-computer 
switching-circuit problem. As is characteristic of any synthesis process 
there will, in general, be many ways to design this feedback switching 
circuit . The block diagram of figure 5 shows one design that completes 
the physical interpretation of equation (8 ) a long the lines started in 
fi gures 3 and 4. 

.----. - -- -------. ---__________ --1 
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In figure 5 the feedback switching circuit consists of: 

(1) The four discrete values of both derivative and proportional 
feedback 2D~m'/n 

(2) A rel~ switching circuit that connects the proper feedback 
combination 

17 

(3) Zero-coincidence detectors CD that drive the banks of relays 
to one position or the other depending upon the signs of the sensed 
variables 

It should be noted that, depending upon the application, other forms 
of sign-sensing devices and other switching devices such as diodes, tran­
Sistors, electronic switches, and/or magnetic amplifiers could be employed 
to obtain other realizations of e~uation (8). In any case the following 
properties are basic to any realization: 

(1) The signs of the four variables y, y', 
sensed . This may be thought of as the process of 
digit binary logic of table 1. 

e, and e' are 
"reading in" the four-

(2) On the basis of the ~ possible binary decisions the re~uired 
feedback combinations 2D~,Yn as defined in table 2 are connected around 
a linear second-order member. 

It is important to stress that the only type of nonlinear operations 
re~uired in the realization of this nonlinear control system are switching­
type operations. In addition, all the switching is to be performed in 
feedback paths, which means that the switching can be done at low elec­
tronic power levels . These practical features are definite design advan­
tages . Thus, in summary, it can be said that this type of nonlinear 
control system is not only physically realizable but also practical from 
an instrumentation standpoint . 

EXPERIMENTAL VERIFICATION OF NONLINEAR CONTROL THEORY 

Discussion of Simulation Techni~ues 

Simulation techni~ues were chosen as an experimental mode of inves­
tigation of performance of the nonlinear control system realized from 
e~uation (8). These techni~ues offer the following advantages: 
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(1 ) Proximity to the actual contro l sys t em. This means that the 
same pr act ical f eatures with regard to ins t r umentation (see the section 
entit led "Realization Completed") are exp l oi t ed t o fullest advantage. 
Thus , j ust as in the actual system, the only nonlinear device required 
fo r the simu l ated model is a binary logic feedb ack switching circuit 
(see appendix B for details). The linear portion of t he sy stem is simu­
lated on an ana log computer. Here the only operations required are sum­
mations , t wo integrations, and one different iation. These are all 
operations which an analog computer does well. It can be said t hen that 
the accuracy to which the simulated model simulates equation (8) depends 
primarily upon the realized feedback switching circuit . The most essen­
t ial t ype of imperfection to be expected in this switching circui t is 
t ime delay in switching. Exactly the same t ype of imperfection will be 
met i n the physical control system. Thus there will be more nearly a 
one-to-one correspondence between the simulated model and the actual 
sys t em than between either and equation (8). 

(2) Convenience in experimental inves t igation. In order t o charac­
terize the output y of the nonlinear system completely, a set of five 
parameters 

and the input x must be specified. In the performance evaluation of 
the system it is necessary to be able to vary these characterizing 
quantities conveniently. Simulation techniques allow this. 

Presentation of Experimental Results 

Figures 6 to 17 present experimental results obtained from the simu­
lation studies of equation (8). Briefly, t he results are presented as 
f ollows: 

Figures 6 to 12 compare the responses (output y and error e) of 
the nonlinear system with that of a linear sys t em for various classes of 
inputs x . (In comparing the linear and nonlinear responses it will be 
not ed t hat there is not exact synchronism of events because, with the 
available experimental facilities, it was necessary to obtain the two 
responses separat ely .) The linear system utilized is that which consti­
tutes t he feedforward member of the nonlinear system corresponding to 
the case where ~ = Yn = O. The nonlinear sys t em for figures 6 t o 15 is 

133 = - 13 0 2 

132 -131 0·5 

Y3 - Yo 2 

Y2 - Yl 0·5 
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Figure 6 compares the system responses to sinusoidal inputs and 
figure 7 shows the responses to triangular-wave inputs. A partially 
integrated square wave X(T) is defined as the output of a first-order 
linear system characterized by the transfer function H(p) = l/(~p + 1), 
when the input xl(T) is a square wave. The responses of linear and 
nonlinear systems to this type of input are given in figure 8. The 
responses of the systems to small sinusoidal inputs are given in fig-
ure 9 . Figure 10 gives the responses to clipped sinusoidal inputs. Fig­
ure 11 shows the response of the nonlinear system to sinusoidal inputs 
that have been displaced with a direct-current component. Figure 12 
shows the responses of linear and nonlinear systems to a triangular-wave 
input whose periods and amplitudes are randomly modulated. 

Figures 13 to 15 deal with the effects of imperfections that are 
likely to be encountered in the actual control system. Figure 13(a) gives 
the results and data of an experimental investigation on the effects of 
switching delays due to threshold in sensing the sign of the error) 
sgn (e) fOl a triangular-wave input. The experimental results for a 
constant 9-volt input (see fig. 13(b)) are given below: 

Threshold) mv . 
Peak-to-peak error) mv 

14 
44 

26 
124 

36 
220 

44 
290 

Figure 14 shows the effect s of placing progressively smaller limits on 
the acceleration of the nonlinear control system. For each value of y 
limit considered) the output) output derivat ive) output acceleration) 

" 

and instantaneous error are shown. The effects of a velocity limit on 
performance of the nonlinear and linear systems are compared in figure 15· 

Figure 16 presents the responses of some special cases of the non­
linear system (special with respect to the choice of the ~m and In 

parameter values). In this figure the system responses to a triangular­
wave input are given for four different parameter sets. The parameters 
pertinent to these results are listed in table 3 for easy reference. 

Figure 17 gives the response of the nonlinear system possessing a 
low linear damping factor D = 0.1. The responses are for a triangular­
wave input whose frequency was varied in the same manner as that of fig­
ures 7(a) and 7(c). 

Detailed discussions of these result s are given in the section 
entitled "Discussion of ReSUlts." 
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DISCUSSION OF RESULTS 

Performance Evaluation of Sinusoidal Inputs 

To complete the synthesis of the nonlinear control system that has 
been derived from equation (8), it is necessary to choose the magnitudes 
of the parameters that charact erize the system, that is, (D'1~'2~'1/'2/) 

or (D'~3'~2"3"2). It is expected that the performance of the system 
depends on the choice of thes e parameters. For studying their influence, 
simulation techniques proved to be very convenient . Experimental results 
were given in figures 6 to 12 where the response (output y and error e) 
of the nonlinear system was compared with the response of a linear system 
for a variety of inputs . This gives the possibility of establishing the 
properties of the nonlinear system not only by itself but also with respect 
to a linear standard. The linear system employed for this purpose was 
that which constitutes the feedforward member of the nonlinear system 
(i.e., ~ = In = 0) . 

These experiments allow parameter values for good performance of the 
nonlinear system to be found . Analytical and practical considerations 
that aid in the optimization are treated later in the section entitled 
"Choice of Parameter Values. " 

The sinusoidal responses of the nonlinear and linear systems are 
compared in figure 6. Here, the frequency range considered was 
0.1 ~ n = m/ruv ~ 2 . The peak- to -peak input amplitude was 20 volts. These 

results show that the nonlinear system reproduced the sinusoidal inputs 
up to the frequency n = 1 .4 with virtually no instantaneous error when 
compared with that of the linear system . For higher frequencies the error 
for the nonlinear system increased rapidly to the same order of magnitude 
as that of the linear system. 

Substantially the same comparative performance was displ~ed by the 
two systems when the input was a smaller (4-volt peak-to-peak) sinusoid 
as is shown in figure 9. 

Figure 11 gives the response of the nonlinear system to a 20-volt 
peak- to -peak osculating sinusoid over the frequency range 0.1 ~ n ~ 0.8. 
This is a severe type of input for the nonlinear system since both x 
and Xl simultaneously go to zero. This implies that y and y l are 
also small so that in equation (8) the discontinuous variations of the 
parameters ~'/n cannot be so effective in determining the acceleration 
y", since 
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From the figures it is seen that the nonlinear system did have some dif­
ficulties near the osculating regions; further) the peak error increased 
as the frequency was increased (see appendix C) . As might be expected 
from equation (15) this error for small values of y and yl can be 
reduced by increasing the magnitudes of the parameters (this will be 
discussed in more detail in the section entitled "Choice of Parameters"). 
At any rate) by comparison) the error for the present system is always 
less than that of the linear system of figure 6. (In the linear realm) 
error is independent of a shift in the direct-current level of the input.) 

Taken collectiveLY, t he 20-volt, the 4-volt, and the osculating 
20-volt sinusoidal inputs tend to form a more realistic appraisal of the 
nonlinear system performance than a single input amplitude. There is 
still much that can be learned from a detailed study of these three 
responses) but first it is desirable to obtain some sort of a quantitative 
comparison between the nonlinear and the linear system performance. One 
such comparison can be made as follows: 

(1) Assume that the input to both systems X(T) is, and has been 
for a long time) a 4-volt peak-to-peak sinusoid of frequency 

it = wjwv = 0.1 

so that as far as the linear system is concerned this is a steady-state 
alternating-current input. 

(2) Determine how much the band width or the natural frequency Wv 
of the linear system must be increased in order that the time average of 
the magnitude of the instantaneous error 

lei f21{ 

211{ 0 leldT 

for the linear system be reduced to that value given by the nonlinear 
system. 

Here it is easy to show that for the low-frequency steady-state 
alternating-current case 

For an input x = IxlmaxejitT the steady-state error is given by 

e ~ x - y = IXlmax(l _ 1 2\ejitT 

1 + jit2D - it j 

(16 ) 
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For small values of n this equation yields 

e "'" I x I max [1 - (1 - Jn2D + . . . )] e jfh 

"'" I xlmax(jn2D)ejnT 

or 

Ie I max "'" 2Dnlxlmax 

but 

vv'" 

= 1 ~ lei sin nT dnT = Riel lel lin 1! 0 max 1! max 

therefore 

For the given system and input 

For the nonlinear system and the same input (approximate calculation 
from fig. 9(a)) 

vvv 

lelnonlin"'" 0.01 

Thus, 

.,/VV 1 """" 
lelnonlin "'" 151ellin 

Now from equation (17), since n = m/mv, it is seen that in order to 
~ 

reduce lellin by this factor of 15 that my must be increased by the 

same factor. 

In the example of the linear control system of figure 1 and. equa­
tion (5) this increase in mv by a factor of 15 would mean that both 
t he inner and outer loop gains must be increased by the order of magni-

tude of (15)2 since 

- I 
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This is true assuming that the damping factor remains constant. Such 
an increase in the loop gains is frequently not at all physically possible. 

Up to this point little attention has been given to the detailed 
nature of the nonlinear system response. Closer inspection of) for 
example) figures 6(a) and 6(c) shows that the output y is a function 
that links serpentine fashion (oscillates) at a very high rate about the 
input x) but still the magnitude of the error is small. In fact) it 
is necessary to inspect the error at a scale 20 times larger than that 
of the output even to notice this phenomenon. Mathematically this means 
that the functions x and y approach one another closely but that 
their derivatives differ appreciably. Physically) however) this is not 
at all undesirable as long as the magnitude of the error is small. 
(Actually for mechanical systems this property would be useful in pre­
venting static friction.) This fine - grained oscillating character of y 
is the very essence of the nonlinear control theory. Every time the 
error or error derivative goes through zero the parameter set ~)ln of 
equation (8) changes discretely as defined in equations (13) or by the 
binary logic of table 2. The discrete changes in the parameters cause 
discontinuities in the second derivative y1f) which when integrated twice 
give y its serpentine character. To illustrate this point) the sketch 
of figure 18 shows samples of the superposed input and output of the 
nonlinear system. The input in this case could be that of figure 6(a) 
or 9(a). 

Circle (a) in figure 18 is a typical cycle of the oscillating char­
acter of the output y. Commencing at TO) the error changes sign at 
TO) the binary number 0011 is 1fread into1f the feedback switching circuit 

of figure 5) and using the notation of table 2 the parameter combination 
~313 is switched into the circuit. This causes an immediate reversal 

in the sign of the output acceleration y") so that at time T 1 the 

error derivative changes sign) the binary number 0010 is read in) and 
the parameter combination ~2l2 is switched into the circuit; acceler-

ation is still in the same direction but weaker. At time T2 the error 

again changes sign) the binary number 0000 occurs) and the combination 
~010 is switched into the circuit; acceleration is in the opposite 

direction. At time T3 the error derivative changes sign) the binary 

number 0001 occurs) and ~lll is switched in; this reduces the acceler­

ation until at time T4 the error again changes sign) 0011 occurs) ~313 

is again switched in; the cycle is complete. Although it was not 
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mentioned at the time) figure 2 shows this sequence of ~)'n combina­

tions. The nature of the acceleration result ing from the switching can 
be seen in figure 14(a). 

The comparable switching cycle for y > 0 and y' < 0 as shown 
in circle (b ) of figure 18 is : 

Logic 
0111 

0110 

0100 

0101 

0111 

Paramet ers 
130') 

13 1'2 

(3)'0 
13 2'1 

[30'3 

Similarly) for y < 0 and y' < 0 as shown in circle (c) of figure 18: 

Logic Parameters 
1100 [33'3 
1101 13 2'2 • 
llll [30'0 
1110 [31'1 
1100 [33'3 

This is the mirror-image switching cycle for circle (a) (s ee property (4) 
in the section "Properties of Equation (8)" and also the discussion in 
the section "Switching Logic"). 

Finally ) for y < 0 and y' > 0 as in circle (d) of figure 18: 

Logic Parameters 
1000 13 0'3 
1001 [31'2 
1011 133'0 
1010 13 2'1 
1000 [30'3 

This is the mirror-image switching cycle for circle (b). 

With this insight into the detailed behavior of the nonlinear system 
more information can be obtained from the experimental sinusoidal responses 
of figures 6) 9) and 11 that have up until now been t reated from a macro­
scopic rather than microscopic viewpoint. Along these lines) the following 
8xperimentally observed facts are noteworthy: 
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(1) In comparing the errors for the 4-volt and the 2O-volt .peak­
to-peak sinusoidal inputs in the frequency range of good reproduction 
0.1 ~ n ~ 0.8, it is seen that: 

(a) The magnitudes of the errors are nearly the same (see 
figs. 6(a) and 6(e) and 9(a) and 9(c). 

(b) The period of the error is generally smaller in the larger 
amplitude case. This is even more pronounced if the 4-volt peak-to-peak 
case is compared with figure 11 for y in the region of -20 volts. 

(2) Good reproduction is characterized by many e and e' switchings 
(see fig. 18) per cycle of the input. As input frequency is increased 
and the upper limit of small error is reached (figs. 6(e) and 9(e) the 
e and e' swi tchings become more infrequent until there are finally 
only two of each per cycle of the input. 

The fact that the period of the error is smaller for larger inputs 
can be gleaned from equation (8) when it is rearranged as 

or roughly 

(18) 

For a system with specified ~"n parameter values , the larger input 
and input derivatives will give stronger discontinuities in y" as the 
~m"n combinations change. This implies that ~"n will change more 
often making the period of the error smaller. See figure l4(a) for the 
justification of the approximations in equation (18) since y, y', y", 
and x are shown in this figure. (The input x was sketched in by hand.) 

In the frequency range of good reproduction the reason that the 
magnitude of the error is virtually independent of the input amplitude 
cannot be explained from equation (8) since this fact is intimately tied 
in with the imperfections in the feedback switching circuit (see section 
entitled "Effects of Switching Imperfections" for details). As measured 
from the experimental sinusoidal responses, lel max is of the order of 

15 to 20 millivolts. It might be noted that earlier in this section the 
smaller 4-volt peak-to-peak input sinusoid was employed in the compari­
son when it was determined that rnv should be increased by a factor 

of 15 in order to obtain the same ~ lin' This choice of the smaller 

input was decidedly in favor of the linear system since the linear error 
increases linear~ with i nput amplitude. Thus, if the 2O-volt peak-to­
peak input were used, an increase in rnv by a factor of 5 X 15 = 75 would 
be required to obtain the same r;I lin' 
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The fact that there is a correlation between good reproduction 
(small error) and the existence of many error and error-derivative 
switchings is very important since it is the key to understanding the 
upper limits of good performance of the nonlinear system. One approxi­
mate way to investigate this matter is to establish a deficiency between 
the output acceleration required for good reproduction (many switchings) 
and the available output acceleration. Equation (19) gives an approxi­
mation to the output acceleration when the system is functioning well: 

As an example of this approach consider the input x to be a sinusoid 
of frequency n (fig. 6 or 9). Since 

it is to be expected that the nonlinear system will have the greatest 
difficulty in the vicinity of Ixlmax where, from equation (19), 

Thus, if in this region the output y is going to interweave the 
input x (as is characteristic of good reproduction), then 

I yltl max > Ixltl max 

This inequality then places an upper limit on good performance of the 
system in response to sinusoids 

For the system used in obtaining the experimental results of figures 6 
and 9, I/nlmax = 2; therefore, 

n < 1{2 

Inspection of both figures 6 (e) and 9 (e) tends to substantiate the above 
result . For example, in figure 9(e) it is seen for n = 1.2 (after the 
transient caused by turning on the input has been absorbed) that as the 
input goes through its maximum, frequent e and e! switchings stop 
and do not occur again as the frequency is increased. 
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Performance Evaluation of Inputs Other than Sinusoidal 

In the preceding section only the sinusoidal response of the non­
linear control system was discussed in studying performance. However} 
it is easy to see that the nonlinear system will cope with any input in 
the same manner as it does with sinusoids. Thus} as long as the magni­
tude of input acceleration does not continuously exceed the available 
magnitude of the output acceleration the switching process will commence 
and excellent reproduction will result. This type includes inputs with 
discontinuous derivatives and discontinuous inputs. The experimental 
sinusoidal responses of figures 6} 9} and 11 themselves give some indi­
cation of these facts. For example} in figure 6(a) there was an initial 
discontinuity in the input and there were discontinuities in the input 
derivative when the frequency was changed. The results in figures 7} 8} 
10} and 12 prove further that the nonlinear system response is not 
dependent upon any specific type of input. Given in these figures are 
triangular-wave} partially integrated square-wave (including square-wave)} 

clipped sinusoidal} and random3 inputs} respectively. 

It should be noted that in the literature (refs. 1 and 3 to 5) a 
marginal-type input that would present a case of indecision to the 
switching circuit of the nonlinear system is discussed. This case has 
never been encountered experimentally even when the attempt was to pro­
duce this case. Thus the marginal-type input is not considered practi­
cally important. 

Use of Phase-Plane Methods to Study Performance 

The phase-plane methods that were used in the original analytical 
development of equation (8) (refs. 1 and 3 to 5) can also be gainfully 

3In the strict statistical sense the probability that the inputs 
shown in figures 12(a) and 12(b) are not samples of random stationary 
time series is admittedly high because of existing experimental facil­
ities. These inputs were obtained by random manual modulation (both fre­
quency and amplitude) of a triangular-wave input of peak-to-peak amplitude 
A and period T where 

o ~ A ~ 20 volts 

0.1 ~ n = 2~/T ~ 0.8 

Random manual modulation means that the operator varied by hand both the 
frequency and amplitude controls of the input generator as randomly as 
possible. In the present investigation the comparative results of the 
linear and nonlinear responses to what appear to be band-limited random 
inputs are felt to be more important than the exact statistical proper­
ties of the inputs. 

J 
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employed in studying the performance of the nonlinear control syptem 
derived from equation (8) once the 13m and In parameter values have 

been specified. (In this section it is important to distinguish between 
~ and In parameter values, i.e., ~3 = 2, ~2 = 1, etc., and ~m/n 

parameter combinations, i.e., 133 / 0' etc.) 

If in equation (8) the error e = (x - y) is assumed small, then 
the output y can be approximated by portions of curves that satisfy 
the autonomous differential equation 

(20) 

where D, 13m, and In are defined in the section "Nonlinear Control 
Theory ." Further, if ay /dT = f l' these approximating curves are defined 

in the flY phase plane by 

where M is a constant depending on initial conditions and 

Equation (21) comes from integration of the firr t-order differential 
equation 

d~l = -2D(1 + I3m)fl - InY 

aY ~l 

(21) 

(22) 

Since the particular I3mJ/n combination employed in each point of 

the phase p lane depends upon YJ ~l' e, and e', four approximating 

curves go through each point (see appendix D). The tangents to these 
curves (eq . (22)) indicate four directions which lie in an angular sector 
(see fig. 19) . This angular sector is defined by the two extreme direc­
tions which apply if e and e' have the same sign. The two inner 
direction values apply if e and e' have opposite signs. By super­
posing the input XIX phase plane on this flY plane it can be stated 
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that at any point the tangent to the input phase curve must be included 
within the shaded angular sector (discussed above) if small error is to 
be obtained. Thus, equation (22) can be used to study performance. The 
width of the angular sector changes with the ratio y/Il for given ~m 
and Yn parameter values. It is largest (1800 ) for ~1--70 and smallest 

for y = 0 if (1 + ~) and Yn have the same sign. However, the width 

for Il--70 is not significant since all phase curves (including the 

input) have infinite slope there. Thus, along the line fl = 0 the 

curvature of the input phase curve must be used to determine limits on 
good performance. The radius of curvature of the input must be smaller 
than that of the flattest approxLillating curve. 

In order to illustrate the use of these phase-plane methods in 
predicting limits of good performance consider the example of a sinus­
oidal input x = sin nT. In this case the input is represented by an 
ellippe in the phase plane and 

d(x') = _n2~ 
dx x' 

In the superposed xx' and Yfl phase planes of figure 20 are shown 

three sinusoidal-input phase curves (i.e., three different frequencies) 
and the families of phase trajectories of equation (22) for the ~'Yn 
combinations where e and e' have the same sign. (In order to avoid 
extensive computations, the parameter values indicated in figure 20 are 
those of an earlier investigation (see ref. 1).) Thus, the tangents to 
two intersecting phase curves define the angular sector at that point, 
as has been discussed. By tracing the inputs with different values 
of 0 it can be understood that good performance for the presented 
system can be obtained only for 0 < 00 where no is the parameter 
belonging to that ellipse which has the same radius of curvature as the 
curve through (y,fl ) = (1.0). (Note that the radius of curvature of the 

approximating curves jumps at Il = 0 
the first quadrant (i.e., approaching 

of curvature is given by 

and is smaller for ~l < 0.) In 
fl = 0 from Il > 0) this radius 

Pmax = I p/­
~1=+0 

Since at this point the ellipse radius of curvature is 02/1, 

2 -o < YnY 
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Therefore, for the first quadrant 

n < r; 
Here it should be noted that this is the same result as that obtained 
in the section entitled "Performance Evaluation of Sinusoidal Inputs" 
even though the parameter values are different. For the system of fig-
ure 20 13 = 0·5; thus n < Vo. 5 . 

Another example is given by the input x = 1 - e-UT with 
d (x I ) /dx = -u. Since the smallest angular sector is at y = 0, 
U = 2D(1 + ~max) determines the limits on performance . This means that 

for the system represented in figure 20 good control can be expected for 
a value of u slightly smaller than 0.75. 

A step input is represented by x = 1 - e - UT with U---7 00 • The 
picture in the phase plane is x = 1 - (l/u)x I with U---7 00 • For very 
large values of U this is a straight line which forms a small angle 
with Xl = o. For u~oo the curve degenerates to a point (x = 1, 
Xl = 0). There is no doubt that a perfect followup of a step is not 
possible because for practical reasons the line for large values of U 
does not lie in the allowed angular sector at any point it is passing 
through. 

Related to the step input is the square-wave input. A portion of 
the output phase trajectory for a square-wave input to the system of 
figure 8(e) is shown in figure 21. Figure 21 is computed with the help 
of the differential equation 

- x 

This equation is obtained from equation (8) by replacing d2Y/dT2 by 
~l(d~l/dy). In this example one cannot immediately use approximating 

curves for designing the output because the error is too big at the start 
of the motion. The computed diagram is in good agreement with the test 
run shown in figure 8(e). 

Effects of Switching Imperfections 

In equation (8) it is assumed that the parameters i3m and In 

change upon exact zero coincidence of any one or more of the variables 
y, yl, e, and e l as defined in equation (13) or by the logic of 
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table 2. Physical imperfections, however, preclude this possibility. 
Thus, in the simulated model of equation (8), exact zero coincidence 
cannot be detected because of threshold effects, and relays are subject 
to time lag (both mechanical and electrical), dead zone, and chatter. 

In the present section an attempt is made to evaluate the effects 
that these switching imperfections had on the experimental result in 
order to obtain some practical design criteria for specifying switching 
requirements for good performance in other applications of this method 
of nonlinear control . 

The experimental results of figures 6, 9, and 11 can be used to 
demonstrate that relay imperfections were not important in the simulated 
model . Comparison of the sinusoidal responses in these figures has shown 
that the period of the error became smaller as the magnitude of the input 
amplitude was increased. (This was discussed in the section "Performance 
Evaluation of Sinusoidal Inputs. " ) From figure ll(a) in the region of 
y ~ 20 volts (the largest magnitude considered in all the experimental 
stUdies) the period of the error Te i s measured as 

There are four parameter switchings per error cycle (see fig. 18) . 
Assuming these to be approximate~ uniform~ spaced, the minimum time 
between parameter switchings is approximately Te/4. Now assuming that 
the relays must be capable of closure in at least 1/5 of this time, the 
maximum allowable (real time) switching delay t.md is 

In the simulated model mv = 1 radian per second. Therefore, 

trod ~ 10 millisec 

As given in table 4, the relays employed were capable of closure in 
3 milliseconds or less so t hat they were entire~ adequate for the experi ­
mental studies. 

The ability to disregard the relays in the evaluation of the effects 
of switching imperfection on performance leaves only threshold effect in 
sensing the sign of the variables y, yr, e, and e r to be considered. 
As has been observed and discussed in the section "Performance Evaluation 
of Sinusoidal Inputs il the amplitude of the error for the nonlinear system 
was relatively independent of the magnitude of the input (i.e., when the 
system is operating in the rapid e to e r switching sequence so that 
this is the minimum- error case). This constancy of the lower limit on 
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the error magnitude is caused by switching imperfections and thus thresh­
old in sens ing the signs of variab l es. Since under a normal switching 
sequence ther e are many mor e e and e' switchings than y or y ' 
swi tchings and since the er ror is of an order of magnitude less than the 
error der ivative ) the pr imary cause of the lower limit on error is local­
ized as threshold in sens i ng the sign of the error. Figure 13 shows the 
results of an inves t i gati on of this threshold effect . In all system­
response f i gures except figure 13 the peak- to-peak threshold was approxi ­
mately 14 mi l l i vol t s. In figur e 13 (a ) the peak- to- peak thr eshold was 
44 millivolts s o that f i gures 7 ( a ) and 13 give a good comparison of the 
effects of these t wo threshold val ues . 

Choice of Paramet er Values 

The per formance of a completely specified nonli near sys tem has been 
discussed . The parameter values for this system) that is) 

D 0 .6 

[33 == - [30 == 2 

[3 2 == - [31 == 0·5 

13 - /0 == 2 

12 == - /1 == 0 · 5 

were initially chosen in the f ollowing manner : D was first selected 
to giv e good linear system performance; then the smallest values of the 
[3m and In parameters giving good nonlinear system performance were 

chosen experimentally from a sys tematic variation of parameters utilizing 
the simulated system . This particular set of ~ and In parameter 

va l ue s can thus be denoted as ( ~)In)min since they establish the lower 
bound on parameter values for good nonlinear system performance. The 
physical significance of (~)In)min is that l oop gai ns and acceleration 

requirements of the linear member are minimized since [3m and l'n are 
feedback gain constants . 

From the discussion in the section "Per formance Evaluation of 
Sinusoidal Inputs" centering about equation (19 ) or from the phase -plane 
methods of the preceding secti on i t is to be expected that a general 
increase in the parameter va l ues over (~)In)min will r esul t i n improved 

nonlinear system performance by i ncreasing the available acceleration of 



G 
NACA TN 3826 33 

the system or increasing the angular sectors in the phase plane. Inspec­
tion of figures 16(a), system 1, and 16(c), system 5, shows this to be 
true. In figure 16(a) the parameter values were (~m'Yn)min as given 

above, and in figure l6(c), system 5, they were 

10 

132 
:::: - 131 :::: 1 

Y3 -Yo lO 

Y2 
:::: -Yl :::: 1 

On comparing the performance of these two systems it is noted that the 
corners of the input triangular wave are reproduced with less error by 
the system of figure 16(c). Thus far then it would seem that there is 
no upper bound on the parameter values; that is 

Invariably, however, there will be upper bounds on the values of the 
parameters because of acceleration limits in the physical system. Fig­
ure 14 shows the effects of placing progressively smaller acceleration 
limits on the system. Here it is seen that for lylllL> 0.3l y lllmax per­
formance is not appreciably affected but for values less than this good 
performance is no longer obtained so that acceleration limits definitely 
tend to determine (I3m,Yn) . In general, then, there will be a whole max , 
range of values of 13m and Yn ; that is, 

for which good nonlinear system performance results. The final choice 
must depend upon the particular application and can easily be found 
experimentally. 

There are certain -special cases of the 13m and Yn parameter values 
that lead to simplified feedback switching circuits and thus lead to non­
linear systems that are Simpler to realize. In table 3 three of these 
are denoted as (1) no derivative feedback, (2) no e' sensing} and 
(3) no e sensing in derivative feedback loop and no e' sensing in 
proportional feedback loop. 

By making inoperative the appropriate relays in figure 5 the sim­
plified switching circuits for these cases are easily obtained. It is 
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desirable then to inspect the performance of these special cases (in 
comparison with that of the complete system) to ascertain whether or not 
as good performance can be obtained with less complexity. Figure 16 
shows the response of these cases in comparison with that of the complete 
system . Figures 16(a ) and 16(b) differ from figures 16(c) and 16(d) in 
that the general magnitude of the parameters was increased in figures 16(c) 
and 16(d) . 

These results show that case (2) is not worthy of much consideration 
since the magnitude of the oscillating error is large. Cases (1) and (3), 
however, should be considered for certain applications. For example, if 
it were known that the amplitude distribution of the input was relative~ 
void near zero, then case (1) would serve as well as the case of the 
complete system. Case (3) shows near~ constant percentage error so that 
it could be useful in cases where accuracy was not so important as economy 
in components. 

To this point the parameter D has received little attention main~ 
because its value (within limits) is not particular~ important. It has 
been observed experimental~ that D may be anywhere in the range 
o ~ D ~ 1 even for (~'/n)min and performance of the nonlinear system 

is not affected. Inspection of the block diagram of the nonlinear system 
(fig . 4 or 5 ) shows that the physical significance of the variation 
of D for given values of ~'/n is that the damping factor of the linear 
member and the derivative feedback around the linear member change syn­
chronous~ . A case of more practical importance such as might arise in 
aerodynamic applications of this type of control system is the variation 
of D for given values of D~' /n ' That is, the damping factor of the 
linear member alone varies while the feedback values around this member 
remain unaffected . Even in this case it has been f ound that the nonlinear 
system performs well. For example, figure 17 shows the response of the 
nonlinear system 

D = 0 . 1 

~3 = 12 

~2 3 

= 12 

to triangular -wave inputs) while figure 7 shows the response of the system 
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D = 0.6 

== 0 . .5 

2 

1 = -1 = 0·5 3 0 

to the same inputs. Comparing these results it is seen that performance 
is nearly the same for both systems. 

PRELlMINARY EXTENSION rro HIGHER ORDER SYSTEMS 

From a practical standpoint limitations in the applicability of the 
nonlinear control system described by equation (8) do not stem from the 
inability to realize the feedback switching circuit but rather from 
assuming the linear member to be of second order. In many cases a more 
realistic approach is to consider the linear member to be of higher order 
but still predominantly second order. Figure 22 shows the block diagram 
of a third-order system of this nature. The linear feedforward member 
could be} for example} the servo of figure 1 including the effects of. 
armature inductance. The same second-order feedback switching circuit 
was still employed. However} it could not be expected that the ~}ln 

parameter values remain the same. Figure 23 compares the response of a 
third- order linear and nonlinear system. Here it is seen that the non­
linear system still responded with much less error than the linear system. 

On the basis of the comparative performance of these two systems it 
seems important to further studies toward control of general higher order 
systems using techniques similar to those developed in this investigation. 

CONCLUDlNG REMARKS 

From control equation (8) a second-order nonlinear control system 
that tends to maintain small instantaneous error for relatively arbitrary 
inputs has been synthesized using digital-computer techniques . The only 
type of nonlinear operatiOns required in the realization are switching­
type operations (zero-coincidence detection and parameter switching). 
The switching requirements are severe from the aspect of detector sensi­
tivity and switching time delay but not impractical since all the switching 
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is done in feedback paths at low power levels and may thus be performed 
electronically . 

The system demands sensing of error and error rate of change. Since 
general noise in a system of this type has to be expected, both error 
and error rate are smoothed. In an extension of this work imperfections 
such as a definite noise level, a given threshold or time delay in the 
relays, and an overall dead time are being investigated more intensively. 
It is expected that they do not seriously impair the working of the system. 

It is a difficult task to compare the performance of a nonlinear 
system with that of a linear system because no general criterion for com­
parison is available . Since for nonlinear systems the law of superposition 
does not hold, it is not adequate to choose the response to a certain 
input (e . g . , the step input) as a criterion for performance comparisons. 
A number of different inputs therefore have been chosen for exhibiting 
the qualities of the nonlinear system . 

Experimental results indicate that this type of nonlinear control 
system performs better than a linear control system having a normalized 
f requency 15 times greater. Performance is evaluated in terms of the 
average value of the magnitude of the instantaneous error for band-limited 
inputs . Further, the nonlinear system performance is virtually independent 
of variations in the damping factor of the system. 

S~anford UniverSity, 
Stanford, Calif . , November 23, 1955 . 

- ----- ---' 
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APPENDIX A 

COMPARISON OF EQUATION (8) AND NONLINEAR CONTROL EQUATION 

OF REFERENCES 1 A.N1) 3 TO 5 

Comparison of Notations 

In original notation the nonlinear control equation was given as 
(refs. 1 and 3 to 5) 

(Al) 

where 

output 

input 

c = 

E = (Yo - Yi) 

( )' = d( ) /dt 

constants 

In terms of the notation of equation (8) the above equation is written 

a+ d~ + b+(l + ~ ) dy + c+(l + Y )Y = x(t) 
2 m dt n 

dt 
(A2) 
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where 

~m ~ -l~ s gn (y'e) - 2~ s gn (y'e l
); m ~ O. lJ 2J 3 

In ~ -11 s gn (ye) - 21 sgn (ye'); n ~ OJ lJ 2J 3 

e ~ (x - y) 

constants J 113- > 213, 

constants 

The subscript convention is 

1~ + 2~ 

Evidently) the correlation between equations (Al) and (A2) is then 

y ~ Yo 

1~ 
_ &1 

2~ 
~ &2 

11 
~ 6.c1 

21 
~ £:£2 - - ) 

b+ b+ + c+ c 

e ~ -E 

and a+ 
) 

b+ 
) and c+ are the same. 

In either notation a set of seven (constant) parameters is needed 
to characterize the system. For example) in equation (A2) the set 

(a+) b+) c+) 1~) 2~) 1/) 2/) is sufficient . 
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Normalization of Nonlinear Control Equation 

When considering control systems it is possible to reduce the num­
ber of parameters necessary to specify the nonlinear system. To do this 
a form of normalization familiar to linear theory is utilized. First, 
it should be realized that if error is to be defined as e ~ (x - y) 
then C6 ~ 1. Thus, assuming C+ == 1 equation (A2) rna:y be written 

(A3) 

where 

Introducing normalized time T ~ royt, equation (A3) becomes 

(A4) 

Thus J knowing the natural frequency of the undamped linear system roy, 
the number of parameters necessary to specify performance in the nonlinear 
case is five, that is, 

or alternative~ 
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APPENDIX/'B 

S]}1ULATION OF SECOND-ORDER NONLINEAR CONTROL SYSTEM 

Equipment 

Experimental studies were carried out with the following equipment: 

(1) General equipment: 
(a) Analog computer, Beckman Ease 
(b ) Low-frequency function generator, hp 202 A (input device) 
(c) Pen recorder, Sanborn Twin-Viso (output device) 
(d) Vacuum-tube voltmeter, RCA WV-97A 
(e) Oscilloscope, Dumont 304-A 

(2) Special equipment: 
(a) Binary-logic switching circuit employed in conjunction 

with (a), described in detail in section "Binary-Logic 
Relay Switching Circuit." 

Computer Setup 

The computer diagram for the differential equation 

(Bl) 

is given in figure 24. The correspondence between this simulated system 
and the block diagram of figure 4 or 5 is straightforward (see ref. 6). 

Operational amplifiers [3:> through ~ are used in simulating the 

linear member of the physical nonlinear system. Resistor Rl provides 

adjustment of the linear damping factor D. The input to this simulated 
linear member is x - (2D~y' + InY) where x is obtained from the input 
devi~e, while the values of feedback 2D~' and InY are obtained with 
resistors R2 through R9 (s ee table 5) connected to yl and y through 
a binary-logic relay switching circuit derived in the following section. 

Amplifiers [!> through b are sign changers . The four variables 

y, yl, e, and e l whose signs are to be sensed are made available as 
shown in the lower right of figure 24. 
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Binary-Logic Relay Switching Circuit 

To complete the simulation of e~uation (8) it is necessary to imple­
ment the binary logic of table 2. Figure 5 shows a relay switching cir­
cuit (designed on an "and/or" basis ) that realizes the necessary logic. 

In order to preclude the possibility of time delay in switching, 
"fast" relays have been employed. The average properties of the 14 
double -pole single-throw relays comprising the switching circuit are 
given in table 4. 

The necessary synchronism in relays connected by dashed lines 
(fig. 5) is obtained by series connection of field coils. Into the four 
channels of field coils thus formed is read the four-digit binary logic 
of table 2 where now 

o = Function > 0 = No coil current 

1 = Function < 0 = Coil current 

This process of reading in the binary logic may be done by monitoring 
the variable (y, y', e, e') with four separate zero- coincidence detectors 
or amplitude selectors (denoted CD in fig . 5 and described in detail 
in the following section) . The output of these coincidence detectors 
then drives the respective channels of r elay coils. 

Sensitive Transistorized Zero - Coincidence Detector 

One of the four identical amplitude selectors designed for use with 
the switching circuit of figure 5 is shown in figure 25 . This circuit 
basically consists of a grounded emitter PNP transistor stage Tl driving a 

pentode pulse amplifier T2 . (It should be possible to utilize a tran­

sistor in place of the pentode if desired.) Four relay coils connected 
in series form the plate load of T2 . Positive feedback R3 has been 
incorporated for regenerative switching. 

The operation of this circuit 
age V becomes more negative than 
in the base - emitter region of Tl • 

is as follows : When the input volt­
- 50 millivolts, current starts to fl ow 
This initiates collector- emitter cur -

rent which effectively grounds the collector and thus the grid of T2 • 
Plate current flows in T2 so that the relays which form this plate load 
are switched to the up position (fig . 5 ). Positive feedback R3 has been 

incorporated to make the switching regenerative . Stages Tl and T2 will 
continue to conduct until V goes positive by 50 millivolts, at which 
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time current is cut off in Tl and thus T2; the relays return to the nor­
mal~ closed positions (down in fig. 5). 

Refinements that have been included in this circuit are: 

(1) Adjustable positive feedback R3 . This feedback gives control 

over the zero-sensing threshold of the detector. The greater the posi ­
tive feedback the greater the threshold . This adjustment is desirable 
for studying the effects of threshold in sensing discussed in the section 
"Effects of Switching Imperfections." The measured peak-to-peak thresh­
old values obtainable with this arrangement were a maximum of 400 milli ­
volts and a minimum of 60 millivolts. (In the computer setup it was 
necessary to amplify error e that formed the input to one of these 
detectors five times in order to bring the switching threshold down to 
15 millivolts , peak to peak .) 

(2) Adjustable bias for emitter of Tl . This is necessary to com­

pensate for the slight positive bias (approximate~ equal to 100 milli­
volts) given to the base of Tl by the positive feedback R

3
. 

(3) A clamping or clipping diode T3 to protect the transistor Tl 

from excessive base - emitter inverse voltages. Thus it can be seen that 
the input impedance of this coincidence detector is 15 ki10hms since the 
base of Tl is effectively alwqys grounded. 
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APPENDIX C 

BEHAVIOR OF OUTPUT IF INPUT AND INPUT DERIVATIVE 

ARE SlliDLTANEDUSLY SMALL 

Assume that the input is a curve which may be approximated by 

for values 
vanish with 

The output depends 

(1) For yeO) 

(2) For yeo) 

(3) For yeo) 

Since Xl = 2~TJ both input and input derivative 
The input phase curve is 

x = ..l....(x 1)2 
4~ 

on the initial conditions: 

= 0 and y l (O) = 0 

Y 
= a~4 + D(l + ilm) T5 + . J 12 30 

. 

= 0 and yl (0) = El 

y = El~ - D(l + I3m)T2 + .. .J 
€2 and yl(O) = 0 

In all cases reproduction of the input is not perfect very close to 

43 

T = 0; however, in cases (2) and (3) switch points may occur for rat~er 
small values of T. In case (1) no switch point close to T = 0 can 
be expected. This case will rarely occur; in most cases neither yeO) 
nor yl (O) will be zero. Then the output is a superposition of cases (2) 
and (3). In this event the error e = x - Y is given by 
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It is evident that for small values of €l and €2 the error grows 

with ~ . This can easily be seen in the results of figure 11 . The input 
was x = A(l - sin nT); that means, near x = 0, the input may be approxi-
mated by a parabola with ~ = 1/2(n2 )A or the errors near x ~ 0 grow 
with n2 . 
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APPENDIX D 

APPROXIMATlllG CURVES 

The approximating curves which can be used to trace the output for 
a given input form a network in the phase plane. It has proved practical 
to present the network for e and e' of equal sign in one sheet 
(e.g.) see fig. 20) and the network for e and e' with opposite sign 
on another sheet. Superposition of both sheets allows establishing of 
the four approximating curves through each point of the phase plane. 

The approximating phase curves are determined by equation (21). 
Since the values Al and A2 change from quadrant to quadrant the curves 
are composed of portions of different analytical curves which are patched 
at yl = 0 and y = O. 

The roots Al and A2 depend on D) ~m) and In; they may be 
complex or real. If the roots are complex) the approximating curves are 
curves of the spiral t ype which wind around the origin of the phase plane. 
In the case of real roots the curves have a quite different character. 
This can easi~ be underst ood by transforming the equation of the approxi­
mating curves (see refs. 1 and 3 to 5 and ch. V of ref. 7). For real 
roots the new coordinates ~ and v are introduced: 

YA2 Sl = v 

Then equation (21) yields 

If Al and A2 are real and of opposite sign) the curves in the 

~v plane have hyperbolic character with (~)v) = (0)0) as saddle point 
(see fig. 26(a)). If Al and A2 are of equal sign) the curves have 

a nodal point (see figs. 26(b) and 26(c)). In figures 27 and 28 phase 
curves ' with saddle point and stable and unstable node are shown in the 
original yfl plane. 

The approximating curves are composed of portions of these different 
types (see fig. 29). 

- _ ._.-1 
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There is no need of avoiding ~JYn combinations which lead to 

node- type appr oximating curves because only portions of these curves 
are used . In the earlier publications it appeared as if (in either one 
of the networks of approximating curves) one set of curves had to be 
formed by curves of spiral character ( complex roots A) . However J this 
has proved to be an unnecessary restriction. There might be some trouble 
with node- type curves if large delays in switching should occur (e . g . ) 
delays in yt = 0 switching in fig . 29) . 
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TABLE 1. - CODING SCHEME FOR SWrrCHING LOGIC FORM EQUATION (14) 

[0) function> 0; 1) function < 0] 

Binary coded decimal Decimal 

y y' e e' 0 

0 0 0 0 0 
0 0 0 1 1 
0 0 1 0 2 
0 0 1 1 3 
0 1 0 0 4 
0 1 0 1 5 
0 1 1 0 6 
0 1 1 1 7 
1 0 0 0 8 
1 0 0 1 9 
1 0 1 0 10 
1 0 1 1 11 
1 1 0 0 12 
1 1 0 1 13 
1 1 1 0 14 
1 1 1 1 15 
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TABLE 2. - MATRIX OF ALlDWED 13m) In COMBI NATIONS AS DETERMINED 

BY ENCODED SWITCHING IDGIC OBTAINED FROM EQUATION (14)a 

130 13 1 13 2 133 

10 
0000 0100 
llll 1011 

11 
0001 0101 
1110 1010 

12 
0110 0010 
1001 1101 

13 
0111 0011 
1000 1100 

~amples: 13
3 / 0 is chosen when 0100 

occurs) i.e. ) 

(y > 0) yl < 0) e > 0) e 1 > 0) 

or when 1011 occurs) i . e . ) 

13 2/ 1 is chosen when 0101 occurs) i . e . ) 

(y > 0) yl < 0) e > 0) e 1 < 0) 

or when 1010 occurs ) i.e.) 

(y < 0) y l > 0) e < 0) e 1 > 0 ) 

131/ 3 is not pos sible . 

49 
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TABLE 3 . - PARAMETERS FOR FIGURE 16 

Figs . 16 ( a ) and 16 (b ) Figs. 16 (c ) and 16 (d ) 

Complete system 

System 1 : System 5 : 
(33 = - (30 = 2 1'3 = - 1'0 = 2 (33 = - (30 = 10 1'3 = - 1'0 == 10 

(32 = - (3 1 = 0· 5 1'2 = - 1'1 = 0 · 5 (32 = - (31 = 1 1'2 = - 1'1 = 1 

(1) No derivat i ve feedback 

Sys tem 2 : System 6 : 
(33 == - (30 == 0 1'3 = - 1'0 = 2 (33 = - (30 == 0 1'3 = - 1'0 == 10 

(32 = - (31 = 0 '2 = - '1 = 0 · 5 (32 = - (31 = 0 '2 = - '1 == 1 

( 2 ) No e ' sensing 

System 3 : System 7 : 
(33 = - (30 = 2 1'3 = - 1'0 = 2 (33 = - (30 = 10 1'3 = - 1'0 == 10 

(32 = - (31 = 2 1' 2 = - 1'1 = 2 (32 = - (31 = 10 1'2 = - 1'1 = 10 

(3 ) No e sens i ng in derivat i ve f eedback l oop and 
no e ' sensing i n pr opor t i onal feedback l oop 

System 4: System 8: 
(33 = - (30 = 2 1'3 = - 1'0 = 2 (33 = - (30 = 10 1'3 = - 1'0 = 10 

(3 2 = - (31 = - 2 1'2 = - 1'1 = 2 (32 = - (31 = - 10 1'2 = - ' 1 = 10 
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TABLE 4. - AVERAGE PROPERTIES OF RELAYS FOR SWITCHmG 

CIRCUIT OF FIGURE 5 

Description: General Electric -CR-2791 
double-pole single-throw relay mounted 
on 5-prong Amphenol base with permanent 
aluminum dust cover 

Connections: 

0
3 • • 4 

2 · • • 5 

1 

Electrical Properties 

Coil resistance 
Coil current for 

positive action 
Pull- in time 
Drop-out time 

5 r [3 
f, 4 

Values 

2.5 kilohms 

5 to 10 rna 
2 millisec 
3 millisec 

51 
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TABLE 5. - CORRESPONDENCE BETWEEN ADJUSTABLE COMPUTER 

EUMENTS AND PARAMETERS OF EQUATION (8) 

Element Corresponds to Units} 
kilobms 

Rl ( 2D )- 1 100 

R2 (2D/30t l 100 

R3 (2D~lrl 100 

R4 (2D/32)-1 100 

R5 (2D/3
3
) -1 100 

R6 (Yor
l 100 

Rr (Ylr
l 100 

R8 (y 2 t l 100 

~ (Y3r
l 100 

. I 

. I 
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~Sum:ming 

x 

Input 

pOints, Motor. gear train. 

k m 
K1 p(Jp + B) 

Gain 

p 

~ y 

output 

Gain Tachometer 

Figure 1. - Block diagram of simple positional servo. J, inertia of motor 
rotor, gears, and reflected load; B, viscous damping of motor and 
reflected load referred to motor shaft ; ~, constant of proport ionality 

t3m 

between output velocity and back electromotive force (it includes arma­
ture resistance and gear ratio from motor shaft to load). 

Damping Gain 

I 'Yn 
I ----
I 

~3 ~ I -- r---- I 
2 I 

I I 'Y1 
T 

I f?1 I 
I , -,-

i i 
I I 

I t3O-L I 'YO I -- --

n' 
-- I 

W 

Figure 2.- Illustration of stepwise nature of parameters ~ and In. 
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x 

Input 

1 

p2 + 2Dp + 1 

\ 
f3m 2Dp 

'Yn 
L-__ ....1 J 

" 

NAeA TN :5826 

y 

Output 

Figure 3. - Block diagram of equation (8) assuming that ~ and In are 
constant (denoted by encircling dotted line). 
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x 

Input 

1 

2 
p + 2Dp + 1 

2Dp 
I 
I 

I 
f-----, 
I I 
I I 

y 

Output 

.J I 
I 

1--..L-- 1 
I Switching I 
I logic I 
L-- _____ -1 

55 

Figure 4.- Block-diagram of equation (8) taking into account stepwise 
switching nature of 13m and In. 
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1 y 

2 
p + 2Dp + 1 Output 

2Dp 

Sensed 
variables y y' e e' 

Figure 5.- Block diagram showing complete physical interpretation of 
equation (8). CD, zero- coincidence detectors. 
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(a ) Nonlinear system; n = m/mv = 0 . 1 to 0 . 4 in 0 .1 steps . 
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I' " ·I".~l' ~'. .. Hit, ' 
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.. "!tlmi:. 'I : 

II ' 

-

(b ) Linear system; n = m/mv = 0 . 1 to 0 . 4 i n 0.1 steps . 

57 

Figure 6 . - Linear and nonlinear system responses for 20-volt peak-to­
peak sinusoidal input s with frequency n varied . D = 0.6; 2.5 small 
divisions on time scale = 1 normalized time unit; tick marks at 
bottom of figures indicate where frequency was varied. 
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e 

(c) Nonlinear system; n = w/wv = 0.5 to 0.8 in 0.1 steps. 

III 

;v I 

• e • 

H 
11 K~~tt 

. ItfH 

I : ~ ·1 !i!l 

_:;10

," 

• 
(d) Linear system; n = w/~ = 0.5 to 0.8 in 0.1 steps. 

Figure 6.- Continued. 
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lIHlIll H 1I1I. w111l1 mITmT Ifl! 
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l1li 
(e) Nonlinear system; n = w/wv 1.0 to 2.0 in 0.2 steps. 

i ' 

y 
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I 

\ 
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e II 

(f) Linear system; n = w/wv = 1.0 to 2.0 in 0.2 steps. 

Figure 6.- Concluded. 
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(a) Nonlinear system; n = 2rt/T = 0 .1 to 0.4 in 0 .1 steps . 

'" '"i· .ill 
. EiI1lur,linW 

(b) Linear system; n = 2rt/T = 0.1 to 0.4 in 0.1 steps. 

Figure 7.- Linear and nonlinear system responses to 20-volt peak-to-peak 
triangular -wave inputs with period T varied. D = 0.6; 2.5 small 
divisions on time scale = 1 normalized time unit; tick marks at bottom 
of figures indicate when periods were varied. 
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y 

e 

(c) Nonlinear system; n 2~/T 0.5 to 0.8 in 0 .1 steps. 
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(d) Linear system; n = 2~/T = 0.5 to 0.8 in 0.1 steps. 

Figure 7.- Continued. 
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(e) Nonlinear system; n = 2n/T = 1.0 to 2.0 in 0.2 steps. 

,;' " b:,:!!j 

II,! II II II 

Id • 'l: INi I'll 
It! e " In ' ';jj!. 

In 

{' \ \ 1' /1\ 1=4 • r ' / ' (\ '/ 10. [ " 
\ /' \ I \ 1\ 1\ \ I \ "U 

iii ill \::."1' .::'" • ,~;!:; .it ::;: ••. '" , ; iil 
::j l ii.l:i lti:, ".H l;;i '. ">1;: 

,111' ' III k'lilij l' 
1;;\: .r1, ;r\ "\ ., II J 

nH\ I : J,ji' f, \ I I ,H!I II " \ 
, ll. b., ,1 ,/ , II t "'Tfi TI 

1\J ;; p; IY, :i' IV ;;, b J I:;, , 
! :H I;~n';: ..... ,' j;:ij j!.; 

(f) Nonlinear system; n = 2n/T = 1.0 to 2 .0 in 0.2 steps. 

Figure 7.- Concluded. 
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(a) Nonlinear system; ~ 4 and 2. Tick mark at bottom of figure indicates 
where ~ was varied. 
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(b) Linear system; ~ = 4 and 2. Tick mark at bottom of figure indicates 
where ~ was varied. 

Figure 8.- Linear and nonlinear system responses to 20-volt peak-to-peak 
partially integrated square-wave input. D = 0.6; 2.5 small divisions 
on time scale = 1 normalized time unit. 
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(c) Nonlinear system; ~ = 1 and 0 .5. Tick mark at bottom of figure 
indicates when ~ was varied. 

(d) Linear system; ~ 1 and 0.5. Tick mark at bottom of figure indicates 
when ~ was varied. 

Figure 8.- Continued. 
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(e) Nonlinear and linear systems; ~ = O. Tick mark at bottom of figure 
indicates demarcation between nonlinear and linear systems. 

Figure 8.- Concluded. 
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(a) Nonlinear system; n mjwv = 0.1 to 0.4 in 0.1 steps. 

(b) Linear system; n = m/~ = 0.1 to 0.4 in 0.1 steps. 

Figure 9.- Linear and nonlinear system responses to 4-volt peak-to- peak 
sinusoidal inputs with frequency n varied. D = 0.6; 2.5 small 
divisions on time scale = 1 normalized time unit; tick marks at 
bottom of figures indicate where frequency was varied. 
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(c) Nonlinear system; n = w/roy = 0.5 to 0.8 in 0.1 steps. 

(d) Linear system; n = w/wv = 0 . 5 to 0.8 in 0.1 steps. 

Figure 9.- Continued. 
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• I 

(e) Nonlinear system; n = w/wv = 1.0 to 2.0 in 0.2 steps. 

· I 

(r) Linear system; n = w/wv = 1 .0 to 2 .0 in 0.2 steps. · I 

Figure 9.- Concluded . 
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(a) Nonlinear system; n = w/wv = 0 .1 t o 0 . 4 
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(b) Linear system; n wjrrv = 0 .1 to 0 . 4 in 0.1 steps . 

Figure 10. - Linear and nonlinear system responses to 20-volt peak-to­
peak sinusoidal inputs with frequency n varied that are clipped 
symmetrically at ±6 volts. D = 0 .6; 2 . 5 small divisions on time 
scale = 1 normalized time unit ; tick marks at bottom of figures indi­
cate where frequency was varied . 
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(c) Nonlinear system; n = ill/WV = 0.5 to 0 .8 in 0 .1 steps. 

:j~ rr;~jlti I!!1I'm IBrI 

l'11imrl;:~I:i~ 

til y . tm1ef 

I 

I~'::r::: 1:$1"$ 
J" liWEl"!:I 

IHl I 

Il1i Ii 
I'f! I:: 

~i: :11 
I ~I .. 
Illl 

!H Ii!, .!;: P!!1 
"J ,i: 

7\ : IUt'. 
1" ! ~ " UiV i! 

• I~'; !" II .j: 

11 :~: . 1\ . II •. h~Ii 
If. ,'1.'· k J 
i;; iii:!: :J\ Jl I! 
": !:::,!: .··i,· 

llliltlU i~::: :i. :: I:.;' i 

11 ,. 

~ j:f 

. lliUr'lll 
fl!itIt::I 

, 

I': i#FHffll 
:'i. 

~ II -
I 

(d) Linear system; n = m/wv = 0 . 5 to 0.8 in 0 .1 steps. 

Figure 10.- Continued . 
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(e) Nonlinear system; n = rn/wv = 1.0 to 2.0 in 0.2 steps. 

(f) Linear system; n = rn/wv = 1.0 to 2.0 in 0.2 steps. 

Figure 10.- Concluded. 

---------------
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(a) n mjwv = 0.1 to 0 . 4 in 0 .1 steps. 

(b) n = mjmv = 0 . 5 to 0 .8 in 0.1 steps . 

Figure 11 . - Nonlinear system responses of 20-volt peak-to- peak sinusoi dal 
input with frequency n varied that has been displaced by -10 volts 
(direct - current component) for obtaining osculation. D = 0 . 6; 2 . 5 small 
divisions on time scale = 1 normalized time unit ; tick marks at bottom 
of figures indicate where frequency was varied. 
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(a) Nonlinear system. 

(b) Linear system. 

Figure 12.- Linear and nonlinear system responses for triangular-wave 
input whose period and amplitude are randomly modulated. D = 0. 6; 
1 small division on time scale = 1 normalized time unit. 
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(a) Nonlinear system response to tr i angular -wave input with period varied 
as in f i gure 7( a ). D = 0.6; t i ck marks at bottom of figure indicate 
when period was varied . Threshold in sensing sgn e was 44 millivolts. 

Magn ified 3 0 0 times 

Peak-to-p e ak error 

Threshold 

x and y 

9v 

(b ) Constant input X(T) was 9 volts. 

F-igure 13 .- Effects of switching delays due to threshold in sensing sgn e. 
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(a) Nonlinear system; no y" limit. 

(b) Nonlinear system; t12-volt y" limit. 

Figure 14.- Nonlinear system responses to 20-volt peak-to-peak sinusoidal 
input with varying acceleration limits. D = 0.6; n = rn/rnv = 0.5; 

2 .5 small divisions on time scale = 1 normalized time unit. 
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(c) Nonlinear syst em; ±9- volt y " limit . 
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( d) Nonlinear system; ± 71 - volt y" limi t . 
2 

Figure 14.- Continued . 
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(e) Nonli near system; ±6-volt y" limit. 

(f) Nonlinear system; 41: - volt y" limit . 
2 

Fi gure l 4 .- Concl uded . 

-- - -- . --
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(a) Nonlinear system. 
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(b) Linear system. 
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Figure 15.- Linear and nonlinear system responses to 20-volt peak-to­

peak sinusoidal input with ±41- volt velocity limit. D = 0.6; 
2 

n = 2~ /T = 0. 5; 2.5 small divisions on time scale = 1 normalized 
time unit. 
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(a) Complete 
System 1: 

System 2: 

79 

system 1 and system with no derivative feedback 2. 
~3 = -~O = 2; ~2 = - ~l = 0 . 5; '3 = -'0 = 2; '2 = -'1 = 0·5· 

~3 = -~O = 0; ~2 = -~l = 0; '3 = -'0 = 2; '2 = -'1 = 0·5· 

(b) System with no e' sensing 3 and system with no e sensing in deriva­
tive feedback loop and no e' sensing in proportional feedback loop 4. 
System 3: ~3 = -~O = 2; ~2 = -~l 2; '3 = -'0 = 2; '2 = -'1 = 2. 

System 4: ~3 = -~O = 2; ~2 = -~l = -2; '3 = -'0 = 2; '2 = -'1 = 2. 

Figure 16.- Responses of nonlinear system with four different parameter 
sets to a 20-volt peak-to-peak tri~gular-wave input with fixed period 
T = 10n. D = 0.6; 2. 5 small divisions on time scale = 1 normalized 
time unit; tick marks at bottom of figures indicate demarcation between 
systems. 
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(c) Complete 
System 5: 
System 6: 

NACA TN 3826 
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system 5 and system with no derivative feedback 6. 
~3 -~O 10; ~2 = -~l = 1; 13 = - /0 = 10; 12 = - /1 = 1. 

~3 = -~O = 0; ~2 = -~l 0; 13 -10 = 10; 12 = -/1 = 1. 

(d) System with no e' sensing 7 
tive feedback loop and no e' 
System 7: ~3 - ~O 10; ~2 

and system with no e sensing in deriva­
sensing in proportional feedback loop 8 . 
-~l 10; 13 = -10 = 10; 12 = -/1 = 10. 

System 8: ~3 = - ~O = 10; ~2 - ~l = -10; 13 = -10 = 10; 12 = - /1 = 10. 

Figure 16 .- Concluded. 
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(a) .It = 2rr/T 0 .1 to 0.4 in 0 .1 steps . 
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(b) .It = 2rr/T = 0.5 to 0.8 in 0.1 steps. 

Figure 17.- Nonlinear system responses to 20-volt peak-to-peak triangular­
wave input wit h period T varied. D = 0.1; ~3 = -~O = 12; ~2 = -~l = 3; 

Y3 = -Yo = 2; Y2 = -Yl = 0 .5; 2 .5 small divisions on time scale = 1 nor­
malized time unit ; tick marks at bottom of figures indicate where period 
was varied. 
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( a) (d) 

( c ) 

Figure 18. - Sketch showing portions of superposed input and output of 
nonlinear system magnified approximately 100 times. 
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-y x 

2x' 

Figure 19. - Phase -plane angular sectors defined by equation (22) for the 
give n parameter values . l~ = 1 . 5; 2~ = 0 . 5; lY = 0 . 45 ; 2Y = 0.05; 

2D = 0 . 25 ; WV = 2 . 
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Figure 20 . - Superposed input and output phase planes showing available 
angul ar sector s for sinusoidal inputs . l~ = 1 .5; l r = 0 . 45; 2~ = 0 . 5; 

2r = 0 . 05; 2D = 0 . 25; WV = 2; I ~ Imax = 2; I r lmax = 0 . 5; I ~ I min = 1; 

Ir l . = 0.4 . mln 
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Figure 21.- Portion of out put phase diagram for s quar e -wave i nput. 
~3 - ~o = 2; ~2 = - ~1 = 0·5; Y3 = - Yo = 2; Y2 = - Y1 = 0. 5; D = 0.6; 
ffiv= l. 
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Inp ut 

NACA TN 3826 
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( Tp + 1 ) ( p 2 + 2Dp + 1 ) 
Y 

Output 
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Switching log ic 
of Table 2 

Sense d 
variab les--Y Y' e e ' 

Figure 22 . - Block diagr am of third- order nonlinear control system. 
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(a) Nonlinear system. ~3 = -~o = 2; ~2 = -~l 0.1; Y3 -Yo 
Y2 = -Yl = -0. 5 · 

(b) Linear system. 
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2· , 

Figure 23 .- Linear and nonlinear third- order system responses to random input . T = 0.1; D = 0.6; 2.5 small divisions on time scale = 1 nor­malized time unit. 
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I nput 
x 1 

2. 5 

y l 

Binary-logic 
switching 
circuit 

Resistance i n 100 kilohms 
Capac i tance in microfarads 

NACA TN 3826 

Output 
y 

Sensed variab les 
for switching 
control 

Figure 24 .- Comput er diagr am for simulation of equation (8) . 
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5-meg 11 
potentiometer 

v 

I 

B+ (210 v regulated) 

r--- Relay colIs, 
r;~' 10-kv d-c 
~ resistance 

VR 10 5 

250-n potentiometer 

Figure 25. - Transistori zed zer o- coinc i dence det ector. 
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Figure 26 .- Curves in ~v plane. 
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Figure 27.- Phase curves with saddle point. 
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(a) Stable node. (p) Unstable node. 

Figure 28.- Phase curves with nodal point. 
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Figure 29 .- Composition of an approximating curve . I 

NACA - Langley Field, Va. 
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